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Abstract In this paper, we analyze several metamor-
phic virus generators. We define a similarity index and
use it to precisely quantify the degree of metamorphism
that each generator produces. Then we present a detec-
tor based on hidden Markov models and we consider a
simpler detection method based on our similarity index.
Both of these techniques detect all of the metamorphic
viruses in our test set with extremely high accuracy. In
addition, we show that popular commercial virus scan-
ners do not detect the highly metamorphic virus variants
in our test set.

1 Introduction

Over the past two decades, the number of viruses and
worms has been increasing rapidly. Several attacks have
caused great disruption to the Internet and substantial
financial damage to organizations and individuals. For
example, in 1999, the Melissa virus infected thousands of
computers and caused damage estimated at $80 million,
while the Code Red worm outbreak of 2001 affected
systems running Windows NT and Windows 2000 server
and is believed to have caused damage in excess of $ 2
billion [28]. Computer virus attacks pose an ongoing and
serious security threat.

Virus construction kits are readily available on the In-
ternet [27]. These kits allow people with limited technical
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knowledge to develop potentially devastating malware.
Virus construction kit developers often use metamor-
phism as a way to avoid signature-based detection. Pre-
cisely how effective are these metamorphic engines?
How different are the resulting morphed variants? Can
these viruses be detected? In this paper, we address
these questions.

This paper is organized as follows. In Sect. 2, we
provide background information on computer viruses,
including a discussion of metamorphic viruses and the
virus construction kits that we analyze in the remainder
of the paper. Section 3 outlines virus detection tech-
niques, both past and present. Section 4 discusses the
method we use to compute a similarity scores for pairs
of metamorphic viruses. In Sect. 5 we present the design,
implementation and experimental results for our virus
detection technique based on hidden Markov models
and in Sect. 6 we consider a novel (and simple) detection
method based on our similarity index. Then is Sect. 7 we
test three commercial virus scanners to determine their
effectiveness in detecting certain metamorphic viruses.
Finally, Sect. 8 gives our conclusions.

2 Computer viruses

Virus-like programs first appeared on microcomputers
in the 1980s [24]. Since then, the battle between virus
writers and anti-virus researchers has never ceased. To
challenge virus scanning products, virus writers con-
stantly develop new obfuscation techniques to make
viruses more difficult to detect [24]. To escape generic
scanning, a virus can modify its code and alter its appear-
ance at each infection. The techniques that have been
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employed to achieve this end range from encryption and
polymorphism, to modern metamorphic techniques [25].

2.1 Encrypted viruses

The simplest way to change the appearance of a virus
is to use encryption. An encrypted virus consists of a
small decryption module (a decryptor) and an encrypted
virus body. If a different encryption key is used for each
infection, the encrypted virus body will look different.
Typically, the encryption method is simple, such as an
XOR of a fixed key with each byte of the virus body.
A simple XOR is very practical since decryption is also
accomplished by the XOR of the encrypted code with
the key and, therefore, a virus can use the same routine
for both encryption and decryption.

With such a straightforward encryption approach, the
decryptor remains constant from generation to gener-
ation. As a result, detection is possible based on the
code pattern of the decryptor. Even if a scanner cannot
decrypt or detect the virus body directly, it can recognize
the decryptor in most cases.

2.2 Polymorphic viruses

To overcome the problem of encryption, namely, the fact
that the decryptor code is detectable, virus writers have
implemented techniques to create mutated decryptors.
Polymorphic viruses can change their decryptor code in
each generation. They can generate a large number of
distinct decryptors which can even use different encryp-
tion method to encrypt the virus body.

To detect polymorphic viruses, anti-virus software
incorporates a code emulator which emulates the
decryption process and dynamically decrypts the
encrypted virus body. Because all instances of a poly-
morphic viruse carry a constant—but encrypted—virus
body, detection is still possible based on a putative
decrypted virus body.

2.3 Metamorphic viruses

Software is said to be metamorphic provided that copies
of the software are all functionally equivalent, but their
internal structure differs. This is in contrast to cloned
software, where all instances of a piece of software are
identical. With the exception of metamorphic computer
viruses, cloned software is the norm today.

For our purposes, this informal definition of meta-
morphism is sufficient—a more rigorous definition can
be found in [30]. In addition, it is worth noting that
the general problem of detecting metamorphic viruses
is NP-complete [8,19]. However, in this paper we are

concerned with specific real-world metamorphic gener-
ators, not the general detection problem.

There exists a fairly obvious analogy between meta-
morphic software and genetic diversity in biological sys-
tems; see, for example, [22]. Metamorphic software is
potentially beneficial in providing defense against cer-
tain kinds of attacks. Suppose, for example, that a piece
of software contains an exploitable buffer overflow. If
we clone this software, then the same attack will succeed
against every copy, that is, the software is subject to a
“break once, break everywhere” (BOBE) attack [23].

On the other hand, suppose we create metamorphic
copies of a program that contains a buffer overflow. Then
every copy will almost certainly still contain a buffer
overflow and, individually, each copy is potentially sub-
ject to attack. However, an attack written for one copy is
highly unlikely to succeed against any other copy, since
buffer overflow attacks are exceedingly delicate—as are
many other types of attacks.

In [9], the use of metamorphism for buffer overflow
mitigation is examined in some detail. The conclusion
drawn is that a minimal degree of metamorphism pro-
vides a great deal of BOBE-resistance with respect to
buffer overflow attacks. It is highly likely that metamor-
phism provides similar benefits with respect to other
types of attacks as well. In terms of the biological anal-
ogy, this implies that a relatively small degree of “genetic
diversity” provides a high degree of protection from
“disease” (attacks).

Malware writers would also like to take advantage of
metamorphism. It seems to be an article of faith among
hackers that metamorphism provides a practical avenue
for generating virtually undetectable malware [20]. To
make viruses more resistant to emulation, virus writers
have developed numerous advanced metamorphic tech-
niques. According to Muttik [16], metamorphic viruses
are “body-polymorphics”. That is, a metamorphic virus
not only changes it decryptor on each infection but also
its virus body. New virus generations look different from
each other and they do not decrypt to a constant virus
body. That is, a metamorphic virus changes its “shape”
but not its behavior. This is illustrated diagrammatically
by Szor in [24], and reproduced here in Fig. 1.

Many techniques have been implemented by virus
writers to create mutated virus bodies. One of the sim-
plest methods employs register usage exchange; an
example is the W95/Regswap virus [24]. With this tech-
nique, a virus uses the same code but different registers
in a new generation. Such viruses can usually be detected
by a wildcard string [24].

A stronger technique employs permutations to reor-
der subroutines, as seen in the W32/Ghost virus [24].
With n different subroutines, this approach can generate



Hunting for metamorphic engines 213

Fig. 1 Shapes of a
metamorphic virus [24]

n! different viruses. W32/Ghost has ten subroutines, so
it has 10! = 3,628,800 variants. Even with a high number
of subroutine combinations, a virus may still be detect-
able with search strings, since the subroutines remain
constant [24].

More sophisticated metamorphic viruses insert
garbage instructions between core instructions. Garbage
instructions are instructions that are either not executed
or have no effect on program outcomes [15]. An exam-
ple of the former is the nop (no operation–do nothing)
instruction while “add eax, 0” and “sub ebx, 0”
are examples of instructions that do not affect program
results. In addition, some metamorphic viruses insert a
large number of jump instructions into their code. The
Win95/Zperm family of viruses creates new mutations
by removal and insertion of jump and garbage instruc-
tions [24].

Another common metamorphic technique is sub-
stitution, which is the replacement of an instruction or
group of instructions with an equivalent instruction or
group of instructions. For example, a conditional jump,
jcc, can be replaced by jnccwith an inverted test con-
dition and swapped branch labels [31]. As another exam-
ple, “push ebp; mov ebp, esp” sequence can be
replaced by “push ebp; push esp; pop ebp”

[24]. Sometimes, viruses implement instruction opcode
changes. For example, to zero out the register eax, we
can either XOR its content with itself or use sub to
achieve the same result. That is, “xor eax, eax” can
be replaced by “sub eax, eax” [24].

Transposition, or rearrangement of instruction order,
is another metamorphic technique used by virus writ-
ers. Instruction reordering is possible if no dependency
exists between instructions. Consider the following
example from [31]:

op1 [r1] [, r2]
op2 [r3] [, r4];

here r1 or r3 are to be modified

Swapping of the two instructions is allowed if

1. r1 does not equal r4 and
2. r2 does not equal r3 and
3. r1 does not equal r3.

Depending on the implementation details, a meta-
morphic virus may be difficult to detect using current
detection techniques. Unlike polymorphic viruses, which
decrypt themselves to a constant virus body and, there-
fore, provide a complete snapshot of the decrypted virus
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body during execution, metamorphic viruses are never
constant. The detection of metamorphic viruses is an
active research area.

2.4 Virus construction kits

Some virus writers endeavor to make the virus creation
process quick and easy by creating virus construction
kits. These kits can be used to generate virtually any type
of virus, including DOS COM or EXE viruses, 16-bit or
32-bit Windows viruses, script viruses, macro viruses and
PE viruses [24]. These toolkits are designed to be sim-
ple to use and some even come with commercial-grade
interactive graphical interfaces. Such tools enable any-
one to generate malicious code quickly and easily.

Some of these user-friendly tools create viruses that
incorporate sophisticated features such as anti-disas-
sembly, anti-debugging and anti-emulation. In addition,
some kits come equipped with a code morphing ability
which allows them to produce different-looking viruses.
In this sense, the viruses they produce are metamorphic,
not just polymorphic.

More than 150 virus generators are available at the
VX Heavens website [27]; among the more highly-
regarded of these are:

• PS-MPC (Phalcon/Skism Mass-Produced Code gen-
erator)

• G2 (Second Generation virus generator)
• MPCGEN (Mass Code Generator)
• NGVCK (Next Generation Virus Creation Kit)
• VCL32 (Virus Creation Lab for Win32)

Below, we analyze viruses produced by these genera-
tors. In each case, we measure the degree of metamor-
phism and we consider the virus detection problem. But
first we provide some background information on virus
detection techniques.

3 Virus detection techniques

As computer viruses became more sophisticated, an-
tivirus software had to evolve to detect these more
advanced viruses. This section outlines the virus detec-
tion techniques that have been developed over time.
These techniques include:

1. Pattern-based scanning, as used in first-generation
scanners;

2. Nearly exact and exact identification, as used in sec-
ond-generation scanners;

3. Code emulation;
4. Heuristic analysis to detect new and unknown

viruses [24].

3.1 First generation scanners

The simplest approach to virus detection is string scan-
ning. First generation scanners look for virus signatures
which are sequences of bytes (or “strings”) extracted
from viruses in files or in memory. A good signature
for a virus consists of text strings or byte codes found
commonly in the virus but infrequently in other pro-
grams. Usually, a human expert converts the virus binary
code into assembly code, looks for sections that signify
viral activity and selects the corresponding bytes in the
machine code to serve as the virus signature. In some
cases, more efficient statistical techniques can be used
to extract useful signatures automatically [11].

Virus signatures are organized into databases. To
identify a virus infection, virus scanners check specific
areas in files and match them against known signatures
in the databases. Some simple scanners also support
wildcard search strings, such as “??02 33C9 8BD1
419C” where the wildcard is indicated by ‘?’. Wildcard
strings make it possible to skip bytes and to employ
regular expressions. In this way it is sometimes possible
to detect encrypted or even polymorphic viruses [24].
Using a search string from the common code areas of
variants of a virus is known as generic detection [24]. A
generic string typically contains wildcards.

Early computer viruses were usually prepended or
appended to a host program. To make the detection of
such viruses more efficient, some scanners search only
the start and the end of a file instead of scanning the
entire file. In general, scanners can look for common
entry-points which are likely targets of computer viruses.
For example, the headers of executable files are com-
monly used as entry points.

3.2 Second generation scanners

Second-generation scanners refine the detection pro-
cess so that they are able to detect viruses that evolve
by mutating their body. Smart scanning ignores nop
instructions and excludes them when searching for virus
signatures. Nearly exact identification uses cryptographic
checksums or hash functions to achieve a higher speed
and greater accuracy. Exact identification uses all con-
stant ranges of a virus to calculate a checksum, whereas
nearly exact identification uses only one constant range.
While exact identification scanners are usually slower
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than simple scanners, an exact scanner can differentiate
virus variants more precisely.

3.3 Code emulation

With code emulation, anti-virus software implements a
virtual machine to simulate CPU and memory activities.
Scanners execute the virus code on the virtual machine
rather than on the real processor. Depending on how
well the virtual machine mimics system functionalities,
viruses may not recognize that they are confined within
a virtual environment.

Code emulation is a powerful technique, particularly
in dealing with encrypted and polymorphic viruses.
Encrypted and polymorphic viruses decrypt themselves
in memory. Therefore, if an emulator is run long enough,
the decrypted virus body will eventually present itself to
a scanner for detection. The scanner can check the vir-
tual machine memory when a maximum number of iter-
ations or other stop conditions are met. Alternatively,
string scanning can be done periodically at a predefined
number of iterations. In this way, complete decryption of
the virus body is not required—it is only necessary that
the decrypted section is long enough for identification.

Code emulation may be too slow to be useful if the
decryption loop is very long, particularly when a virus
inserts garbage instructions in its polymorphic decryp-
tor. In some cases it may be possible to reduce the
polymorphic decryptor to its core instruction set. To
accomplish this, the emulator can remove junk and other
instructions that do not change the program state. Such
code optimization speeds up emulation and provides a
profile of the decryptor for detection [24].

3.4 Heuristic analysis

Heuristic analysis is used in an effort to detect new
or unknown viruses. It may be particularly useful for
detecting variants of an existing virus family. Heuris-
tic methods can be static or dynamic. Static heuristics
can be based on an analysis of the file format and the
code structure of virus fragments. Dynamic heuristics
use code emulation to simulate the processor and oper-
ating system and detect suspicious operations while the
virus code is executed on a virtual machine.

One drawback to heuristic analysis is that it is prone
to false positives. A false positive occurs when a heuris-
tic analyzer incorrectly tags a benign program as viral.
Too many false positives destroy user trust and can
ultimately make a system more vulnerable since users
may mistakenly assume that a real virus is another false
alarm.

3.5 Machine learning techniques

Various researchers have attempted to use machine
learning techniques to perform heuristic analysis of
metamorphic viruses. In this section, we briefly consider
the following techniques:

• Data mining
• Neural networks
• Hidden Markov models.

3.5.1 Data mining

Data mining methods are often used to detect patterns
in a large set of data. These patterns are then used to
identify future instances of a similar type of data. Schultz
et al. [18] experimented with a number of data mining
techniques to identify new malicious binaries. They used
three learning algorithms to train a set of classifiers on
some publicly available malicious and benign executa-
bles. They compared their algorithms to a traditional
signature-based method and reported a higher detec-
tion rate for each of their algorithms. However, their
algorithms also resulted in higher false positive rates
when compared to signature-based methods.

The key to any data mining framework is the extrac-
tion of features, which consist of properties extracted
from examples in the dataset. Schultz et al. extracted sta-
tic properties of the binaries as features. These include
system resource information (e.g., the list of DLLs, the
list of DLL function calls, and the number of different
function calls within each DLL) obtained from the pro-
gram header and consecutive printable characters found
in the files. The most informative features they found
were byte sequences consisting of short sequences of
machine code instructions.

In [18], the features were used in three different train-
ing algorithms: An inductive rule-based learner that
generated Boolean rules to learn about malicious exec-
utables; a probabilistic method that applied Bayes rule
to compute the likelihood of a particular program being
malicious, given its set of features; and a multi-classifier
system that combined the output of other classifiers to
give the most likely prediction.

3.5.2 Neural networks

Researchers at IBM implemented a neural network for
heuristic detection of boot sector viruses [26]. The fea-
tures they used were short byte strings, called trigrams,
which appear frequently in viral boot sectors but not
in clean boot sectors. They extracted about 50 features
from a corpus of training data, which consisted of both
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viral and legitimate boot sectors. Each sample in the
dataset was then represented by a Boolean vector indi-
cating the presence or absence of these features.

The neural network used was single-layered with no
hidden units and it was trained using a classic back-prop-
agation technique. One common problem with neural
networks is overfitting, which occurs when a network is
trained to identify the training set but then fails to gen-
eralize to unseen instances. To eliminate this problem,
multiple networks were trained using different features
and a voting scheme was used to determine the final
prediction.

The neural network was able to identify about 85%
of viral boot sectors in the validation set with a false
positive rate of less than 1%. The neural network clas-
sifier has been incorporated into the IBM AntiVirus
software which has identified about 75% of all new boot
sector viruses since it was released [26]. A similar tech-
nique was later applied by Arnold and Tesauro to suc-
cessfully detect Win32 viruses [1]. From the work in [26],
it appears that neural networks are effective in detecting
viruses closely related to those in the training set. They
can also identify new families of viruses containing sim-
ilar features as the training samples.

3.5.3 Hidden Markov models

Hidden Markov models (HMMs) are well suited for
statistical pattern analysis. Since their initial application
to speech recognition problems in the early 1970s [17],
HMMs have been applied to many other areas including
biological sequence analysis [12].

An HMM is a state machine where the transitions
between states have fixed probabilities. Each state in an
HMM is associated with a probability distribution for a
set of observation symbols. We can “train” an HMM to
represent a set of data, where the data is in the form of
observation sequences. The states in the trained HMM
then represent the features of the input data, while the
transition and observation probabilities represent the
statistical properties of these features. Given any obser-
vation sequence, we can score it using the trained HMM–
the higher the score the more similar the sequence is to
the training data.

In protein modeling, HMMs are used to model a
given family of proteins [13]. The states correspond
to the sequence of positions in space while the obser-
vations correspond to the probability distribution of
the 20 amino acids that can occur in each position. A
model for a protein family assigns high probabilities to
sequences belonging to that family. The trained HMM
can then be used to discriminate family members from
non-members.

Metamorphic viruses form families of viruses. Even
though members in the same family mutate and change
their appearances, some similarities must exist for the
variants to maintain the same functionality. We can
therefore detect virus variants if we can find a way to
detect these similarities. Hidden Markov models pro-
vide a means to describe sequence variations statisti-
cally. Below, we use HMMs to model virus families. In
virus modeling, the states correspond to the features of
the virus code, while the observations are the instruc-
tions (opcodes) of the program. A trained model should
be able to assign higher probabilities to viruses belong-
ing to the same family as viruses in the training set. We
discuss the use of HMMs for metamorphic virus detec-
tion in more detail in Sect. 5, below.

4 Measuring similarity

It is generally agreed that metamorphism is potent tool
for virus writers. But to use metamorphism effectively,
different instances of a virus must be sufficiently differ-
ent to avoid detection by signature-based scanning.
Some of the virus creation toolkits that we mentioned
in Sect. 2.4, including G2 (Second Generation virus
generator) and NGVCK (Next Generation Virus Crea-
tion Kit), have the ability to generate morphed versions
of the same virus, even from identical initial configu-
rations. In this section, we consider the effectiveness
of these generators by precisely measuring the differ-
ences between metamorphic variants. We use a similar-
ity index and a graphical representation to represent the
similarity between two assembly programs.

4.1 Similarity score

To compare two pieces of code, we employ the method
given by Mishra in [14]. His method compares two
assembly programs and assigns a quantitative score to
represent the percentage of similarity between the two
programs.

Mishra’s method consists of the following steps:

1. Given two assembly programs X, and Y, we extract
the sequence of opcodes from each, excluding com-
ments, blank lines, labels, and other directives. The
result is opcode sequences of length n, and m, where
n and m are the numbers of opcodes in programs X
and Y, respectively. The opcodes in each sequence
are numbered sequentially.

2. We compare the two opcode sequences by consid-
ering all subsequences of three consecutive opcodes
from each sequence. We count as a match any case
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Fig. 2 Computing similarity

where all three opcodes are the same, regardless
of order, and we mark on a graph the coordinate
(x, y) of the match where x is the opcode number
of the first opcode of the three-opcode subsequence
in program X and y is the opcode number of the
opcode subsequence in program Y.

3. After comparing the two opcode sequences and
marking all the match coordinates, we obtain a graph
plotted on a grid of dimension n × m. Opcode num-
bers of program X are represented on the x-axis
and those of program Y are represented on the y-
axis. To reduce noise and random matches, we only
retain those line segments of length greater than a
threshold value of five.

4. Since we are performing a sequential match between
the two opcode sequences, identical segments of op-
codes will form line segments parallel to the main
diagonal (if n = m, the main diagonal is the 45◦
line). If a line segment falls on the main diagonal,
the matching opcodes are, essentially, at identical
locations in the two opcode sequences. A line off
the diagonal indicates that the matching opcodes
appear at different locations in the two files.

5. For each axis, we determine the fraction of opcodes
that are covered by one or more line segments. The
similarity score for the two programs is the average
of these two fractions.

The similarity score computation process is illustrated
in Fig. 2.

4.2 Test data

We analyzed 45 viruses generated by four virus genera-
tors obtained from VX Heavens [27]. We also compared
randomly-chosen utility programs from Cygwin [6] to
see how viruses differ from these “normal” executable
files. These 45 programs consisted of:

Fig. 3 NGVCK similarity

• 20 viruses generated by NGVCK (Next Generation
Virus Creation Kit) version 0.30 released in June
2001;

• 10 viruses generated by G2 (Second Generation virus
generator) version 0.70a released in January 1993;

• 10 viruses generated by VCL32 (Virus Creation Lab
for Win32) released in February 2004;

• 5 viruses generated by MPCGEN (Mass Code Gen-
erator) version 1.0 released in 1993;

• 20 executables from Cygwin version 1.5.19.

The virus variants were named after their generators as
follows:

• The 20 viruses generated by NGVCK were named
NGVCK0 to NGVCK19;

• The 10 generated by G2 were named G0 to G9;
• The 10 generated by VCL32 were named VCL0 to

VCL9;
• The 5 generated by MPCGEN were named MPC0

to MPC4.

The 20 Cygwin utilities files were named R0 to R19.
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The viruses created by the virus generators consist
of assembly code. To provide for more realistic test-
ing, we employed the following procedure. First, virus
executable files were created by assembling the viruses
using the Borland Turbo Assembler TASM 5.0. Then the
generated executables were disassembled using the IDA
Pro Disassembler version 4.6.0 [10]. All of the disassem-
bling used the same default settings. The Cygwin utilities
were also disassembled by IDA Pro. We added the pre-
fix “IDA_” to the respective file names to denote that
the files were disassembled ASM files created by IDA
Pro. For example, the file disassembled from R0.EXE
was named IDA_R0.ASM.

We compared the disassembled ASM files instead of
the original assembly code generated by the virus gen-
erators. We believed by assembling and disassembling
with the same tools using the same settings, we have
provided a more realistic test environment. That is, this
standardized disassembling process is necessary since,
in practice, we would start with executable files. In this
way, our similarity scores better reflect the effectiveness
of the metamorphism as observed in “the wild”.

4.3 Test results

We compared each test virus to all other test viruses
produced by the same generator. The resulting simi-
larity scores give us a way to determine how effective
each generator is at creating metamorphic variants. For
each pair of virus variants under consideration, we com-
puted the similarity score using the method described
above in Sect. 4.1. Comparisons were also made between
the normal (Cygwin) files. The raw similarity scores of
all the comparisons are given in Table A-1 through
Table A-5 in Appendix A of [29]. Figure 3 below is a
scatter plot showing the similarity scores for the 190 pair-
wise comparisons between the 20 NGVCK viruses and
the 190 pair-wise comparisons between the 20 normal
files. Clearly, similarities between NGVCK virus vari-
ants are significantly lower than those between normal
files.

The minimum, maximum, and average scores of each
generator and the normal files are summarized in
Table 1.

NGVCK generates viruses with similarities ranging
from 1.5 to 21.0% with an average of about 10.0%.
This is a far lower degree of similarity than any of the
other three generators. For the non-NGVCK genera-
tors, the similarity between two variants of the same
virus range from 34.4 to 96.6%, and the average scores
of G2, VCL32, and MPCGEN are 74.5, 60.6, and 62.7%,
respectively. On the other hand, normal files give an
average similarity of 34.7%. From these results, we can

Table 1 Similarity scores

Minimum, maximum, and average similarity scores

NGVCK G2 VCL32 MPCGEN Normal

Min 0.01493 0.62845 0.34376 0.44964 0.13603
Max 0.21018 0.84864 0.92907 0.96568 0.93395
Average 0.10087 0.74491 0.60631 0.62704 0.34689

Fig. 4 Bubble graph

see that the NGVCK viruses are substantially different
from one another, while the virus variants generated by
the other generators are more similar to one another
than normal files. We conclude that the non-NGVCK
generators we tested are not nearly as effective as
NGVCK at generating metamorphic viruses.

Our similarity results are represented graphically by
the bubble graph in Fig. 4. Here the minimum score
is shown along the x-axis, the maximum score is shown
along the y-axis, and the size of the bubble represents the
average similarity. Under this representation, an effec-
tive generator would have a bubble that is close to the
origin and also has a small size.

As can be seen in Fig. 4, NGVCK clearly outper-
forms the other generators in terms of generating differ-
ent-looking viruses. VCL32 and MPCGEN have similar
morphing ability as their variants have comparable min-
imum, maximum, and average similarities. G2 viruses
have a higher average similarity, as is represented by
the bigger bubble size, although the maximum similarity
of the variants is lower than that of VCL32 and MPC-
GEN viruses. Normal files have similarities higher than
NGVCK viruses but lower than virus variants produced
by the other three generators.

Figures (5,6,7,8 and 9) show the similarity graphs of
selected virus pairs. For each generator, we chose a
representative pair which has a similarity close to the
average similarity score. The first column gives the virus
names with the similarity score in parenthesis. The sec-
ond column shows the graph of all matches, as discussed
in Sect. 4.1, above. The third column shows the graph
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of matches after noise and random matches have been
removed (also discussed in Sect. 4.1, above).

If we take a closer look at the graphs for the pair of G2
viruses (Fig. 6) and the pair of VCL32 viruses (Fig. 7),
we can see that the matching opcodes are almost all
along the diagonal. This indicates that these virus vari-
ants have identical opcodes at identical positions, which
is obviously not effective metamorphism. On the other
hand, the matches between the MPCGEN virus pair
are off the diagonal, which shows that identical opcodes
appear in different positions of the two virus variants.
From this evidence, we can say that MPCGEN has a
somewhat greater morphing ability than either G2 or
VCL32. However, NGVCK is the most effective since
the matching segments are very short and matches are
off of the diagonal. Even if we consider the NGVCK
pair with the highest similarity (IDA_NGVCK7 and
IDA_NGVCK14, with similarity of 21.0%), the match
segments are short and off the diagonal. The similarity
graph for this pair appears in Fig. 10.

Since NGVCK was found to be the most effective
metamorphic engine in our test set, we were interested
to know how the viruses it produces differ from the
viruses created using the other generators. We com-
pared the first 10 NGVCK viruses (IDA_NGVCK0 to
IDA_NGVCK9) against each of the following viruses:

• IDA_G0 to IDA_G9 (10 files);
• IDA_VCL0 to IDA_VCL9 (10 files);
• IDA_MPC0 to IDA_MPC4 (5 files).

Our results show that the NGVCK viruses are very
different from the other viruses. Each of the compar-
isons against the G2 viruses and against the MPCGEN
viruses produces a similarity score of zero. Of the 100
comparisons against the VCL32 viruses, 57 comparisons
yield a similarity score of zero, while the 43 compar-
isons that have nonzero similarity have scores range
from 1.2 to 5.5%, with an average of just 2.4%. These
scores are very low compared to the similarity scores
discussed above. The scores for the 43 pairs that have
similarity greater than zero appear here in Table A-6 in
Appendix A of [29]. The similarity graphs of the pair
IDA_NGVCK0 and IDA_VCL4, which has the high-
est similarity score of such pairs (at 5.5%), is shown in
Fig. 11.

We also compared the NGVCK viruses to the normal
files. All 20 NGVCK viruses were compared to the 20
normal files. All but eight of these 400 comparisons show
no similarity. The eight pairs that show some similarity
have low scores—in the range of 0.98 to 1.12%. These
scores appear below in Table 2.

The NGVCK comparison results are displayed using
bubble graphs in Fig. 12. The bubble labeled “NGVCK
vs NGVCK” summarizes the results obtained by
comparing NGVCK viruses to NGVCK viruses. This
graph illustrates that NGVCK viruses not only have
low similarities in comparison to other NGVCK vari-
ants, they exhibit even lower similarities when compared
to other viruses or normal programs. We conclude that
NGVCK viruses are not only highly metamorphic, but
that they are also very different from the other viruses
in our test set and from the non-viral programs tested.

Since the NGVCK viruses are highly metamorphic,
we would expect that they are more difficult to detect
than the other metamorphic viruses we tested. Next, we
develop a detection method based on hidden Markov
models and we also consider detection using a straight-
forward similarity index calculation. Finally, we test
three commercial virus scanners to determine how effec-
tive they are at detecting the viruses in our test set.

5 Detection Using HMMs

In this section, we consider using hidden Markov models
(HMMs) to detect metamorphic virus variants. In partic-
ular, we want to determine whether HMMs can effectiv-
ely detect highly metamorphic viruses, such as NGVCK.

5.1 Introduction to HMMs

In an HMM, we assume there is a Markov process which
we cannot directly observe, that is, the Markov pro-
cess is hidden. We are able to indirectly obtain infor-
mation about the Markov process from an observa-
tion sequence, where each observation is related to the
underlying Markov process by a probability distribution.

To fix the notation, let
T = the length of the observed sequence
N = the number of states in the model
M = the number of distinct observation
O symbols = the observation sequence

= {O0, O1, . . . , OT−1}
Q = the sequence of states of the

Markov process = {q0, q1, . . . , qN−1}
V = the set of observation symbols

= {0, 1, . . . , M − 1}
A = N × N matrix of the state transition p

robability distributions
B = N × M matrix of the observation

probability distributions
π = 1 × N matrix containing the initial

state distribution
λ = (A, B, π) = the HMM model.
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Fig. 5 Typical NGVCK similarity graph

Fig. 6 Typical G2 similarity graph

Fig. 7 Typical VCL32 similarity graph
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Fig. 8 Typical MPCGEN similarity graph

Fig. 9 Typical normal (Cygwin) similarity graph

Fig. 10 NGVCK maximum similarity graph
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Fig. 11 Similarity of NGVCK with VCL32

Table 2 Nonzero NGVCK similarity

Similarity scores between files

IDA_NGVCK2 IDA_R11 0.01001 Min 0.00981
IDA_NGVCK5 IDA_R10 0.01123 Max 0.01123
IDA_NGVCK6 IDA_R16 0.01021 Average 0.01031
IDA_NGVCK7 IDA_R5 0.01007
IDA_NGVCK7 IDA_R6 0.00981
IDA_NGVCK7 IDA_R7 0.00990
IDA_NGVCK7 IDA_R8 0.01010
IDA_NGVCK7 IDA_R13 0.01115

Fig. 12 Metamorphic Similarity Scores

Note that the observation symbols are associated with
the 0, 1, . . . , M − 1. This is not necessary, but it does
simplify the notation. Also, since the matrices A and B
contain probability distributions, these matrices are row-
stochastic. The relationship between Xi, Oi, A, and B is
illustrated in Fig. 13, where the area above the dotted
line represents the hidden part of the model.

The following three problems can be solved efficiently
using hidden Markov models:

Fig. 13 Hidden Markov model [22]

1. Given the model λ = (A, B, π) and a sequence
of observations O, find P(O | λ). Here, we want to
determine the likelihood of the observed sequence
O, given the model.

2. Given the model λ = (A, B, π) and an observation
sequence O, find an optimal state sequence for the
underlying Markov process. In other words, we can
uncover the hidden part of the HMM.

3. Given an observation sequence O and N and M
(which determine the dimensions of the matrices A,
B and π), find the model λ = (A, B, π) that max-
imizes the probability of observing O. This can be
viewed as training the model to best fit the observed
data. Equivalently, we can view this as a (discrete)
hill climb on the parameter space represented by A,
B and π .

It is, perhaps, not surprising that these three problems
can be solved. However, the practical utility of hidden
Markov models arises from the fact that efficient algo-
rithms exist to solve each of these problems. We will not
discuss the algorithmic details here; for more informa-
tion, see [21] or [17].

Given a sufficiently long sequence of observations, we
can train a model, that is, we can determine the A and B
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matrices in Fig. 13, by solving Problem 3, above. These
matrices will be optimal in the sense that they maximize
the expected number of states that are correct. Given
a trained model, and a sequence of observations, by
solving Problem 1, we obtain a score for the sequence,
which measures how well it fits the derived model. In this
paper, we will not consider Problem 2 further, but we
note in passing that a solution to this problem can pro-
vide insight into the underlying Markov process, which,
in turn, might lead to an improved model.

One useful feature of HMMs is that the a priori
assumptions are minimal. Additional strengths of an
HMM approach include simplicity and efficiency.

5.2 English text example

Consider the following application of HMMs. Suppose
that we are given a large quantity of written English
text, and we remove all punctuation, symbols and num-
bers, and we convert all letters to lower case. Then we
are left with a long sequence of observations consist-
ing of 27 symbols—the 26 lower-case letters and the
word space. Now suppose that we train an HMM on
this sequence of observation, using N = 2 hidden states.
That is, we assume that there exists a Markov process,
with a 2 × 2 state transition matrix A, that generates
the observed sequence of states. These states are hid-
den, but we assume that the sequence of letters that we
observe are generated based on these hidden states and
the probability distributions in the 2 × 27 matrix B. The
matrix B is row stochastic, since row i is the probabil-
ity distribution on the observation symbols when the
(hidden) Markov process is in state i.

Using the given observation sequence, we can train
the HMM, that is, we determine the model λ = (A, B, π)

that best fits the observations. The resulting model can
then be used to score an unknown sequence of letters
(and spaces) to determine whether it corresponds to
English text or not. Note that this approach will detect
English text that has been “disguised” by a transforma-
tion such as a simple substitution cipher.

We tested this English text experiment, using as our
set of observations the first T = 50, 000 letters (con-
verted to lower case, with punctuation and special sym-
bols removed) from the “Brown Corpus” of English [4].
We initialized each element of π and A randomly to
approximately 1/2, with the row-stochasitic condition
enforced. The precise initial values used in this example
were

π = [ 0.51316 0.48684 ]

Table 3 Initial and Final B

Symbol Initial Final

a 0.03735 0.03909 0.13845 0.00075
b 0.03408 0.03537 0.00000 0.02311
c 0.03455 0.03537 0.00062 0.05614
d 0.03828 0.03909 0.00000 0.06937
e 0.03782 0.03583 0.21404 0.00000
f 0.03922 0.03630 0.00000 0.03559
g 0.03688 0.04048 0.00081 0.02724
h 0.03408 0.03537 0.00066 0.07278
i 0.03875 0.03816 0.12275 0.00000
j 0.04062 0.03909 0.00000 0.00365
k 0.03735 0.03490 0.00182 0.00703
l 0.03968 0.03723 0.00049 0.07231
m 0.03548 0.03537 0.00000 0.03889
n 0.03735 0.03909 0.00000 0.11461
o 0.04062 0.03397 0.13156 0.00000
p 0.03595 0.03397 0.00040 0.03674
q 0.03641 0.03816 0.00000 0.00153
r 0.03408 0.03676 0.00000 0.10225
s 0.04062 0.04048 0.00000 0.11042
t 0.03548 0.03443 0.01102 0.14392
u 0.03922 0.03537 0.04508 0.00000
v 0.04062 0.03955 0.00000 0.01621
w 0.03455 0.03816 0.00000 0.02303
x 0.03595 0.03723 0.00000 0.00447
y 0.03408 0.03769 0.00019 0.02587
z 0.03408 0.03955 0.00000 0.00110
Space 0.03688 0.03397 0.33211 0.01298

Fig. 14 LLPO scores

and

A =
[

0.47468 0.52532
0.51656 0.48344

]
.

Each element of B was initialized to approximately 1/27,
ensuring that the probabilities in each row sum to one.1

The precise values in the rows of the initial B matrix
appear in the second and third columns of Table 3,
respectively.

Using these initial values, we solved HMM Problem 3
(discussed above), that is, we determine the model that

1 If A, B and π are set to uniform probabilities, then the model is
at a fixed point and it cannot climb to a solution. Consequently, it
is necessary to slightly randomize the initial values.
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Table 4 Converged B Matrix

Test set 0

N = 3, M = 76, T = 67, 032
π 1.00000 0.00000 0.00000
A

0.05277 0.32625 0.62099
0.99351 0.00649 0.00000
0.00000 0.19528 0.80472

B
pop 0.18166 0.00000 0.03246 dec 0.00000 0.04817 0.01547
jz 0.18012 0.00000 0.00000 movzx 0.00000 0.00000 0.01002
retn 0.15195 0.00000 0.00489 not 0.00000 0.00000 0.00621
jzn 0.12674 0.00000 0.00000 neg 0.00000 0.00000 0.00477
push 0.12364 0.38830 0.03404 imul 0.00000 0.00000 0.00385
call 0.10758 0.08648 0.04103 xchg 0.00000 0.00000 0.00279
jb 0.03760 0.00000 0.00000 movsb 0.00000 0.00000 0.00258
jmp 0.01850 0.00227 0.02770 start 0.00000 0.00349 0.00218
rcl 0.01434 0.00017 0.00122 stosd 0.00000 0.00000 0.00164
jbe 0.01141 0.00000 0.00000 rep 0.00000 0.00000 0.00144
jnb 0.01011 0.00000 0.00000 lodsw 0.00000 0.00000 0.00123
popa 0.00995 0.06472 0.00025 stosw 0.00000 0.00000 0.00116
ja 0.00597 0.00000 0.00000 lodsd 0.00000 0.00000 0.00101
lea 0.00587 0.00000 0.02525 stosb 0.00000 0.00000 0.00089
div 0.00558 0.00000 0.00207 lodsb 0.00000 0.00000 0.00087
cld 0.00307 0.00000 0.00433 loop 0.00000 0.00000 0.00046
adc 0.00219 0.00181 0.00476 in 0.00000 0.00000 0.00007
shl 0.00082 0.00000 0.01241 ins 0.00000 0.00000 0.00007
ror 0.00063 0.00000 0.00481 repe 0.00000 0.00000 0.00007
sbb 0.00058 0.00000 0.00160 std 0.00000 0.00000 0.00005
shr 0.00035 0.00010 0.00451 movsd 0.00000 0.00007 0.00003
inc 0.00017 0.01408 0.02316 popf 0.00000 0.00000 0.00002
rol 0.00016 0.00000 0.00457 fnstenv 0.00000 0.00000 0.00002
jnp 0.00015 0.00000 0.00000 scasb 0.00000 0.00000 0.00002
add 0.00013 0.01315 0.22386 cmc 0.00000 0.00000 0.00002
or 0.00013 0.02146 0.00670 enter 0.00000 0.00000 0.00002
sar 0.00013 0.00056 0.00155 jns 0.00000 0.00000 0.00002
test 0.00009 0.03124 0.00000 icebp 0.00000 0.00000 0.00002
bound 9.00008 0.00000 0.00000 jle 0.00000 0.00000 0.00002
jp 0.00008 0.00000 0.00000 cmp 0.00000 0.20651 0.00000
cmpsb 0.00008 0.00000 0.00000 clc 0.00000 0.03823 0.00000
fidiv 0.00008 0.00000 0.00000 stc 0.00000 0.02578 0.00000
retf 0.00007 0.00006 0.00003 rcr 0.00000 0.00482 0.00000
and 0.00000 0.00258 0.02054 aad 0.00000 0.00008 0.00000
mov 0.00000 0.00214 0.35145 fild 0.00000 0.00008 0.00000
sub 0.00000 0.03582 0.06531 jecxz 0.00000 0.00008 0.00000
xor 0.00000 0.00759 0.02583 out 0.00000 0.00008 0.00000
pusha 0.00000 0.00000 0.01862 hlt 0.00000 0.00008 0.00000

best fits the observations. The solution to Problem 3 is
an iterative process and after the initial iteration, we find

log[P(O | λ)] = −165097.29

and after 100 iterations,

log[P(O | λ)] = −137305.28.

This indicates that the “score” for the model has
improved significantly. In fact, after 100 iterations, the

model λ = (A, B, π) has converged to

π = [
0.00000 1.00000

]
and

A =
[

0.25596 0.74404
0.71571 0.28429

]

with the converged rows of B appearing in the last two
columns of Table 3.

The converged B matrix is particularly interesting.
Without having made any a priori assumption about the
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Table 5 Similarity scores

two hidden states, the B matrix indicates that one hid-
den state corresponds to vowels while the other hidden
state corresponds to consonants. Curiously, word-space
is more “vowel-like”, while the letter “y” is almost never
a vowel. Of course, anyone familiar with English would
not be too surprised that there is a clear distinction
between vowels and consonants. But the HMM result
show us that this distinction is a statistically significant
feature inherent in the language. And, thanks to HMMs,
the vowel-consonant split could easily be deduced by
anyone armed with HMMs—even someone who has no
background knowledge of the English language.

Cave and Neuwirth [6] obtain further interesting
results for this English text example by considering cases

with more than two hidden states. They are able to
sensibly interpret the results for models having up to 12
hidden states.

5.3 HMMs and metamorphic detection

Given a set of metamorphic virus variants, we propose to
train a hidden Markov model. The resulting model can
be viewed as representing the statistical properties of
the virus family. The trained model can then be used to
determine the probability that a given program belongs
to the same virus family as the training set.

We trained our models using the assembly opcode
sequences of the metamorphic virus files. We first pre-
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processed the viruses following the same procedure used
in the similarity tests discussed in Sect. 4. That is, we dis-
assembled the executable files and extracted sequences
of opcodes from each. For training, we simply concate-
nated the opcode sequences to yield one long observa-
tion sequence. Note that the HMM process we follow
here is analogous to the English text example discussed
above.

When trained with multiple sequences, the resulting
HMM represents the “average” behavior of all of the
sequences in the form of a statistical profile. In this way,
we can represent an entire virus family with a single
HMM.

After training a model, we used the resulting HMM
to compute the log likelihood for each virus variant in
the test set and also for each program in the compari-
son set. Here, the test set consists of viruses in the same
family as those used for training, while the comparison
set includes normal (non-viral) programs and viruses in
other families. Since the log likelihood is length depen-
dent, we normalized the score by dividing by the length
to obtain the log likelihood per opcode (LLPO). This
LLPO score is length independent.

Comparing the scores of the files in the test set with
the scores of files in the comparison set, we hope to see
a clear separation between the two sets. More precisely,
the trained model should assign higher LLPO scores
to files belonging to the virus family used to train the
model. From these empirical scores, we can determine a
threshold, above which we will classify a file as belonging
to the same family as the viruses in the training set.

Our data set consisted of 200 viruses generated by the
Next Generation Virus Creation Kit (NGVCK), which
was shown to have the most effective metamorphism of
the virus generators tested in Sect. 4. With five-fold cross
validation, the number of viruses in each test set was 40
and the number of sequences used for training was 160
for each model.

Each virus in our training set consisted of about 350
to 450 opcodes, with an average length of 416. Con-
catenating 160 viruses to train a model resulted in an
observation training sequence of length 66,650, on aver-
age, with the precise length depending on the particular
set of viruses selected for training. We tested several
HMM models, where N, the number of hidden states,
ranged from two to six. The number of distinct opcodes
in the observation sequence determined M, the number
of possible observations. In our experiments, M ranged
from 70 to 80.

After training, we computed the scores of the 40 fam-
ily viruses in the test set to determine a threshold. Then
we tested the model against a set of 65 files consisting of
both benign and viral programs. These included:

• 40 (normal) Cygwin executable files. The first 20 of
these files were used in our similarity tests in Sect. 4.

• 25 viruses generated by the three generators G2,
MPCGEN, and VCL32. These were chosen from the
set of viruses that we tested for similarity in Sect. 4.

The files were processed as described in Section 4, above.
In particular, the executable files were disassembled
using IDA Pro [10].

Our purpose here is to determine how well the HMM
can separate viruses in the test set from the benign pro-
grams and viruses in other families. We refer to the
viruses in the test set as “family viruses”, since they were
generated by the same virus generator (NGVCK) as that
used for training. This is in contrast to the “non-family
viruses” in the comparison set, which were produced by
other metamorphic virus generators. The random utility
files in the comparison set are the “normal files”.

The results in Fig. 14 are typical. From these results it
is clear that we can set a threshold whereby the family
viruses are always distinguished from the normal files—
see [29] for more details on thresholding. There are some
false positives, but these are entirely due to non-fam-
ily viruses, so it is not unreasonable to consider these
misclassifications as a beneficial feature—rather than a
flaw—in this virus detection technique.

As discussed in the English text example, above, one
interesting aspect of HMMs is that we can sometimes
use the trained model to gain insight into the under-
lying (hidden) Markov process. An example of a con-
verged B matrix—for an HMM trained on NGVCK
viruses—appears in Table 4. Note that in this example,
the number of hidden state is N = 3, the number of
observation symbols is M = 76, and T = 67,032 obser-
vation were used to train the model. See [29] for more
examples of such matrices and further discussion.

6 Similarity-based detection

In the similarity tests described in Sect. 4, we found that
viruses generated by the Next Generation Virus Cre-
ation Kit (NGVCK) are, on average, only about 10%
similar to each other. They share even lower similarities
when compared to normal programs (0 to 1.1%), and
when compared to other viruses not in the same family
(0 to 5.5%). Since these NGVCK viruses are so different
from other programs—benign or viral—it is possible to
distinguish them by using only the similarity index.

This similarity-based detection method works as
follows. To classify whether a program belongs to the
NGVCK virus family, compare the program to any ran-
domly chosen NGVCK virus. If it has no similarity to
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the NGVCK virus, it is classified as non-family (i.e.,
not belonging to the NGVCK family). Otherwise, we
compare several more NGVCK viruses to the chosen
NGVCK virus to determine a threshold. If the similarity
score of the program with the original chosen NGVCK
virus is higher than the threshold value, it is classified as
a family virus.

We used this approach to classify the 40 family viruses
IDA_N0 through IDA_N39, the 40 normal files, and
the 25 non-family viruses used in the tests in Sect. 4 (for
a total of 105 viruses). We conducted two tests where
we compared these files to IDA_N146 and IDA_N101,
respectively. The similarity scores for the test involving
IDA_N146 appear in Table 5.

The column on the right in Table 5 shows the min-
imum and the maximum score when IDA_N146 was
compared to other NGVCK viruses. Simply using the
minimum score of 0.0349 as the threshold, we were able
to correctly classify all 105 files tested. All family viruses
had scores greater than 0.0349 while all other programs
scored lower than the threshold value. In other words,
the detection rate was 100% and the false positive rate
was 0% in this test.

The test using IDA_N101 also achieved a 100% detec-
tion rate and a 0% false positive rate. This straight-
forward approach, which uses the similarity index for
classification, worked remarkably well in our two tests—
the accuracy was 100% and there were no false positives
or false negatives in either case.

7 Commercial virus scanners

In this section we consider the effectiveness of commer-
cial scanners in detecting the metamorphic viruses in our
test set. We stored 37 virus executables in a folder and
scanned the folder using each of the following scanners:

• eTrust version 7.0.405 [7],
• avast! antivirus version 4.7 [2] and
• AVG Anti-Virus version 7.1 [3].

The 37 viruses we tested were all used in our HMM
tests in Sect. 4. Specifically, these executables included:

• 10 EXE files from the NGVCK (Next Generation
Virus Creation Kit) viruses;

• 10 COM files from the G2 (Second Generation virus
generator) viruses;

• 10 EXE files from the VCL32 (Virus Creation Lab
for Win32) viruses; and

• 7 COM files from the MPCGEN (Mass Code Gen-
erator) viruses.

We found that eTrust and avast! each detected 17 viruses.
Both of these scanners detected the G2 viruses and the
MPCGEN viruses, but not those generated by VCL32
or NGVCK. The AVG Anti-Virus scanner detected 27
viruses, namely, all of the G2, MPCGEN and VCL32
viruses. The 10 NGVCK viruses were not detected by
any of these three scanners.

The eTrust detector relies on signature detection, and
it identified the G2 viruses as belonging to the Anarchy
family while the MPCGEN viruses were correctly classi-
fied as the PS-MPC family. Avast! antivirus classified all
MPCGEN virus infections as PS/MPC-gen and all G2
virus infections as PS/G2-B [29].

Of the seven MPCGEN viruses, AVG classified three
as “could be infected PS-MPC” while the other four
MPCGEN viruses and nine of the G2 viruses were clas-
sified as unknown viruses. The scanner misclassified all
VCL32 viruses as Win32/Ngvck.W, while none of the
NGVCK viruses were actually detected [29].

NGVCK viruses were able to evade detection by all
three commercial scanners that we tested. However,
as discussed above, both the similarity index approach
and the hidden Markov model approach were able to
identify the NGVCK viruses with high accuracy. We
conclude that HMM and similarity-based scanning are
effective methods for detecting the highly metamorphic
NGVCK viruses.

8 Conclusion

Virus writers and anti-virus researchers generally agree
that metamorphism is a potent method for generat-
ing difficult-to-detect viruses. Several virus writers have
released virus creation kits and claimed that they possess
the ability to automatically produce morphed virus vari-
ants that look substantially different from one another.

We measured the similarity between virus variants
generated by four virus generators downloaded from
the Internet. Our results show that the effectiveness
of these generators varies widely. While the best gen-
erator, NGVCK, is able to create viruses that share
only a few percent of similarity, the other generators
produce viruses that are over 60% similar, on aver-
age. Randomly-selected utility files have a similarity of
about 35%, which indicates that, with the exception of
NGVCK, the virus creation kits we tested do not effec-
tively morph the viral code.

Clearly, the NGVCK viruses have the highest degree
of metamorphism among the four virus families we
tested. In addition, NGVCK viruses are very different
from normal programs and viruses in other families.
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To detect metamorphic virus variants, we experimen-
ted with hidden Markov models (HMMs). Using HMMs,
we can distinguish NGVCK viruses from normal pro-
grams. If the variants of a metamorphic virus are suffi-
ciently different that signature-based scanning cannot
detect a newly morphed variant, the HMM approach
may provide a feasible means of detection.

The fact that NGVCK viruses have assembly code
structure that is so different from normal programs and
other viruses makes them detectable by a similarity
index approach as well. This result tends to indicate that
even though the NGVCK viruses show a high degree
of metamorphism, they are “too different” from normal
programs, making them susceptible to similarity-based
detection. The similarity index approach is surprisingly
effective when the virus code structure is significantly
different from non-viral code.

We scanned the test viruses from the four metamor-
phic families using three commercial virus scanners. All
non-NGVCK viruses were detected by the scanners,
while all NGVCK viruses escaped detection by these
scanners. While the NGVCK viruses were not detected
by the scanners we tested, we have shown that both the
similarity index approach and the HMM approach are
effective in dealing with these viruses.

To avoid detection, it appears that metamorphic
viruses require not only a high degree of metamorphism,
but also a degree of similarity to normal programs. None
of the virus construction kits we tested satisfy both of
these requirements. Of course, we cannot rule out the
possibility that metamorphic viruses can be constructed
that satisfy both of these conditions. However, it appears
to be a non-trivial challenge to construct such viruses.
It is interesting to contrast the use of metamorphism in
virus construction with the case where metamorphism
is used for defense, as discussed in Sect. 2.3. To pre-
vent buffer overflow attacks, for example, a small degree
of metamorphism is highly effective, while it appears
to be challenging for malware writers to gain a signifi-
cant advantage from metamorphic software. That is, the
results resented in this paper, together with [10], pro-
vide evidence that metamorphic software is inherently
more advantageous when used for good rather than evil.
As a general rule in information security, the inherent
advantage tends to lie with the attackers [24]. Perhaps
metamorphic software is one of the exceptions to this
rule.
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