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Abstract Masquerade detection by automated means is
gaining widespread interest due to the serious impact of
masquerades on computer system or network. Several tech-
niques have been introduced in an effort to minimize up to
some extent the risk associated with masquerade attack. In
this respect, we have developed a novel technique which com-
prises of Naïve Bayes approach and weighted radial basis
function similarity approach. The proposed scheme exhib-
its very promising results in comparison with many earlier
techniques while experimenting on SEA dataset in detecting
masquerades.

1 Introduction

Masquerade detection is one of the challenging tasks in the
computer security area. A masquerader is an illegitimate user
who impersonates a legitimate user in a computer network.
This can be achieved by obtaining the legitimate user’s pass-
word and accessing unattended programs or workstations. It
is quite difficult to detect the masquerader at the beginning
of the attack as the user has valid access and privileges. The
masquerade attack can also be performed by malicious pro-
grams. The threat posed by masquerades can be very serious.
Therefore, masquerade detection is an important problem in
the area of computer security.
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Several techniques have been proposed for the purpose of
masquerade detection. The performance of any given tech-
nique is measured in terms of false positive rate and hit
rate. The false positive rate would normally increase when
a normal block of data is recognized as masquerade and
hit rate increases when masquerade is detected. A success-
ful technique will have high detection rate (hit rate) and
low false positive rate. Schonlau etal [13] examined various
approaches in this regard namely Uniqueness [14], Bayes
one-step Markov [5], Hybrid multistep Markov [6], Com-
pression [13], Sequence-Match [8] and Incremental Proba-
bilistic Action Model (IPAM) [4]. The Uniqueness approach
[4,13] is based on the scheme of command frequency
whereby commands not previously seen in the training data
and/or used by fewer users may indicate a masquerade
attempt. The Bayes one-step Markov [5,13] approach is based
on one-step transitions from one command to the next and
it verifies whether the observed transition probabilities are
consistent with the historical probabilities. The Hybrid mul-
tistep Markov [6,13] model utilizes multistep Markov chain
and simple independence model. When the observed com-
mand in testing data is unseen in the training data, a simple
independence is employed instead of Markov model. The
Compression [13] approach uses compression ratio to distin-
guish a legitimate user from a masquerader. The Sequence-
Match [8,13] computes a similarity measure between the
most recent user commands and the user profile. The IPAM
[4,13] approach is based on one-step command transition
probabilities, estimated from the training data. None of the
above mentioned techniques are able to provide very prom-
ising results i.e. low false positive rate at high hit rate. Some
techniques provide high hit rate but the false positive rate
is also high and some techniques provide low false positive
rate but their hit rate is also low. In either of the cases the
performance is said to be poor.
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Next, Maxion and Townsend [10] proposed Naïve Bayes
model for detecting masquerades. The underlying assump-
tion of this model is independence of commands. Though
this assumption is unrealistic in the case of masquerades, the
Naïve Bayes technique still gives better results than the pre-
viously mentioned six techniques [4–6,8,13,14]. Recently,
Coull etal [2] proposed a technique based on bioinformat-
ics matching algorithm for a semi-global alignment. Wang
[17] used one-class training without using examples from
other users and demonstrated that it can achieve similar per-
formance as multi-class training. Szymanski and Zhang [16]
proposed a recursive data mining method based on model of
cognition for masquerade detection including author iden-
tification problems. Kim and Cha [7] proposed an efficient
technique based on Support Vector Machine (SVM) archi-
tecture. The technique depends on the notion of ‘common
commands’ and “voting engine”. The common commands
are the set of commands used by more than X number of users
at the rate exceeding Y percent. The voting engine is used for
classifying a set of commands. A block of 100 commands is
considered which is sub-divided into smaller blocks. These
sub-blocks are then determined to be normal or not using
SVM predictor. The ‘voting engine’ decides if the block is
to be considered as being anomalous. Dash etal [3] proposed
an episode based Naïve Bayes technique. In this technique
meaningful episodes are extracted from a long sequence of
commands. These episodes are identified either as masquer-
ade or normal based on Naïve Bayes algorithm.

Masquerade detection problem is basically similar to the
anomaly-based intrusion detection problem. The document
analysis techniques with k-nearest neighbour (k.N N ) classi-
fier have been used successfully in the past for anomaly-
based intrusion detection [9,11]. In these techniques, the
legitimate user is modeled by a reference vector whose com-
ponents represent relative frequencies of unique commands
used by the user and a block of commands is tested against
this model (or, reference vector) to detect intruders. This
block is represented by a vector of relative frequencies of
unique commands occurring within the block. The k.N N
approach categorizes the test block (or vector) as either nor-
mal or abnormal depending upon the similarity score. A num-
ber of similarity measures [9,11,15] have been proposed in
this context to measure similarity between the test vector and
the reference vector. These similarity measures have been
found to be quite useful in detecting anomalies (intruders).
This motivated us to investigate these text-processing tech-
niques for masquerade detection. In this paper we apply these
similarity measures from the intrusion detection literature
[9,11,15] for masquerade detection and found that they give
poor results. However, when we combine these techniques
with Naïve Bayes approach, we get promising results. We
also propose a radial basis function (RBF) based similarity
measure and combine it with the Naïve Bayes approach. This

Table 1 Examples of Unix acct auditing command

User 2 command name Command number

man 94

sed 95

awk 96

sh 97

awk 98

awk 99

less 100

improves the masquerade detection performance further. We
also show that the performance of our approach is better than
previously used methods such as the SVM based technique
[7] and the episode based Naïve Bayes technique [3].

The paper is organized as follows: Sect. 2 depicts the setup
and database used for the proposed method. Section 3 illus-
trates the Naïve Bayes classifier for masquerade detection.
Section 4 describes RBF similarity measure for the problem.
Section 5 presents our overall proposed scheme. Section 6
deals with the experimentation and results of the techniques
on truncated command dataset and Sect. 7 presents our con-
cluding remarks.

2 Database and experimental setup

Schonlau etal [13] collected UNIX acct auditing command to
implement truncated command dataset (so called SEA data-
set) for masquerade detection. Examples of some commands
are given in Table 1. The dataset consists of 15,000 truncated
commands for each user. The 15,000 commands of the data-
set are decomposed into 150 blocks of 100 commands each
for each user. The first 50 blocks for each user are considered
to be normal or genuine data with no malicious commands
and are used as training data. For testing purpose the next 100
blocks are used which also belong to each of these 50 users,
but data from 20 different users which is considered to be
potentially contaminated, is mixed with the data of 50 users.
Therefore these 20 users are considered as intruders and the
system should identify or classify their entries as masquerade
data.

Many methods discussed in this paper have been analyzed
for masquerade detection using SEA dataset. The perfor-
mance of previously discussed methods on SEA dataset is
summarized in Table 2.

3 The Naïve Bayes classifier for masquerade detection

In this section we briefly describe the Naïve Bayes classifica-
tion algorithm for masquerade detection [10]. This technique
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Table 2 Hit rate versus false positive rate for
previous methods on SEA dataset (where False positive (%) =
number of normal blocks detected as masquerade

Total number of normal blocks × 100 and

Hit (%) = number of masquerade blocks detected as masquerade
Total number of masquerade blocks ×

100)

Method Hit rate (%) False positive rate (%)

Episode based Naïve Bayes [3] 88.3 14.5

SVM [7] 80.1 9.7

Semi-global alignment [2] 75.8 7.7

Recursive data mining [16] 75.0 10.0

Bayes one-step Markov [5,13] 69.3 6.7

Naïve Bayes (no updating)a [10] 66.2 4.6

Hybrid Markov [6,13] 49.3 3.2

IPAM [4,13] 41.1 2.7

Uniqueness [13,14] 39.4 1.4

Sequence matching [8,13] 36.8 3.7

Compression [13] 34.2 5.0

a The results for Naïve Bayes with updating criteria has not been
included in the study because the updating procedure is an additional
portion which requires more than usual training data at increased com-
plexity and processing time. Moreover, the proposed scheme comprises
of Naïve Bayes algorithm which is experimented on no updating cri-
teria. Therefore it would be sensible to compare methods based on the
same test schemes.

is a basic statistical method used widely in the pattern clas-
sification problems. Some of the advantages of Naïve Bayes
classifier are fast learning rate and robustness to noise. This
classifier considers commands to be statistically indepen-
dent. That is the command sequence is generated by the user
in a way that each command has a fixed probability. In other
words subsequent command does not depend on the cur-
rent command. The classifier only takes into account the fre-
quency of commands and not the order of their appearance.
See [10] for details.

This property of independence is, however, unrealistic for
command-based masquerade detection, but is quite success-
ful in the masquerade detection [10]. To illustrate the method
let C be the set of unique commands and c ∈ C be any arbi-
trary command. Let the set of commands in the training phase
used by user u j ∈ U be C j where U is a set of all users and
a j be frequency vector extracted from C j where the entries
of a j denote the number of times command c appeared in
C j . Therefore the dimension or length of a j is same as the
length of set C and the sum of entries of a j is equal to the
length of C j .

The probability of command c for a given user u j is given
by:

Pc,u j = ak, j + α

|C j | + α|C | (1)

where α is a pseudocount [10] (0.01 in this study), |C | is
the length of C , |C j | is the length of C j i.e. the length of
training data and ak, j is the kth entry of a j which corre-
sponds to the command c. The sum of probabilities for all
the commands in C j will be unity. The pseudocount has been
added in Eq.1 to ensure that there are no zero counts. The
lower the pseudocount, the more sensitive the detector is to
previous unseen commands [10]. We have adopted the value
of pseudocount similar to the value of pseudocount used by
Maxion and Townsend [10] to properly compare the proposed
technique with the Naïve Bayes technique.

In a similar fashion as of Eq. 1 we can define the probabil-
ity of command c for all U users except the user u j as [10]

Pc,u �= j =

|U |∑

i=1,i �= j
ak,i + α

|U |∑

i=1,i �= j
|C j | + α|C |

(2)

where |U | is the number of users in the training phase. This
Pc,u �= j can simply be viewed as NOT Pc,u j .

The probability of a block or sequence of commands B is
based on the probabilities obtained during the training phase.
Let us define the probability of block B for user u j as

PB,u j =
∏

c∈B

Pc,u j . (3)

We then define self and non-self probabilities using Equa-
tion 3 as

Psel f (B) = PB,u j (4)

Pnon−sel f (B) = PB,�=u j (5)

The self probability is the probability of commands in block
B entered by user u j whereas the non-self probability indi-
cates the probability of commands in block B entered by all
the users except the user u j . The ratio of self probability and
non-self probability can be given using Eqs. 4 and 5 as [3,10]

R = Psel f (B)

Pnon−sel f (B)
.

The ratio R is the division of self and non-self probabilities.
These probabilities are the product of command probabilities
and their values become very small when the command prob-
abilities are multiplied among themselves. In some cases it is
beyond the precision provided by floating point representa-
tion of numbers using normal computers. One way to avoid
this precision problem is to represent the ratio in terms of
logarithms as

γ = log Psel f (B) − log Pnon−sel f (B) (6)
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If the ratio γ (Eq. 6) is below the threshold then the block
is considered to be masquerade block otherwise it is consid-
ered to be normal or legitimate block. The threshold in this
paper is progressively varied to obtain the receiver operat-
ing characteristics (ROC) curve. The threshold determines
the trade off between the hit rate and false positive rate of
dataset. It can be evaluated by implementing a criterion on,
for example, false positive rate i.e. finding a value of thresh-
old for which the false positive rate is less than some defined
value. The threshold can also be found by methods described
in [10] and [13].

The following subsection illustrates the Naïve-Bayes clas-
sifier for masquerade detection using a toy example.

3.1 An illustration using a toy example

To illustrate the classifier let us assume a unique set of com-
mands given as

C = {ls, chmod, awk, cat}.
Suppose there are three users u1, u2 and u3. Each user enters
20 commands during the training session. The commands
entered by each user are depicted as follows:

C1 = {chmod, chmod, awk, ls, awk, ls, ls, awk, awk, chmod,

ls, chmod, ls, awk, ls, ls, awk, ls, chmod, ls},
C2 = {ls, awk, cat, ls, awk, cat, cat, ls, awk, ls, ls, ls, awk,

cat, cat, ls, cat, ls, cat, awk},
C3 = {ls, ls, cat, chmod, ls, ls, awk, cat, chmod, ls, ls, cat,

cat, cat, chmod, awk, awk, ls, cat, cat}.
It is clear that the length of C is 4 and the lengths of C1, C2

and C3 are 20. It can also be observed that the elements of
C j (where j = 1, 2, 3) is from the unique set C . The set of
frequency vectors can now be defined as

a1 = {9, 5, 6, 0},
a2 = {8, 0, 5, 7},
a3 = {7, 3, 3, 7}
where the frequency vector a1 corresponds to set C1, a2 cor-
responds to C2 and a3 corresponds to C3. The entries of a j

(where j = 1, 2, 3) represent the number of times commands
are entered by the users u j (where j = 1, 2, 3). The length
of a j is 4 and the sum of entries of a j is 20. That means the
length of a j is equal to the length of C and the sum of entries
of a j is equal to the length of C j .

Let us also assume that each of the sets C1, C2 and C3 can
be subdivided into 4 blocks each consisting of 5 commands.
This means that the size of each block is 5. This subdividing
of C j into blocks, however, will not affect the evaluation of
parameters during the training phase but it will indicate that

the block during the testing session should be considered as
a group of 5 commands.

It is now possible to evaluate the probability of command
c for a given user u j . The probabilities of commands entered
by user u1 (Eq. 1) can be given as

Pls,u1
= 9 + 0.01

20 + 0.01 × 4
= 0.4496;

Pchmod,u1
= 5 + 0.01

20 + 0.01 × 4
= 0.2500,

Pawk,u1
= 6 + 0.01

20 + 0.01 × 4
= 0.2999;

Pcat,u1
= 0 + 0.01

20 + 0.01 × 4
≈ 0.0005.

In a similar fashion the probabilities of commands for users
u2 and u3 can be obtained as

Pls,u2
= 0.3997, Pchmod,u2

= 0.0005,

Pawk,u2
= 0.2500, Pcat,u2

= 0.3498,

Pls,u3
= 0.3498, Pchmod,u3

= 0.1502,

Pawk,u3
= 0.1502, Pcat,u3

= 0.3498.

The NOT probabilities for user u1 can be obtained using Eq. 2
as follows:

Pls,u �=1
= (8 + 7) + 0.01

(20 + 20) + 0.01 × 4
= 0.3749;

Pchmod,u �=1
= (0 + 3) + 0.01

(20 + 20) + 0.01 × 4
= 0.0752,

Pawk,u �=1 = (5 + 3) + 0.01

(20 + 20) + 0.01 × 4
= 0.2000;

Pcat,u �=1
= (7 + 7) + 0.01

(20 + 20) + 0.01 × 4
= 0.3499.

The NOT probabilities for users u2 and u3 can be evaluated
in a similar fashion as above and the results are shown as
below:

Pls,u �=2
= 0.3999, Pchmod,u �=2

= 0.2000,

Pawk,u �=2
= 0.2250, Pcat,u �=2

= 0.1751,

Pls,u �=3
= 0.4248, Pchmod,u �=3

= 0.1251,

Pawk,u �=3
= 0.2750, Pcat,u �=3

= 0.1751.

In the training phase probabilities are computed. Now in the
testing phase let us consider a block of 5 commands given as

B = {ls, ls, awk, cat, cat}.
If this block is tested against user u1then the self and non-
self probabilities can be evaluated using Eqs. 3, 4 and 5 as
follows:

Pself(B) = PB,u1 = 0.4496 × 0.4496 × 0.2999

× 0.0005 × 0.0005,
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Pnon−self(B) = PB,�=u1 = 0.3749 × 0.3749 × 0.2000

× 0.3499 × 0.3499.

The self and non-self probabilities will give the ratio γ (Eq. 6)
as follows:

γ = −18.0049 − (−5.6718) = −12.3331.

If the block B is tested against users u2 and u3 then cor-
responding values of the ratio γ will be 1.4884 and 0.3907
respectively. If we set the threshold to 0 then the block will be
labeled as masquerade block for user u1 (since−12.3331<0).
It can be also inferred from set C1 that some commands (e.g.
“cat”) that are repeatedly used in block B were not even used
by user u1 during the training session. This has contributed
small γ ratio for user u1 in comparison with other users.
Clearly, such block could cause suspicion, in particular for
user u1 since the trend of commands entered by user u1 were
not familiar with the history of commands of the same user.
The obtained ratio γ is highest for user u2 which suggests that
the tested block is most likely a legitimate block for user u2.
It can also be deduced from the illustration that there is high
likeliness that small values of ratio γ tends to be masquerade
block.

4 Weighted RBF similarity measure

The proposed weighted RBF similarity measure falls under
the similarity measure techniques in the area of anomaly-
based detection [15]. The weighted RBF similarity can be
considered as the combination of binary similarity measure
[11] and RBF similarity measure. To illustrate the similar-
ity measure let v be any frequency vector of dimension d
extracted from a test block or a sequence of commands. This
vector v can be easily transformed to its binary representation
vb of dimension d. The entries of vb is vbi where vbi = 1, if
the i th command is present in v, otherwise vbi = 0. Similarly
we can define binary representation ab j of a j (frequency vec-
tor of training data by user u j ). Then the binary similarity
measure µ(vb, ab j ) between vb and ab j can be defined as
follows:

µ(vb, ab j ) = match

match + non-match

where match and non-match are the sum of matching and
non-matching entries between vb and ab j and can be
obtained by the following “and” and “xor” (exclusive-or)
binary operations:

match =
∑

d

and(vb, ab j ) (7)

and

non-match =
∑

d

xor(vb, ab j ) (8)

The sum of match (Eq. 7) and non-match (Eq. 8) can simply
be reduced to the sum of binary “or” operation as

match+non-match =
∑

d

or(vb, ab j ).

On the other hand, RBF functions [1] provide a similarity
score between the input frequency vector v of dimension d
and frequency vector a j from the training dataset. The RBF
similarity measure can be considered as an implicit mea-
sure of similarity between v and a j in some dot product
space F by mapping the frequency vectors using a mapping
function φ in space F . This dot product which is implicitly
embedded with RBF is an appealing mathematical character-
istic for similarity measurement. One popular choice of RBF
function is Gaussian radial basis function and is defined as
k(v, a j ) = exp(− 1

2 ||v−a j ||2/||a j ||2). It can be noticed that
the function kis an unsymmetrical relation. This unsymmet-
rical similarity measurement, however, assists in normaliz-
ing the distance between the two vectors with the training
vector or reference vector. This makes the measurement less
susceptible to the input frequency vectors since the input fre-
quency vectors are extracted from a small block of commands
whereas the training vectors are extracted from a large set of
commands in the masquerade detection. The symmetrical
similarity measurement is also considered in the experimen-
tation and as was expected it is showing inferior results as
compared to the unsymmetrical similarity measurement. The
symmetrical similarity measure is defined as

k(v, a j ) = exp
(
− 1

2 [ ||v−a j ||2
||a j ||2 + ||v−a j ||2

||v||2 ]
)

.

We can now define our weighted RBF similarity measure as
follows:

λ(v, a j ) = µ(vb, ab j ) k(v, a j ) (9)

The weighted RBF similarity takes into account the simi-
larity measure based on the frequency of commands (due
to k(v, a j )) and the weight associated with the frequency
vectors (due toµ(vb, ab j )). Therefore the proposed λ(v, a j )

measure embeds more information than individual measures
which is a more appropriate way of seeking some score or
similarity between any two blocks or set of commands.

The other similarity measures like cosine metric [9] and
binary-weighted cosine metric [11] from the intrusion detec-
tion area are also experimented on masquerade detection
but not very promising results are obtained. We therefore
excluded the discussions for these measures in this paper,
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however, the interested readers may wish to check the refer-
ences [9,11] and the references given therein.

5 Combined weighted RBF-Naive Bayes classifier
for masquerade detection

In this section we combined the Naïve Bayes algorithm and
weighted RBF similarity measure. In order to combine the
scores from both the techniques first we look at the ratio γ

from Naïve Bayes algorithm. It can be observed from Eq. 6
that when the ratio γ is low there is a high likeliness for a
test block to be masquerade. It can also be observed that the
values of γ can be either positive or negative in the vicinity of
real numbers. This range of γ creates a problem while tying
it with the weighted RBF similarity measure since λ(v, a j ) is
a similarity measure with positive values only. For instance,
if a high negative valued γ (possible masquerade block) is
tied with high valued λ(v, a j ) (possible legitimate block) in
the form of multiplication then the resulting product would
be highly negative (possible masquerade). On the other hand
if a high positive valued γ (possible legitimate block) is mul-
tiplied with high valued λ(v, a j ) (possible legitimate block)
then the resulting block could be legitimate. It is obvious that
negative valued γ tied with λ(v, a j ) would lead to an erro-
neous result. To avoid this problem we propose the γ ratio
as

γ = log Psel f (B)

log Pnon−sel f (B)
=

∑

c∈B
log Pc,u j

∑

c∈B
log Pc,�=u j

, (10)

which will be always positive. Also note, now the block will
be considered a masquerade block if the ratio γ is above the
threshold and it will be considered a legitimate block when
the ratio is below the threshold. Therefore the ratio γ can be
viewed as a dissimilarity measure.

Conversely, for weighted RBF similarity measure the high
value of λ(v, a j ) represents more similarity between blocks
which would lead to label the test block as normal. It is also
obvious from Eq. 9 that the value of λ(v, a j ) lies between
0 and 1. This means a similarity measure λ(v, a j ) can be
made a dissimilarity measure by subtracting it with unity.
This helps in combining λ(v, a j ) and γ as

r = γ (1 − λ(v, a j )) (11)

For representation simplicity we exclude syntaxes (v and a j )
from the ratio r . The high value of r would indicate dissim-
ilarity between the undertaken blocks and low value would
signify similarity. If r is greater than threshold then the block
will be considered as masquerade otherwise as normal.

The motive behind combining the approaches is to possi-
bly include more information about commands than is possi-
ble with individual techniques. The weighted RBF approach
encompasses information based on frequency of commands
and weights associated with frequency vectors. On the other
hand, the Naïve Bayes algorithm includes information related
to the probabilities of commands entered by one user over
the other users. Furthermore, the individual algorithms may
have their own local regions where they perform the best. It
is therefore sensible to combine them.

The training and testing phases can be illustrated as fol-
lows:

– Training phase
• Compute frequency of commands and its binary rep-

resentation (ab j ) of each user u j .
• Compute the probabilities Pc,u j (Eq. 1) and Pc,u �= j

(Eq. 2).
– Testing phase

Compute the ratio of self and non-self probabilities
(γ from the Eq. 10) and RBF similarity measure (λ(v, a j ))

for each block B of testing dataset of user u j . The values
of γ and λ(v, a j ) yields combined ratio r (Eq. 11). The
block B will be determined as legitimate or masquerade
depending upon the following condition:

block(B) =
{

masquerade, if r ≥ θ

normal, otherwise

where, θ is a threshold. For brevity we call this
proposed approach weighted RBF-Naïve Bayes
(WRBF-NB) algorithm.

5.1 An illustration using weighted RBF-Naïve Bayes
classifier

This section illustrates weighted RBF-Naïve Bayes approach
using the example provided in Sect. 3.1. The ratio γ obtained
for the three users u1, u2 and u3 against block B in Sect. 3.1
were −12.3331, 1.4884 and 0.3907 respectively. It is clear
that the range of γ is the entire real axis (i.e. γ can obtain
negative and positive values). To restrict the values of γ only
in positive real axis equation 10 has been used. The values
of γ using Eq. 10 for users u1, u2 and u3 against block B
are 3.1744, 0.7814 and 0.9398. Here the high values of γ

signifies a possible masquerade block.
The frequency vector of block B can be computed by find-

ing the number of times commands appeared in the block.
Thus the frequency vector will be v = {2, 0, 1, 2}. The binary
representation of v and a j can be given as

vb = {1, 0, 1, 1}; ab1 = {1, 1, 10};
ab2 = {1, 0, 1, 1}; ab3 = {1, 1, 1, 1}.
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The binary similarity measure for the tested block against
the commands of user u1 during the training phase can be
evaluated as follows:

µ(vb, ab1) = 2

2 + 2
= 0.5.

The weighted RBF similarity measure can also be computed
for user u1 using Eq. 9 as follows:

λ(v, a1) = µ(vb, ab1)k(v, a1) = 0.3479.

It is now possible to find dissimilarity measure r using Eq. 11
as follows:

r = γ (1 − λ(v, a1)) = 3.1752(1 − 0.3479) = 2.0705.

Similarly, the dissimilarity measure r for users u2 and u3 can
be found in the following respective manner:

r = γ (1 − λ(v, a2)) = 0.7814(1 − 0.7566)

= 0.1902( for user u2),

r = γ (1 − λ(v, a3)) = 0.9397(1 − 0.5716)

= 0.4025( for user u3).

It is clear that r ≥ 0. It is also evident that the higher the
value of r the greater the dissimilarity between the train and
test commands. The difference between the values of r for
user u2 and user u3 against block B is not very significant,
this implies that the considered block is not behaving in an
abnormal way for these two users. If a threshold is fixed
somewhere around 0.5 then block B will be labeled as mas-
querade for user u1. The threshold value will determine the
false positive rate and its corresponding hit rate values. The
threshold value can be fixed such that the system will give
false positive rate less than or equal to some defined value.
In this way the obtained hit rate has the corresponding false
positive rate in the predefined vicinity or range. It can also
be noted that the difference in γ ratio of user u2 and user u3

in Sect. 3.1 is significant as compared with the difference in
ratio r of the same two users. This signifies that the trend of
commands in block B for user u2 and user u3 is not very dis-
tinguishable. This is also the case when careful observation
of commands of block B and commands of user u2 and user
u3 have been made. In other words, the proposed technique is
providing better insight about the commands. This fact will
be apparent when the techniques will be experimented on
SEA dataset in the following section.

6 Experimentation on truncated command dataset

The experimentation part is subdivided into four phases. In
the first phase we show the ROC curve for the unsymmetri-
cal weighted RBF measure for masquerade detection. Then
we show a comparison of ROC curves between symmetrical

WRBF-NB and Naïve Bayes algorithms. Then experiment
for the proposed algorithm is conducted and compared with
all the techniques discussed in this paper. Next we compare
the ROC curve for the proposed unsymmetrical WRBF-NB
or simply WRBF-NB technique and the Naïve Bayes tech-
nique. All the experiments were conducted using SEA dataset
[13] where a set of 100 commands is determined either to be
masquerade or normal.

Figure 1 illustrates the ROC curve for the unsymmetrical
weighted RBF measure for masquerade detection. It can be
observed from the figure that the hit rate increases as the false
rate is increased. Although the results obtained is not very
challenging when compared with other masquerade detection
techniques, it gives an insight that the measure embeds some
information which could be useful for masquerade detection.
A comparison between symmetrical WRBF-NB and Naïve
Bayes algorithms is depicted in Fig. 2. It can be observed
from the figure that symmetrical WRBF-NB is performing
better than Naïve Bayes algorithm. Although the improve-
ment here is not very significant but it indicates that there
is some useful information in symmetrical weighted RBF
technique for masquerade detection when combined with the
Naïve Bayes algorithm. Next, the experiment for the pro-
posed WRBF-NB algorithm is conducted. Different values
of θare used to obtain the ROC curve for the algorithm as
shown in Fig. 3. It can be observed from the figure that the
proposed combination of Naïve Bayes and weighted RBF
approach produces very promising results. To illustrate a few,
the episode based Naïve Bayes approach produces hit rate of
88.3% at false positive rate of 14.5%. The WRBF-NB tech-
nique at the same false positive rate produces 92.2% hit rate
which is an improvement of 3.9% over the episode based
technique. The SVM technique produces 80.1% hit rate at
9.7% false positive rate. Here the WRBF-NB technique pro-
duces 87.9% hit rate at the same 9.7% false positive rate
which is an improvement of 7.8% over the SVM technique.
Similarly Semi-Global Alignment and Recursive Data Min-
ing produce hit rates 75.8% and 75.0% at false positive rates
7.7% and 10.0% respectively whereas the WRBF-NB tech-
nique produces 83.1% and 88.8% at respective false positive
rates which are 7.3% and 13.8% improvements over Semi-
Global Alignment and Recursive Data Mining techniques. It
can also be observed from the ROC curve that the algorithm
achieves 84.0% hit rate at 7.8% false positive rate which
seems to be one of the best results. The results obtained by
the proposed WRBF-NB technique are clearly significant
than those of earlier techniques. The results for some pre-
vious methods in comparison with WRBF-NB method are
summarized in Table 3. Column 1 in the table lists previ-
ous methods, column 2 denotes false positive rate, column
3 denotes the corresponding Hit rate of previous methods,
column 4 highlights the corresponding hit rates of WRBF-NB
method and column 5 denotes the corresponding false positive
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Fig. 1 ROC curve for unsymmetrical weighted RBF measure on mas-
querade detection
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Fig. 2 ROC curves for symmetrical WRBF-NB and Naïve Bayes algo-
rithms

rate of WRBF-NB method. We have also illustrated ROC
curves for WRBF-NB and Naïve Bayes techniques for com-
parison purpose in Fig. 4. It can be observed from the figure
that at high hit rates the Naïve Bayes is performing poorly.
We are not very interested in low hit rate region as the low hit
rate would simply mean to allow more masquerades to enter
the system unnoticed. The ROC area of interest is the high
hit rate region where the WRBF-NB technique is exhibiting
significant improvement. This means that the risk of attack
by masquerades using WRBF-NB technique is considerably
less than Naïve Bayes technique.

0 2 4 6 8 10 12 14 16 18 20 22
10

20

30

40

50

60

70

80

90

100
ROC Curve: masquerade detection

SVM

Sequence Matching
Compression

UniquenessIPAM

Hybrid Markov

Bayes one-step Markov

Recursive Data Mining
Semi-Global Alignment

Naive Bayes (no updating)

Episode based Naive
Bayes              

Proposed Technique 

False Positive %

 
% eta

R ti
H

Fig. 3 ROC curve of the weighted RBF – Naïve Bayes algorithm with
other presented techniques
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Fig. 4 A comparison of ROC curves for the WRBF-NB and Naïve
Bayes algorithms

7 Conclusion

In this paper, we presented a technique for masquerade detec-
tion based on Naïve Bayes approach and weighted RBF simi-
larity approach. The proposed approach was experimented on
SEA dataset and its performance was compared with other
masquerade detection techniques. It was observed that the
proposed approach performed significantly better than many
earlier techniques.

During the review process of this paper we came to know
about the paper written by Rieck and Laskov [12] where they
proposed an interesting idea for intrusion detection. This idea
could be used in masquerade detection. We will investigate
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Table 3 Comparison of WRBF-NB with previous methods

Method False positive rate (%) Hit rate (%) Hit rate of WRBF-NB (%) False positive rate of WRBF-NB (%)

Episode based Naïve Bayes [3] 14.5 88.3 92.2 14.5

SVM [7] 9.7 80.1 87.9 9.7

Semi-global alignment [2] 7.7 75.8 83.1 7.7

Recursive data mining [16] 10.0 75.0 88.8 10.0

this approach for masquerade detection and compare their
performance with our approach.
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