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Abstract Self-replicating code is a huge problem world-
wide, with worms like SQL/Slammer becoming pandemic
within minutes of their initial release. Because of this, there
has been significant interest in worm spread and how this
spread is affected by various countermeasures. However, to
date, comparative analysis of spread has been carried out
“by eye”—there exist no meaningful metrics by which one
can quantitatively compare the effectiveness of different pro-
tection paradigms. In this paper, we discuss several possi-
ble metrics for measuring worm spread and countermeasure
effectiveness. We note that the “correct” metric for compara-
tive purposes will vary depending on the goal of the defender,
and provide several different measures which can be used to
compare countermeasures. Finally, we discuss the idea of
significance—that is, what changes induced by worm design
or countermeasures are actually meaningful in the real world?

1 Introduction

In order to make meaningful comparisons between two differ-
ent things, people need to understand exactly how these things
are being compared. Put more formally, in order to measure
something in a way which is meaningful to others, one needs
agreed-upon metrics. This is true in all the sciences: measure-
ments and measurement techniques are foundational to the
scientific process. However, when one views computer secu-
rity as a science, the topic of metrics is conspicuously lacking
from many discussions. This is particularly true in the field
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of anti-worm techniques, where there are no agreed-upon
methods for comparing the efficacy of different protection
mechanisms.

In this paper, we will examine possible metrics used to
evaluate anti-worm software. The genesis of this work was
a discussion regarding distributed worm defense systems. In
comparing two techniques, for example, how can one deter-
mine which is “better”? What does “better” actually mean?
Should the system be measured on how many machines get
infected? On how much damage there is to the network? On
the peak doubling time of the infected population? This paper
seeks to outline the most important drawbacks with each of
these techniques and bring the underlying issues into relief.
We conclude by proposing a metric for comparing different
protection methodologies from a global perspective.

2 Motivation and related work

To be able to meaningfully measure something, we need to
identify what is the purpose of the measurement. On the one
hand, it is obvious that whatever the objectives of the worm
author, the objective of any reasonable countermeasure is to
stop, or at least delay, the worm from causing “damage”.
On the other hand, it is not at all obvious exactly what one
means by the loose and subjective term “damage”. Since
the individuals, who write the worms, have many different
goals they seek to achieve with their creations [2,3] (ranging
from curiosity to cause as much havoc as possible), the only
meaningful way to compare the efficacy of defense is from
the standpoint of the community under threat.

The most intuitive “metric” for measuring the spread of
worms is the total number of infected computers over time.
Indeed, the majority of the articles written about worms use
this technique as the base of comparison (see for example
[7,9,13]), even if the authors do not quite realize it! Note
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Fig. 1 Spread-curves of two hypothetical worms

that the result is not one number, but a plot of the spread.
Comparing spread-plots, aside from the most trivial cases,
is not at all obvious. The approach is initially attractive, but
limited. Consider, for example, two models for malware pre-
vention (see Fig. 1). The first (we shall arbitrarily label it A)
results in widespread infection, but the initial growth of the
outbreak is very slow. The second (labeled B) has a very fast
growth rate during the outbreak, but the total number of hosts
affected is smaller than in A. Which prevention technique is
better? In this example, the efficacy of A will depend on other
processes operating with the system. If the slowdown is large,
compared to the reaction time of other detection techniques,
A may be preferred; if it is not, then the “better” solution is
B. This simple observation is the crux of the paper: the real-
world effectiveness of an approach is not governed in vacuo.
Both the speed of spread and the size of outbreak are impor-
tant and metrics need to address both of these quantities.

2.1 Saturation time as a metric

Many approaches to measuring effectiveness are based on
“saturation time”. We use the term intuitively in this section,
loosely meaning the time it takes the worm to infect comput-
ers up to the point where there are no more infections. We
will discuss a more formal definition below.

For the community, worm A is worse than worm B, if it
takes less time for the former to reach its saturation (without
any intervention), because less time to saturation means the
community has less time to react and reduce the worm’s
impact. We have to point out that—as many real-life exam-
ples showed, (e.g. SQL/Slammer)—reaction time has a mini-
mum value, under which it is impossible to stop the spread of
a worm without automatic intervention. Therefore, all worms
that can infect all of their susceptible machines under this
threshold (ceteris paribus) are equally bad, without further

differentiation on their exact saturation time. Also, if the total
number of computers susceptible to worm A is higher than
that of worm B, worm A is more undesirable for the commu-
nity, because that means more potential infections (especially
if we put countermeasures aside), and more work (overall) on
cleaning the infection. Moreover, if worm A generates more
traffic during its spread than worm B, worm A is worse than
worm B for the community.

The logic here is that if the worm generates a high vol-
ume of traffic—even possibly saturating the whole network
(e.g. SQL/Slammer)—then the throughput available to the
community is reduced, introducing massive packet loss and
delays in productivity. Some worms also have a destructive
payload and while such payloads are not common, they can
be devastating to the community. Unfortunately, it is hard to
decide in general which payload is more harmful than others.
Is erasing your disk worse than encrypting it with a 1,028 bit
key? Is turning your machine to a bot better than rebooting
it every once in a while? Measuring the dangerousness of
the payload depends highly on your individual priorities and
assets. Thus, for the purposes of this paper, we assume that
all worms have the worst possible payload, particularly as
few defense mechanisms are payload dependent.

Measuring the effectiveness of anti-worm techniques is
even harder, since one countermeasure may work better aga-
inst one type of spread, while achieving poor results against
other kinds of worms. Calculating a (possibly weighted) aver-
age will not help much, as one defense mechanism is unlikely
to protect us against all types of worms. If we want to apply
layered defense, we need to know how each defense tech-
nique performs against various spread types. This implies
an agreement on a standard set of spreading algorithms that
are applied against the proposed countermeasures. Unfortu-
nately, this has several drawbacks.

First, if we evaluate the countermeasures against a static
set of spread techniques, we will not be able to tell how the
proposed defense mechanisms perform against new spread
types, or even against slight variations of the ones included
in the test set. This implies that the test set should incorporate
as many spread techniques as possible, including variations.
Unfortunately, making such a collection of spread algorithms
public increases the risk of new worms being created that use
these methods. The new worms only pose a threat until the
community employs strong defense techniques against the
known spread techniques. Given that the number of proposed
solutions defending against vulnerabilities not addressed by
existing off-the-shelf protections is high, our time of risk can
be expected to be quite high.

Second, using a known set of spread techniques also
increases the chance that researchers tailor their proposed
counter-techniques specifically towards the test-set. On the
one hand, this is counterproductive, especially if the set does
not include variations, since custom-tailored algorithms
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generally perform poorly against problems they were not
designed for. On the other hand, if the test-set includes every
known variation, such custom-tailoredness is hard to achieve
economically, which encourages general anti-worm
techniques. An overwhelming number of articles related to
virus- and worm-spread use the “comparison by eye” method
[4,5,8,9,11,13]. In this method, the researcher looks at the
resulting number of infections over time plots of experiments
and, if the curves are intuitively “different enough”, he or she
draws the conclusion whether the results are in favor of the
proposed method. There is hardly any discussion on what
difference would be significant enough to draw the conclu-
sion whether the hypothesis is true or not. In fact, these stud-
ies generally do not even state their statistical hypotheses in
the entire paper, and most of the time they refer to the implied
hypothesis that their method is “better” than some base-
line. Using statistical hypotheses would require researchers
to think about the experiment beforehand and to determine
what statistical method is appropriate to test the hypotheses,
based on the metrics used to measure the outcome of the
experiments. Statistical methods also require researchers to
run the experiments several times (in the case of Monte-Car-
lo simulations, for example) to calculate the variance of the
results. Even authors of excellent papers, such as [7,10,12],
failed to report the variance of their data, or mention that
they performed their simulations more than one time for the
experiments.

Current literature implicitly uses the total number of
infected machines at saturation metric [8,9,12]—for further
definitions and discussion see [1], which is in agreement with
classical epidemiology studies. From a biological perspective,
this might make sense, but from a computer security perspec-
tive it does not—other factors, such as peak network traffic,
cascade failure, or Distributed Denial of Service (DDoS)
come into play. Once a certain number of machines are in
the control of the “bad guys”, the war is essentially lost.

Surprisingly, no discussion has been formulated about the
validity of this metric, or what other metrics we could use in
its place. Thus, in this section we identify and briefly describe
several possible metrics, then discuss their advantages and
disadvantages in detail.

Some of the following metrics are defined in terms of sat-
uration of the spread. The intuitive description of this is that
a worm spread reached saturation when the spread curve is
(near) flat. We discuss a formal definition in the next section.

In analyzing spread, there are some obvious ways of dis-
playing infection information. Here, we list the most common
ones.

2.2 Number of infected machines over time

This representation shows the number of machines infected at
every inspected time interval. Choosing the right measuring

intervals is up to the researcher. The number of machines
infected at any given point in time can be interpolated from
the known measurements. Plotting the number of infected
machines on the y axis and time on the x axis, the traditional
shape of the curve can be approximated to a logistic curve
(see Fig. 2a).

2.3 Number of new infections over time

This representation pictures the number of computers that are
known to have become infected after the last measurement
point—essentially, it is the rate of change of the total num-
ber of machines infected. Choosing the measuring intervals
is left to the researcher. Plotting the number of new infections
on the y axis and time on the x axis, the traditional shape of
the curve resembles the bell curve (see Fig. 2b).

2.4 Infectious traffic over time

This representation concentrates on the traffic generated by
the spread of the worm, as opposed to the number of machines
infected, or the time the spread takes. For most worms, the
generated traffic is proportional to the total number of active
infections. However, for some distributed (see Fig. 2c)
blocking/partitioning solutions, this may not be the case.

Sample graphs are shown in Fig. 2. Using these graphs,
the following possible metrics can be derived.

2.5 Number of infected machines at saturation

This metric gives the number of computers infected as seen
when the spread of the worm has saturated. This metric is
equivalent to the value of the number of infections over time
plot at the time of saturation. Under this metric, the more
machines infected, at the end of the spread, the more suc-
cessful the worm.

2.6 Total number of infected machines by saturation

This metric is similar to the number of infected machines at
saturation metric, but incorporates any computer that became
infected and have been cured (or became otherwise non-
infectious) afterwards, before saturation. According to this
metric, the more machines infected, the more dangerous the
worm.

2.7 Maximum rate of infections

This metric reports the highest number of new infections
between any two measurement points. The metric is equiva-
lent to the maximum value of the number of new infections
over time plot. Under this metric, the higher the maximum,
the more successful the worm.
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Fig. 2 Different representations of the same spread: a number of infected machines over time b number of new infections over time c infectious
traffic over time

2.8 Area under curve

This metric reports the area under the number of infections
over time plot. Note that, mathematically, the area under the
curve is only meaningful when applied to continuous func-
tions, which is unrealistic for real-life or simulation measure-
ments. The exact value of this metric can be approximated in
these cases by well known integral approximation methods.
Also, to have this metric report meaningful values, the time
of the measurements must be bounded. The lower bound can
be the time of the initial infection, whereas the upper bound
could be the time of saturation (a questionable choice, though
see the paragraph infra) or the time for the infected popula-
tion to drop to zero due to machines being cured. Intuitively,
the area under curve is related to the average length of time
a computer is infected and the number of computers infected
during the spread. Under this metric, the higher the area under
the curve, the more successful the worm.

Note that when comparing two spreads by the area under
curve metric, the lengths of time of the two measurements and
their resolutions must be equal, otherwise a slow spreading
malcode would have a large value, whereas a fast-spreading
one would have a lower value, even if it infected more
machines at the end. By extending the length of the time

of measurement of the faster worm, the machines infected
earlier would count with a larger weight. This would require
recording the length of the measurement and the number of
computers infected at the end of the measurement along with
the actual area value for comparability with later spreads.

2.9 Fraction of susceptible machines infected

The metrics in this family of measurements are similar to
the members of the number of infected machines… metric
family. However, instead of the sheer number of infections,
these metrics report the fraction (between 0 and 1) of the
susceptible machines that became infected. The metrics aim
to balance the fact that the number of susceptible computers
differs highly, depending on the vulnerability exploited by
the worm.

2.10 Time to infect all susceptible machines

Instead of concentrating on the number or portion of
machines infected, this metric reports the time it takes for
the worm to infect every susceptible machine. Using this
metric, a worm is considered more dangerous if it takes less
time to infect every machine.

123



How good is good enough? Metrics for worm/anti-worm evaluation 97

Note that this metric requires the knowledge of the num-
ber of all susceptible machines. While this is not a problem
in simulations, determining the exact amount of susceptible
computers in a real-life spread is troublesome. The difficulty
is caused by the countermeasures that are put in place against
the worm, causing some of the initially vulnerable computers
to become protected to the threat.

2.11 Minimum doubling time

This metric reports the minimum amount of time required
for the worm to double the population of infected machines.
The metric tries to capture the intuition that the faster a worm
spreads, the more efficient it is.

2.12 Time to saturation

This measurement is similar to the time to infect all suscep-
tible machines metric, except that this metric measures the
time it takes the worm to reach saturation, instead of waiting
for the whole susceptible population of computers to become
infected (which may never happen). The lower the saturation
time, the more effective the worm.

2.13 Total infectious traffic

This metric gives the sum of all the traffic during the spread.
Since benign users and the malcode use the same network
as communication medium, the higher the traffic, the less
the others can utilize, therefore, the more efficient the worm.
It is true that low network activity can help the worm to
go undetected, therefore spread to more computers, but we
would require a different metric to capture this aspect of the
damage.

There is a problem with this metric similar to the area
under curve metric, namely, there needs to be a bound on the
time this metric is measured. The resolution to this problem
is identical to the resolution for the area under curve metric.

Looking at the above listed metrics, there is one com-
mon property in the use of all the metrics: the more “dam-
age” the malcode causes the community, the more effective
it is considered. Another underlying assumption in the above
metrics is that every computer (or network link, in case of
traffic measurement) has equal weight. In other words, each
and every computer is equally important. One might argue
with the validity of this assumption, however, there is no
easy way of distinguishing more important computers from
less important ones. For example, what are the criteria to
determine which computers are more important? If we are
running simulations, how do we identify the location of the
more important machines? Whether they are vulnerable to
the worm’s exploit is yet another question that needs to be
answered.

3 Saturation time: a formal definition

In the previous sections, we used the term “saturation time”
loosely. If we want to use it in any metric, we need a more
formal definition. Providing such a definition is no easy task.
Our definition has to be unambiguously decidable, and in
agreement with our intuitive understanding. Unfortunately,
our intuitive meaning is heavily based on the common, but
most simple, S-shaped spread-curves. Other (perfectly valid)
spread-curves can be crafted that break every part of the intu-
itive meaning, one-by-one. Figure 3 shows some possible
spread curves that are unusual in some respect.

If we define saturation time as the time when the worm
infects every computer it can, taking into account any anti-
worm technique acting against the worm (therefore no more
new infections are possible), then determining when this con-
dition arises is a hard task. We need not only understand the
spread-technique of the worm, but every possible interaction
between the spread of the worm and the applied countermea-
sures as well.

So far, considering real spread data of worms like Code-
Red and SQL/Slammer, we could unambiguously tell from
hindsight when the worm presented no more serious threat
to the users of the Internet, due to the countermeasures and
patches applied. Unfortunately, this cannot always be applied
to computer simulations of arbitrary worm spread, because of
the possibly random nature of the simulation (as in the case of
Monte-Carlo simulation), and the possibly complex interac-
tion between the spread of the worm and the countermeasures
applied against it. Even in the case of real-life worms it can
be impossible to determine a single point in time, when no
more computers could be infected by the worm, due to new
computers joining the Internet, reinstallation of computers
(which might lack the necessary patches for some time, until
these patched are downloaded from the appropriate update
site).

A formal definition, based on the flatness of the spread-
curve, again, requires the ability to tell when the spread
reaches the point, where the worm cannot infect “too many”
more computers. Depending on the spread technique of the
worm, it is possible that the spread curve consists of several
growth parts (see Fig. 3b). If we are using a flatness-based
definition, we are only interested in the last of these growth
parts.

Also, a worm can be designed to have a constant spread-
rate of any slope that would allow such a worm to keep just
under any predefined flatness threshold, rendering flatness-
based saturation definitions useless.

In certain cases we can define saturation in terms of abuse
of the major network traffic links, as was the case with
SQL/Slammer. Unfortunately, such a definition could only
be applied to worms that cause network congestion, making
this type of saturation definition non-general.
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Fig. 3 Possible worm spreads
that are contradictory to the
general understanding of
saturation: a a self-stopping
worm, b periodically restarting
spread, c a worm overcomes the
defense mechanisms

Despite the above mentioned complications, we need to
give a formal definition for the term saturation time, as it is
the base of most of the metrics listed in the previous sec-
tion. We define saturation time as the time after which the
malicious code does not infect new computers.

4 Discussion

It is very important to realize that the application of any of the
metrics described above can be perfectly valid if one com-
pares the spread of the same worm under various anti-worm
conditions in the environment, as long as the general shape
of the spread curve does not change (aside from shifting and
multiplication with a constant). The incompatibilities arise
when we are trying to apply the same metric to worms with
completely different spread characteristics.

We encounter the first incompatibility if we try to compare
the sheer number of computers in any stage of two different
infections. The number of vulnerable computers is highly
dependent on the type of vulnerability the worm is using,
therefore the number is likely different for different worms.
If we know the exact number of vulnerable machines, it might
seem better to compare the percentage of vulnerable hosts the
worm infected.

However, using a percentage of vulnerable hosts infected
as our metric immediately poses the requirement to know the
exact number of vulnerable machines at the point of measure-
ment. This is highly unrealistic for a real-life worm spread,
but can be estimated more easily with hindsight, by using
the (sometimes grossly incorrect) assumption that the worm
could infect each and every vulnerable computer during its
lifetime. Furthermore, even if we do know the exact number
of vulnerable machines, this number varies so much (based
on the fact that different worms use different vulnerabilities),
that the metrics can report different results for two (otherwise
identical) worms, which exploit similar vulnerabilities in two
different software.

However, it is arguable whether the use of percentages
instead of raw numbers is preferable. True, it levels the differ-
ences between different vulnerabilities, allowing comparison
of different spread techniques to see which can contaminate
the target population more effectively. However, we argue
that in real life a malcode that has spread to more comput-
ers causes more damage to the community overall; therefore,
the raw numbers are an important factor when measuring the
damage the worm causes.

Another problem is when to measure the portion of
infected computers. Apart from the start, saturation, and the
end of the spread, the spread curves can be so different from
each other, that specifying a general time that is applicable
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to all spreads is impractical. It might seem better to turn the
problem upside down and measure either a property of the
spread that is independent of the time of measurement, or
measure the time itself until a certain (general) condition
becomes true.

Metrics presented above that are independent of the time
of measurement are (fraction of) maximum new infections
and minimum doubling time. The former is highly sensitive
to the length of the sampling intervals, while the later does
not tell us when this doubling occurs during the spread of the
worm. Arguably, if a worm doubles its infections in the mid-
dle of the spread (as in the traditional spread methods), that
worm is less dangerous than another that achieves the same
minimum doubling time, but doubles its infections through-
out its lifetime (as in a conquer-and-divide worm). For an
example, see Fig. 3a.

If we are measuring the time until a certain property
becomes true, the main question becomes: What property
are we interested in? It is important to find a property that
happens only once during the spread, otherwise we have to
answer how we are going to handle if the property becomes
true repeatedly. One way to collapse a series to a single value
is to compute some statistics of the series (such as the mini-
mum, maximum, median or mode), and use that single value
instead of the whole series. The statistics to use, however,
depend highly on the particular property used.

In the paragraphs above, we discussed the potential
pitfalls of numerous worm-spread metrics in the case where
no counter-measure was considered. In the followings we
look at how the situation changes, when we consider the
effects of counter-measures on worm-spread.

It is logical that if all available anti-worm technology
together cannot reduce the number of machines infected by
the worm, then they are of no use, even if they slow the spread
of the worm down. One could argue that slowing the worm
down significantly will allow researchers to find the way to
defend against the worm, however, this “new” method should
have been considered into the “all available anti-worm tech-
nology” part of the previous sentence. While this hypotheti-
cal situation is highly unlikely in the real world, it does show
that any useful metric has to take into consideration at least
the fraction of infectable computers infected. Although it is
impossible to take every possible countermeasure into con-
sideration when performing worm-spread simulations, it is
sufficient to simulate enough anti-worm methods to show that
they are able to reduce the volume of vulnerable machines
infected.

5 Proposed metrics

Given the limitations of current metrics, it is clear that
measuring the efficacy of anti-worm technologies is

non-trivial. Furthermore, in order to provide some measure
of “real world” impact, any metric must take into account the
goal of protection. In terms of a “hierarchy of needs”, this
protects the network cumulatively before it protects individ-
ual systems.

When deciding between the uses of metrics, we need to
identify which metric reflects best the damage a worm causes.
Damage to the community in the general sense can only be
measured in terms of how wide-spread the worm in the net-
work is. Considering this, we chose two metrics: peak and
cumulative number of machines infected. However, in deter-
mining these numbers, we must consider the fact that slow
moving worms are attacked on a number of different fronts.
Thus, our model for prevention must be systemic, not local.

These two metrics were chosen based upon two conflicting
ways of quantifying damage. First, we consider the damage
caused by a worm that rendered infected machines unusable.
In this case, the total damage is proportional to the number
of machines infected. A second case considers the systemic
damage caused by a distributed Denial of Service attack. In
this case, the damage scales (though not proportionally) with
the largest effective force for causing network disruption (i.e.
the maximum number of machines infected at any point in
time).

In both cases, we propose comparing solutions by sim-
ulating realistic user behavior. For example, if a worm is
spreading using a little-known and un-needed feature of IIS,
the worm’s spread rate will be controlled both by the worm’s
spread methodology, deployed anti-worm software, possibly
network topology, and the rate at which patches are deployed
and new countermeasures are utilized.

Thus, our goal is to create a virtual test environment where
we make assumptions about the speed of reaction of the
defenders in terms of remediation. Effectiveness of an anti-
worm solution is measured by total number of infected
machines and peak number of infected machines during the
spread.

The implications of this approach are numerous. First, a
protection mechanism that slows the spread of the worm is
only meaningful if it slows it sufficiently such that machines
are patched/repaired during the outbreak. This might be frus-
trating to those researchers whose work slows outbreaks but
does not prevent them, but it is pragmatically true. Slowing
the outbreak is only useful if the slowdown is significant with
respect to other processes in the system.

Second, this approach recognizes that the total number of
nodes infected at any one time and cumulatively is important.
The total infection based at any moment is important, as it
represents the attacker’s largest force multiplier. The cumu-
lative total is also important, as it represents the maximal
end-node damage sustained.

The benefit of these metrics is that they measure quanti-
ties, which are related directly to the damage potential of the
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malcode. However, the drawback is that it is extremely diffi-
cult to find the data needed to support the calculations made.
However, while this presents difficulties in terms of quan-
titative results, qualitatively, it should be possible to make
reasonable estimates of reaction and patching rates. Further
research is needed in this area; however, as currently any
model including such factors would be a “best guess” of the
actual real-world position.

Even after considering all the above, one could argue that
the proposed metrics are too simple and do not include other
relevant factors (e.g. targeted attacks, or the cumulative dam-
age caused both locally and systemically). The reason for not
including such measurements is threefold. First, it is unclear
how much weight each factor should have in the end. If one is
interested in protecting the available bandwidth, one would
weigh the network traffic more than the number of infected
computers; if one is interested in protecting the individual
computers, one would weigh the number of infected com-
puters more. Second, and more important, the number of
infected computers is the base of all other properties. The
amount of traffic generated by the worm can be calculated
from the number of infected computers if the spreading tech-
nique and exploit used is known.

The third reason for counting only the number of infected
computers is that the only common property of malicious
mobile code is that they infect computers. Viruses might
not use computer networks to spread (earlier viruses spread
mainly through floppy disks); contagion worms, for exam-
ple, multiply “upon request”; and future worms might spread
using a medium different from today’s network, where the
traffic measurement might be incomparable to today’s mea-
surements. The only other property that is common in all
malicious code spread is the time of the spread, which is only
secondary, as shown above, if we also consider the effect of
possible defense mechanisms.

5.1 Metrics theory

In the previous section, we argued that our two chosen met-
rics are the best measurement of the damage a malicious
mobile code causes to society on a holistic level. However,
before we can say that our metrics are the right ones, first,
we have to show that the proposed measurement techniques
are indeed metrics. We will find interesting conclusions.

The theory of metrics says that the thing we want to
measure (in our case, damage to society) might not be cap-
tured precisely, but certain directly associated and measurable
factors can give a clue into our object of interest. The factors
can be thought of as attributes that provide a direct measure
on the object of interest. Note here that the factors also must
be measured. The vicious cycle is broken by assuming that
there is enough consensus between the experts of the field
that the chosen feature represents the object of interest.

Once we have a feature, we can look at certain elements
of the system and apply a function on them to yield a num-
ber. The function applied is called the metric. We first have
to validate our metric, by taking a system, applying the met-
ric, and comparing it to the measured factor. Once the metric
is validated, we can apply it to other systems (and possibly
re-validate it to increase our confidence).

It is worth noting that it is always preferable to use the
factor, if possible, to relate to the object of interest. However,
most of the time, we do not have access to the factor, but still
would like to get an estimation of the object of interest. In
a concrete example (taken from [6]), our systems could be
software projects, the object of interest can be the quality of
the software, and the chosen factor can be number of errors
found in the software. Obviously, early in the development
phase we do not have the software yet, and so we cannot
have access to the error count (our factor) either. Here is
when metrics come into play. We can apply a function on
some elements of the code (e.g. lines of code or vertices and
edges in the control graph representation of the code) to get
a prediction on the error count. Other uses of metrics are
assessment and control, but not every metric is suitable for
each use.

When we are drawing an analogy between the above soft-
ware metric example and our case of malicious mobile code,
some translations are easily made: our system is the net-
work, in which the malcode spreads; the object of interest
is the damage, caused by the worm, on society as a whole;
as we argued in earlier sections, the factor is the number
of infected computers (peak or cumulative). However, what
should be the metric, which must be a function, and what are
its parameters?

The answer is that the metric function is the model itself.
We can apply an analytical model, a Monte-Carlo simula-
tion, or any other way that computes the number of infec-
tions (including a “live” experiment on the Internet, although
that will have some ethical issues) from its input parame-
ters (see Fig. 4). In simulations (Monte-Carlo and test-bed)
the interesting thing is that some of the parameters cannot

Fig. 4 Application of a simulator as metric on the spread of a malcode
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be described by numbers, as they are algorithms (e.g. target
selection of the worm, traffic on the network, behavior of the
countermeasures).

Therefore, if we want to be precise, the number of infec-
tions when measured on the real-life spread of a worm is
the factor (an attribute of the damage), and the metric to be
applied is a particular model that will also yield the number
of infections. Validation of a metric (model) can then be the
comparison of the yielded number and the observed num-
ber. Looking from this perspective, however, it is obvious,
that comparing only the (peak or cumulative total) number of
infections is not sufficient to validate a model (the parameters
can easily be tweaked to produce the desired result). Instead,
the validation needs to be a fitting of the curves, using some
statistical techniques in case of methods that have internal
variations (Monte-Carlo and test-bed experiments). This can
be viewed as a multiple validation at different points in time
during the spread of the worm.

Once the necessary validation is performed, the model can
also be used to predict the efficiency of worms and counter-
measures in different hypothetical scenarios.

6 Conclusion and Future Work

The science of measuring the efficacy of anti-malware tech-
niques is still in its infancy. Furthermore, there has been little
work placed upon the important problem of measuring the
relative effectiveness of different anti-worm techniques.

In this paper, we have outlined several of the “obvious”
spread metrics and shown how they can lead to misleading
results. We therefore described two metrics which can be
used to make meaningful measures of worm suppression in
terms of real-world damage and overall spread. These metrics
can be used to compare different approaches, and allow both
defenders and researchers to model the effects—both locally
and globally—of different protection mechanisms and reac-
tion times.

The methods described here need significant further work
in order to be effective. In particular, realistic models of
patching, firewalls and response time need to be created.
However, the lack of these models should not be seen as
a fatal flaw: in order to measure and model malware spread,
such details must be included in any complete calculation.

Our Monte-Carlo approach has shown great promise in
this area. In earlier research, our models reproduced the
spread of various well-known worms with high reliability.
These results provide us with some level of confidence that
the system can be used predictively, in order to model protec-
tion techniques before they are deployed in the real-world,
and, crucially, provide metrics by which different protection
scenarios can be modeled.
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