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Abstract This paper examines the structural features of
callgraphs. The sample consisted of 120 malicious and 280
non-malicious executables. Pareto models were fitted to inde-
gree, outdegree and basic block count distribution, and a sta-
tistically significant difference shown for the derived power
law exponent. A two-step optimization process involving
human designers and code compilers is proposed to account
for these structural features of executables.

1 Introduction

All commercial antivirus (AV) products rely on signature
matching; the bulk of which constitutes strict byte sequence
pattern matching. For modern, evolving polymorphic and
metamorphic malware, this approach is unsatisfactory.
Clementi [9] recently checked fifteen state-of-the-art,
updated AV scanners against ten highly polymorphic mal-
ware samples and found false negative rates ranging from
0 to 90%, with an average of 48%. This development was
already predicted in 2001 [51].

Polymorphic malware contains decryption routines which
decrypt encrypted constant parts of the malware body. The
malware can mutate its decryptors in subsequent generations,
thereby complicating signature-based detection approaches.
The decrypted body, however, remains constant. Metamor-
phic malware generally do not use encryption, but are able
to mutate their body in subsequent generation using
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various techniques, such as junk insertion, semantic NOPs,
code transposition, equivalent instruction substitution and
register reassignments [8,49]. For a recent formalization of
these code mutation techniques, the technical reader is
referred to [17]. The net result of these techniques is a shrink-
ing usable “constant base” for strict signature-based detec-
tion approaches.

Since signature-based approaches are quite fast (but show
little tolerance for metamorphic and polymorphic code) and
heuristics such as emulation are more resilient (but quite
slow and may hinge on environmental triggers), a detection
approach that combines the best of both worlds would be
desirable. This is the philosophy behind a structural finger-
print. Structural fingerprints are statistical in nature, and as
such are positioned as ‘fuzzier’ metrics between static signa-
tures and dynamic heuristics. The structural fingerprint inves-
tigated in this paper for differentiation purposes is based on
some properties of the executable’s callgraph.

The rest of this paper is structured as follows. Section 2
describes the setup, data, procedures and results. Section 3
gives a short overview of related work on graph-based
classification. Section 4 sketches the proposed generative
mechanism.

2 Generating the callgraph

Primary tools used are described in more details in the
Acknowledgements.

2.1 Samples

For non-malicious software, henceforth called ‘goodware’,
sampling followed a two-step process: We inventoried all PEs
(the primary 32-bit Windows file format) on a Microsoft XP
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Home SP2 laptop, extracted uniform randomly 300 samples,
discarded overly large and small files, yielding 280 samples.
For malicious software (malware), seven classes of interest
were fixed: backdoor, hacking tools, DoS, trojans, exploits,
virus, and worms. The worm class was further divided into
Peer-to-Peer (P2P), Internet Relay Chat/Instant Messenger
(IRC/IM), Email and Network worm subclasses. For an non-
specialist introduction to malicious software, see [48]; for a
canonical reference, see [50].

Each class (subclass) contained at least 15 samples. Since
AV vendors were hesitant for liability reasons to provide
samples, we gathered them from herm1t’s collection [24]
and identified compiler and (potential) packer metadata using
PEiD. Practically all malware samples were identified as hav-
ing been compiled by MS C++ 5.0/6.0, MS Visual Basic
5.0/6.0 or LCC, and about a dozen samples were packed
with various versions of UPX (an executable compression
program). Malware was run through best-of-breed, updated
open- and closed-source AV products yielding a false neg-
ative rate of 32% (open-source) and 2% (closed-source),
respectively. Overall file sizes for both mal- and goodware
ranged from �(10 kb) to �(1 MB).1 A preliminary file size
distribution investigation yielded a log-normal distribution;
for a putative explanation of the underlying generative
process, see [38] and [31].

All 400 samples were loaded into the de-facto industry
standard disassembler (IDA Pro [22]), inter- and intra-
procedurally parsed and augmented with symbolic meta-
information gleaned programmatically from the binary via
FLIRT signatures (when applicable). We exported the
identified structures via IDAPython into a MySQL database.
These structures were subsequently parsed by a disassembly
visualization tool (BinNavi [13]) to generate and investigate
the callgraph.

2.2 Callgraph

Following [14], we treat an executable as a graph of graphs.
This follows the intuition that in any procedural language, the
source code is structured into functions (which can be viewed
as a flowchart, i.e. a directed graph which we call flowgraph).
These functions call each other, thus creating a larger graph
where each node is a function and the edges are calls-to rela-
tions between the functions. We call this larger graph the
callgraph. We recover this structure by diassembling the exe-
cutable into individual instructions. We distinguish between
short and far branch instructions: Short branches do not
save a return address while far branches do. Intuitively, short
branches are normally used to pass control around within one

1 A function f (n) is �(g(n)) if there are positive constants c1, c2, and
n0 such that 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n), ∀n ≥ n0 . See [26] for a
readable discussion of asymptotic notation etymology.

function of the program, while far branches are used to call
other functions.

A sequence of instructions that is continuous (i.e. has no
branches jumping into its middle and ends at a branch instruc-
tion) is called a basic block. We consider the graph formed
by having each basic block as a node, and each short branch
an edge. The connected components in this directed graph
correspond to the flowgraphs of the functions in the source
code. For each connected component in the previous graph,
we create a node in the callgraph. For each far branch in the
connected component, we add an edge to the node corre-
sponding to the connected component this branch is target-
ing. Figures 7 and 8 in the Appendix illustrate a function’s
flow- and callgraph, respectively.

Formally, denote a callgraph CG as CG = G(V, E),
where G(·) stands for ‘Graph’. Let V = ⋃

F , where F ∈
{normal, import, library, thunk}. This just says that each
function in CG is either a ‘library’ function (from an external
libraries statically linked in), an ‘import’ function (dynam-
ically imported from a dynamic library), a ‘thunk’ function
(mostly one-line wrapper functions used for calling conven-
tion or type conversion) or a ‘normal’ function (can be viewed
as the executables own function). Following metrics were
programmatically collected from CG

– |V | is number of nodes in CG, i.e. the function count of
the callgraph.

– For any f ∈ V , let f = G(V f , E f ) where b ∈ V f is
a block of code, i.e. each node in the callgraph is itself a
graph, a flowgraph, and each node on the flowgraph is a
basic block.

– Define I C : B → N where B is defined to be set of
blocks of code, and I C(b) is the number of instructions in
b. We denote this function shorthand as |b|I C , the number
of instructions in basic block b.

– We extend this notation | · |I C to elements of V be defining
| f |I C = ∑

b∈V f
|b|I C . This gives us the total number of

instructions in a node of the callgraph, i.e. in a function.
– Let d+

G ( f ), d−
G ( f ) and dbb

G ( f ) denote the indegree, out-
degree and basic block count of a function, respectively.

2.3 Correlations

We calculated the correlation between in- and outdegree of
functions. Prior analysis of static class collaboration net-
works [40,44] suggest an anti-correlation, characterizing
some functions as source or sinks. We found no signifi-
cant correlation between in and outdegree of functions in
the disassembled executables (Fig. 1). Correlation intuitively
is unlikely to occur except in the ‘0 outdegree’ case (the
BinNavi toolset does not generate the flowgraph for imported
functions, i.e. an imported function automatically has
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Fig. 1 Correlation coefficient
rin,out Malware: p versus rin,out
Goodware: p versus rin,out
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Table 1 Correlation, IQR for instruction count

Class Metric �(10) �(100) �(1000)

Goodware r 0.05 −0.017 −0.0366

IQR 12 44 36

Malware r 0.08 0.0025 0.0317

IQR 8 45 28

outdegree 0, and but will be called from many other
functions).

Additionally, we size-blocked both sample groups into
three function count blocks, with block criteria chosen as
�(10), �(100) and �(1000) function counts to investigate a
correlation between instruction count in functions and com-
plexity of the executable (with function count as a proxy).
Again, we found no correlation at significance level ≤0.001.
Coefficient values and the IQR for instruction counts are
given in Table 1. IQR, short for Inter-Quartile Range, is a
spread measure denoting the difference between the 75th
and the 25th percentiles of the sample values.

The first result corroborates previous findings; the second
result at the phenomenological level agrees with the ‘refactor-
ing’ model in [40], which posits that excessively long func-
tions tend to be decomposed into smaller functions. Remark-
ably, the spread is quite low, on the order of a few dozen
instructions. We will discuss models more in Sect. 4.

2.4 Function types

Each point in the scatterplots in Fig. 2 represents three metrics
for one individual executable: Function count, and the pro-
portions of normal functions, static library + dynamic import
functions, and thunks. Proportions for an individual execut-
able add up to 1. The four subgraphs are parsed thusly, using
Fig. 2 as an example. The x-axis denotes the proportion of

‘normal’ functions, and the y-axis the proportion of ‘thunk’
functions in the binaries. The color of each point indicates
|V |, which may serve as a rough proxy for the executable’s
size. The dark red point at (X, Y ) = (0.87, 0.07) is
endnote.exe, since it is the only goodware binary with
functions count of �(104).

Most thunks are wrappers around imports, hence in small
executables, a larger proportion of the functions will be
thunks. The same holds for libraries: The larger the execut-
able, the smaller the percentage of libraries. This is heavily
influenced by the choice of dynamic versus static linking. The
thunk/library plot, listed for completeness reasons, does not
give much information, confirming the intuition that they are
independent of each other, mostly due to compiler behavior.

2.5 α fitting with Hill estimator

Taking our cue from [43] who surveyed empirical studies of
technological, social, and biological networks, we hypoth-
esize that the discrete distributions of d+( f ), d−( f ) and
dbb( f ) follow a truncated power law of the form Pd�( f )(m)∼
mαd�( f )e− m

kc , where kc indicates the end of the power law
regime. Shorthand, we call αd�( f ) for the respective metrics
αindeg, αoutdeg and αbb.

Figure 3a, b show pars pro toto the fitting procedures for
our 400 samples. The plot is an empirical complimentary
cumulative distribution function plot (ECCDF). A cumula-
tive distribution function (CDF) F(x) = P[X ≤ x] of a
random variable X denotes the probability that the observed
value of X is at most x . ‘Complimentary’ simply represents
the CDF as 1− F(x), whereas the prefix ‘empirical’ signifies
that experimental samples generated this (step) function.

The x-axis shows indegree, the y-axis shows the ECCDF
P[X > x] that a function in endote.exe has indegree of
x . If P[X > x] can be shown to fit a Pareto distribution,
we can extract the power law exponent for PMF Pd�( f )(m)

from the CDF fit (see [1] and more extensively [41] for the

123



302 D. Bilar

Fig. 2 Scatterplot of function
type proportions GW:Norm
versus Lib + Imp, MW:Norm
versus Lib + Imp, GW:Norm
versus Thunk, MW:Norm versus
Thunk, GW:Thunk versus
Lib + Imp, MW:Thunk versus
Lib + Imp
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(a) GW:Norm vs Lib+Imp
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(b) MW:Norm vs Lib+Imp
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(c) GW:Norm vs Thunk
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(d) MW:Norm vs Thunk
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(e) GW:Thunk vs Lib+Imp
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(f) MW:Thunk vs Lib+Imp

relationship between Pareto, power laws and Zipf distribu-
tions). The probability mass function PMF p[X = x] denotes
the probability that a discrete random variable X takes on
value x .

Parsing Fig. 3a: Blue points denote the data points (func-
tions) and two descriptive statistics (median and the maxi-
mum value) for the indegree distribution for endote.exe.
We see that for endnote.exe, 80% of functions have a
indegree > 1, 2% indegree > 10 and roughly 1% indegree > 20.

The fitted distribution is shown in magenta, together with the
parameters α = 1.97 and kc = 1415.83.

Although tempting, simply ‘eyeballing’ Pareto CDFs for
the requisite linearity on a log–log scale [21] is not enough:
Following [38] on philosophy and [46] on methodology, we
calculate the Hill estimator α̂ whose asymptotical normal-
ity is then used to compute a 95% CI. This is shown in the
inset and serves as a Pareto model self-consistency check
that estimates the parameter α as a function of the number
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Fig. 3 GW sample: Fitting
αindeg and kc, MW sample:
Fitting αbb and kc, Pareto fitting
ECCDFs, shown with Hill
estimator inset
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of observations. As the number of observations i increase, a
model that is consistent along the data should show roughly
C Ii ⊇ C Ii+1. For an insightful exposé and more recent
procedures to estimate Pareto tails, see [56,16].

To tentatively corroborate the consistency of our posited
Pareto model, 30 (goodware) and 21 (malware) indegree, out-
degree and basic block ECCDF plots were uniformly sam-
pled into three function count blocks, with block criteria
chosen as �(10), �(100) and �(1000) function counts,
yielding a sampling coverage of 10% (goodware) and 17%
(malware). Visual inspection indicates that for malware, the
model seemed more consistent for outdegree than indegree at
all function sizes. For basic block count, the consistency tends
to be better for smaller executables. We see these tendencies
for goodware, as well, with the observation that outdegree
was most consistent in size block �(100). For �(10) and
�(1000) for both malware and goodware, indegree seemed
the least consistent, quite a few samples did exhibit a so-
called ‘Hill Horror Plot’ [46], where α̂s and the correspond-
ing CIs were very jittery.

The fitted power-law exponents αindeg, αoutdeg, αbb,
together with individual functions’ callgraph size are shown
in Fig. 4. For both classes, the range extends for αindeg ≈
[1.5–3], αoutdeg ≈ [1.1–2.5] and αbb ≈ [1.1–2.1], with a
slightly greater spread for malware.

2.6 Testing for difference

We now check whether there are any statistically signifi-
cant differences between (α, kc) fit for goodware and mal-
ware, respectively. Following procedures in [57], we find
αindeg, αoutdeg and αbb distributed approximately normal. The
exponential cutoff parameters kc are lognormally distributed.
Applying a standard two-tailed t test (Table 2), we find at
significance level 0.05 (tcritical = 1.97) onlyµ(αbb,malware) ≥
µ(αbb,goodware).

For the basic blocks, kc ≈ LogN (59.1, 52) (goodware)
and ≈ LogN (54.2, 44) (malware) and µ(kc(bb, malware))
= µ(kc(bb, goodware)) was rejected via Wilcoxon Rank
Sum with z = 13.4.

The steeper slope of malware’s αbb imply that functions
in malware tend to have a lower basic block count. This
can be accounted for by the fact that malware tends to be
simpler than most applications and operates without much
interaction, hence fewer branches, hence fewer basic blocks.
Malware tends to have limited functionality, and operates
independently of input from the user and the operating envi-
ronment. Also, malware is usually not compiled with aggres-
sive compiler optimization settings. Such a regime leads to
more inlining and thus increases the basic block count of
the individual functions. It may be possible, too, that mal-
ware authors tend to break functions into simpler compo-
nents than ‘regular’ programmers. The smaller cutoff point
for malware seems to corroborate this, as well, in that the
power law relationship holds over a shorter range. However,
this explanation should be regarded as speculative pending
further investigation.

3 Related work

A simple but effective graph-based signature set to character-
ize statically disassembled binaries was proposed by Flake
[18]. For the purposes of similarity analysis, he assigned
to each function a 3-tuple consisting of basic blocks count,
count of branches, and count of calls. These sets were used to
compare malware variants and localize changes; an in-depth
discussion of the involved procedures can be found in [14].
For the purposes of worm detection, Kruegel [27] extracts
control flow graphs from executable code in network
streams, augments them with a colouring scheme, identifies
k-connected subgraphs that are subsequently used as
structural fingerprints.
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Fig. 4 GW:αindeg versus αbb,
MW:αindeg versus αbb,
GW:αindeg versus αoutdeg,
MW:αindeg versus αoutdeg,
GW:αoutdeg versus αbb,
MW:αoutdeg versus αbb,
Scatterplots of α’s
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Power-law relationships were reported in [52,40,53,7].
Valverde et al. [52] measured undirected graph properties of
static class relationships for Java Development Framework
1.2 and a racing computer game, ProRally 2002. They found
αJDK ≈ 2.5 − 2.65 for the two largest (N1 = 1, 376, N2 =
1, 364) connected components and αgame ≈ 2.85 ± 1.1 for
the game (N = 1, 989). In the context of studying time series

evolution of C/C++ compile-time “#include” dependency
graphs, αin ≈ 0.97 − 1.22 and an exponential outdegree
distribution are reported. This asymmetry is not explained.

Focusing on the properties of directed graphs, Potanin
et al. [44] examined the binary heap during execution and
took a snapshot of 60 graphs from 35 programs written
in Java, Self, C++ and Lisp. They concluded that the
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Table 2 α Distribution fitting and testing

Class Basic block Indegree Outdegree

GW N (1.634, 0.3) N (2.02, 0.3) N (1.69, 0.307)

MW N (1.7, 0.3) N (2.08, 0.45) N (1.68, 0.35)

t 2.57 1.04 −0.47

distributions of incoming and outgoing object references fol-
lowed a power law with αin ≈ 2.5 and αout ≈ 3. Myers
[40] embarked on an extensive and careful analysis of six
large collaboration networks (three C++ static class diagrams
and three C callgraphs) and collected data on in/outdegree
distribution, degree correlation, clustering and complexity
evolution of individual classes through time. He found
roughly similar results for the callgraphs, αin ≈ αout ≈ 2.5,
and noted that it was more likely to find a function with many
incoming links than outgoing ones.

More recently, Chatzigeorgiou et al. [7] applied algebraic
methods to identify, among other structures, heavily loaded
‘manager’ classes with high in- and outdegree in three static
OO class graphs. In the spirit of classification through motifs
in [35] and graphlets in [45], Chatzigeorgiou proposes a simi-
larity-measure algorithm to detect Design Patterns [20], best-
practices high level design structure whose presence manifest
themselves in the form of tell-tale subgraphs.

Analysis of non-graph-based structural features of exec-
utables were undertaken by [4,30,54]. Li et al. [30] used
statistical 1-gram analysis of binary byte values to generate a
fingerprint (a ‘fileprint’) for file type identification and clas-
sification purposes. At the semantically richer opcode level,
Bilar [4] investigated and statistically compared opcode
frequency distributions of malicious and non-malicious exec-
utables. Weber et al. [54] start from the assumption that com-
piled binaries exhibit homogeneities with respect to several
structural features such as instruction frequencies, instruction
patterns, memory access, jumpcall distances, entropy metrics
and byte-type probabilities and that tampering by malware
would disturb these statistical homogeneities.

4 Optimization processes

In 2003, Myers [40], within the context of code evolvabil-
ity, investigated how certain software engineering practices
might alter graph topologies. He proposed a ‘refactoring’
model which was phenomenologically able to reproduce key
features of source code callgraphs, among them the in- and
outdegree distributions. He noted that refactoring techniques
could be rephrased as optimizations. Earlier and more
explicitly, Valverde et al. [52] speculated that multidimen-
sional optimization processes might be the causative mecha-

nism for graph topological features they unearthed. It has also
been suggested in other venues that optimization processes
are the norm, even the driving force, for various physical,
biological, ecological and engineered systems [15,47]. We
share this particular outlook.

We hypothesize that the call-graph features described in
the preceding sections may be the phenomenological signa-
ture of two distinct, domain-specific HOT (Highly Optimized
Tolerance) optimization processes; one involving human
designers and the other, code compilers. HOT mechanisms
are processes that induce highly structured, complex sys-
tems (like a binary executable) through heuristics that seek
to optimally allocate resources to limit event losses in an
probabilistic environment [5].

4.1 Background

For a historical sketch of models and processes that induce
graphs, the reader is referred to [42]; for a shorter, more
up-to-date synopsis on power laws and distinctive gener-
ative mechanisms, including HOT, see [41]. Variations of
the Yule process, pithily summarized as a ‘rich-get-richer’
scheme, are the most popular. Physicist Barabasi rediscov-
ered and recoined the process as ‘preferential attachment’
[3], although the process discovery antedates him by at least
40 years (its origins lay in explaining biological taxa). In
some quarters of the physics community, power laws have
also been taken as a signature of emergent complexity posited
by critical phenomena such as phase transitions and chaotic
bifurcation points [6].

The models derived from such a framework are mathe-
matically compelling and very elegant in their generality;
with little more than a couple of parameter adjustments, they
are able at some phenomenological level to generate graphs
whose aggregate statistics (sometimes provably, sometimes
asymptotically) exhibit power-law distributions. Although
these models offer a relatively simple, mathematically trac-
table approximation of some features of the system under
study, we think that HOT models with their emphasis on
evolved and engineered complexity through feedback, trade-
offs between objective functions and resource constraints sit-
uated in a probabilistic environment is a more natural and
appropriate framework to represent the majority of real-life
systems. We illustrate the pitfalls of a narrow focus on power
law metrics without proper consideration of real-life domain
specification, demands and constraints with Fig. 5 from [12]:
Note that the degree sequence in Fig. 5e is the same for all
Fig. 5a–d, yet the topological structure for Fig. 5a–d is vastly
different. Along these lines, domain experts have argued
against ‘emergent’ complexity models in the cases of Internet
router [29] and in river stream [25] structures.
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Fig. 5 Degree sequence (e) following power law is identical for all graphs (a–d)

4.2 Human design and coding as HOT mechanism

The first domain-specific mechanism that induces a cost-
optimized, resource-constrained structure on the executable
is the human element. Humans using various best-practice
software development techniques [20,28] have to juggle at
various stages of the design and coding process: Evolvabili-
ty versus specificity of the system, functionality versus code
size, source readability versus development time, debugging
time versus time-to-market, just to name a few conflicting
objective function and resource constraints. Humans design
and implement programs against a set of constraints. For an
involved discussion of software engineering practices and
their relation to complex networks, the reader is referred
to [40]. Designers take implicitly (rarely explicitly, though
they should) the probability of the event space into consid-
eration, indirectly through the choice of programming lan-
guage (typed, OO, procedural, functional, etc.) and directly
through the design choice of data structures and control flow.
Human programmers generally design for average (or even
optimal) operating environments; the resulting programs
deal very badly with exceptional conditions effected by
random inputs [33,34] and resource scarcity [55].

For years, the most common attack technique has been
exploiting input validation vulnerabilities, accounting for
over half of the published software vulnerabilities and over
eighty percent of faults leading to successful penetration
attacks. Miller et al., testing Unix, Windows and OS X
utilities [33,34] by subjecting them in the simplest case to
random keyboard input, report crash failure rates of
25–40, 24, and 7%, respectively. More recently, Whittaker
et al. [55] described a dozen practical attack techniques
targeting resources against which the executable were con-

strained (primarily by the human designer); among them
memory, disk space and network availability conditions.
Effects of so-called “Reduction of Quality” attacks against
optimizing control systems have also been studied by [36,
37]. We shall give a toy example illustrating the ‘attack-as-
system perturbation-by-rare-events’ view in Sect. 4.4.

4.3 Compiler as HOT mechanism

The second domain-specific mechanism that induces a cost-
optimized, resource-constrained structure on the executable
is the compiler. The compiler functions as a HOT process.
Cost function here include memory footprint, execution
cycles, and power consumption minimization, whereas the
constraints typically involves register and cache line allo-
cation, opcode sequence selection, number/stages of pipe-
lines, ALU and FPU utilization. The interactions between
at least 40+ optimization mechanisms (in itself a network
graph [39, pp. 326+]) are so complex that meta-optimiza-
tions [23] have been developed to heuristically choose a
subset from the bewildering possibilities. Although the call-
graph is largely invariant under most optimization regimes,
more aggressive mechanisms can have a marked effect on
callgraph structure. Figure 6a shows a binary CFG induced
by the Intel C++ Compiler 9.1 under a standard optimi-
zation regime. The yellowed sections are loop structures.
Figure 6b shows the binary CFG of the same source code,
but compiled under a more aggressive inlining regime. We
see that the compiler unrolled the loops into an assortment
of switch statements, vastly increasing the number of basic
blocks, and hence changing the executable’s structural
features.
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Fig. 6 Compiler: CFG without
loop unrolling, Compiler: CFG
with loop unrolling, basic block
differences in CFG under
compiler optimization regimes

(a) (b)

4.4 Example: PLR optimization problem as a HOT process

The HOT mechanism inducing the structure of the callgraph
executable can be formulated as a probability, loss, resource
(PLR) optimization problem, which in its simplest form can
be viewed as a generalization of Shannon source coding for
data compression [32]. The reader is referred to [11] for
details; we just give a sketch of the general formulation and
a motivating example:

min J (1)

subject to

∑
ri ≤ R (2)

where

J =
∑

pi li (3)

li = f (ri ) (4)

1 ≤ i ≤ N (5)

We have a set of N events (Eq. 5) with occurring iid with
probability pi incurring loss li (Eq. 3), the sum-product of
which is our objective function to be minimized (Eq. 1).

Resources ri are hedged against losses li (Eq. 4), subjected
to resource bounds R (Eq. 2). We will demonstrate the appli-
cability of this PLR model with the following short C pro-
gram, adapted from [19]:

#include <stdlib .h>
#include <stdio .h>
#include <string .h>

int provePequalsNP()
{
/∗ Next paper . . ∗/
}
int bof()
{
char buffer [8]; /∗ an 8 byte character buffer ∗/
strcpy(buffer , gets ( ) ) ; /∗get input from the user∗/
/∗ may not return i f buffer overflowed
return 42;
}

int main( int argc , char ∗∗argv)
{
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bof (); /∗call bof () function∗/
/∗ execution may never reach
next function because of overflow∗/
provePequalsNP() ;
return 1000000; /∗exit with Clay prize∗/
}
}

We assume here that the uncertain, probabilistic environ-
ment is just the user. She is asked for input in gets(), this
represents the event. In the C code, the human designer speci-
fied an 8 byte buffer (char buffer[8]) and the compiler
would dutifully allocate the minimum buffer needed for 8
bytes (this is the resource r ). Hence, the constrained resources
r is the variable buffer. The loss associated with the user
input event is really a step function; as long as the user
satisfies the assumption of the designer, the ‘loss’ is con-
stant, and can be seen (simplified) as just the ‘normal’ loss
incurred in proper continuation of control flow. Put differ-
ently, as long as user input is ≤8 bytes, the resource r is
minimally sufficient to ensure normal control flow contin-
uation. If, however, the user decides to input ‘Superfragi-
listicexpialidocious’ (which was implicitly assumed to be
an unlikely/impossible event by the human designer in the
code declaration), the loss l takes a huge jump: a catastrophic
loss ensues since strcpy(buffer,gets()) overflows
buffer. The improbable event breaches the resource and
now, control flow may be rerouted, the process crashed, shell-
code executed via a stack overflow (or in our example, fame
remains elusive). This is a classic buffer overflow attack and
the essence of hacking in general—violating assumptions by
‘breaking through’ the associated resource allocated explic-
itly (input validation) and implicitly (race condition attacks,
for instance) by the programmer, compiler or at runtime by
the OS.

What could have prevented this catastrophic loss? A type-
safe language such as Java and C# rather than C, more resour-
ces in terms of buffer space and more code in terms of bounds
checking from the human designer’s side theoretically would
have worked. In practice, for a variety of reasons, program-
mers write unsafe, buggy code. Recently, compiler guard
techniques [10] have been developed to make these types
of system perturbation attacks against allocated resources
harder to execute or more easily detectable; again attacks
against these compiler guard techniques have been developed
[2].

5 Conclusion

We started by analyzing the callgraph structure of 120 mali-
cious and 280 non-malicious executables, extracting descrip-
tive graph metrics to assess whether statistically relevant
differences could be found. Malware tends to have a
lower basic block count, implying a simpler structure (less

interaction, fewer branches, limited functionality). The met-
rics under investigation were fitted relatively successfully to
a Pareto model. The power-laws evidenced in the binary call-
graph structure may be the result of optimization processes
which take objective function tradeoffs and resource con-
straints into account. In the case of the callgraph, the primary
optimizer is the human designer, although under aggressive
optimization regimes, the compiler will alter the callgraph,
as well.
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6 Appendix

We illustrate the concept of a flowgraph, callgraph and basic
block by means of a fragment dissassembly2 of Backdoor.
Win32.Livup.c. We focus on the function sub_402400,
consisting of six basic blocks. The flowgraph is given in
Fig. 7. The assembly code for one basic block starting at
0x402486 and ending with a jz at 0x4024B9 is given
below. Figure 8 shows the callgraph of sub_402400.

2 See www.viruslist.com/en/viruses/encyclopedia?virusid=44936 for
more information.
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Fig. 7 Flowgraph for function
sub_402400

Fig. 8 Callgraph for function
sub_402400

References

1. Adamic, L., Huberman, B.: Zipf’s law and the internet. Glottomet-
rics 3, 143–150 (2002)

2. Alexander, S.: Defeating compiler-level buffer overflow protec-
tion.. J-LOGIN 30(3), 59–71 (2005)

3. Barabasi, A.L.: Mean field theory for scale-free random networks.
Phys. A Stat. Mech. Appl. 272, 173–187 cond-mat/9907068 (1999)

4. Bilar, D.: Fingerprinting malicious code through statistical opcode
analysis. In: ICGeS ’07: Proceedings of the 3rd International Con-
ference on Global E-Security, London (UK) (2007)

5. Carlson, J.M., Doyle, J.: Highly optimized tolerance: A
mechanism for power laws in designed systems. Phys. Rev.
E 60(2), 1412 (1999)

6. Carlson, J.M., Doyle, J.: Complexity and robustness. Proc. Natl.
Acad. Sci. 99(Suppl 1), 2538–2545 (2002)

7. Chatzigeorgiou, A., Tsantalis, N., Stephanides, G.: Application
of graph theory to OO software engineering. In WISER ’06:

Proceedings of the 2006 International Workshop on Workshop
on Interdisciplinary Software Engineering Research, pp. 29–36,
New York, NY, USA. ACM Press, New York (2006)

8. Christodorescu, M., Jha, S.: Static analysis of executables to
detect malicious patterns. In Security ’03: Proceedings of the
12th USENIX Security Symposium, pp. 169–186. USENIX
Association, USENIX Association (2003)

9. Clementi, A.: Anti-virus comparative no. 11. Technical report,
Kompetenzzentrum IT, Insbruck (Austria). http://www.av-
comparatives.org/seiten/ergebnisse/report11.pdf (2006)

10. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q., Hinton, H.: StackGuard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In:
Proceedings of 7th USENIX Security Conference, pp. 63–78, San
Antonio, Texas (1998)

11. Doyle, J., Carlson, J.M.: Power laws, highly optimized tolerance,
and generalized source coding. Phys. Rev. Lett. 84(24), 5656–
5659 (2000)

123



310 D. Bilar

12. Doyle, J.C., Alderson, D.L., Li, L., Low, S., Roughan, M.,
Shalunov, S., Tanaka, R., Willinger, W.: The “robust yet frag-
ile” nature of the Internet. Proc. Natl. Acad. Sci. 102(41), 14497–
14502 (2005)

13. Dullien, T.: Binnavi v1.2. http://www.sabre-security.com/
products/binnavi.html (2006)

14. Dullien, T., Rolles, R.: Graph-based comparison of executable
objects. In SSTIC ’05: Symposium sur la Sécurité des Technol-
ogies de l’Information et des Communications. Rennes, France
(2005)

15. Ekeland, I.: The Best of All Possible Worlds: Mathematics and
Destiny. University of Chicago Press, (2006)

16. Fan, Z.: Estimation problems for distributions with heavy tails.
PhD thesis, Georg-August-Universität zu Göttingen (2001)

17. Filiol, É.: Metamorphism, formal grammars and undecidable code
mutation. Int. J. Comput. Sci. 2(2), 70–75 (2007)

18. Flake, H.: Compare, Port, Navigate. Black Hat Europe 2005 Brief-
ings and Training (2005)

19. Foster, J.C., Osipov, V., Bhalla, N., Heinen, N.: Buffer Overflow
Attacks. Syngress, Rockland, USA (2005)

20. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns:
Abstraction and reuse of object-oriented design. Lect. Notes Com-
put. Sci. 707, 406–431 (1993)

21. Goldstein, M.L., Morris, S.A., Yen, G.G.: Problems with fitting to
the power-law distribution. Eur. J. Phys. B 41(2), 255–258 cond-
mat/0402322 (2004)

22. Guilfanov, I.: Ida pro v5.0.0.879. http://www.datarescue.com/
idabase/ (2006)

23. Haneda, M., Knijnenburg, P.M.W., Wijshoff, H.A.G.: Optimiz-
ing general purpose compiler optimization. In: CF ’05: Proceed-
ings of the 2nd Conference on Computing Frontiers, pp. 180–188,
New York, NY, USA. ACM Press, New York (2005)

24. herm1t. VX Heaven. http://vx.netlux.org// (2007)
25. Kirchner, J.W.: Statistical inevitability of horton’s laws and

the apparent randomness of stream channel networks. Geol-
ogy 21, 591–594 (1993)

26. Knuth, D.E.: Big omicron and big omega and big theta. SIGACT
News 8(2), 18–24 (1976)

27. Krügel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Poly-
morphic worm detection using structural information of execu-
tables. In: Valdes, A., Zamboni, D. (eds.) Recent Advances in
Intrusion Detection, vol. 3858 of Lecture Notes in Computer
Science, pp. 207–226. Springer, Heidelberg (2005)

28. Lakos, J.: Large-scale C++ software design. Addison Wesley
Longman Publishing Co., Inc, Redwood City (1996)

29. Li, L., Alderson, D., Willinger, W., Doyle, J.: A first-principles
approach to understanding the internet’s router-level topology. In:
SIGCOMM ’04: Proceedings of the 2004 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer
Communications, pp. 3–14, New York, NY, USA. ACM Press,
New York (2004)

30. Li, W.-J., Wang, K., Stolfo, S., Herzog, B.: Fileprints: Identifying
file types by n-gram analysis. In SMC ’05: Proceedings from the
Sixth Annual IEEE Information Assurance Workshop on Systems,
Man and Cybernetics, pp. 64– 71. West Point, New York (2005)

31. Limpert, E., Stahel, W.A., Abbt, M.: Log-normal distributions
across the sciences: keys and clues. BioScience 51(5), 341–
352 (2001)

32. Manning, M., Carlson, J.M., Doyle, J.: Highly optimized tolerance
and power laws in dense and sparse resource regimes. Phys. Rev. E
(Stat. Nonlinear Soft Matter Phys.) 72(1), 016108–016125 (2005),
physics/0504136

33. Miller, B.P., Cooksey, G., Moore, F.: An empirical study of the
robustness of macos applications using random testing. In: RT ’06:
Proceedings of the 1st International workshop on Random Testing,
pp. 46–54, New York, NY, USA. ACM Press, New York (2006)

34. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reli-
ability of unix utilities. Commun. ACM 33(12), 32–44 (1990)

35. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D.,
Alon, U.: Network Motifs: Simple Building Blocks of Complex
Networks. Science 298(5594), 824–827 (2002)

36. Mina Guirguis, A.B., Matta, I.: Reduction of quality (roq) attacks
on dynamic load balancers: Vulnerability assessment and design
tradeoffs. In: Infocom ’07: Proceedings of the 26th IEEE Interna-
tional Conference on Computer Communication, Anchorage (AK)
(2007, to appear)

37. Mina Guirguis, I.M., Bestavros, A., Zhang, Y.: Adversarial exploits
of end-systems adaptation dynamics. J. Parallel Distrib. Comput.
( 2007, to appear)

38. Mitzenmacher, M.: Dynamic models for file sizes and double
pareto distributions. Internet Math. 1(3), 305–334 (2004)

39. Muchnick, S.S.: Advanced compiler design and implementation.
Morgan Kaufmann Publishers Inc., San Francisco, pp 326–327
(1998), ISBN 1-55860-320-4

40. Myers, C.: Software systems as complex networks: Structure, func-
tion, and evolvability of software collaboration graphs. Phys. Rev.
E (Stat. Nonlinear Soft Matter Phys.) 68(4), 046116 (2003)

41. Newman, M.: Power laws, Pareto distributions and Zipf’s law. Con-
temp. Phys. 46(5), 323–351 (2005)

42. Newman, M., Barabasi, A.-L., Watts, D.J.: The Structure and
Dynamics of Networks: (Princeton Studies in Complexity). Prince-
ton University Press, Princeton (2006)

43. Newman, M.E.J.: The structure and function of complex net-
works. SIAM Rev. 45, 167 (2003)

44. Potanin, A., Noble, J., Frean, M., Biddle, R.: Scale-free geometry
in oo programs. Commun. ACM 48(5), 99–103 (2005)

45. Pržulj, N.: Biological network comparison using graphlet degree
distribution. In: Proceedings of the 2006 European Conference on
Computational Biology, ECCB ’06, Oxford, UK. Oxford Univer-
sity Press, New York (2006)

46. Resnick, S.: Heavy tail modeling and teletraffic data. Ann.
Stat. 25(5), 1805–1869 (1997)

47. Schneider, E.D., Sagan, D.: Into the Cool : Energy Flow, Thermo-
dynamics, and Life. University Of Chicago Press, Chicago (2005)

48. Skoudis, E., Zeltser, L.: Malware: Fighting Malicious Code. Pren-
tice Hall PTR, Upper Saddle River (2003)

49. Szor, P.: The Art of Computer Virus Research and Defense,
pp. 252–293. Prentice Hall PTR, Upper Saddle River (2005)

50. Szor, P.: The Art of Computer Virus Research and Defense. Addi-
son-Wesley Professional, Upper Saddle River (NJ) (2005)

51. Szor, P., Ferrie, P.: Hunting for metamorphic. In: VB ’01: Proceed-
ings of the 11th Virus Bulletin Conference (2001)

52. Valverde, S., Ferrer Cancho, R., Solé, R.V.: Scale-free networks
from optimal design. Europhys. Lett. 60, 512–517 (2002) cond-
mat/0204344

53. Valverde, S., Sole, R.V.: Logarithmic growth dynamics in software
networks. Europhys. Lett. 72, 5–12 (2005) physics/0511064

54. Weber, M., Schmid, M., Schatz, M., Geyer, D.: A toolkit for
detecting and analyzing malicious software. In: ACSAC ’02:
Proceedings of the 18th Annual Computer Security Applications
Conference, Washington (DC) (2002)

55. Whittaker, J., Thompson, H.: How to break Software secu-
rity. Addison Wesley (Pearson Education), Reading (2003)

56. Willinger, W., Alderson, D., Doyle, J.C., Li, L.: More normal than
normal: scaling distributions and complex systems. In: WSC ’04:
Proceedings of the 36th Conference on Winter Simulation, pp. 130–
141. Winter Simulation Conference (2004)

57. Wu, G.T., Twomey, S.L., Thiers, R.E.: Statistical evaluation of
method-comparison data. Clin. Chem. 21(3), 315–320 (1975)

123


	On callgraphs and generative mechanisms
	Abstract 
	Introduction
	Generating the callgraph
	Samples
	Callgraph
	Correlations
	Function types
	 fitting with Hill estimator
	Testing for difference
	Related work
	Optimization processes
	Background
	Human design and coding as HOT mechanism
	Compiler as HOT mechanism
	Example: PLR optimization problem as a HOT process
	Conclusion
	Appendix


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


