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Abstract This paper surveys various techniques that have
been used in public or privates tools in order to enhance
the password cracking process. After a brief overview of this
process, it addresses the issues of algorithmic and implemen-
tation optimisations, the use of special purpose hardware and
the use of the Markov chains tool. Experimental results are
then shown, comparing several implementations.

1 The password cracking process

Password-based authentication schemes work by compar-
ing user’s supplied passwords with stored secrets. As system
administrators or hackers gaining equivalent privileges are
allowed to access these secrets, passwords are usually not
stored in plaintext. Most of the time, a cryptographic hash
function is used. Cracking passwords is the process of get-
ting the plaintext passwords from the stored secrets, or at
least an equivalent one, which collides with respect to the
hash function used, with the user’s one.

Password cracking has seen few improvements compared
to other IT security fields. Moreover, it has been shown
that the knowledge of the password hash is sufficient for
several authentication protocols. Malicious users now tar-
get the plaintext passwords, through phishing or keylogging.
In some other cases, malware can directly look for files
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containing hash values of passwords. The password cracking
field is now the home of security professionals and bench-
mark fanatics. They are however several known techniques
that could be used to dramatically enhance the password
cracking process.

Most password hashing schemes work by entering the
plaintext password with a value that should be different for
all users on the system (the salf) into a one way function. The
result is stored with the salt. In order to crack passwords, one
must:

e select candidate passwords that are likely to be chosen by
users;

e get the salt corresponding to the passwords one’s wants
to crack;

e hash the candidate password with the salt and match it
with the stored password hash.

In order to maximize cracking ability and efficiency, the
cracking process should be sped up as much as possible,
and the candidate password selection should be as smart as
possible.

This paper presents an up-to-date survey of the most
efficient techniques dedicated to password cracking. It is
organized as follows. Section 2 discusses the main imple-
mentation issues with respect to password cracking tech-
niques. They are related to the last known implementation
improvements so far. Section 3 presents a few existing hard-
ware architectures dedicated to password cracking. Section 4
introduces Markov chains as a powerful tool for improving
distributed and rainbow table cracking. Section 5 presents
some detailed results of experiments we have conducted by
means of the techniques presented in this paper. Finally, we
conclude in Sect. 6 by evoking the impact of these techniques
in the context of malware attacks.
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2 Implementation optimisations
2.1 Reducing the instruction count

Reducing the quantity of instructions to be executed dur-
ing the password hashing process is an obvious way to gain
speed. Here are two shortcuts to achieve that goal, one of
them being still widely used.

2.1.1 Implementing a reduced hash function

A typical cryptographic hash function works by:

e initializing some values and allocate memory to an inter-
nal buffer;

e copying the text to hash to an internal buffer, and padding
it so that its length becomes a multiple of the block size
(64 bytes for MD4, MDS5, SHA) of the function;

e running the function “body” for every block but the last
one;
inserting a size dependent value to the last block;
running the function “body” again on that last block;
formatting the result and outputting it.

The first observation to be made is that the password length
is very likely to be much less than the block size. That means
that only the last block is to be hashed. The second observa-
tion is that the final step is very easy to reverse. For example,
if an endianity conversion is necessary (from little-endian to
big-endian or conversely), it could be performed on the hash
one’s tries to crack at the beginning of the cracking session,
instead of doing it after each invocation of the hash function.
Moreover, the internal buffer can be used again. The hashing
process thus becomes:

initializing some values;
copying the hash value to an internal buffer. No padding
is necessary as the internal buffer is already properly for-
matted;

e inserting a size dependent value in the last block;
running the function “body” on the last block;

Some implementation generate the candidate password
directly into the internal buffer, saving a memory copy
instruction. It is worth mentioning that many popular pass-
word cracking tools do not even feature this simple optimi-
sation. A notorious example is RainbowCrack [1], the most
popular rainbow table cracker. It has become now famous
due to its large file output and its use of the general purpose
hashing functions of OpenSSL.
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2.1.2 “Reversing” the hash function

The last rounds of the MDS5 function “body” are described
in Code sample 1. The “STEP” macro is described in Code
sample 2. The resulting hash of the MDS5 function is the con-
catenation of a, b, ¢, d values. When trying to crack a specific
MDS5 password, it is easy to infer the values of a, b, c and d at
the end of step 0x3f. An important observation is that if the
plaintext password is known, the whole hashing process can
be reversed, and the values of a, b, c, d guessed at various
stages of the function body. While it is not ground-breaking,
this observation however leads to a smart optimisation.

Code sample 1 Last rounds of the MD5 body function

/* round 4 */

STEP(I, a, b, c, d, 0, 0xf4292244, 6 ) /* step 0x30 */
STEP(I, 4, a, b, ¢, 7, 0x432aff97, 10) /* step 0x31 */
STEP(I, c, d, a, b, 14, 0xab9423a7, 15) /* step 0x32 */
STEP(I, b, ¢, d, a, 5, 0xfc93a039, 21) /* step 0x33 */
STEP(I, a, b, ¢, d, 12, 0x655b59c3, 6 ) /* step 0x34 */
STEP(I, 4, a, b, c, 3, 0x8f0ccc92, 10) /* step 0x35 */
STEP(I, ¢, d, a, b, 10, Oxffeffd47d, 15) /* step 0x36 */
STEP(I, b, ¢, d, a, 1, 0x85845ddl, 21) /* step 0x37 */
STEP(I, a, b, ¢, d, 8, 0x6fa87ed4f, 6 ) /* step 0x38 */
STEP(I, 4, a, b, ¢, 15, 0Oxfe2cebel, 10) /* step 0x39 */
STEP(I, c, d, a, b, 6, 0xa3014314, 15) /* step 0x3a */
STEP(I, b, ¢, d, a, 13, 0x4e081lal, 21) /* step 0x3b */
STEP(I, a, b, c, d, 4, 0xf7537e82, 6 ) /* step 0x3c */
STEP(I, d, a, b, ¢, 11, 0xbd3af235, 10) /* step 0x3d */
STEP(I, c, d, a, b, 2, 0x2ad7d2bb, 15) /* step 0x3e */
STEP(I, b, ¢, d, a, 9, 0xeb86d391, 21) /* step O0x3f */

a += 0x67452301;

b += Oxe\-fc\-dab89;
c += 0x98bad\-cfe;

d += 0x10325476;

Code sample 2 The STEP macro for MD5

#define STEP(f, a, b, ¢, d, block, constant, rotation) \
a += f£(b, ¢, d) + buffer[block] + constant;
a = ROTATE (a, rotation); \
a += b;

When trying candidate passwords, we will suppose that
the real password is partially known. For example, let us sup-
pose that the first four bytes are unknown while the others
are known. That way, it is easy to see that the values of a, b,
¢, d could be computed up to the end of step 0x30. Moreover,
the values of b, ¢, d could be computed up to the end of step
0x2f, ¢, d for step Ox2e and finally d for step 0x2d.! Once
this computation is achieved, the first four bytes could be
brute-forced by starting the computation of the correspond-
ing hash, stopping at step 0x2d and comparing the value of d
instead of calculating until step 0x3f and comparing a, b, c, d.
This increases the probability of finding a false positive from

! It is actually possible to go up to step 0x2b under the hypothesis that
only a single byte is unknown, but in this case, the rate of false positives
increases significantly.
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27128 2 40 2732 which is still bad enough to be of practical
interest.

Computing only 47 steps instead of 64 results in a speedup
of 36%. However, this only works if candidate passwords are
tested in an order that keeps the last bytes unmodified, mak-
ing this technique especially suited for “stupid” brute force
software that test passwords sequentially. This optimization,
while known, is not implemented in any popular password
cracker.

2.2 Writing optimized assembly code

The topic of writing optimized programs is a broad one. There
are however specific tricks related to password cracking, most
of them being related to the fact that password cracking tech-
niques are easy to parallelize.

2.2.1 Filling the pipeline

Modern processors feature an instruction decoding pipeline.
Instructions go through this pipeline and are effectively exe-
cuted at its exit. Several instructions could be loaded in the
pipeline at the same time. In order to maximize through-
put, the pipeline must be kept as full as possible. However,
as instructions are only effective at the exit of the pipeline,
no instructions that use an input value that is the result of
an instruction located in the pipeline could be loaded. The
consequence is that several clock cycles are wasted until the
value is computed and the next instruction could be loaded.
This is called “pipeline starvation”, caused by “instruction
dependencies”.
Here is sample MMX program:

pxor %${xmm}l, %{xmm}2
pand ${xmm}3, %{xmm}2
pxor %${xmm}4, %{xmm}2

This program performs the following operation:
((xmm2 ~ xmml) & xmm3) =~ xmmé
However, the xmm?2 register is the source and destination
of all instructions in this short example. This means that the
pipeline will be completely starved during the execution of
this program. If the pipeline is n stages long, and the instruc-
tions have a single clock cycle latency, the previous program
should take 3n cycles to execute. As four 32 bits values are
calculated at once, it would take 3n/4 cycles per result. In
order to improve the attack efficiency, it could be possible
to work on twice as much data by almost the same time by
doing:

xmm2 =

S {xmm} 2
% {xmm} 6

pxor %${xmm}1,
pxor %${xmm}5,

2 Which would be as good as the real password!

% {xmm} 2
S {xmm} 6
% {xmm} 2
S {xmm} 6

pand %${xmm}3,
pand %{xmm}7,
pxor %${xmm}4,
pxor %{xmm}8,

This program should take 3n + 1 cycles to execute, but
should compute twice as much data ((3n + 1)/8 cycles per
result). Working on as many password as possible at the same
time is an excellent way to boost performance, because it is
particularly well-suited to password cracking and easy to
implement.

2.2.2 SIMD instructions

SIMD instructions are instructions that perform a single
action on multiple data at once. On x86 processors, the MMX
(64 bits) and SSE (128 bits) instruction set are SIMD instruc-
tion sets. Hashing functions such as MD4, MD5 and SHA1
are straightforwardly converted for the MMX (two pass-
words at once) or SSE (four passwords at once) instruction
set. Currently, the John the Ripper tool [6, 7] implements such
optimizations, distributed as third party contributions.

3 Special purpose architectures
3.1 FPGAs

Field-programmable gate array (FPGAs) are devices that
contain fully programmable logic. Designing FPGA cores
is very different from standard CPU programming and a lot
harder to debug. Development cost for a FPGA solution is
much more important than for a software solution. It is how-
ever supposedly much more cost effective, as the FPGA chips
will deliver much more performance than a general purpose
CPU at identical costs. As far as password cracking is con-
cerned, two projects are worth mentioning.

e The OpenCipher project, by David Hulton. The website
states that “this sourceforge project is dedicated to explor-
ing the uses of ASICs, FPGAs and other forms of pro-
grammable hardware with modern cryptography” [2].

e The Copacobana project [3], which claims impressive
performances for a very low price: average DES key
recovery in 7.2 days for 10,000$.

3.2 The CELL processor

The CELL processor, developed by Sony, Toshiba and IBM,
is the core processor of the PlayStation 3 console. It fea-
tures a PPC64 called the Power Processing Element (PPE)
and seven Synergistic Processing Elements or SPEs, running
at 3.2 GHz. The PPC64 core is a standard stripped-down
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PowerPC. The SPUs are specialized processors featuring
only SIMD instructions not unlike the MMX instruction set
from Intel. The instruction set is however much larger and
each SPU embeds 128 x 128-bits general purpose registers.
Each SPU has a 256 kb “local store”, a very fast memory
located on the processor die. SPUs have however no direct
access to the “global store” (the RAM system). The pro-
grammer must handle data exchange between the stores. As
a comparison with general purpose CPUs, this would mean
that the programmer should handle the CPU cache.

This architectural choice results in a system that is hard
to master, and hard to optimize for arbitrary algorithms. It is
however fairly easy to reach the theoretical performance peak
on several applications. We managed to reach 180M pass-
words/s for MD4 at first try, with no real optimization effort,
and without the MD4 “reversing” method. A quite good
implementation runs at 11.5M passwords/s on an AMD64
3500+ (2.2 GHz).

4 Markov chains

Markov chains are mathematical tools that have been applied
to password cracking by Arvind Narayanan and Vitaly
Shmatikov [5]. They used it them improve rainbow table
cracking, but it also has an important application for distrib-
uted password cracking.

4.1 Description

This method works by assuming that people select passwords
whose character obey a hidden Markov model. That means
that the probability that the nth character of the password is
x, is a function of the previous characters. The probability
of appearance of a particular password is the product of the
probabilities of appearance of all the characters composing
it. Without loss of generality, only first order Markov chains
are studied in this paper but the probability of appearance of
a given character is only a function of the previous character:

P(rabbit) = P(r) % P(alr)  P(bla) * P(b|b) * P(i|b)
* P(t]i).

Here P(x|y) is the probability of appearance of x after
y has occured. The value of every P(x|y) is approximated
by performing frequency analysis on a large enough dictio-
nary. A slight modification of the previous formula is use-
ful when the actual implementation takes place. Let’s state
that P’(alb), the “corrected Markov probability” is equal
to round(—Klog(P(alb))). In this way, multiplying floating
numbers can be equivalent to adding integers:

P'(rabbit) = P'(r) + P'(a|r) + P'(bla) + P’ (b|b)
+ P(i|b) x P'(t]i).
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Let us call P’(password) the Markov strength of the word
“password”.

4.2 Properties

The most interesting property of this statement lies in the fact
that it is fairly easy to compute nbp(previous, position,
level, max), which is the number of passwords where the
positionth character is previous, the sum of the P’ up to
the (position — 1)-th character is level, and whose Markov
strength is less than max.

A special value is nbp(”, 0, 0, max), the total number of
passwords whose Markov strength is less than max. When
writing the actual implementation, a size limit to the pass-
words is to be selected in order to compute a table nbp;,qx
that fits in memory.

Sample C code 3 could be used to compute this value.
The arrays “probal” and “proba2” are listing the corrected
Markov probability of appearance of a single character at the
beginning of the password (“probal”) or after another charac-
ter (“proba2”). It is worth mentioning that all admissible val-
ues are computed recursively when calculating nbp(”, 0, 0,
max).

Code sample 3 Sample C code for the calculation of nbp
unsigned long long nb_parts (unsigned char previous,
unsigned int position, unsigned int level,
unsigned int max, unsigned int max_length)
{
int i;
unsigned long long out=1;

if (level>max)
return 0;

if (position==max_length)

{

nbparts[previous + position*256 +
level*256*max_length] = 1;

return 1;

}

if (nbparts[previous + (position)*256 +
level*256*max_length] != 0)

return nbparts|[previous + (position)*256 +
level*256*max_length];

for(i=1;1<256;1i++)
if (position==0)
out += nb_parts (i, position+1l, proballil]
max, max_length);
else
out += nb_parts (i, position+1l, level +
proba2[previous*256 + i], max, max_length);

nbparts[previous + (position)*256 +
level*256*max_length] = out;
return out;

}
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This property means that it is possible to order the set of
passwords whose Markov strength is less than a value and
generate the nth password of this set. Algorithmic details are
described in [5]. In order to use this technique for cracking
passwords, we must:

select the passwords to crack;
select the maximum supposed length (maxlen) of the
generated passwords;

e evaluate the cracking speed of all his processors, and the
allowed crack time;

e multiply this cracking speed by the maximum crack time,
and then divide by the number of different salts in order
to calculate the number of passwords that could be tested
in the selected amount of time:

N = crackspeed x cracktime/salts;

o find the largest max value so thatnbpygxien(”, 0, 0, max)
< N;
e generate all the candidate passwords and test them!

4.3 Applications

First of all, we have shown that passwords generated this
way match the actual real world passwords (see Sect. 5.3).
Moreover, Markov password generation is useful in several
password cracking scenarios.

e Distributed password cracking: when distributing the
password cracking work between nodes, it is necessary
to divide the set of passwords in several subsets. It is
of outstanding importance that the size of these subsets
is known beforehand, to prevent one of the nodes from
tackling a password set that is too large for its processing
capabilities. In a perfect scenario, each nodes would be
assigned with password indexes to delimit their subset,
ie. node 1 would crack password 0 to password 99, node
2 from password 100 to password 199, etc. This is easy
to achieve with Markov password generation as the nth
password could be generated without the need to generate
the n — 1 previous passwords.

e Rainbow tables: rainbow tables are a type of time-mem-
ory tradeoff that is very effective when applied to pass-
word cracking. It works by storing “chains” of pre-com-
puted hashe, where the nth hash is h, = H(R, (hy,—1)).
Here, H is the hashing function, and R, is the “reduction
function” that will transform an arbitrary value into a suit-
able password for step n. The “classic” reduction func-
tion is the base conversion function C, where R, (x) =
C(x + n), and the destination base is the target character
set. For example, the reduction function for alphabetic
tables would convert numbers to base 26. It is possible to

design an alternate function : if G(x) generates the xth
password from a Markov password set whose size is N, a
suitable function could be R, (x) = G((x 4+ n) mod N),
where a mod b is the remainder of the Euclidian division
of a by b.

e Security consulting: being able to assign a strength (the
Markov strength) to a password is the first step to magnif-
icent Excel graphics and statistics that would look great
in an audit report.

In the case of rainbow tables, Naranayan and Shmatikov [5]
give a preliminary result: against 142 real users passwords,
their attack, using Markov filtering and some regular expres-
sions filters, recovers 96 passwords, against 39 passwords for
RainbowCrack. Without much detail, it is hard to figure how
good is this solution.

Using the RainbowCalc tool [4], we evaluated the effec-
tiveness of the two methods. Let us suppose that Rainbow-
Crack was very well optimized (12M MD4 hashes per
second). The following results could be estimated:

Reduction Classic Markov Markov
function alphanum | S=350 | S =300
Chain length 1E6 1E6 1E6
Chain count 4E8 1E7 8E6
Tables 10 10 7

Max length 8 14 14
Generation 551 20 11

time (week)

Recovery rate | 72.47% 86.57% 61.47%

The recovery rate has been estimated using results from
Sect. 5.3. The classic reduction function should find 82.2%
of passwords of size less than 9. However, only 88% of the
real world passwords have such a short size, according to our
sample.

5 Experimental results

In this section, we worked with a real world hashed pass-
word file of about 7,700 passwords. The passwords have been
selected by French speaking users. They came in LM (Lan-
Man, the original Microsoft password storage format) and
NT hash flavour. Nearly 97% of the passwords have been
cracked with the LM hashes using RainbowCrack (rainbow
table cracking is described in [4]). Cracking effectiveness
has been calculated based on the NT hash, which is stronger.
Figure 1 shows the size distribution of the known passwords
in this set. While the password set is large, it has been col-
lected from a single source. The results might be dependent
of “cultural” parameters specific of this source, and might
not properly model the global problem.

@ Springer
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5.1 Tested implementations
5.1.1 John the Ripper

We used John the Ripper (JtR [6]) with unofficial contribu-
tions compiled in [7]. The contributions increase the cracking
speed for NT hashes, making JtR the fastest general purpose
MD4 cracker. We used it in several modes:

e “Standard mode”: JtR tries passwords based on the users
names, then uses a dictionary3 finally, it runs its “incre-
mental mode”;

e “Incremental mode”: JtR tries passwords based on a sta-
tistical method. An important limitation of this mode
is that the generated candidate passwords length cannot
exceed eight characters. By looking at Fig. 1 it is clear
that 12% of the passwords are larger than eight charac-
ters, and are thus not crackable by the incremental mode.
We used the standard “charset file” shipped with JtR, and
a custom file generated for French passwords.

e “Stdin mode”: JtR reads the candidate passwords from
its standard input.

5.1.2 Playstation 3

We wrote a PS3 implementation of the NT hash function
that could achieve a total speed of 180M pwd/s. It should be
noted that this speed could only be achieved by brute forcing
the first two characters. The other characters of the candidate
passwords could be selected in an arbitrary way.

The implementation generates the candidates passwords
on the PPC core, and sends them to the SPUs. The SPU brute-
forces the first two characters of the candidate passwords. It

3 Transformation rules have been considered as well but they will be
not described in this document.
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should be noticed that a huge speedup could be gained by
using the techniques presented in Sect. 2.1.2 and thus by
improving the code. We believe that a theoretical speed of
280M MD4 pwd/s is achievable on the CELL processor.

5.2 Password generation process
5.2.1 “Stupid” brute force

This process works by trying incrementally all passwords:
a,b,c,d, ..., z aa, ab, .... It is the easiest candidate pass-
words selection process, but obviously not the smartest. For
every known (cracked by RainbowCrack) password in the
test passwords set, the number of passwords that should be
tested before it is recovered, has been computed. The PS3
figure of 180M pwd/s was considered in order to evaluate
the time needed to find this password.

5.2.2 JtR incremental mode

The incremental mode of JtR has been tested for both the
standard and custom “charset files”.

5.2.3 Markov

We wrote a Markov password generator and benchmarked
it by redirecting its output in JtR. The Markov strength of
every known passwords has then been computed. Then for
every values of the “max” parameter, the number of pass-
words cracked has been evaluated. The result is displayed in
Fig. 2.

There is a significant gap at strength 350 for the standard
Markov strength. It is caused by “company password”, e.g.
a password that is believed to be strong and that is used by
many workers in a company. It might be also the default
passwords that all accounts share when they are created. The
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Fig. 2 Markov strength 8000
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cracking time needed for every target Markov strength has
been evaluated using the previous benchmark.

5.2.4 Markov with first two characters brute-forced

This process works by generating passwords using the
Markov password generator, and appending two character
at their beginning. These characters have been tested in an
exhaustive way (with a charset of 97 different characters,
97 x 97 passwords have been evaluated). The Markov
strength of all known passwords without their first two char-
acters has been evaluated.* This value has been used in order
to evaluate the cracking time and the password recovery rate
for every target Markov strength with respect to this mode.
The PS3 figure of 180M pwd/s was used for these calcula-
tions.

5.3 Results

This section compares the cracking speed of JtR on a Xeon
2.4 GHz, our Markov password generator and an hypotheti-
cal brute forcer. The cracking speeds of a Markov password
generator that brute-forces the first two characters and of a
brute forcer both on a PS3 have been evaluated. Results are
summarized in Fig. 3. It is not surprising that brute-force
cracking should not be the preferred cracking method. Even
with a vastly faster implementation (180M pwd/s vs. 6.4M
pwd/s) it does not compete with JtR.

4 We used the same statistical values than those previously exposed.
For a better evaluation, statistical values should be calculated with a
dictionnary where the first two characters of every word are truncated.

Markov Probability

However, it is surprising to notice that the Markov pass-
word generator, while being far slower than JtR (1.3M pwd/s
vs. 6.4M pwd/s) is actually performing better. After 22 h of
cracking time, JtR recovered 6,362 passwords while our Mar-
kov generator recovered 6,745. This performance advantage
is strengthened by the fact that it is easy to use distributed
computing compared to the incremental mode of JtR. How-
ever, while JtR could be running forever and eventually find
all passwords, the Markov tools run for a predefined time.
Subsequent runs would have to rehash previously tested pass-
words.

The different implementations that could be used for dis-
tributed password cracking have been compared. Brute-force
attack has been ruled out because it was far from being
as effective as the Markov password generation. JtR incre-
mental mode is notoriously hard to distribute. It remains to
consider the various Markov implementations, as shown in
Fig. 4. It shows the password cracking rate in function of
the cumulated cracking time in hours (on an AMD 3500+ if
not specified, or a CELL processor for the PS3 variant). This
demonstrates that someone (e.g. a virus writer who managed
to steal encrypted passwords files by means of a malware)
could break 98% of this company passwords in a week (168 h)
by using 37 Keuros worth of PS3 hardware.

6 Conclusion

There are several classes of attacks against passwords. The
most effective ones, used by malicious persons, are the

3 ...whose length is less than 9 and with ascii characters!

@ Springer



80 S. Marechal
Fig. 3 Comparison of several 7000
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simplest: phishing, keylogging, educated guesses, etc. How-
ever, where the malicious person or the penetration tester
only needs a single password, the security consultant craves
for the whole list of plaintext passwords when performing an
audit.

In this paper, several enhancements that could be included
in password cracking tools are described. These enhance-
ments could dramatically speed up the cracking process.
However, we believe that future research should be under-
taken in order to evaluate more precisely the effectiveness of
the Markov based tools.

Markov filter based techniques could be deployed in an
effective way by malicious code (virus, worms, etc.) and
create a large distributed password cracking network. Cen-
tralized coordination is not mandatory, but the malicious
payloads should be able to publish their results, should a
password be cracked. Botnets are however a better solution
for this application. “Strong” passwords protecting network
ressources, such as WPA or IPSEC pre-shared keys, could
be tempting enought for a botnet master. A typical WPA-
PSK cracker should reach 100 keys/s on typical hardware.

@ Springer
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An obfuscated version (such as defined in [8]) could covertly
(using techniques such as described in [9]) crack 20 keys/s. A
botnet of 20,000 computers could test 400,000 pwd/s, crack-
ing any password whose Markov strength is less than 247
(80% of passwords in our sample) in 24 h.

The Markov strength concept could be included in oper-
ating systems in order to implement a password checking
policy that would be far more effective than those currently
in force (typically, rules like “use at least eight characters,
with at least a character in each of the categories: alphabetic,
numeric, symbol” are not effective). It also provides a con-
venient metric for the security professional.
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