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Abstract Several security flaws are the consequence of the
presence of programming errors or bugs in software. Heap
overflow is the typical example of such errors that allows an
attacker to take control of a machine. But considering the
growing size and complexity of present software, implemen-
ting programs without any error is not an easy task. In this
paper, we present a static analysis by abstract interpretation
that is focused on security properties: without executing the
program, it ensures the absence of any heap overflows.

1 Introduction

Since the production of the first integrated circuits, and thanks
to the evergoing trend of Moore’s law, software have propa-
gated in different technological fields. Nowadays, they play
a crucial role in our lives: nuclear installation supervision,
fly-by-wire systems in planes, car breaking systems, mobile
phones, medical resonance imaging, etc.

Moreover, whatever the application field may be, the size
of program codes tends to grow significantly. The evolu-
tion of the size of Microsoft operating systems, illustrated
in Fig. 1, is representative of this trend. As a more illustra-
tive example, a Boeing 777 aircraft and a recent car, embed
4 and 35 million lines of code respectively [30,40]. While it
is most of the time invisible to the eyes, software nonethe-
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less perform increasingly complex tasks and thus the risks
caused by software are often under-estimated. Unfortunately,
any simple programmation error in an embedded software,
may render the product ineffective, or even worst, vulnerable
to malicious users.

Even the most vigilant programmers cannot avoid the
introduction of programming errors in software containing
several millions lines of code. It is estimated that the rate
of errors per 100 lines of code, before any verification acti-
vity, ranges from 0.5 to 5. The majority of these errors are
eliminated by code reviews and testing. But these traditio-
nal verification methods lack exhaustivity. Indeed, only 70%
of bugs can be discovered by an efficient code review [24].
Moreover, such tests cover only a subset of the possible beha-
viors of the programs (50% according to [24]). As a result,
these verification steps cannot ensure the absence of errors
in software, which is not acceptable for critical codes.

Static analysis is a method to detect errors in programs,
without executing them (only by inspecting their source
code). A lot of static analysis tools exist (see Sect. 6). Some
of them use abstract interpretation, a theory which allows to
over-approximate the set of all the possible behaviors of a
program. The analyses by abstract interpretation are said to be
sound: they can formally show the absence of errors in a pro-
gram.! Nevertheless, if the performed over-approximations
are not precise enough, a false alarm (also called false posi-
tive) may be raised: the analysis points out errors that do not
actually exist at runtime. Consequently, the challenge is to
design fully automatic analyses with an optimal tradeoff bet-
ween precision and efficiency to handle programs of several
millions of lines of code.

! In other words, all the existing errors are detected: there is no false
negative.
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Year| Operating system |Lines of code (in million)
1993|  Windows NT 3.1 6
1994/  Windows NT 3.5 10
1996| Windows NT 4.0 16
2000 Windows 2000 29
2001 Windows XP 40
2005|Windows Vista Beta 2 50

Fig. 1 Evolution of the size of the code of Microsoft Windows [47]

In this paper, we present a static analysis by abstract inter-
pretation which can show the absence of heap overflows. In
particular, the analysis is applied to the program given in
Fig. 2, which will be used as an illustration throughout the
paper. First, the language handled by the analysis is discussed
in Sect. 2. Then, the semantics of this language, i.e. the mathe-
matical model of the behavior of each construct, is formalized
in Sect. 3. In Sect. 4, the principle of abstraction interpreta-
tion and the nature of the over-approximation performed on
the semantics are explained. Finally, some possible exten-
sions for the analysis are proposed in Sect. 5, while related
work with respect to static analysis is discussed in Sect. 6.

2 Language and syntax

Static analysis of software written in a real (high-level) pro-
gramming language, like C, is hard because of the language

void readbuf (unsigned char* t, unsigned int n) {
unsigned int i,sz;
sz = (unsigned int) getchar();
if (sz > n)
sz = n;
i=0;
while (i < sz) {
*(t+i) = (unsigned char) getchar();
i+t

3

}

unsigned char* receive(unsigned int n) {
assert (n>0);
unsigned char* t = (unsigned charx*)malloc(n);
readbuf (t,n) ;
return t;

}

Fig. 2 A program in the C programming language to be analyzed.
The function receive first makes sure that the value of n is strictly
positive, and then allocates a buffer t of n characters in the heap. After
that, it calls the function readbuf so as to collect in this buffer the
data coming from an external source, by calling the function getchar.
The latter reads for example the standard input or redirects data from
a network. This program do not cause any heap overflow, because the
variable i keeps a value which is smaller than n when dereferencing
*(t+1)
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complexity and richness. Indeed, the C language has many
diverse constructs, some with implicit semantics informa-
tion, some with unspecified or architecture and compiler-
dependent behaviors, some other being redundant. This is
the reason why, for sake of concision, we restrict ourselves
to a simpler kernel language that nevertheless embodies C
essential paradigms. Moreover, as shown in Sect. 5, the ana-
lysis we describe here can be extended in numerous ways,
and thus covers the whole C syntactic spectrum.

Translation from the C language to our kernel language
is not explained here, as it is fairly obvious (although quite
tedious). Some intermediate forms such as [37] and espe-
cially [29] and their associated compilers are good starting
points for this translation.

In the following section, we describe the fundamental
principles of the kernel language we analyze and then we
define its syntax.

2.1 Principles of the language

The only integer type in the language is the unsigned char
type (shortened uchar), and the only possible pointers have
the uchar:x type. Therefore, only one level of dereferencing
is allowed. Moreover, type castings are forbidden. As aresult,
we assume that the type of each variable is (statically) known,
and that the set of variables of uchar type and the set of
pointers are disjoint. The (finite) set of all variables, and the
(disjoint) sets of variables of uchar and ucharx types are
respectively denoted by Vars, CharVars, and PtrVars.

We suppose that there exists a function getuchar that
returns a random unsigned character whenever it is called. It
behaves in the same way as the function getchar in the C
language: the values it returns are arbitrary ones as they are
read from an external source (standard input, file, network,
etc.), potentially controlled by the attacker.

Following standard C compilation conventions, the
memory is split in two disjoint parts: the stack and the heap.
They respectively contain statically allocated data (i.e. by
variable declaration) and dynamically allocated data (i.e. by
call to function malloc). We assume that the values located
in the heap are all of uchar type, thus assimilating the heap
to a memory area to store strings. Newly allocated data start
with arbitrary values (this is slightly different from the C lan-
guage where global variables are, by default, initialized to 0
with most compilers).

Pointers can only refer to addresses in the heap. Conse-
quently, the stack cannot be written to through pointers. This
is syntactically ensured by the absence of the & operator in
the language. For sake of simplicity, the value null of poin-
ters is not considered (although it can be easily added, as
explained in Sect. 5).

Finally, function definitions or calls (except for malloc
and getuchar) are not considered.
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stack instruction
| instrieap heap instruction
| emdyi; emda sequence of commands
| while cond { emd } loop
| if cond { emdy } else { emds } conditional

emd = instrsack

NSt spack "= T = € arithmetic assignment
| @ = getuchar() random character assignment
| p=q+e pointer assignment
| p=mallocq(e) heap allocation

NS heap = *p = € heap assignment

cond :=e (<|==)0 comparison with 0

negation

=c character constant
| = variable of type uchar
| binary operation

Fig. 3 Syntax of the language (the symbol p refers to a variable of
pointer type whereas op describes the sum or the substraction of cha-
racters)

2.2 Syntax of the language

The syntax of the language is given in Fig. 3. A program
consists of a sequence of commands. For sake of simplicity,
variable declarations are implicit: all variables have a global
scope and are created before the execution of the program.

The instryqcex and instrpeqp commands which handle
memory are called instructions. The remaining commands
control the flow of execution. Each occurrence of the function
malloc is distinguished thanks to a label «, called the allo-
cation site.” In a given program, no two call sites to malloc
are labelled by the same allocation site symbol. The (finite)
set of all allocation sites is denoted by Alloc.

Example 1 The program Pjecejve in Fig. 4 is a possible trans-
lation into our kernel language of the introductory example
in Fig. 2. Let us notice how the initial assertion that n is
strictly greater than O has been removed. We assume it is
made implicit by the subsequent call to malloc. Indeed, as
explained more deeply in Sect. 3.3, any call to malloc with a
negative or 0 argument is an error which immediately stops
program execution. The code of Pyeceive Will be used as our
working example to illustrate several points in the article.

3 Semantics of the language

In this section, we assign a formal semantics to programs
written in the kernel language. We will define mathematical
objects that unambiguously model memory states (Sect. 3.2),
the behavior of each instruction (Sect. 3.3) and of a program
(Sect. 3.4). Finally, the properties that must be verified in

2 The need for such symbols is made clear in Sect. 3.2.
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1: t = malloca (n);

2: sz = getuchar();

3: if (1(sz —n <0))

4: Sz = n;

5: 1= 0;

6: p=t;

T while (i — sz +1<0) {
8: tmp = getuchar();

9: *p = tmp;
10 : p=p+1;
11: 1 =141
12: }

Fig. 4 The program Pyeceive: atranslation of the program given in Fig. 2
(the variables i, n, sz, and tmp are of uchar type, and p and ¢ are pointers)

order to ensure the absence of any heap overflow during the
execution will be formalized in Sect. 3.5.

3.1 Some requirements

Let us first introduce some notations and notions that are
required to define the formal semantics of the language.

Control-flow graph We suppose that any program P writ-
ten in the kernel language is provided as a control-flow graph.
This directed graph describes the ordering of instructions and
control instructions (condition). A node of this graph is a
program control point.> An edge from i to j labelled by an
instruction instr (or condition cond) in the graph depicts the
possibility to go from the control point i to the control point
J while executing the instruction instr (or alternatively if the
condition cond is satisfied).

Example 2 The control-flow graph of the program Preceiye 1S
presented in Fig. 5.

The control-flow graph can be statically built from the
source code of the program. This task is most classic, and we
do not give further details here.

Given a program P, we denote by (i, stmt, j) the fact that
there exists an edge from i to j labelled by stmt in the control-
flow graph of P. The program P is supposed to have an entry
control point entry(P), which is not reached by any incoming
edge.*

Transitions and inference rules In what follows, the
semantics of a program will be described by arelation —, cal-
led transition relation. More precisely, we will have 01 — o2
whenever the execution of an instruction or the application

3 Provided that there no more than one instruction per line, a control
point can be understood as the instruction line number.

4 In C, this point typically corresponds to the main function.

@ Springer



X. Allamigeon, C. Hymans

t = mallocq (n)

sz = getuchar()

(i — 52 +1 < 0)
12

i—sz+1<0

tmp = getuchar()

t=14+1

Fig. 5 Control-flow graph of the program Preceive

of a condition starting from the machine state o results in
the machine state o5.

The relation — will be defined by a set of inference rules.
Each rule is of the form:

Cr ... Gy
D

where the C; are called the premises, and D the conclusion.
Such a rule means: “if the C; are true, then D is true”.

3.2 Memory model

A memory state s i & is entirely described by its stack s and
its heap i. We denote the set of memory states by Mem. The
choices for the model of stack and heap, which are presented
in the following parts, are summarized in Fig. 6.

@ Springer

Stack model A stack s is modelled as a function that maps
each program variable to a value whose nature depends on
the variable type (character or pointer).

The set of characters is abusively assimilated to N (set of
natural integers). Such a model is valid only in the absence of
integer overflows, when all C language arithmetic operations
behave as if they manipulate natural integers. However, this
restriction could be easily dropped (see Sect. 5).

The value of a pointer is either the special value w, mea-
ning that the pointer is not initialized, or an address in
memory. The set of all addresses is denoted by Addr.

To summarize, the stack s is a function which maps the
set of variables in Vars to the set of values NU ({w} U Addr).
The set of all possible stacks is denoted by Stack.

Model of the heap Similarly, the heap # maps addresses
in Addr to characters in N. However, the heap is defined
only for the addresses that have been previously allocated by
some call to malloc. It is therefore a partial function, whose
domain is denoted by dom(h), and any attempt to write to an
address that is not allocated (not in dom(h)), causes a heap
overflow (this is explained further in Sect. 3.5). The set of all
heaps is denoted by Heap.

Model of addresses On a real machine, a memory address
amounts to some integer value. However, the value of
addresses is somewhat arbitrary: it can not be deduced from
the program listing, and can changed from one execution to
another. We prefer to model addresses in a more abstract way.
What really matters is the fact, that each memory block crea-
ted by a call to malloc is a sequence of consecutive bytes
that does not overlap any previously allocated block.

In order to ensure the absence of heap overflows, it suffices
to show that every memory write accesses is done within
the bounds of these allocated blocks. Any access outside
these blocks results in an error that terminates execution in
our model (see Sect. 3.5). Thus, it is not necessary to know
the exact position of these blocks in memory. Nevertheless,
arithmetic of pointers within a given memory block must still
make sense.’

To satisfy these constraints, we describe an address a by
a pair (Iy, 0), of a location 1, and an offset o. The location [
designates the memory block allocated by a call to malloc,
at allocation site . That is the only thing we know about this
memory block. In particular, the exact position of the block
in memory is unknown. The offset o is a positive integer. It
describes the distance in bytes from the beginning of block
ly. The offset allows pointer arithmetic in our model. For
instance, (I, o — 1) is the address located just before (I, 0),

3> Obviously, » ¢ Addr.

6 Indeed, it is the only type of pointer arithmetic whose behavior is
defined in the ANSI C standard [23, Sect. 6.5.6, Paragraph 8].
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Fig. 6 Summary of the choices
to model memory states (for
each set, the nature of its
elements is given below)

Heap 4 Ny(Addr)

States % Stack x Heap
o = s | h verifying (1)

Stack % (NU {w} U Addr)""

s function from Vars to (NU {w} U Addr)

Addr ¥ Loc x N

h partial function from Addr to N a = (la,0)

and (ly, 0 + 1) the one just after. Similarly (/,, 0) represents
the first address of the block /.
The set of locations will be denoted by Loc. By definition,

the set of addresses is thus Addr “ Loc x N. We sometimes
abusively write [, € dom(h) to denote the fact that there
exists 0o € N such that (I, 0) € dom(h).

Well-formed memory states Every memory state s i 4 must
verify an additional invariant to be valid:

Vi, € Alloc.Vp e PtrVars.ifs(p) = (ly, -), thenl, edom(h).
(h

In other words, a pointer cannot point to a block that does
not exist in the heap.’

Such an invariant is preserved since, as mentionned in
Sect. 3, the only possible way to introduce a new location [, is
to call the function malloc,, (-), which immediately allocates
the corresponding block on the heap. Every other instruction
trivially preserves the invariant.

Example 3 Let us consider the program Preceive given in
Example 1. A possible memory state at control point 12 is
sgihy, where:

i—>6 pr> (A, 0)
n—8 > (Aq,0)
S sz 6
| mp — 0
[0, 0) > 72 (he,4) — 111
- 1) > 101 (Ae.5) 0
T (e 2) 1> 108 (g, 6) > 179
(Mg, 3) > 108 (Ay,7) — 23 )

with A, € Loc. The execution that leads to this state, makes
the variable n to be equal to 8. This implies that the size of
each received message has to be less than eight characters.
In this case, the message contains six characters and corres-
ponds to the string “Hel1o” (with a null character at its end).
The remaining part of the block contains arbitrary characters,

7 Even though, the offset of the pointer can still be outside the bounds
of the block, in case of an overflow.

that have not been overwritten since the call to malloc which
has created this block.

3.3 Operational semantics

Semantic states The semantic state o describes the current
state of the machine. In our case, it consists of the current
control point i and a memory state s i . If Ctrl corresponds
to the set of the control points of the program, the set of

. . d
semantic state is defined by States “f Ctrl x Mem.

Evaluation of expressions We first define the evaluation of
an expression e (of uchar type) in a given memory state s 1 /.
This evaluation returns a value v € N, which is denoted by
s1h e = v. The evaluation is defined by induction on the
form of the expression e:

ceN

sithFec=c¢ 3)
x € CharVars @)
SthkEx=sx)

Sithiei=v sihtkex=v2 0pv, 1) =v )

sihtop(er,er) = v

Semantics of instructions The semantics of instructions is
given by the following rule: if instr is an instruction,

(i,instr, j) sihtinstr:s'h'

G, sth) — (j,s"'h")

(6)

where the relation sih + instr : 5’1k, defined in Fig. 7,
describes the side effect of the instruction instr on memory.
The interpretation of these rules is the following:

— the stack assignment x = e consists in replacing in s the
value of x by the result of the evaluation of e;

— the instruction x = getuchar() is a non-deterministic
one: indeed, the function getuchar() can return any cha-
racter c. This corresponds to a model that takes all the
possible behaviors of the external source (including the
hostile ones) into account;

— the pointer assignment p = g + e replaces in s the value
of p with the value of ¢ shifted by e bytes. If g is not
initialized, then p has the value w;

@ Springer
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Fig. 7 Side effect of the

sthkFe=wv

ceN

instructions on memory (given a

map f,gdgf[x — v] is the
function which coincides with f

sthtxz=e:slz—v] ! h

5(q) = (s, 0)

st htax=getuchar() : sz —c] ' h

sthFe=wv s(q) =w

on its domain, except on x
where g(x) = v)

sthkFe=n

sthbEp=qg+e:sp— (la,o+v) t h

sthkp=q+e:sp—w]ih

n>0 o ¢&dom(h)

wo, ..., Wn-1 €N

st htp=malloca(e) : s[p— (la,0)] ! h[(la,i) — wilo<i<n

— the instruction p = malloc, (e) introduces a new block
ly in the heap h. Thus, the latter is extended to the
addresses (ly,0), ..., (ly,n — 1), in which arbitrary
characters wo, ..., w,—1 are put into (no initialization,
as discussed in Sect. 2.1). Besides, the pointer p now
points to the beginning of the block, hence p — (ly, 0)
in the new stack. The location /, has to be distinct from
every other locations which already appears in the heap
h: indeed, each call to malloc creates a new memory
block which does not overlap the existing ones. Moreo-
ver, n is required to be strictly positive. The case where
n is negative is considered as an error which stops
execution (according to the standard ANSI C, the beha-
vior of malloc(0) is implementation-dependent [23,
Sect. 7.20.3, Paragraph 1]);

— finally, heap assignment *p = e writes the value v of
e to the address s(p) = (ly, 0) pointed to by p. The-
refore, p has to be initialized, and point to an address
actually allocated in the memory (hence the requirement
that (I, 0) € dom(h)).

Semantics of conditions The semantics of conditions is
defined similarly to instructions: if cond is a condition,

(i,cond, j) siht cond:s'\h
@i,sth) — (j,s' k)

N

where the relation sih + cond : s'ih’, defined in Fig. 8,
consists in selecting the memory states s 1 4 which verify the
condition cond. The state s’ 1 i’ is the same as initially, since
the conditions do not have any side effect on memory.

sthFe=v v#0
sthElle==0):sth

sthFe=0
sthb(e==0):sth
sthkFe=v ©v<0
stht(e<0):sth

sthFe=v v>0
sthF!(e<0):s!h

Fig. 8 Selection of memory states with respect to the conditions
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sthFre=w
5(p) = (la,0)  (la,0) € dom(h)
sthbsxp=ce:sth[(la,0) — V]

Example 4 Consider the program Pj,ceive Whose control-flow
graphis giveninFig. 5. The states (1, s1 1 k1), (2, s21h2), ...,
(12, s12 1h12) defined in Fig. 9 form a possible execution trace
of the program:

(1, s11hy) = 2,501h2) = --- — (12,5121 h12).

The final state (12, s121h12) coincides with the state given
in Example 3, showing that the latter is effectively reachable
(we will see in Sect. 3.4 that state (1, sih) is indeed a
possible initial state).

3.4 Collecting semantics of a program

The collecting semantics C(P) of a program P consists of
all the machine states reachable during any execution of P.
In particular, it is a subset of the set States. To define it
precisely, let us introduce the function F : g (States) —
e (States) which corresponds to the execution of an addi-
tional step in the program:

def

F(X) {(entry(P), s019) | so € Stack A Vp € PtrVars.so(p) = w}
U

U {G.s ) 1Gsih) — Gos"inh}. ®)
(i,sth)eX

Intuitively, the set {(entry(P),soi%) | so € Stack A
Vp € PtrVars.so(p) = w} consists of the possible ini-
tial states of the machine: as mentionned in Sect. 2.1, the
variables in the stack are not initialized,® and the heap does
not contain any data. Besides, the set{(j, s'VR) | (i, s1h) —
(G, s T h )} corresponds to the states reachable from states
(i, s1h) € X while executing an instruction or checking a
condition.

Then, the collecting semantics C(P) is defined as the smal-
lest solution of the equation X = F(X). It is said to be the

smallest fixpoint of F, which is denoted by C(P) “ Ifp F.
Since g (States) is a complete lattice and F a monotone

8 Thus, variables of uchar type may have any value in N, and pointers
take the value w.
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s1:i—3,n+— 8 sz 53, tmp — 41, p — w,l — w,

s2 11 3,n— 8,82 +— 53, tmp — 41, p — w,t — (Aa,0),
h2 : (Aa,0) — 65, (Aa, 1) — 23, (Aa,2) — 12, (A, 3) — 1,
(A 4) — 234, (e, 5) = 8, (Aa, 6), — 179, (Aa, ) > 23
s3 110> 3,m— 8 52+ 6, tmp — 41, p — w,t — (A, 0)
hs : (Aa,0) — 65, (Aa, 1) — 23, (Aa,2) — 12, (A, 3) — 1,
(Aas4) = 234, (Ao, 5) = 8, (Aa, 6), > 179, (Aa, 7) — 23
S50 3,m— 8,52+ 6,tmp — 41, p — w,t — (Aa,0)
B : (A, 0) = 65, (Aas 1) 1 23, (Aas 2) = 12, (Aay 3) > 1,
(Aay4) = 234, (Ao, 5) = 8, (Aa, 6),— 179, (A, 7) > 23
s6 i 0,m— 8,82+ 6,tmp — 41, p — w,t — (Aa,0)
he : (Aa,0) — 65, (Aa, 1) — 23, (Aa,2) — 12, (A, 3) — 1,
(Aay4) = 234, (Ao, 5) = 8, (Aa, 6), = 179, (Aa, 7) — 23
sz i 0,m— 8,52+ 6,tmp — 41,p — (A, 0),t — (Aa, 0)
191 (Aa,0) = 65, (Na, 1) — 23, (A, 2) = 12, (A\a,3) — 1,
(as 4) = 234, (Aay 5) = 8, (e, 6), = 179, (Aa, 7) > 23
53 i 0,m— 8 52— 6, tmp — 41, p = (Aa,0),t — (\a,0)
hg : (AOMO) = 657 (>‘017 1) = 237 (>‘072) = 127 ()‘073) = 17
(Aa,4) — 234, (A, 5) = 8, (Aa, 6),— 179, (Aa, 7) — 23
s i 0,m— 8,52+ 6,tmp — 72,p — (Aa,0),t — (A, 0)
hd 1 (Aa,0) = 65, (Ao, 1) — 23, (A, 2) = 12, (Xa,3) — 1,
(Aay4) = 234, (Ao, 5) = 8, (A, 6), > 179, (Aa, 7) — 23
s i+ 0,m— 8,52+ 6,tmp +— 72,p — (Aa,0),t — (Aa,0)
h(l)() : ()‘avo) = 727 ()‘uu 1) g 23 ()\0”2) g 12» ()‘t,ms) = 17
(Aay4) 234, (Ao, 5) = 8, (Xa, 6),— 179, (A, 7) = 23
st i 0,m— 8,52+ 6,tmp — 72,p — (Aa, 1),t — (Aa,0)
h(l)l : (AC’HO) = 727 (Aav 1) = 237 (Aﬂvz) = 127 ()‘0173) = 17
Aoy 4) — 234, (Ao, 5) = 8, (Aa, 6), = 179, (Aa, 7) — 23
syii 1L,n— 8,52 6,tmp — 72,p — (Aa, 1), — (A, 0)
Bl : (Aay0) = 72, (Aa, 1) = 23, (Aas 2) = 12, (An, 3) = 1,
(Mard) = 234, (Aa, 5) = 8, (Aa, 6), > 179, (Aa, 7) — 23

sz i 6,m— 8, 52— 6,tmp — 0,p — (Aa,6),t — (Aa,0)
B+ (A 0) 1= 72, (s 1) = 101, (s 2) 1 108, (A, 3) = 108,
(Aa,4) — 111, (A, 5) = 0, (Aa, 6),— 179, (Aa, 7) — 23

s12 14+ 6,n+— 8,52 +— 6,tmp — 0,p — (Aa,6),t — (Aa,0)
iz : (Aa, 0) = 72, (Aa, 1) — 101, (Aa, 2) — 108, (Aa, 3) — 108,
(Aa4) — 111, (Aa, 5) = 0, (Aa, 6), = 179, (Aa, 7) +— 23

Fig. 9 A possible execution trace of the program P

map, the existence of such a fixpoint is ensured by Tarski’s
theorem [43].

As the function F is semi-continuous, we know by a
constructive version of Tarski’s theorem [11], that:

cpy=J F®, ©)

n>0

where F" is the nth iterate of F. Intuitively, this means that
the collecting semantics consists of all the states reachable
after a finite number of execution steps.

An equivalent definition is to assimilate C(P) to a function
which maps the set Gtrl to the set o (Mem), witheachi € Ctrl
being mapped to the set of memory states possibly arising at
the control pointi. Then, F can be redefined as the application

which maps each X : Ctrl — g (Mem) to the function
F(X) : Ctrl - p (Mem) defined by: for each j € Cirl,

{5019 | 5o € Stack A Vp € PtrVars.so(p) = o}
if j = entry(P)

FOGH Y U " 1Gsih) — Gos'inh)
siheX (i)
otherwise
(10)
And we still have C(P) = Ifp F, and
cpy=J F®. (11)

n>0

With a slight abuse in notation, these definitions of the col-
lecting semantics will be used indifferently throughout the

paper.
3.5 Proving the absence of heap overflows

We now define the properties to be verified by a program to
ensure the absence of heap overflow during the execution.

A heap overflow occurs if the program writes to an address
not allocated in the heap. In our formalism, if (i, s 1 h) € C(P)
and (i, *p = e, j), there is a heap overflow if and only if
s(p) = wors(p) = (ly, 0) with (I, 0) € dom(h).

Heap overflows can be modelled by an error state [,
added to the set States, and the definition of the inference
rules:

(i,xp=e,j) s(p)=w
(i,sth) — O (12)
(i, xp=-e,j) s5(p)=(u,0) ¢ dom(h)
(i,sith)y — U (13)

Then, the absence of heap overflow is equivalent to the condi-
tion O ¢ C(P). Nethertheless, this choice leads to a more
complex formalism in the following parts. For that reason,
we prefer encoding the error state by the absence of transi-
tion, as if the machine stops whenever the program tries to
write to an invalid part of the memory. Then, the error state
is assimilated to an unreachable state. And to ensure that a
program does not cause any heap overflow, it suffices that
any state (i, si1h) € C(P) such that (i, xp = e, j) verifies:

3(ly, 0) € Addr.s(p) = (I, 0) € dom(h). 14)
3.6 Towards the analysis

Our goal is now to automatically check that every of the
states that is reachable during the execution of the program

to be analyzed verifies Property (14). Naively, we could pro-
ceed as follows: given a program P, “compute” the collecting
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semantics C(P) and check whether each state satisfies
Property (14). Naturally, C(P) is not computable by Rice’s
theorem [39], that implies the undecidability of the property
in our language: an algorithm that takes any program as input
and always decides in finite time whether there can be a heap
overflow, does not exist.

More precisely, several difficulties would have to be tack-
led to compute C(P) for any P: (i) the subsets of o (States)
are not representable in machine, i.e. in general, they can not
be stored as finite structures in a computer; (ii) the function
F is not computable (intuitively, it cannot be implemented
as an algorithm); (iii) and the iteration sequence to compute
C(P) by iterations (Eq. (9)) may not necessarily converge
after a finite number of steps.

Fortunately, performing approximations on both seman-
tics states and transfer functions can solve all the problems
above-mentioned. Since we wish to ensure the absence of
heap overflow at execution, these approximations should not
forget any reachable state. Therefore, it is necessary to use
over-approximations. It yields an algorithm which returns
two possible results: either “it is certain that the program
does not produce any heap overflow at execution”, or “I don’t
know”.? Abstract interpretation is based on this principle.

4 Abstract interpretation

In this section, we describe the approach discussed in Sect. 3.6
to solve the problem by approximation. It is first illustrated
by an introductive example of abstraction in Sect. 4.1, thus
which introduces the formalism defined in Sect. 4.2. A nume-
rical abstraction by convex polyhedra is then discussed in
Sect. 4.3. Finally, the abstraction used to analyze programs
in the language of Sect. 2 is presented in Sect. 4.4.

4.1 Introductive example: abstraction by intervals

We informally explain the computation of an over-
approximation of the collecting semantics by using integer
intervals. This abstraction has been first introduced in [10].
For sake of simplicity, we restrict ourselves to programs
without pointers. Therefore, the memory state is reduced to
a stack s : Vars — N. As an illustrative example, let us
consider the following program:

1: if (n > 1000)
2 n = 1000;
3: i =0;

4:  while (i <n){
5: i=i+1;
6: }

9 Nevertheless, the algorithm could signal some overflows which are
bound to occur. This feature is not presented here.
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which normalizes n to a value necessarily less than 1000, and
then increments i to n. Its control-flow graph is:

Integer intervals allow to over-approximate any subset X
of R: if [ and u are respectively the lower and upper bounds
of X in RU {—o00, +00}, X is included in the interval [/; u]
(intervals may be open if [ or u are equal to £00). Note that
such an interval is computer-representable. '

We are now going to show informally how to use this ele-
mentary abstraction to compute an over-approximation of the
collecting semantics. More precisely, we start from Eq. (11),
and compute an over-approximation of the sets F” (@), where
F is defined as in Equation (10). Each F” (@) collects the set
of possible memory states after n — 1 execution steps for each
control point. Our approximation of F”" () consists in col-
lecting an “abstract” state of memory mapping each program
variable to an interval which over-approximates the values
arising in all the real executions, instead of sets of memory
states. This provides a computer-representable abstraction of
F*(©).

Example 5 If the following states are collected at a given
control point:

s1:i—~10, n—0
soiit—>1, n— 127
s3:i—=>7, nt+— 132

then the set {s1, 52, 53} can be over-approximated by using
intervals, by:

S:i[1;10], ne [0;132].
The first iteration step F'(¥) corresponds to the initial
memory states, before the program is executed. As i and

10 In practice, integers to be over-approximated are at most encoded
on 32 (or 64) bits. Therefore, intervals may be represented by a couple
of integers of closed size. In particular, it is not necessary to represent
neither large intervals nor £oo0.
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n are both unsigned characters, they can be abstracted to:

1: n+—[0;+oo[, i+ [0;400]
2: n— 0, i1
X = 3: ne—= 0, i—0
4: n+— 0, i—0
5: n— 0, i—0
6: n— 0, i—0

where () designates an empty interval. The application of the
condition 1001 — n < 0 and its negation yield the state:

1: ne [0; 400, i — [0; 400

2: n+ [1001; +oo[, i+ [0; 400
X = 3: n+ [0;1000], i [0; 4o0[

4: n— 0, i—0

5: ne— 0, it—> 0

6: n— 0, i—0

since at the control points 2 and 3, only memory states s
such that s(rn) > 1000 and s(n) < 1000 respectively, can be
reached. Similarly, the next step propagates the abstractions:

1: ne[0;+o0[, i — [0; +o0[

2: n+> [1001; +oo[, i+ [0; 400
Y — 3: n [0;1000], i — [0; 400
37 14: ne[0,1000], i+ [0;0]

5: n— 0, i1

6: n— 0, i 0

Then, the conditionsi +n—1 < 0and !(i +n —1 < 0) with
respect to the state are applied, returning at the control point
5 the states such that n > 0, and at 6 those verifying n < 0O:

1: ne [0; 400, i — [0; +o00[
2: n+> [1001; +oo[, i+ [0; 400
X, = 3: n+ [0;1000], i — [0; 400
4: n+— [0;1000], i — [0;0]
5: n[1;1000], i — [0;0]
6: n— [0;0], i — [0;0]

The incrementation of i from the point 5 and to the point 4
yields a state in which the new value of i is either equal to O
(its old valued), or to 1. So we have:

1: ne [0; 400, i — [0; 400

2: n+> [1001; +oo[, i+ [0; 400
e — 3: n+—[0;1000], i — [0; +00[
ST 14: ne[0;1000], i [0;1]

5: n[1;1000], i — [0;0]

6: n— [0;0], i — [0;0]

13
and then:
1: n+—[0; o0, i — [0; 400
2: nt [1001; +o0[, i+ [0;+o0]
T — 3: n+ [0;1000], i = [0; +o0[
= 14: n1[0;1000], i+ [0;1] °
5: n+ [1;1000], i — [0;1]
6: n— [0;1], i— [0;1]

And after 1998 further iterations, we finally get:

1: n—[0; 4o0[, i — [0; 4o0[

2: n+ [1001; +oo[, i+ [0;+o0[
Kooy = 3: n [0;1000], i = [0; 400 ‘

4: n [0;1000], i — [0; 1000]

5: n+—[1;1000], i — [0;999]

6: n+— [0;1000], i — [0; 1000]

which corresponds to a fixpoint. Indeed, a further iteration
would yield the same result.

As aresult, an over-approximation of the least fixed point
of F,i.e. of C(P), has been obtained in a finite number of
steps. And even if the computation has not exactly been made
explicit, there exists an algorithm for computing automati-
cally A,.

According to the final abstraction X4, it is sure that the
value of i is bounded by 0 and 1000, whatever the initial
value of n may be. But, in counterpart, the abstraction by
intervals is not precise enough to show that i = n.

Besides, the reader may be surprised by the large num-
ber of iterations necessary to reach a fixpoint. However, less
precise approximations could have been performed for Xs,
yielding rather:

1: ne[0;4+o0[, i — [0; +o0[
2: n+> [1001; +oo[, i+ [0;+o0o
Y — 3: n [0;1000], i — [0; 400
57 14: n— [0;1000], i — [0; 1000] °
5: n+—[1;1000], i — [0;0]
| 6: n— [0;0], i — [0;0]

Then, the propagation would have returned:

[(1: n+— [0; +o0f, i — [0; 400
2: n+ [1001; +oo[, i+ [0; 400
Y o— 3: n+—[0;1000], i — [0; +00[
6 4: n [0;1000], i — [0; 1000] ’
5: n+[1;1000], i — [0;999]
6: n— [0;1000], i — [0; 1000]

so that, after 6 steps, the same fixpoint would have been rea-
ched. The operation which provides a less precise approxi-
mation is called widening. It does not only reduce the number
of computation steps, but it also ensures this set to be finite.
This notion will be further explained in the next section, in
which the principles of abstraction are formalized.
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4.2 Formalizing abstraction

A possible mathematical model for abstract interpretation is
presented here. Other formalisms are possible [12].

Principles Let D be a set containing the elements to be
abstracted. We assume that D is a complete lattice (D, <,
1,7F,Y, A): < is a partial order on the elements of D, t+
and T are respectively the least and greatest elements of D,
and Y and A are union and intersection operators.'! The set D
is called the concrete domain. It contains concrete elements,
as opposed to abstract ones.

The abstraction is defined by an abstract domain D, pro-
vided with a partial order =, and a concretization operator
y : D — D which is monotone, i.e.:

VX,Y eD.if ¥ C Y, then y(X) < y(). (15)

The set D consists of abstract elements, and each element
X € D corresponds to a concrete one: y (X). The ordering
C is related to the precision of the abstraction: if ¥ & ),
then X is more precise than ), since it represents a smaller
concrete element (for the order <).

Example 6 In the example given in Sect. 4.1, the concrete
domain D is the set g (States), provided with the inclusion
order C, and the abstract domain is defined by:

D (R(Z)Vars)Ctrl

where R(Z) is the set of intervals over Z, i.e.:

REZ)y ={0yU{llul|l,ueZAIl <u}

U{]—oo; ul |u € Z} U{[l; +oo[ || € Z}

U {]—o00; +ool} .
In other words, an element X € D maps each control point
i to an abstract memory state X’(i), which is an application

from Vars to R(Z). The partial ordering C on D is then
defined by:

X CYifVi € Ctrl.Vx € Vars. X (i)(x) € Y(i)(x).
and the concretization y by:

y(X) : Ctrl - p (Mem)
i — {s|Vx eVars.s(x) € X(i)(x)}.

Sound abstract operators Given a function F which maps
D to itself, we are interested in defining an abstract “equiva-
lent” of F on D. This equivalent is required to be sound, i.e.

0 particular, for any (X,Y) € D, X AY <X < XYY and
XAY=Y=<XXYY.
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to correspond to an “over-approximation” of F. Formally, if
F : D — D, Fis said to be sound w.r.t. F if the following
condition holds:

VX € D.F(y (X)) = y(F(X)). (16)

In other words, starting from the over-approximation X of
y(X), F(X) is still an over-approximation of F(y(X)).
Then, the application of F on X does not miss any concrete
elements.

This definition can be generalized to introduce sound abs-
tract operators of usual operations or elements of D. For
instance,

— for the union Y, we will suppose that there exists an
operator LI : D x D — D such that:

Y)Y yQ) 2 y(Xul); 7)

— similarly, for the intersection A we define an abstract
operator M verifying:

y(@) Ly Q) 2 y(XnY); (18)

— and finally, we will assume that D is provided with a least
element | and a greatest element T (with respect to the
ordering C), corresponding to over-approximations of +
and T respectively.

Example 7 The concrete domain D = g (States) is a com-
plete lattice, thus it is provided with union and intersection
operators (U and N respectively), and with a least element,
@, and a greatest one, States. Sound abstract operators can
be defined by: for any i € Ctrl,

(X udQ) Yrrs X (@) (x) b V(i) (x),
(X)) NN X)) (x) NY(3E)(x),
LY x>0,

T(@) défx — |—o0; +0o0[

where X (i) > V(i) is the smallest interval containing both
X (i) and Y (i), and where x — f (x) represents the function
mapping each x to f(x).

Abstract fixpoint computation Let us suppose that F' is
a monotone function on the complete lattice (D, <, +, T,
Y, A), and that for any increasing sequence Xo, ..., X, ...
of elements of D, we have F (Y, X,) = Y, F(X,) (F
is said to be semi-continuous). Tarski’s theorem [43] then
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ensures that F has a least fixpoint F, and by a constructive
version of this theorem, [11], we have:

foF =Y F'(1). (19)

n>0

Let F be a sound and monotone abstraction of F. Then,
each iterate F"(1t) can be over-approximated by F"(L).
Indeed, + < y (L) by definition and by recursion, if for a
given n, F"(1) < y(F"(L1)), then

F'™(4) = F(F" (1)
=< F(y(F"(L))) by recursion hypothesis and F monotone
< Y(FF" (L) by Eq. (16)
<y (F ().

Moreover, the sequence of the " (L) is clearly monotone.
Then, if this sequence is stationary, i.e. there exists an index
N from which all the terms of the sequence are equal (we
will also say that the sequence converges in a finite number
N of steps), we have:

lfip F < y(FN(L)). (20)

Such a situation occurred in the computation given in
Sect. 4.1. But from a general point of view, the sequence may
not be stationary. That is why we introduce a new operator
V : D x D — D, called widening operator, satisfying:

- VX, YeDXUYLC XV)Y,
— for any increasing sequence of elements Ay < --- <
X, < ..., the sequence defined by

d
Mo g?fo

def
Vor1 Z VuVXi

2

converges in a finite number N of steps.

Then, the operator V allows to ensure the convergence of the
sequence F" (L) in a finite number of steps.

Theorem 1 [f the sequence (X)), is defined by:

XY

x dif )(n
T vE)

if F(X) E X, (22)

otherwise
then this sequence is stationary, and its limit Xy verifies:

Ifo FF <y (Xn). (23)

Asaconsequence, if the elements of the abstract domain D
are computer-representable, if the function F is computable,
and if D is provided with a widening operator V which is
also computable, Theorem 1 yields an algorithm to compute
an over-approximation of Ifp F in a finite amount of time.

4.3 Convex polyhedra

In this section, we present a numeric abstract domain to
approximate sets of tuples of integers by affine inequalities,
i.e. a convex polyhedra. Such an abstraction allows to disco-
ver more precise invariants than intervals. It was first defined
in [13].

Let V ={Vy,..., V;} be a finite and ordered set of pair-
wise distinct variables. The set CIP(V) consists of the convex
polyhedra in the affine space R?, whose dimensions are label-
led by the variables Vi, ..., V4 respectively. A polyhedron
P € CP(V) can be represented by a system of affine inequa-
lity constraints. For that reason, a polyhedron will be some-
times directly referred to by a constraint system.

Example 8 Ford = 2, letus consider the convex polyhedron
over the variables i and n, where i and n are respectively
represented on the X- and Y-axes:

nt

It is defined by the following constraint system:

2n—3i <1
2n+i>5

2n—i > —1

The set CP(V) provided with the inclusion C is a partially
ordered set, and a concretization operator ¥po, : CP(V) —
RY can be defined by:

Yooly(P) ={f :V >R (f(VD),.... f(Va)) € P}. (24

Obviously, ¥pory is monotone. Usual abstract operators can
be also introduced:
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— the union of two polyhedra P; and P, can be over-
approximated by the convex hull P; W P, of P; U P,
(because P U P, is not necessarily convex);

— theintersection of P; and P, can be abstracted by P1 NP>
(polyhedra are stable with respect to set intersection);

—  the sets ¥ and R? are the least and the greatest elements
respectively.

Now some abstract transformations on polyhedra are pre-
sented. To be concise, we informally skim through them.

— The application on a polyhedron P of an (in)equality co+
Zi ¢; Vi ¢ 0, where ¢ € {<, =, >}, consists in intersec-
ting P with the polyhedron defined by the (in)equality.
If (co+ >; ¢i Vi © 0)(P) is the resulting polyhedron, we
have:

[f5V—>R\(f(V1) ----- f(Vd))EPA(60+ZCif(Vi)00)]

i

< Vpoly ((]CO + Zci Vio OD (P)) .

(25)

— Theassignment of arandom value to a variable V; <« ?is
defined as the convex hull of the union of the polyhedron
‘P with the ith axis. Then:

{(f:V>RIF(fV),...., fVic)v, fVign), -, fVa) € P}
< Vpoly ((]Vl <« r)[)('P)) . (26)

— Theassignment V; < co+2; c;V; of an affine expres-
sion to a variable V; consists in:
e when ¢; # 0, replacing each occurrence of the

. . Vi—co—2>_i4icjVj .

variable V; by the expression % in the
constraint system which defines P;

e whenc; = 0, assigning arandom value to V;, so as to

“overwrite” its previous value, and then applying the
condition V; — (co +> i€ Vj) = 0, to the resulting
polyhedron.

In both cases, this yields a polyhedron (V; <« c¢o +
>_j ¢jVj)(P) which verifies:

g: VR (fFV), ..., f(Vd))EPAVj#i~g(Vj)=f(Vi)]

ng(Vi)=co+2;¢if(V))

< Ypoly (qu <« co+ ch V]D(P)> . @n
J

These transfer functions will be used to build a sound abs-
traction of the function F introduced in Sect. 3.4, for any
considered program.

Finally, a widening operator V., can be introduced:
considering P, Q € CPP(V), the polyhedron PV, Q is defi-
ned by the following constraint system:
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{C | C constraint of P entirely satisfied in Q}

U{C’ | C' constraint of Q equivalent to a constraint of P}.
(28)

A constraint C’ is equivalent to a constraint of P if there
exists a constraint C” of P such that P remains unchanged
when replacing C” by C:

P = (P\{C"}) u{C.

The reader can refer to [13] for further explanations on V..

Obviously, elements of CP(V) are computer-represen-
table (for instance, by using constraint systems), and the
“geometric” operations involved in the definition of the
abstract operators are computable as well. This abstraction,
provided with the operator V,y, is thus well-suited for com-
puting over-approximations. The polyhedron domain is also
more precise than intervals. For instance, it is able to disco-
ver the invariant i = n at the control point 6 in the program
given in Sect. 4.1. Nevertheless, a drawback of this preci-
sion is the cost of the abstract operators: both in time and in
memory, they have an exponential complexity in the number
d of variables. But other abstract domains, such as those des-
cribed in [32,34,35,42], benefit a better trade-off between
precision and complexity.

4.4 Final abstraction

We can now define an abstraction of p (States) in order to
analyze programs written in the language presented in Sect. 2.
Let us remind that CharVars and PtrVars are respecti-
vely the set of variables of uchar and pointer types, and
Alloc the set of the allocation sites « labelling the instruc-
tions p = malloc, (e). For each pointer variable p, we intro-
duce two variables, p,; and p,. Intuitively, they respectively
represent the location and the offset of the address poin-
ted to by p. The sets of the p, and the p, are denoted by
LocVars and OffVars respectively. Moreover, for every sym-
bol « labelling an instruction p = malloc,(e), a variable o
corresponding to the size of the memory block allocated at
the site «, is defined. Variables o, form the set SizeVars.
Finally, as the variables in CharVars, OffVars, and SizeVars
are all numerical ones, they are merged in a set denoted by
NumVars. These notations are summarized in Fig. 10.

The abstract domain AStates contains the applications
from Ctrl to AMem, where AMem denotes the set of abstract
memory states, and whose elements are pairs (£, N'), where
L : LocVars — g (Alloc U {w}) and N € CP(NumVars).
In other words:

AStates % AMemCt"

AMem % (50 (Alloc U {w})LOCVa'S) CP(NumVars). (29)
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Fig. 10 Symbolic and
numerical variables

LocVars % {p¢ | p € PtrVars}
SizeVars %4 {as | @ € Alloc}

Then, an abstract state maps each control point i to an abstract
memory representation (£;, N;): (i) the function £; maps
each pointer to an abstract location, i.e. a subset of AllocU{w},
(ii) the polyhedron N; is an over-approximation of the nume-
rical variables. Moreover, the elements of AStates are effec-
tively computer-representable since Ctrl, Alloc, LocVars,
and NumVars are all finite sets.

The partial ordering = on AStates is defined as the lift
of the inclusion ordering C on the domains g (Alloc U {w})
and CP(NumVars), i.e.: X C Y if for any i € Citrl,
[Vpe € LocVars.L;(pe) € L;(pe) (30)

Ni e N ’

where X (i) = (£;, N;) and Y (i) = (L], N).
The concretization operator y : AStates — g (States)
is defined in the following way:
def [ Ctrl — g (Mem)
X) = . s 31
7 | i Yoo (X)) GD

where Vyem : AMem — o (Mem) gives the meaning of an
abstract memory state (£, N):

de)
Yimem (L, N) :f

sih € States A v € ypoy (V)
AVx € CharVars.s(x) = v(x)

. (o € L(pg) NAlloc A s(p) = (Ig, v(Po)))
sih | AVp € PtrVars. [v(w € L(po) As(p) = )
AVea € Alloc.Vl, € dom(h).there exists k;, verifying
((la, 0) edom(h) & 0<o0 < kla) Av[as = kla] € Vpoly(N)
(32)

Intuitively, for every control point i € Ctrl, if X(i) =
(Li, Ni)s

—  L; over-approximates the locations of the memory blocks
pointed to by pointers: s(p) can either be under the form
(ly, ) with o € L;(pg) N Alloc, or be uninitialized if
w € Li(pe);

— N; over-approximated every numerical variables: the
values of the characters (s(x) = v(x)), the offsets of
the addresses pointed to by pointers (s(p) = (-, v(po))),
and the size of the blocks in the heap: for any block of
location /, contained in the heap, its size k;, is over-
approximated by s (v[eg — ki, 1 € Vpory(N)).

CharVars {z € Vars |  of type uchar} PtrVars 4 {p € Vars | z of type charx}

Alloc % {a | p = mallocq(e)}

OffVars {po | p € PtrVars}
NumVars ¢ CharVars U OffVars U SizeVars

Thus, the key idea of the heap approximation is to keep some
information regarding the size of the allocated blocks, while
totally forgetting the exact content of the heap, and to merge
the information concerning the blocks allocated at the same
allocation site.

Example 9 Let us consider the following abstract memory
state:

CN) = ({Pz > fa). 1> el )

{to,=0,n>1,tmp>0,0<p, =i =572 <0y =n}

It represents all the memory states s i 2 such that:

s(n) > 1,0 <s(i) < n,and s(tmp) > 0;
- 5(p) = (e, s()) ands(r) = (A, 0), with Ay, A, € LOC
(o and A}, may be equal);

— the heap & contains at least two blocks A and A}, which
are possibly equal. Each of them has a size equal to s ().
Indeed, the size k;, of the block A4, defined by (A, 0) €
dom(h) & 0 < o < k;,, satisfies the equality k;, =
s(n). This is similar for the block 1.

Some usual abstract operators on AStates can be defined
by using those defined on g (AllocU{w}) and CP(NumVars):

— aunion abstract operator LI, such that for any i € Ctrl, if

X(@) = (Li, Ni) and Y (i) = (L], N}), then

XUy Y @i N L N, (33)

where (£, N) (L', N) is itself an union abstract ope-
rator on AMem:

LML N Y (pe > L(pe) UL (po). N WA,
(34)

— theleastelement L, definedby Vi € Ctrl. L(i) “ (pe —
@, 7).
— awidening operator V, where forany i € Ctrl,if X (i) =

(Li, Ni) and V(i) = (L}, N),

1

@YD Y (po > Li(pe) U LLpo). Ni Voo N))
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Their soundness is based on the soundness of the underlying
operators on the sets o (Alloc U {w}) and CPP(NumVars).
Moreover, in the definition of the widening operator V, the set
union U on the location component is sufficient to ensure the
convergence in a finite number of iterations, because Alloc U
{w} is a finite set, hence its height is finite. Other operators
(intersection, greatest element) can be defined, but they are
not required in the rest of the paper.

Now, given a program P, we are going to build a sound
abstraction F of the transfer function F defined by Equa-
tion (10): for each X € AStates, and for any j € Ctrl, we
define

(pg — {0}, ﬂ (x>0} N {os = 0}) if j = entry(P)
Fo¢ < e
otherwise

L] s, A
(i,stmt, j)

(35)

where [stmt]] : AMem — AMem is a function defined
below, and which verifies, for any instruction or condition
stmt:

{s"Vh' | sth € Yimem(L.N) Asth & stmt:s"th'}
S Ymem ([[stmt]](ﬁ, N)) . (36)

In other words, [[stmt]] is required to be a sound abstraction
of the effect of the instruction or of the condition stmt in the
concrete semantics.

Obviously, the initial abstract state over-approximates the
corresponding concrete state:

{so 10 | so € Stack A Vp € PtrVars.s(p) = o}

< Vinem (pﬂ — {o}, m {(x >0} N {as = 0}) s

X, 0

(37

so that, if Relation 36 is satisfied, the following proposition
holds:

Proposition 1 The abstract transfer function F is a sound
abstraction of the concrete transfer function F.

Finally, the functions [[stmt]] have to be precisely defined,
using in particular abstract operators on polyhedra presented
in Sect. 4.3.

Lx = el ) (2, @ < ) (38)

Lx = getucharOT(L. A) % (L. (x = 0) o (x < D)) (39)

Ip =q+elL. N Y (Llpe > L@, (o < g0+ e)N))
(40)

Ip = mallocy @1(L, A) Y (Lipy > (@], (po < O)N)
where N/ = (a5 < e) o (e = 1)(N) W (a5 = 1)(N) (41)

@ Springer

[xp = el L. N) € (Llpe > L(pe) N Alloc], ) “2)
e < O1LA) % (L, e = 0 43)
e == 0L, N) Y (£, 1 (e = 0DV (44)
Iie < LA Z (£, 1e = 1H VY 43)

Lie == L. A) Y (L, te < 1DV W i(e = 1THNY)
(46)

In other words:

— assignments x = ¢, x = getuchar(),and p = ¢ + ¢
accordingly modify the abstract value of x and p, res-
pectively, in the polyhedron A thanks to the operator
i (- <= -1). Moreover, for pointer assignment, the abstract
value of the location of p is replaced by the location of the
pointer g. The soundness property (36) directly results
from the soundness of 1 (- < -1);

— dynamic allocation p = malloc, (e¢) updates the value
of ag with the abstract value of e on which the condition
e > 1 has been applied (this is the only case defined in
the concrete semantics). Besides, the previous values of
o has to be taken into account, since @ may represent
several distinct memory blocks.!? Finally, the values {«}
and O are assigned to p, and p, respectively, in order for
the pointer p to point at the beginning of the allocated
block;

— heap assignment *p = e excludes the case where p is
not initialized (hence L(p,) N Alloc);

— finally, the conditions cond consists in applying the same
condition on the numerical abstract values.

Given a program P, the abstract transfer function F is
clearly computable. Then, Theorem 1 in Sect. 4.2 provides
an algorithm to compute an over-approximation of the col-
lecting semantics C(P) of P.

Corollary 1 If the sequence (X,), is defined by:

XY

def | An
I AN

ifFX) E X, 47)

otherwise

Xn—H

then this sequence is stationary. Its limit X is computable,
and satisfies:

C(P) € y(XN). (48)

12 Only the old values of a, greater than or equal to 1 are to be consi-
dered, since allocated blocks necessarily have a strictly positive size.
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Absence of heap overflows The computed over-
approximation of the collecting semantics C(P) of a pro-
gram P allows to show the absence of heap overflows, when
it is accurate enough. Let us consider the following property:

Vi € Ctrlif (i, xp = e, j), then Xy (i) = (L;, N;) verifies
o g Lip)AN; S () 10<po<as—1). (49)

aseLi(p)

If this property is satisfied, then the absence of heap over-
flows during the execution of P is ensured:

Proposition 2 [f Xy satisfies Property (49), then for each
instruction (i, xp = e, j) of the program, and for any state
(i, s th) € C(P), Property (14) is verified: dereferencing p
is safe.

This proposition is the consequence of Eq. (48) and of the
invariant on the well-formed memory states (Eq. (1)).

Example 10 Let us apply the abstraction developed in this

part to show the absence of heap overflows during the execu-

tion of the program Pjeceive defined in Example 1. First, the

sequence of the &), defined by Corollary 1 is computed.
Starting from the initial state Xp = L, we have:

L= ({pe 9,1 — 0}, 0)
2+ ({pe 9,1 — 0}, 0)
Xo =

12+ ({pe > 0,1, — B}, 0)

We omit all control points whose value remains unchanged.
The state X} results from the allocation of a new block at
the site «.

l 1> (pe > o)t = (@), (i 20,1 > 0,52 > 0, 1mp = 0, a5 = 0})
X =

Writing a character from an external source in sz lets its
value unchanged: we do not have any precise information
concerning this character, except its uchar type:

I = ({pe > f{o}te > {o}}, {i 20,n20,52=0,1mp =0,y =0})

{pe = {w}, te > {a}},
2 —
A2 = {i>0,n>1,52>0,tmp>0,t,=0,0, =n}

The states A3, X4, X5, and X correspond to the normalization
of sz to a value smaller than n (at the control point 5), and
the initializations of i toO and p to ¢ :

19
5 (1per (o) 0 (),
P {i>0,n>1,52>0,tmp>0,t,=0,0s =n}
T o (e @) (o)), ’
- {i>0,n>1,52>0,tmp>0,1, =0, a5 =n}
30 (e () (@),
{i>0,n>1,52>0,tmp>0,1, =0, a5 =n}
_ {pe > {0}, 1 > {al},
Xi=q14+ {i>0,n>1,tmp>0,t,=0,0s =n <sz—1})
s (per ()t (@),
{i>0,n>1,tmp>0,1,=0,0<sz <0, =n}
4o (P @) (@)},
{i>0,n>1,tmp>0,1,=0,ay =n <sz— 1}
_ {pe = {0}, 10 = {a}},
A= SH( i 00> 1,mp=>01,=00<sz<a,=n})
6 (P () (e,
{i=0,n>1,tmp>0,1,=0,0 <5z <ay =n}
6 (P () (@),
Y — {i=0,n>1,tmp>0,1,=0,0<sz <o, =n}
T (e t@dt (o), '
{i=0,n>1,tmp=>0,p,=1,=0,0<s7<0a;=n}

The states X7, X3, Xy, and X correspond in particular to a
first propagation of the over-approximations in the body of
the loop located at the control point 7:

7 ({Pe = {a) e o)),
{i=0,n>1,tmp>0,p,=1,=0,0<s57<0;=n}
_ {pe — {a}, te —> {a}},
Y= 8'_)( {i=0,mp=>0,p,=1,=0,1<s5z<ay=n}
{pe = {a}, te > {a}},
12'_>( (n>1,mp>0,0=p,=1t,=i =57 <oy =n}
8 1 ((Pe = ) e o)),
X {i=0,tmp>0,p,=1,=0,1=<sz=<0;=n}
3= ,
9 s [ (Pe = {a) 10— {ad),
{i=0,tmp=>0,p,=1,=0,1=<sz=<0;=n}

9 1 ({Pe= fah e {al},
{i=0,tmp>0,p,=1,=0,1<s5z<0;=n}

Xy = ,
10 1> [ {Pe = fad 10—~ fad},
{i=0,tmp>0,p,=1,=0,1<sz<0,=n)
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{pe = {a}, e = {a}},
Xy = 10}—>( {i=0,tmp>0,p,=1,=0,1<sz <, =n}
T L (e (@) (e, '
{i=0,tmp=>0,p,=1,1,=01<sz<0oy=n}

In the state Xy, the memory state associated to the control
point 7 is modified according to the memory state of the point
11. Then, the widening operator returns a memory state in
whichi = p, < sz <oy =n:

S A U e CHE
{lo=0,"l2],me20,0§i=Pr)SSZ§(¥x=”}

0 (WHMWHML )
.

{i=0,tmp>0,p,=1,1,=0,1<s5z <0y =n}

X =

The states X712, X713, X4, and X5 correspond to a second
propagation of the abstract memory state in the body of the
loop:

{pe = {a}, te = {al}},
7 —
{to=0,n>1,tmp>0,0<i=p, <sz<oa;=n}
— {pe = {a}, te = {a}},
X2 = 8~ {to =0,tmp>0,0<i=p, <sz—1,5z2<a;=n})’
12 — {pe = {a}, te = {a}}, .
{t,=0,n>1,tmp>0,0<p, =i =57 <oy =n}
g s (P f@)te fah),
X3 = {to =0,tmp>0,0<i=p, <sz—1,52 <oy =n}
o o (tpe > la) 1 fa)), '
{to=0,tmp 20,0 <i=p, <sz—1,sz<a;=n}
o ((per> tad o fah),
Xy = {ty =0,tmp>0,0<i=p, <sz—1,52<0a; =n}
10 (tre @b e, ’
{to =0,tmp>0,0<i=p, <sz—1,52 <y =n}
10 (tper (@ (), )
Xis = {to=0,tmp>0,0<i=p, <sz—1,sz2<0a;, =n} .
o (e (@b e,
{t,=0,tmp>0,0<i=p,—1<sz—1,52 <0y =n}

@ Springer

The state X¢ is identical to X5, since F(X5) CE X5 :

I = ({pe>{o} te > {o}}, {i =0,n > 0,52 > 0, tmp > 0, ag = 0})
) {pe = {o}, 1¢ = {a}},
(n>1,i>0,52>0,tmp>0,1, =0,y =n}
{pe = {o}, te > {a}},
3
fn>1,i>0,52>0,tmp>0,t, =0,a5 =n}
4 {pe = {0}, 10 — {a}},
fn>1,i >0,tmp>0,1, =0, =n < sz— 1}
5 {pe = {0}, 1 = {a}},
n=>1,i>0,tmp>0,1,=0,0<sz<a,;=n}
6 {pe = {0}, te = {a}},
fn>1,i=0,tmp>0,t,=0,0 <sz <oy =n}
Xig = 7 {pe = {a}, e = {a}},
(n>1,1,=0,tmp>0,0<i=p, <sz<ay=n}
8 {pe = {a}, te = {a}},
{to=0,tmp>0,0<i=p, <sz— 1,5z <ay; =n)
9 {pe = {a}, ¢ = {a}},
{to=0,tmp>0,0<i=p, <sz— 1,57 <ay=n}
{pe = o}, te = {a}},
10 —~
{to =0,tmp >0,0<i=p, <sz— 1,52 <ay,=n}
{pe = {a}, ¢ = {a}},
11 —
{to=0,tmp>0,0<i=p,—1<sz— 1,52 <0y =n}
{pe = {a}, te = {al},
12
{to=0,n>1,tmp=>0,0<p,=i=sz<ay=n}

Therefore, the limit of the sequence is reached.

Now let us check that Condition (49) is verified by X’s.
The only pointer dereferencing xp = tmp is located at the
control point 9. We have:

m®:CmHMwHM& )

{fu=0,’12LWPEO»OEZ'=P()§SZ—1,SZ§0@=”}

o (Ly, N9),

so that & Lo(pe) = {er}, and No € {0 < p, < a5 — 1}.
Proposition 2 enables us to conclude that the program Preceive
will not cause any heap overflow during its execution.

Let us remark that without the normalization of the value
of sz to a value smaller than n (control points 3 and 4), Pro-
gram Pjoceive could lead to a heap overflow, and the analysis
would have correctly raised an alarm: the numerical inva-
riant at the control point 9 would have been Ny = {t, =
O,tmp > 0,0 <i =p, <sz—1l,ay = n > 1}. But,
N9¢,{O§p0§as_1}-

Moreover, if the domain of intervals would have been used
instead of polyhedra (as in [31]), the numerical invariant at
9 would have been:

Ro = {to = [0; 0], tmp — [0; +o0[,

Po > [0; +o0[, i > [0; +ool,

n = [1; +oo[, ay = [1; +o0[, sz = [1; +ool},
which is not accurate enough to ensure that 0 < p, < oy —1.

Consequently, a more accurate domain, such as convex poly-
hedra, is required to show the absence of defects in Preceive-
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5 Some possible extensions

The formalism presented in the previous sections can be enri-
ched so as to cover most of the features of programming lan-
guages such as C language. In this section, we present some
examples of possible extensions.

First, more complex conditions can be easily introduced
in the kernel language, by adding the conjunction and the
disjunction of conditions (logical clauses). Their semantics
are defined similarly to the rules given in Fig. 8, and their
abstraction are performed by using union and intersection
operators.

Moreover, the instruction x = *p which consists in rea-
ding a data contained in the heap and then assigning it in
a stack variable can be additionally considered. The corres-
ponding rule in the concrete semantics is defined by:

p = (la,0) edom(h) h(ly,0) =v

sthx=x%p:s[x— v]ih ’ (50)
and its abstract counterpart can be defined by:
[x = *plI(L, N)
= (LIpe = L(pe) NAlloc], (Jx = 0) o (Ix < D)),
(5D

which assigns a random value to x (since the abstraction of
the heap does not provide any information on the value of
xp). Besides, the validity of the dereferencing of p when
reading the value pointed to, can be added to the properties
to be verified.

Several other features can be added to the language: their
formalization raises independent issues to those encounte-
red here: (i) other integer types, such as Booleans, signed
or unsigned integers, enumerations, various qualifiers (for
instance short and long in C language), and the analysis of
integer overflows in computations [3], (ii) the null pointer,
pointers with arbitrary depth, pointers to the stack, multiple
dereferencing, (multidimensional) arrays, structures, unions,
string buffers [36, 1], (iii) a richer control flow, with calls to
non-recursive functions, jumps, several kinds of loops, local
variable declarations (see for example [1]).

Finally, the computationally complex domain of polyhe-
dra can be replaced by a less accurate but more efficient one.
For instance, octagons [35] (numerical invariants of the form
+x =4y < ¢, where x and y are variables, ¢ a constant) would
have been sufficient to analyze the program Preceivye-

6 Related work

Most static analyzers are not sound and only point out some
potential bugs to the user. That is, when all the errors they
detect are corrected, it is still not sure that the program is

safe. In practice, some reachable machine states are forgot-
ten during the analysis (often to improve the time or memory
performances of the analyzer). Consequently, they cannot
be used to ensure the security of critical software. Several
methods are used in these analyzers: (i) pattern matching
(GNU grep [27]), (ii) heuristics (flawfinder [22], ITS4 [45]),
(iii) and more generally, propagation of properties (nume-
rical properties, pointer aliasing), but the propagation is not
sound (Splint [19], Coverity [14], BOON [46], EauClaire [7],
CCA [6], Uno [28]). In particular, these tools handle the
detection of uninitialized variables, null pointer dereferen-
cing, illegal array accesses, and some other library functions
which may be dangerous (such as strcpy in C language). The
analyzed languages are, for instance, C and C++, Java, and
ADA.

Other static analyzers are based on sound formal methods.
Besides abstract interpretation, we can mention: (i) model
checking [8, 18], whose principle is to exhaustively explore
the set of reachable states of the system (as this can be achie-
ved only if the analyzed model is indeed finite, the exploration
can only be performed on finite abstractions of the model [9]),
(i1) predicate abstraction [26], a model checking technique
that uses Boolean model generated from predicates initially
defined. Then other predicates can be added to refine the
initial model if necessary [2,15], (iii) theorem proving tech-
niques [20,21], which translates the program semantics and
the properties to be verified into logic formulas, and then tries
to (semi)-automatically prove them with a proof assistant.

The analyses based on abstract interpretation handle
several properties of programs. For example, (i) numeri-
cal properties on integers (integer overflows [3,38]) and on
floating-point numbers (undefined operations [3], numerical
precision [25]), (ii) numerical properties on pointers (stack
overflows [31,36,44]) and the length of string buffers
[1,17], (iii) properties on the shape of the memory (lists and
trees [41], partitioning into disjoint parts [16]), (iv) invariants
on classes in object-oriented languages [33], (v) security pro-
perties of cryptographic protocols [4,5].

7 Conclusion

We have built a static analysis based on abstract interpretation
which allows to show the absence of heap overflows in a
program. In particular, the program given in the introduction
has been successfully analyzed. Moreover, several extensions
have been discussed.

Static analysis by sound formal methods allows to ensure
that a software does not contain any security flaw. This is fun-
damental for the implementation of reliable critical software
infrastructures.
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