
J Comput Virol (2008) 4:83–100
DOI 10.1007/s11416-007-0070-0

SSTIC 2007 BEST ACADEMIC PAPERS

Windows memory forensics

Nicolas Ruff

Received: 5 January 2007 / Revised: 15 July 2007 / Accepted: 2 October 2007 / Published online: 1 November 2007
© Springer-Verlag France 2007

Abstract This paper gives an overview of all known “live”
memory collection techniques on a Windows system, and
freely available memory analysis tools. Limitations and
known anti-collection techniques will also be reviewed. Anal-
ysis techniques will be illustrated through some practical
examples, drawn from past forensics challenges. This paper
is forensics-oriented, but the information provided informa-
tion will also be of interest to malware analysts fighting
against stealth rootkits.

1 Introduction

“In memory only” intrusion came out from the lab to the field
through the release of [Meterpreter] in 2004 [4]. Other tools
(like Immunity [CANVAS] and Core [IMPACT]) [1,2] have
been offering the same capability for a long time, but those
tools were specialized and expensive. On the other hand,
Metasploit is a freely available Open Source intrusion frame-
work.

Whereas *nix “in memory” intrusion tools favor “syscall
proxying” [3] techniques, most Windows tools seen to date
rely on “in memory library (DLL) injection”. This paper will
focus on Windows systems exclusively.

“Classical” incident handling procedures (e.g., “pull the
plug”) and tools (e.g., [EnCase], [Sleuth Kit]) [51,52] are
disk-oriented and rarely oriented towards “in memory” intru-
sion.

Intruders and malware writers are aware of this, and it
is not uncommon nowadays to find encrypted malware that
is decrypted “in memory only” through an externally (e.g.,

N. Ruff (B)
EADS-IW SE/CS, Suresnes, France
e-mail: nicolas.ruff@eads.net

Web site) provided decryption key (for more information
on cryptovirology, see [6–8]). In this case, “offline” analy-
sis might be impossible if no key is available at the time of
analysis.

That is why there has been a lot of interest in “live” foren-
sics techniques in the last 3 years, starting with DFRWS 2005
[28] challenge.

This paper encompasses the following topics:

– “Live” memory collection tools;
– Analysis tools;
– “Real life” examples;
– Known anti-forensics techniques.

2 Live memory collection

Collecting “live” memory is not an easy task. By definition,
this collection must be performed on a “live” system. In addi-
tion, it should maintain as small a footprint as possible on the
system. A simple memory de-allocation, for instance, could
trigger heap defragmentation, potentially overwriting valu-
able data.

Several techniques have been proposed for memory col-
lection—none are perfect and none is suitable for all cases.

2.1 Hardware-based acquisition

One might think that this is the “silver bullet” of memory col-
lection. The idea is to have dedicated hardware (e.g., a PCI
card) in order to access physical memory through a dedicated
communication port. Some players in the field of hardware
memory acquisition are [Tribble] and [Komoku] [31,41].

123

84 N. Ruff

Advantages:

– It has no impact on the “live” system—the OS is unaware
of what is happening at the memory level.

– This solution is effective against most hiding techniques
—however it is not 100% foolproof, as shown below.

We define a solution as “100% foolproof” if the attacker
cannot cheat memory acquisition, even if he has access to all
implementation details.

Drawbacks:

– Not available on the general market today.
– So heavily patent-protected that competitors are unlikely

to show up in a near future.
– A savvy attacker could scan for specific hardware on the

PCI bus.
– It is possible to “hide” parts of the system memory on the

PCI bus, as demonstrated by Rutkowska (Joanna, [33]).
– The acquisition card has to be installed prior to intrusion.

That is a major drawback, and that is why we need to
think about other ways of collecting memory.

Rutkowska’s hiding technique is based on NorthBridge
chipset reprogramming. We will not go into gory details here
(full paper available at Joanna [33]), as it requires a deep
understanding of the PC architecture and micro-program-
ming. It is enough to say that the PCI bus is managed by the
SouthBridge chipset, and the core system (CPU + physical
memory) by the NorthBridge. Communications between the
PCI bus and the core system have to cross those two chip-
sets. For the sake of DMA access, the NorthBridge chipset
can be used to “map” different views of the physical memory
to peripherals.

Moreover, as virtualization gains popularity in the PC
world, [IOMMU] chipsets [23] are expected to be integrated
on mainstream PC motherboards, thus rendering memory
hiding trivial.

Nothing more can be said about this solution, given the
lack of any “off-the-shelf” product for forensic purpose.
Some questions are left open, such as the handling of system
activity during acquisition. If any part of the system is still
running, the resulting memory data might be inconsistent.

2.2 Firewire bus

For systems that are not pre-equipped with a dedicated acqui-
sition card, other available hardware should be considered,
such as the IEEE 1394 (a.k.a. “FireWire”) bus that allows
direct memory access.

This technique has been initially documented as a way to
hack into a system through the use of a modified [iPod] [32].
But it can be used to achieve many other goals, such as the
one in which we are interested presently.

This technique is comparable to hardware-based acquisi-
tion, with some additional drawbacks:

– FireWire ports are not always available, especially on
servers.

– System activity is not stopped during acquisition, result-
ing in potentially inconsistent data.

– This solution is not 100% foolproof, as it is still going
through the PCI bus.

– Erratic behavior can be observed, especially when trying
to access the [Upper Memory Area] [27].

– Direct memory access through FireWire is not enabled by
default in Microsoft Windows operating system, contrary
to Linux or Mac OS X.

[Adam Boileau] [35] demonstrated during Ruxcon 2006
conference that Windows access restriction is not applied
to mass-storage devices, such as iPods, thus allowing direct
memory access. However this hack is not guaranteed to be
available across all Windows versions.

A Linux-oriented, forensics-targeted implementation has
been proposed by [Piegdon] and [Pimenidis] [34].

Apart from FireWire, any hardware bus can potentially
be used for physical memory access. The PCMCIA bus is a
good candidate, as user-programmable, FPGA-based PCM-
CIA cards are available on the market (such as [PicoCom-
puting]) [42].

2.3 “dd”& “nc” tools

“dd” and “nc” tools, available on G. M. Garner website [12],
are tailored versions of the well-known *nix utilities.

Of all Windows-aware improvements, the one of interest
to us is accessibility of the special device “\Device\Physical-
Memory” (see [17]).

Therefore, it is possible to dump the physical memory
to a remote system through a simple command line
such as:

nc -v -n -I\\.\PhysicalMemory <ip> <port>

This solution yields a very light footprint, with no prereq-
uisites, and is readily available even to inexperienced collec-
tion operators.

Yet, some major drawbacks are to be found:

– Memory collection can last a long time (say several
hours).

– As it is a user space (ring 3) solution, an attacker can hook
several places in order to tamper with collected data.

– “\Device\PhysicalMemory” device is not available any
more from user space since Windows 2003 SP1, and is not
expected to be re-enabled by Microsoft in a near future.

123

Windows memory forensics 85

2.4 “CrashDump” (keyboard-triggered)

Another solution that is quite unexpected at first thought is
to crash the system.

When a “blue screen of death” (BSoD) occurs, the sys-
tem records a crash dump file that is basically a dump of the
physical memory, plus extra debugging information such as
register values.

The output file, with a “.DMP” extension, is written in
a Microsoft-proprietary file format, only legible to Micro-
soft debugging tools. However, this format has been partially
reverse-engineered [18].

As one would expect, crashing Windows is quite easy.
Crashes can be induced at will through a specific keyboard
shortcut, when the following registry key [CrashOnCtrl-
Scroll] is set to REG_DWORD:1 [19].

HKLM\SYSTEM\CurrentControlSet\Services\i8042prt\Parameters\CrashOnCtrlScroll

The magic key combination is “Right Ctrl + ScrollLock”,
pressed twice.

The CrashDump solution is the easiest and the fastest for
acquiring memory of a “live” system. However, it has also
many drawbacks:

– Some systems react poorly to system crashes—typically
database servers. The system might be in an unstable state
after crashing, which is sometimes unacceptable, even in
case of a serious break-in.

– The registry setting requires a reboot to be taken into
account. It must have been set prior to the incident. The
ability to set this value without reboot will be studied later
on.

– Windows stores CrashDump data into the pagefile
(default “c:\pagefile.sys”). This implies that all pagefile
content will be overwritten, and the pagefile size must
be at least <physical memory size> + 1 MB (for status
information).

– Given pagefile limits, the maximum dump file size is
2 GB. No complete dump can be obtained on a system
with more than 2 GB of physical memory.

In recent Windows versions, this dump file size limit has been
relaxed. As described in Knowledge Base article [Q237740]
[21], using the undocumented “/MAXMEM” switch in
BOOT.INI file, a dump over 2 GB in size can be generated.
However, this parameter must have been set on boot. On sys-
tems with more than 4 GB of physical memory, the “/PAE”
switch must have been set too.

Windows does support multiple pagefiles, up to 16 of
4 GB each. However, no publicly available forensics tool
at the time of writing supports multiple pagefiles aggrega-
tion.

2.5 “CrashDump” (EMS-triggered)

Windows 2003 does have an interesting feature called EMS
(Emergency Management Services). If this feature is enabled
at boot time (through the “/REDIRECT” switch in BOOT.INI
file), a serial console is available on COM1 port.

This console has a bunch of useful features, including the
“crashdump” command. Besides the boot switch, no other
parameter is required—the current CrashDump configura-
tion is used. Error code is STOP 0x000000E2, just like for
the previously described methods.

2.6 “Snapshot”

A very specific case is a virtualized host, running inside
[VMWare] or [Virtual PC] software [59,60].

This case is close to the best possible case for forensics
investigators. Physical memory image is written to disk when
“pausing” the virtual machine. In VMWare’s case, it is writ-
ten to a “.vmem” file. It is also easy to mount the system
drive read-only and recover the pagefile.

The whole system activity (including SMM and ACPI
code) is frozen during acquisition. Thus, the acquired data
is fully consistent, without any adverse effect on the run-
ning system (which can be shut down cleanly thereafter, if
necessary).

The “only” requirement of this method is a virtualized
target. For a long time, only test and honeypot systems were
running virtualized. In the past few years, we noticed a strong
interest in virtualization technologies, and it is not uncom-
mon nowadays to find virtualized production systems
(see [24]).

2.7 Pagefile issues

On a “live” system, part of the memory is swapped out into
the pagefile. Collecting the pagefile is required for complete
analysis.

The default pagefile is “c:\pagefile.sys”. As seen before,
it is possible to move the pagefile on any local disk (even a
USB key with Windows Vista), and to have up to 16 page-
files. Fortunately, this is still uncommon in real-life
cases.

123

86 N. Ruff

When a CrashDump file is generated, the disk space used
by the pagefile is reclaimed and definitely lost. Knowledge
Base article [Q886429] [22] details the process. Session Man-
ager SubSystem [25] is in charge of pagefile management.
During reboot, if a CrashDump has been previously gener-
ated, the following registry key is set by the SMSS:

HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\MachineCrash

WinLogon checks for such a key. If found, the SAVE-
DUMP.EXE utility, which renames PAGEFILE.SYS to
MEMORY.DMP, is run.

As long as Windows is running, the pagefile is locked
by the kernel. It is still possible to access this file using a
specially crafted driver, or the special device “\Device\
PhysicalDrive”. Incidentally, this technique has been used
by Joanna Rutkowska to inject unsigned drivers in
Windows Vista64 memory, up to RC1 release candidate
(see [36]).

Commercial tools that are reputedly able to copy the page-
file of a running system are:

– [Disk Explorer] [53];
– [Forensic Toolkit] [54];
– [X-Ways Forensics] [55];
– [iLook] [56] (free for US government officials).

Those tools must be brought onto the target system, unless
they were previously installed.

However, the cheapest and easiest way to collect the page-
file is to unplug the system.

After collecting physical memory, the idea is to unplug the
system and access the pagefile through hard drive extraction.
Since the system is still running during physical memory
collection, the physical memory + pagefile combo is def-
initely not coherent. However, unless the system exhibits
a dearth of physical memory, most of the collected data is
useable.

The next step is to merge physical memory and pagefile
data into a single set of data.

Without going too deep into the details of Intel x86 archi-
tecture, physical memory is addressed through 4 KB pages
(or 4 MB, in some specific cases). A directory of available
pages is stored in a two-level tree, referenced by special reg-
ister CR3. First level of indirection is called Page Directory,
whereas second level is called Page Table.

When a physical page has been “swapped out”, the corre-
sponding Page Table Entry (PTE) is flagged as “invalid”.

Bits 31..12 11 10 9..5 4..1 0
Value Offset Transition Prototype Protection PFN Valid

PTE bit format

An invalid PTE has a Page File Number (PFN) field
pointing to one of the 16 available pagefiles, and an Offset
field serving as a page index into this specific pagefile. Since
Offset is a 20-bit field, and each page is 4 KB wide, a single
pagefile can store up to 4 GB of data.

More information is available in [Windows Internals] book
[26], page 440 and later.

Technically speaking, merging physical memory with
pagefiles does not pose a significant challenge, though no
freely available tool does exist today to the best of our knowl-
edge. [FATKit] [48] is one of the commercial tools that ad-
vertizes such a capability.

2.8 Hibernation file

Hibernation (also known as “suspend to disk”) is a feature
that allows the whole system state to be backed up to hard
drive, thus allowing the system to be frozen for a (nearly)
infinite amount of time without any power source.

Windows makes use of the “c:\hiberfil.sys” file to store
system state. This file is created when the feature is enabled
for the first time (“power options/enable hibernation”).

It is unwise to enable this feature after an incident, since
disk space at least equal to the size of physically available
memory is pre-allocated, thus potentially overwriting inter-
esting data on disk.

However, if hibernation has previously been used on the
target, this memory collection method could prove to be a
useful idea. It has several advantages, such as allowing coher-
ent physical memory + pagefile acquisition.

Some technical issues are still being researched at the time
of this writing:

– The hibernation file is using an undocumented, Microsoft
proprietary file format, including proprietary compres-
sion. At the time of the writing, the EADS Innovation
Works research center is close to having a full under-
standing of this file format.

– The hibernation file stores only committed memory, and
not de-allocated memory pages.

The hibernation file could prove to be useful to rootkit detec-
tion. Its usefulness for forensics investigation is yet to be
demonstrated.

2.9 Alternative OS injection

Bradley Schatz developed a brand new acquisition technique
along with his [BodySnatcher] [39] proof-of-concept tool.
The idea is to start a new OS on the top of the existing OS.
This looks like a very promising technique, which overcomes
the following limitations of previously shown memory acqui-
sition techniques:

123

Windows memory forensics 87

– Fidelity: since the existing OS is completely frozen dur-
ing acquisition, a coherent memory snapshot is obtained.

– Reliability: since no existing OS facility is used (except
by alternative OS loader components), this solution is
resistant to software data hiding.

– Software based: no specific hardware is required on the
target computer.

Some identified drawbacks are:

– Loader components for the alternative OS have a signif-
icant impact on the existing OS memory.

– A non-negligible amount of memory is used by the alter-
native OS (e.g., 32 MB in the author’s sample), thus over-
writing potential data in freed areas.

– The alternative OS has to support existing hardware on
the target.

– Resistance to hardware data hiding (e.g., virtualization
hardware, chipset reprogramming) is limited by the capa-
bilities of the alternative OS.

– Technical limitations are yet to be lifted up, especially the
resuming of the existing OS after acquisition.

3 Deeper into the CrashDump

3.1 Dynamic reconfiguration of keyboard driver

There are at least two issues with using “CrashOnCtrlScroll”
feature “in the field”:

1. It requires a reboot, if the registry key has not been pre-
viously set;

2. It only works for the Intel 8042 keyboard driver, which
does exclude USB keyboards, for instance.

3.1.1 Issue #1: reloading the driver

Issue #1 is not trivial to bypass.
The “CrashOnCtrlScroll” registry key is read by I8xKey-

boardServiceParameters() function, which is called by I8x
KeyboardStartDevice(), itself called by I8xPnP() in response
to 0x1b:0x00 (IRP_MJ_PNP:IRP_MN_START_DEVICE)
IOCTL. The key value is copied into a dynamically allocated
memory area by the ExAllocatePoolWithTag() function.

Despite the API name (“plug-and-play”), simply unplug-
ging and plugging the keyboard in again will not reload the
driver. No system event is generated when unplugging a PS/2
keyboard.

Some ideas to force a configuration reload are the
following:

1. Send an IRP to i8042prt driver.
This solution is unstable and unsupported. The “i8042prt”

driver initialization sequence is pretty complex;sending a new
IRP_MN_START_DEVICE or IRP_MN_STOP_DEVICE
message to the driver will lead to an immediate BSoD.

Microsoft documentation states explicitly that
IRP_MJ_PNP messages are “reserved for system use” and
never to be used by a programmer.

2. Uninstall/reinstall driver.
“net stop i8042prt” will not succeed, since the driver can-

not be stopped, paused or restarted.
A complete uninstall/reinstall of the driver has not been

investigated any further. Some APIs drawn from Windows
“Plug-and-Play Manager” could be used for this task, such
as SetupDiRemoveDevice() and SetupDiInstallDevice().

However, we speculate that whichever method is used
to uninstall the driver, the driver will be marked as “to be
deleted” on next reboot since it cannot be stopped.

3. Modify the configuration key “in memory”
This is a purely intellectual challenge: finding the dynam-

ically allocated memory area where i8042prt configuration
is stored.

It may not be well known that memory allocation in ker-
nel space can be tagged with a “pool name” of 4 characters
(function ExAllocatePoolWithTag()). A driver can tag every
memory block that it uses, which is of great help for debug-
ging purpose.

The “i8042prt” driver uses mostly “8042” and “Devi”
(Device Manager) as pool tags.

Using [LiveKD] [44] debugger, it is possible to enumer-
ate local kernel memory pools, and to find the right memory
block to edit.

However we did not investigate live memory editing any
further, for it has many drawbacks. It happens that memory
block size and key offset into the block are Windows version
dependent. A useable tool would require a database of every
possible value pair, and would nevertheless be prone to false
positives and potential BSoD.

In the end, no satisfactory solution has been found for issue
#1. However this case does demonstrate why some Windows
parameters require a reboot to be taken into account.

This issue can be fixed by Microsoft through callback noti-
fication of the “i8042prt” driver when the registry parameters
are updated. While technically sound, this requires signifi-
cant modification of the “i8042prt” source code.

3.1.2 Issue #2: unsupported USB keyboards

Issue #2 (unsupported USB keyboards) is crippling, espe-
cially in datacenters where not all servers have dedicated
keyboards.

123

88 N. Ruff

In the end, it seems like the best solution is not to rely
on the “CrashOnCtrlScroll” feature, but to trigger a kernel
bugcheck through some kind of minimalist driver. “i8042prt”
implements the following code:

xor ecx, ecx
push ecx ; BugCheckParameter4
push ecx ; BugCheckParameter3
push ecx ; BugCheckParameter2
push ecx ; BugCheckParameter1
push MANUALLY_INITIATED_CRASH ; BugCheckCode = 0x0E
mov [eax], ecx
call ds:__imp__KeBugCheckEx@20 ; KeBugCheckEx(x,x,x,x,x)

This method has still one major drawback over the
“CrashOnCtrlScroll” one: it requires administrative rights (or
at least being able to load a driver).

SysInternals did publish a tool called “NotMyFault” that
was able to trigger many kinds of different crashes. However
this tool does not seem to be available anymore on SysInter-
nals‘ new website at Microsoft’s. Another tool with the same
capability is [SystemDump] by Dmitry Vostokov [47].

3.2 CrashDump configuration

The CrashDump configuration can be edited through the fol-
lowing GUI path: “Control Panel/System/Advanced/Startup
and Recovery/Parameters”. Settings are stored in the follow-
ing registry key:

HKLM\System\CurrentControlSet\Control\CrashControl

Values of interest to us are:

DumpFile (REG_EXPAND_SZ)
Overwrite (REG_DWORD)

CrashDumpEnabled (REG_DWORD)

These values are documented in Knowledge Base article
[20]. “Full Memory Dump” equals “CrashDumpEnabled”
set to REG_DWORD:1.

Changes made through the Control Panel are taken into
account immediately—they do not require a reboot. Let’s see
how this happens.

The “System” Control Panel applet is an executable file
named “sysdm.cpl”. When the Control Panel is closed, the
internal function CoreDumpHandleOk() is called back. This
function checks the “gfCoreDumpChanged” global variable.
If the core dump configuration is to be updated, internal func-
tions CoreDumpValidFile(), GetMemoryConfiguration() and
CoreDumpGetRequiredFileSize() are called and do basic
sanity checks.

Finally and critically, a NtSetSystemInformation() sys-
tem call is invoked with SystemInformationClass = 34. This
forces a dynamic update of the CrashDump kernel configu-
ration.

From the kernel’s point of view, the call sequence from
NtSetSystemInformation() to registry keys is as follows:

– NtSetSystemInformation(),
– IoConfigureCrashDump(),
– IoInitializeCrashDump(),
– IopInitializeDCB(),
– IopReadDumpRegistry().

With all this information, it is trivial to write a command-line
tool that updates the CrashDump configuration.

3.3 Pagefile configuration

The pagefile configuration can be edited through the
following GUI path: “Control Panel/System/Advanced/Per-
formance/Parameters/Advanced”. Settings are stored in the
following registry key:

HKLM\System\CurrentControlSet\Control\Session Manager\Memory Management

The value that is of interest to us is:

PagingFiles (REG_MULTI_SZ)

This value holds a list of paging files, in following format:

<filename> <min size> <max size>
<filename> <min size> <max size>
...

Under the hood, the NtCreatePagingFile() API is involved.
As the registry key name suggests, SMSS (Session Man-

ager SubSystem) process is in charge of pagefile initiali-
zation. After a configuration change, Control Panel applet
calls NtCreatePagingFile() from VirtualMemCreatePagefile-
FromIndex() internal function.

The SeCreatePagefilePrivilege right is required for this
operation.

As will be shown later on, it is possible to enumerate
active pagefiles, including use percentages, through simple
scripting.

3.4 Windows management instrumentation (WMI)-based
configuration

Most of the previous tasks can be done using Windows native
scripting tools. In my experience, most Windows users do not
realize the full potential of Windows scripting tools, which
are really powerful, yet user-friendly.

123

Windows memory forensics 89

Focusing on WMI capabilities, the CrashDump configura-
tion can be edited through Win32_OSRecoveryConfiguration
class, such as through the following VBScript CrashDump.vbs:

strComputer = "."
Set objWMIService = GetObject("winmgmts:\\" & strComputer & "\root\CIMV2")
Set colItems = objWMIService.ExecQuery(_
 "SELECT * FROM Win32_OSRecoveryConfiguration",,48)
For Each objItem in colItems
 Wscript.Echo "-----------------------------------"
 Wscript.Echo "Win32_OSRecoveryConfiguration instance"
 Wscript.Echo "-----------------------------------"
 Wscript.Echo "AutoReboot: " & objItem.AutoReboot
 Wscript.Echo "Caption: " & objItem.Caption
 Wscript.Echo "DebugFilePath: " & objItem.DebugFilePath
 Wscript.Echo "DebugInfoType: " & objItem.DebugInfoType
 Wscript.Echo "Description: " & objItem.Description
 Wscript.Echo "ExpandedDebugFilePath: " & objItem.ExpandedDebugFilePath
 Wscript.Echo "ExpandedMiniDumpDirectory: " & objItem.ExpandedMiniDumpDirectory
 Wscript.Echo "KernelDumpOnly: " & objItem.KernelDumpOnly
 Wscript.Echo "MiniDumpDirectory: " & objItem.MiniDumpDirectory
 Wscript.Echo "Name: " & objItem.Name
 Wscript.Echo "OverwriteExistingDebugFile: " & objItem.OverwriteExistingDebugFile
 Wscript.Echo "SendAdminAlert: " & objItem.SendAdminAlert
 Wscript.Echo "SettingID: " & objItem.SettingID
 Wscript.Echo "WriteDebugInfo: " & objItem.WriteDebugInfo
 Wscript.Echo "WriteToSystemLog: " & objItem.WriteToSystemLog
Next

Running on Windows XP SP2, the sample script output is:

C:\> cscript CrashDump.vbs
Microsoft (R) Windows Script Host Version 5.6
Copyright (C) Microsoft Corporation 1996-2001.

Win32_OSRecoveryConfiguration instance

AutoReboot: True
Caption:
DebugFilePath: %SystemRoot%\MEMORY.DMP
DebugInfoType: 3
Description:
ExpandedDebugFilePath: C:\WINDOWS\MEMORY.DMP
ExpandedMiniDumpDirectory: C:\WINDOWS\Minidump
KernelDumpOnly: False
MiniDumpDirectory: %SystemRoot%\Minidump
Name: Microsoft Windows XP Professional|C:\WINDOWS|\Device\Harddisk0\Partition1
OverwriteExistingDebugFile: True
SendAdminAlert: False
SettingID:
WriteDebugInfo: True
WriteToSystemLog: True

The same result can be achieved through WMIC (WMI
Command line utility). For some unobvious reason, WMIC
aliases cannot be mapped one-to-one to WMI classes. The
CrashDump configuration is accessed in WMIC using fol-
lowing command:

wmic:root\cli>recoveros list full

AutoReboot=TRUE
DebugFilePath=%SystemRoot%\MEMORY.DMP
Description=
KernelDumpOnly=FALSE
Name=Microsoft Windows XP Professional|C:\WINDOWS|\Device\Harddisk0\Partition1
OverwriteExistingDebugFile=TRUE
SendAdminAlert=FALSE
SettingID=
WriteDebugInfo=TRUE
WriteToSystemLog=TRUE

C:\> wmic

Along similar lines, the pagefile configuration is exposed
through the following classes:

– Win32_PageFile,
– Win32_PageFileElementSetting,
– Win32_PageFileSetting,
– Win32_PageFileUsage.

Sample pagefile configuration read:

wmic:root\cli>pagefile list full

AllocatedBaseSize=2046
CurrentUsage=8
Description=C:\pagefile.sys
InstallDate=20061129104253.031250+060
Name=C:\pagefile.sys
PeakUsage=8
Status=
TempPageFile=

wmic:root\cli>pagefileset list full

Description='pagefile.sys' @ C:\
InitialSize=2046
MaximumSize=4092
Name=C:\pagefile.sys
SettingID=pagefile.sys @ C:

Win32_PageFileUsage is also available through
VBScripting. Here is a sample output.

123

90 N. Ruff

AllocatedBaseSize: 512
Caption: C:\pagefile.sys
CurrentUsage: 247
Description: C:\pagefile.sys
InstallDate: 31/08/2006 13:49:34
Name: C:\pagefile.sys
PeakUsage: 319
Status:
TempPageFile:

Unfortunately, there is no obvious way to access the hiber-
nation configuration, either through WMIC or VBScripting.
Raw access to the following registry keys seems to be the
only available solution:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session Manager\Power*

Those keys are binary blobs. Hibernation configuration is
held in the 7th byte of the “Heuristics” value.

Note: the POWERCFG command is quite limited as far
as hibernation is concerned. The only available commands
are “POWERCFG/HIBERNATE ON” and “POWERCFG/
HIBERNATE OFF”. There is no easy way to get the current
hibernation configuration through this command.

4 Memory analysis tools

4.1 Virtual memory reconstruction

Having collected a physical memory dump is only the first
step of the job. Working on a raw memory dump yields at
least two challenges: finding interesting data structures, and
analyzing those structures (which are mostly undocumented
by Microsoft).

Intel [Pentium] manuals [15] are a good start for under-
standing physical memory management. Briefly, physical
memory is split into 4 KB chunks called “pages”. Through
the use of paging, processes have a “virtual” memory view,
which is unrelated to physical memory organization. On a
system with 1 GB of physical memory, we have just gath-
ered 262,144 pages in no particular order . . . Reassembling
those parts is the next step of memory analysis.

Andreas [Schuster] [9] released to the public a tool called
[PTFinder] [45] for this particular task. The idea behind

the tool is to scan the memory dump in search of a well-
known, critical system structure called EPROCESS. Given
some basic sanity checks, most false positives are
avoided.

As of Version 0.03.01-XP-SP2, the following checks are
made against the EPROCESS structure:

– Page Directory base is not null.
– Page Directory base is aligned on a 4KB boundary.
– Thread list pointers (forward and backward) are in kernel

space.
– Synchronization event are to be found at offsets 0xD8 and

0xFC.

Kernel space starts at 0x80000000 if Windows has been
started without the /3 GB switch, 0xC0000000 otherwise.

Each process has an associated EPROCESS structure,
holding a copy of CR3 register, which is the physical address
of the process Page Directory.

A detailed description of Windows memory scanning tech-
niques and challenges by the author of PTFinder himself can
be found at [DFRWS 2006] [40].

This is a very clever approach, since it can also:

– Identify terminated processes (as long as physical mem-
ory is not reallocated).

– Identify running processes that are trying to hide through
DKOM-like (Direct Kernel Object Manipulation) tech-
niques, as long as the associated EPROCESS structure
has been unlinked but not been wiped out.

This approach also has some drawbacks:

– It is not 100% foolproof—this can be an issue when used
for legal purpose. But foolproof memory forensics has
yet to be invented.

– It requires a thorough understanding of Windows internal
structures, which are undocumented and Service Pack-
dependent. Yet most structures are to be found in Micro-
soft [Debugging Tools] [16] and can be recovered through
the “dt” command.

123

Windows memory forensics 91

 +0x09c UniqueProcessId : Ptr32 Void
 +0x0a0 ActiveProcessLinks : _LIST_ENTRY
 +0x0a8 QuotaPeakPoolUsage : [2] Uint4B
 +0x0b0 QuotaPoolUsage : [2] Uint4B
 +0x0b8 PagefileUsage : Uint4B
 +0x0bc CommitCharge : Uint4B
 +0x0c0 PeakPagefileUsage : Uint4B
 +0x0c4 PeakVirtualSize : Uint4B
 +0x0c8 VirtualSize : Uint4B
 +0x0d0 Vm : _MMSUPPORT
 [...]

kd> .reload
Connected to Windows 2000 2195 x86 compatible target, ptr64 FALSE
Loading Kernel Symbols
...
Loading User Symbols

Loading unloaded module list
..................

kd> dt _EPROCESS
 +0x000 Pcb : _KPROCESS
 +0x06c ExitStatus : Int4B
 +0x070 LockEvent : _KEVENT
 +0x080 LockCount : Uint4B
 +0x088 CreateTime : _LARGE_INTEGER
 +0x090 ExitTime : _LARGE_INTEGER
 +0x098 LockOwner : Ptr32 _KTHREAD

[PTFinder] [45] is not alone: there are others like [Vola-
tools] [46]. However most publicly released memory analysis
tools seem to rely on EPROCESS structures.

Joe Stewart published a tool called [pmodump.pl] [50]
that relies on a Windows implementation trick in order to find
Page Directories: one of the Page Directory entries is self-ref-
erencing. This tool seems to produce accurate results, as well.

5 Post-intrusion forensics samples

5.1 Meterpreter evidence

Meterpreter is a “memory only” intrusion tool, part of the Me-
tasploit project since Version 2.2 (released in August 2004).
It has been designed from scratch by Jarkko Turkulainen and
Matt Miller. An associated research paper is also available:
[Library Injection] [30].

The basic idea is to inject a dynamically loaded library
(DLL) in the target process memory space without writing
anything to disk. To do so, the following exported functions
of NTDLL.DLL are hooked in the target process:

– NtOpenSection(),
– NtQueryAttributesFile(),
– NtOpenFile(),
– NtCreateSection(),
– NtMapViewOfSection().

With only those five hooks, the LoadLibrary() API is
tricked to load a memory area instead of a file. All these
operations happen purely in user space. No kernel trick is
involved.

Technical details are available in sources (“external/
source/meterpreter” subdirectory of Metasploit framework).
The code is of remarkably good quality and well docu-
mented.

Let’s take the case of a Windows 2000 SP4 English sys-
tem, successfully penetrated by a Metasploit + Meterpreter
combination. After gathering a CrashDump, we are going to
manually analyze the memory dump with the help of Micro-
soft Debugging Tools.

First step is to load the dump file into the debugger and
enumerate processes.

123

92 N. Ruff

 DirBase: 03bc3000 ObjectTable: 81683c88 TableSize: 374.
 Image: WINLOGON.EXE

PROCESS 81671020 SessionId: 0 Cid: 00e8 Peb: 7ffdf000 ParentCid: 00b4
 DirBase: 03f63000 ObjectTable: 816725e8 TableSize: 505.
 Image: SERVICES.EXE

PROCESS 816705c0 SessionId: 0 Cid: 00f4 Peb: 7ffdf000 ParentCid: 00b4
 DirBase: 03f2b000 ObjectTable: 81670b28 TableSize: 271.
 Image: LSASS.EXE

PROCESS 8164ab40 SessionId: 0 Cid: 01b4 Peb: 7ffdf000 ParentCid: 00e8
 DirBase: 04a6b000 ObjectTable: 8164ae28 TableSize: 262.
 Image: svchost.exe
[…]

kd> !process 0 0
**** NT ACTIVE PROCESS DUMP ****
PROCESS 81841380 SessionId: 0 Cid: 0008 Peb: 00000000 ParentCid: 0000
 DirBase: 00030000 ObjectTable: 81841e68 TableSize: 155.
 Image: System

PROCESS 816a86c0 SessionId: 0 Cid: 00a0 Peb: 7ffdf000 ParentCid: 0008
 DirBase: 0291f000 ObjectTable: 816a1c68 TableSize: 33.
 Image: SMSS.EXE

PROCESS 8168a140 SessionId: 0 Cid: 00b8 Peb: 7ffdf000 ParentCid: 00a0
 DirBase: 037fe000 ObjectTable: 8168a488 TableSize: 335.
 Image: CSRSS.EXE

PROCESS 81683820 SessionId: 0 Cid: 00b4 Peb: 7ffdf000 ParentCid: 00a0

Before analyzing a specific process, we have to retrieve its
execution context. Let’s take for example the SVCHOST.EXE
process, of PID 0x1B4, with an EPROCESS structure stored
at address 0x8164ab40.

kd> .process 8164ab40
Implicit process is now 8164ab40

From now on, it is possible to dig into that process con-
text. Let’s display a (shortened) list of loaded libraries, using
PEB (Process Environment Block) information.

kd> !peb
PEB at 7FFDF000
 InheritedAddressSpace: No
 ReadImageFileExecOptions: No
 BeingDebugged: No
 ImageBaseAddress: 01000000
 Ldr.Initialized: Yes
 Ldr.InInitializationOrderModuleList: 71f40 . 8fa28
 Ldr.InLoadOrderModuleList: 71ec0 . 8fa18
 Ldr.InMemoryOrderModuleList: 71ec8 . 8fa20
 Base TimeStamp Module
 1000000 3814ad86 Oct 25 21:20:38 1999 C:\WINNT\system32\svchost.exe
 77f80000 3ef274dc Jun 20 04:43:40 2003 C:\WINNT\system32\ntdll.dll
[…]
 775a0000 3ef274dc Jun 20 04:43:40 2003 C:\WINNT\system32\CLBCATQ.DLL
 10000000 439e49c1 Dec 13 05:10:41 2005 C:\WINNT\system32\metsrv.dll
 c30000 4435ac71 Apr 07 02:04:01 2006 C:\WINNT\system32\ext635732.dll
 SubSystemData: 0
 ProcessHeap: 70000
 ProcessParameters: 20000
 WindowTitle: 'C:\WINNT\system32\svchost.exe'
 ImageFile: 'C:\WINNT\system32\svchost.exe'
 CommandLine: 'C:\WINNT\system32\svchost -k rpcss'
 DllPath:
'C:\WINNT\system32;.;C:\WINNT\system32;C:\WINNT\system;C:\WINNT;C:\WINNT\system32;C:\WIN N
T;C:\WINNT\System32\Wbem'
 Environment: 0x10000

123

Windows memory forensics 93

Detailed information can be recovered with the help of
“!dlls” command.

 Base 0x77f80000 EntryPoint 0x00000000 Size 0x0007b000
 Flags 0x00004004 LoadCount 0x0000ffff TlsIndex 0x00000000
 LDRP_IMAGE_DLL
 LDRP_ENTRY_PROCESSED

[…]

0x000bfbb8: C:\WINNT\system32\CLBCATQ.DLL
 Base 0x775a0000 EntryPoint 0x7760f150 Size 0x00086000
 Flags 0x000c4004 LoadCount 0x00000001 TlsIndex 0x00000000
 LDRP_IMAGE_DLL
 LDRP_ENTRY_PROCESSED
 LDRP_DONT_CALL_FOR_THREADS
 LDRP_PROCESS_ATTACH_CALLED

0x0009caf0: C:\WINNT\system32\metsrv.dll
 Base 0x10000000 EntryPoint 0x10004a73 Size 0x00013000
 Flags 0x002c4004 LoadCount 0x00000002 TlsIndex 0x00000000
 LDRP_IMAGE_DLL
 LDRP_ENTRY_PROCESSED
 LDRP_DONT_CALL_FOR_THREADS
 LDRP_PROCESS_ATTACH_CALLED
 LDRP_IMAGE_NOT_AT_BASE

0x0008fa18: C:\WINNT\system32\ext635732.dll
 Base 0x00c30000 EntryPoint 0x00c36068 Size 0x00023000
 Flags 0x00284004 LoadCount 0x00000001 TlsIndex 0x00000000
 LDRP_IMAGE_DLL
 LDRP_ENTRY_PROCESSED
 LDRP_PROCESS_ATTACH_CALLED
 LDRP_IMAGE_NOT_AT_BASE

kd> !dlls

0x00071ec0: C:\WINNT\system32\svchost.exe
 Base 0x01000000 EntryPoint 0x010010b8 Size 0x00005000
 Flags 0x00005000 LoadCount 0x0000ffff TlsIndex 0x00000000
 LDRP_LOAD_IN_PROGRESS
 LDRP_ENTRY_PROCESSED

0x00071f30: C:\WINNT\system32\ntdll.dll

The last two DLLs are part of Meterpreter. They are easily
spotted by their names.

In this example, we went directly to the result. In a “real
life” investigation, identifying the faulting process is a much
more tedious task. Meterpreter libraries could also have been
renamed. Microsoft Debugging Tools quickly show their lim-
itations:

– Terminated processes are not easily available—and in
most cases, remote exploitation of a security flaw has
killed the faulting process.

– Complex tasks, such as enumerating libraries in each
process context, require the use of scripting. Microsoft
Debugging Tools PERL-like scripting language is very
awkward; a Python-like high-level interface would sim-
plify matters considerably.

Here is a sample script, drawn from [Dump Analysis]
website [13]:

$$
$$ Enumerating processes
$$

r $t0 = nt!PsActiveProcessHead

.for (r $t1 = poi(@$t0); (@$t1 != 0) & (@$t1 != @$t0); r $t1 = poi(@$t1))
{
 .catch {
 r? $t2 = #CONTAINING_RECORD(@$t1, nt!_EPROCESS, ActiveProcessLinks);
 .process @$t2
 .reload
 !peb
 }
}

This script is close to unintelligible to a non-specialist.
Note the “.catch” directive, which is required to avoid debug-
ger close in case of a script error.

This script outputs the following log:

123

94 N. Ruff

 ProcessParameters: 110000
 WindowTitle: '(null)'
 ImageFile: '\??\C:\WINNT\system32\csrss.exe'
 CommandLine: 'C:\WINNT\system32\csrss.exe ObjectDirectory=\Windows
SharedSection=1024,3072,512 Windows=On SubSystemType=Windows ServerDll=basesrv,1
ServerDll=winsrv:UserServerDllInitialization,3
ServerDll=winsrv:ConServerDllInitialization,2 ProfileControl=Off MaxRequestThreads=16'
 DllPath:
'C:\WINNT\system32;C:\WINNT\system32;C:\WINNT;C:\WINNT\System32\Wbem'
 Environment: 0x100000

[…]

kd> $$><script.txt
Implicit process is now 81841380
Loading Kernel Symbols
..
Loading User Symbols

Loading unloaded module list
.................
PEB at 00000000
 *** unable to read PEB
Implicit process is now 816a86c0
Loading Kernel Symbols
..
Loading User Symbols
...
Loading unloaded module list
.................
PEB at 7FFDF000
 InheritedAddressSpace: No
 ReadImageFileExecOptions: No
 BeingDebugged: No
 ImageBaseAddress: 48580000
 Ldr.Initialized: Yes
 Ldr.InInitializationOrderModuleList: 161f40 . 1627a0
 Ldr.InLoadOrderModuleList: 161ec0 . 162790
 Ldr.InMemoryOrderModuleList: 161ec8 . 162798
 Base TimeStamp Module
 48580000 3d5cebca Aug 16 14:10:50 2002 \SystemRoot\System32\smss.exe
 77f80000 3ef274dc Jun 20 04:43:40 2003 C:\WINNT\system32\ntdll.dll
 68010000 3ef27500 Jun 20 04:44:16 2003 C:\WINNT\System32\sfcfiles.dll
 SubSystemData: 0
 ProcessHeap: 160000
 ProcessParameters: 110000
 WindowTitle: '(null)'
 ImageFile: '\SystemRoot\System32\smss.exe'
 CommandLine: '\SystemRoot\System32\smss.exe'
 DllPath: 'C:\WINNT\System32'
 Environment: 0x100000
Implicit process is now 8168a140
Loading Kernel Symbols
..
Loading User Symbols
........
Loading unloaded module list
.................
PEB at 7FFDF000
 InheritedAddressSpace: No
 ReadImageFileExecOptions: No
 BeingDebugged: No
 ImageBaseAddress: 5FFF0000
 Ldr.Initialized: Yes
 Ldr.InInitializationOrderModuleList: 161f40 . 162fb0
 Ldr.InLoadOrderModuleList: 161ec0 . 163188
 Ldr.InMemoryOrderModuleList: 161ec8 . 163190
 Base TimeStamp Module
 5fff0000 3ef2750b Jun 20 04:44:27 2003 \??\C:\WINNT\system32\csrss.exe
 77f80000 3ef274dc Jun 20 04:43:40 2003 C:\WINNT\system32\ntdll.dll
 5ff90000 3ef274e9 Jun 20 04:43:53 2003 C:\WINNT\system32\CSRSRV.dll
 5ffa0000 3ef274e6 Jun 20 04:43:50 2003 C:\WINNT\system32\basesrv.dll
 5ffb0000 3ef27505 Jun 20 04:44:21 2003 C:\WINNT\system32\winsrv.dll
 77e10000 3ef274dc Jun 20 04:43:40 2003 C:\WINNT\system32\USER32.DLL
 7c4e0000 3ef274dc Jun 20 04:43:40 2003 C:\WINNT\system32\KERNEL32.DLL
 77f40000 3ef274dc Jun 20 04:43:40 2003 C:\WINNT\system32\GDI32.DLL
 SubSystemData: 0
 ProcessHeap: 160000

– It would have been nice to be able to dump each loaded
binary, for integrity checking purposes. Microsoft Debug-
ging Tools only offer basic primitives such as memory

read. A full dumper could be designed as a debugger plug-
in—however, writing plug-ins is a very tedious task given
the absence of documentation and the complexity of the

123

Windows memory forensics 95

API. Just imagine SDK samples not compiling cleanly
by default, requiring additional #defines.

kd> d 0x01000000
01000000 4d 5a 90 00 03 00 00 00-04 00 00 00 ff ff 00 00 MZ..............
01000010 b8 00 00 00 00 00 00 00-40 00 00 00 00 00 00 00 @.......
01000020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
01000030 00 00 00 00 00 00 00 00-00 00 00 00 c0 00 00 00
01000040 0e 1f ba 0e 00 b4 09 cd-21 b8 01 4c cd 21 54 68 !..L.!Th
01000050 69 73 20 70 72 6f 67 72-61 6d 20 63 61 6e 6e 6f is program canno
01000060 74 20 62 65 20 72 75 6e-20 69 6e 20 44 4f 53 20 t be run in DOS
01000070 6d 6f 64 65 2e 0d 0d 0a-24 00 00 00 00 00 00 00 mode....$.......

kd> d 0xc30000
00c30000 4d 5a 90 00 03 00 00 00-04 00 00 00 ff ff 00 00 MZ..............
00c30010 b8 00 00 00 00 00 00 00-40 00 00 00 00 00 00 00 @.......
00c30020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
00c30030 00 00 00 00 00 00 00 00-00 00 00 00 f8 00 00 00
00c30040 0e 1f ba 0e 00 b4 09 cd-21 b8 01 4c cd 21 54 68 !..L.!Th
00c30050 69 73 20 70 72 6f 67 72-61 6d 20 63 61 6e 6e 6f is program canno
00c30060 74 20 62 65 20 72 75 6e-20 69 6e 20 44 4f 53 20 t be run in DOS
00c30070 6d 6f 64 65 2e 0d 0d 0a-24 00 00 00 00 00 00 00 mode....$.......

We can conclude that Microsoft Debugging Tools are the
most “universal” tools, since they work with any version of
Windows. But they are also the hardest to use for forensic
analysis, as we will see by comparison to other tools.

5.2 Securitech challenge 2005

The [Securitech] challenge [29] is a renowned French secu-
rity challenge, held annually in June. In 2005, Kostya Kort-
chinsky submitted a memory analysis challenge as challenge
#16. The objectives were to recover the following elements
from a physical memory dump:

1. Microsoft security bulletin identifier of the exploited flaw
on the target (e.g., MS01-123);

2. source IP address of the attack;
3. Windows local administrator password on the target;

4. output of the “validnivo” program, that has been
uploaded and executed on the target.

The target was running Windows 2000 SP4.
This challenge was held in optimal conditions for the ana-

lyst, since the pagefile was deactivated and physical memory
was collected by the means of a VMWare snapshot. Physical
memory size was 256 MB.

However, the filesystem was not available as part of the
challenge, thus raising the bar for question #4. Rebuilding
the binary file was possible through the network queue or the
remaining memory of the terminated process.

[PTFinder] [45] gives the following information.

C:\>perl ptfinder_w2k.pl --nothreads --dotfile output-no-thread.dot ..\win2000pro.vmem

No. Type PID TID Time created Time exited Offset PDB Remarks
---- ---- ------ ------ ------------------- ------------------- ---------- ---------- --------------
 1 Proc 0 0x0046f930 0x00030000 Idle
 2 Proc 896 2005-06-22 09:00:53 2005-06-22 09:00:53 0x01573700 0x0a8c6000 validnivo.exe
 3 Proc 536 2005-06-22 08:59:25 2005-06-22 09:00:47 0x01574200 0x093e7000 IEXPLORE.EXE
 4 Proc 868 2005-06-22 08:57:24 0x01590cc0 0x071cf000 internat.exe
 5 Proc 848 2005-06-22 08:57:24 0x01593880 0x06d3f000 VMwareUser.exe
 6 Proc 836 2005-06-22 08:57:24 0x015954c0 0x06c73000 VMwareTray.exe
 7 Proc 752 2005-06-22 08:57:22 2005-06-22 08:57:46 0x015a8d00 0x06086000 userinit.exe
 8 Proc 760 2005-06-22 08:57:22 0x015a9a20 0x06092000 explorer.exe
 9 Proc 956 2005-06-22 08:58:48 0x01613d60 0x07de1000 cmd.exe
 10 Proc 620 2005-06-22 08:57:03 0x01627180 0x04ac5000 svchost.exe
 11 Proc 588 2005-06-22 08:57:02 0x0162c020 0x04b3c000 VMwareService.exe
 12 Proc 528 2005-06-22 08:57:02 0x01638b00 0x047b8000 mstask.exe
 13 Proc 504 2005-06-22 08:57:01 0x0164b020 0x04575000 regsvc.exe
 14 Proc 468 2005-06-22 08:57:00 0x0164e520 0x040dc000 svchost.exe
 15 Proc 436 2005-06-22 08:57:00 0x01653d60 0x04211000 SPOOLSV.EXE
 16 Proc 408 2005-06-22 08:56:59 0x0165bce0 0x040c9000 svchost.exe
 17 Proc 224 2005-06-22 08:56:56 0x0167eb80 0x03cd8000 lsass.exe
 18 Proc 212 2005-06-22 08:56:56 0x01680020 0x03d0f000 services.exe
 19 Proc 184 2005-06-22 08:56:54 0x016f1c40 0x03a97000 winlogon.exe
 20 Proc 164 2005-06-22 08:56:53 0x016f72a0 0x037d2000 csrss.exe
 21 Proc 140 2005-06-22 08:56:50 0x016fdce0 0x029c6000 smss.exe
 22 Proc 8 0x0188d520 0x00030000 System

123

96 N. Ruff

[PTFinder] [45] also gives a visual view of the process
tree, based on Parent PID (PPID). Grayed blocks are termi-
nated processes. VALIDNIVO.EXE process stands out, with
CMD.EXE as a parent, which in turn has LSASS.EXE as a
parent (which is extremely suspicious, since all user pro-
cesses are expected to be launched from EXPLORER.EXE).

The VALIDNIVO.EXE process and its Page Directory
have been found. Unfortunately, the process itself cannot be
reconstructed with the MemDump tool, since the Page Direc-
tory has been damaged.

MemDump will run successfully against parent
CMD.EXE with the following result:

123

Windows memory forensics 97

 0x4ad00000 0x12000 0x1000
 0x4ad01000 0x13000 0x1000
 0x4ad04000 0x14000 0x1000
[…]
 0x7ffde000 0x8c000 0x1000
 0x7ffdf000 0x8d000 0x1000
 0x7ffe0000 0x8e000 0x1000
 0xc0000000 0x8f000 0x1000
 0xc0001000 0x90000 0x1000
 0xc012b000 0x91000 0x1000
[…]

C:\> perl memdump.pl win2000pro.vmem 0x07de1000
Reading page directory at file offset 0x7de1000... done.

C:\> type 0x7de1000.map
 virt. addr. file offset size
------------ ------------ --------
 0x10000 0 0x1000
 0x20000 0x1000 0x1000
 0x12e000 0x2000 0x1000
 0x12f000 0x3000 0x1000
 0x130000 0x4000 0x1000
[…]

“0x7de1000.mem” file stores the whole committed mem-
ory of the CMD.EXE process, including executable file,
libraries, dynamically allocated memory and kernel related
data. The process could be wholly reconstructed from that
file, given the usual process dumping issues (such as Import
Table reconstruction).

It is quite easy to spot that this CMD.EXE process was
a “Metasploit Courtesy Shell” (default window title of a
Metasploit-created command shell).

C:\> strings -o 0x7de1000.mem | grep -i metasploit
5504:Metasploit Courtesy Shell (TM)
31696:Metasploit Courtesy Shell (TM)
37368:Metasploit Courtesy Shell (TM)
50844:Metasploit Courtesy Shell (TM) - v
29288:Metasploit Courtesy Shell (TM)

The MemParser tool, by Chris Betz, gives same results
than [PTFinder] [45].

 15 760 836 Yes VMwareTray.exe
 16 760 848 Yes VMwareUser.exe
 17 760 868 Yes internat.exe
 18 224 956 Yes cmd.exe
 19 0 29718073 No
 20 0 29718073 No
 21 0 29718073 No
In Windows 2000 Mode
Options:
#: Select a process
s: Show System Information
<enter>: Quit
18

956: cmd.exe selected:
1 Dump Process Memory (No System Memory Included) to Disk
2 Dump Process Memory (Including System Memory Space) to Disk
3 Dump Process Strings (No System Memory Included) to Disk
4 Dump Process Strings (Including System Memory Space) to Disk (Takes a long time)
5 Display Process Environment Information
6 Display all DLLs loaded by process
<enter>: quit
5
Process Environment Information:
 Executable File: C:\WINNT\system32\cmd.exe
 Command Line: cmd.exe
 Window Title: Metasploit Courtesy Shell (TM)
 Desktop Info: WinSta0\Default
 Shell Info:
 Runtime Data:
 Dll Path:
C:\WINNT\system32;.;C:\WINNT\system32;C:\WINNT\system;C:\WINNT;C:\WINNT\System32

C:\> memparser.exe win2000pro.vmem

MemParser v1.3 Chris Betz, (c) 2005
No process list loaded.
In Windows 2000 Mode
Options:
l: Load the process list
<enter>: Quit
l

Searching for processes in memory dump
00%--05%--10%--15%--20%--25%--30%--35%--40%--45%--50%--55%--60%--65%--70%--75%--80%--85% -
-90%--95%--100%
Enumerating process structures.
Sorting processes by PID
Checking for processes hidden by detachment from process link-list or processes no longer
active
Searching for all threads.
MemParser v1.3 Chris Betz, (c) 2005
Process List:
 Proc# PPID PID InProcList Name:
Threads:
 0 0 0 Yes Idle
 1 0 8 Yes System
 2 8 140 Yes smss.exe
 3 140 164 Yes csrss.exe
 4 140 184 Yes winlogon.exe
 5 184 212 Yes services.exe
 6 184 224 Yes lsass.exe
 7 212 408 Yes svchost.exe
 8 212 436 Yes SPOOLSV.EXE
 9 212 468 Yes svchost.exe
 10 212 504 Yes regsvc.exe
 11 212 528 Yes mstask.exe
 12 212 588 Yes VMwareService.e
 13 212 620 Yes svchost.exe
 14 752 760 Yes explorer.exe

123

98 N. Ruff

In the end, the rebuilding of VALIDNIVO.EXE process
has been worked out “by hand”.

Since the same binary data has been uploaded and exe-
cuted, every piece of data lies in memory at least twice. Given
a different alignment of network buffers and executed binary
file, it was possible to manually rejoin every piece of data.
The whole binary was about 10 pages of 4 KB each.

Code chunk #1 Code chunk #2

Executed image

Code chunk #1
(begin)

redaeh
PI

red aeh
PI

Code chunk #2
(start)

1# knuhc edo
C

) dne(

Uploaded image

1 memory page
(4,096 bytes)

This boundary is used to reorder
executed process pages

This challenge is a good example of “real life” issues when
dealing with dead processes.

5.3 DFRWS 2005 challenge

The DFRWS 2005 challenge principles were similar to the
Securitech Challenge. The Target system was also Windows
2000. The following questions were posed:

1. What hidden processes were running on the system, and
how were they hidden?

2. What other evidence of the intrusion can be extracted
from the memory dumps?

3. Why did “plist.exe” and “fport.exe” not work on the
compromized system?

4. Was the intruder specifically seeking Professor Goat-
boy’s research materials?

5. Did the intruder obtain the Professor’s research?
6. What computer was the intrusion launched from?
7. Is there any indication of who the intruder might be?

All user-contributed solutions are available on the web site
of [DFRWS] challenge [28]. The general techniques stay the
same, but the published papers are extremely detailed and
cannot be summed up easily in this article.

Two new tools were designed during the challenge:

– [MemParser] [49], available on SourceForge, which com-
bines PTFinder and MemDump functions in a single tool.
Written in C, this tool is much faster than equivalent
PERL scripts available from Andreas Schuster.

– [KnTTools] [58], which is commercially available today.

6 Counter measures

Memory forensics is still a very young field of research. How-
ever some people have already focused on counter-analysis
techniques.

The field of memory hiding techniques has been largely
explored by rootkit authors, since anti-rootkits are mostly
based on live memory scanning.

Hardware anti-analysis, such as NorthBridge reconfigura-
tion, has already been described before. Given the complexity
of the ever-evolving PC architecture, other hardware-based
anti-analysis techniques are expected to be seen in a near
future, such as firmware reprogramming or [SMM] code [37].

Software based anti-analysis techniques are numerous and
well-known:

– A trivial but still efficient technique is to block kernel
space communications, such as “\Device\PhysicalMe-
mory” or driver loading.

This will hamper most software-based analysis tools, such
as “dd”. Of course, a single forgotten entry point is enough
to bypass the protection. However it can still delay memory
collection, if the collection agent is not skilled enough or is
not expected to deviate from standard procedures.

123

Windows memory forensics 99

– In rootkit history, Direct Kernel Object Manipulation
(DKOM) is the oldest known hiding technique. It con-
sists in unlinking carefully chosen objects (such as an
EPROCESS token) from kernel-managed lists.

This technique is also the easiest to spot: a thread that does
not belong to any process is not common on a sane system.

– Another technique is to create a new thread in an existing
process.

In user space, EXPLORER.EXE and IEXPLORE.EXE are
common targets. In kernel space, NULL.SYS driver is often
targeted. Malicious code can be injected into a dynamically
allocated memory area or inside code cavities (which is
stealthier—see [5]).

– “Split TLBs” is another very powerful technique that is
available for code hiding.

This technique has been used for years by PaX protection
for Linux. The basic idea is to desynchronize code and data
Translation Lookaside Buffers (TLBs)—which are basically
caches for virtual address translation. When such caches are
not in sync, read and execute accesses at the same virtual
address will yield different results. A functional proof-of-
concept for Windows does exist: [Shadow Walker] [38].

With such a protection in place, “dd”-like tools are fooled:
read memory is not consistent with actually executed code.
The easiest way to get around the protection is to have a
driver flush caches before any page read operation.

Given all these advanced hiding techniques available “off
the shelf”, Meterpreter seems to be the easiest “memory
only” intrusion tool to detect.

7 Conclusion

Despite intense research activity, live physical memory col-
lection and analysis on Windows operating system is still in
early stages of practical deployment.

No 100% foolproof collection technique has been invented
to date—even hardware acquisition cards may be fooled by
data hiding. A tradeoff between data coherency, target avail-
ability, timeframe for memory acquisition has to be deter-
mined on a case-by-case basis.

Given a random, out-of-the-box system, options for the
collection operator are quite limited: access to
“PhysicalMemory” device, or CrashDump. Both require
driver installations on the target.

Publicly and freely available tools for the analyst are also
limited and require customization (e.g., hard coded

addresses). It is not generally known how advanced much
commercial and government-restricted tools are and what
capabilities they possess. The most “mysterious” tool of them
all may be [WOLF] (Windows OnLine Forensics) by Micro-
soft [57].

Nevertheless, memory analysis is still able to recover valu-
able information that would have been otherwise “wiped out”
by the classical “power off” forensics procedure. Known
available tools for “memory only” intrusion, such as the
Meterpreter, can be easily spotted.

It is our opinion that no forensics analyst may disregard
live memory analysis. It should be performed as a comple-
ment to traditional disk-based analysis and will become more
and more valuable as available tools grow more sophisticated
and forthcoming tools are run against older memory dumps.

References

Instrusion

1. Immunity [CANVAS]
http://www.immunitysec.com/products-canvas.shtml

2. Core [IMPACT]
http://www.coresecurity.com/products/coreimpact/index.php

3. [Syscall Proxying] http://www.coresecurity.com/files/files/11/
SyscallProxying.pdf

4. Metasploit’s [Meterpreter] http://www.metasploit.com/projects/
Framework/docs/meterpreter.pdf

5. Ultimate way to hide [rootkit] https://www.rootkit.com/newsread.
php?newsid=648

Cryptovirology

6. Fred [Raynal] “Malicious cryptography” Part one: http://
www.securityfocus.com/infocus/1865 Part two: http://www.
securityfocus.com/infocus/1866

7. Éric [Filiol] “Strong Cryptography Armoured Computer Viruses
Forbidding Code Analysis: the Bradley virus” Proceedings of the
14th EICAR Conference, 2005 http://papers.weburb.dk/archive/
00000136/01/eicar05final.pdf

8. [Malicious Cryptography] http://www.cryptovirology.com/

Blogs

9. Andreas [Schuster] http://computer.forensikblog.de/en/
10. Windows Incident Response http://windowsir.blogspot.com/
11. Mariusz Burdach http://forensic.seccure.net/
12. George M. [Garner] http://users.erols.com/gmgarner/forensics/
13. [Dump Analysis] http://www.dumpanalysis.org/
14. Alexandre Garaud http://c4rtman.blogspot.com/

Documentations

15. [Pentium] Intel� 64 and IA-32 Architectures Software Developer’s
Manuals http://www.intel.com/products/processor/manuals/
index.htm

123

http://www.immunitysec.com/products-canvas.shtml
http://www.coresecurity.com/products/coreimpact/index.php
http://www.coresecurity.com/files/files/11/SyscallProxying.pdf
http://www.coresecurity.com/files/files/11/SyscallProxying.pdf
http://www.metasploit.com/projects/Framework/docs/meterpreter.pdf
http://www.metasploit.com/projects/Framework/docs/meterpreter.pdf
https://www.rootkit.com/newsread.php?newsid=648
https://www.rootkit.com/newsread.php?newsid=648
http://www.securityfocus.com/infocus/1865
http://www.securityfocus.com/infocus/1865
http://www.securityfocus.com/infocus/1866
http://www.securityfocus.com/infocus/1866
http://papers.weburb.dk/archive/00000136/01/eicar05final.pdf
http://papers.weburb.dk/archive/00000136/01/eicar05final.pdf
http://www.cryptovirology.com/
http://computer.forensikblog.de/en/
http://windowsir.blogspot.com/
http://forensic.seccure.net/
http://users.erols.com/gmgarner/forensics/
http://www.dumpanalysis.org/
http://c4rtman.blogspot.com/
http://www.intel.com/products/processor/manuals/index.htm
http://www.intel.com/products/processor/manuals/index.htm

100 N. Ruff

16. [Debugging Tools] for Windows http://www.microsoft.com/whdc/
devtools/debugging/default.mspx

17. \Device\[PhysicalMemory] http://technet2.microsoft.com/
WindowsServer/en/library/e0f862a3-cf16-4a48-bea5-
f2004d12ce351033.mspx?mfr=true

18. [DMP] File Structure http://computer.forensikblog.de/en/2006/
03/dmp_file_structure.html

19. [CrashOnCtrlScroll] Windows feature lets you generate a memory
dump file by using the keyboard http://support.microsoft.com/kb/
244139

20. [Q254649] Overview of memory dump file options for Windows
Server 2003, Windows XP, and Windows 2000 http://support.
microsoft.com/kb/254649

21. [Q237740] How to overcome the 4,095 MB paging file size limit
in Windows http://support.microsoft.com/kb/237740

22. [Q886429] What to consider when you configure a new location
for memory dump files in Windows Server 2003 http://support.
microsoft.com/kb/886429

23. [IOMMU] http://en.wikipedia.org/wiki/IOMMU
24. Virtualization Services [Market] to Reach $11.7 Billion by 2011,

According to IDC
http://www.idc.com/getdoc.jsp?containerId=prUS20778407

25. [SMSS] Session Manager SubSystem http://en.wikipedia.org/
wiki/Session_Manager_Subsystem Mark E. Russinovich and
David A. Solomon

26. [Windows Internals], 4th edn. http://www.microsoft.com/mspress/
books/6710.aspx

27. [Upper Memory Area] Memory dumping over FireWire—UMA
issues http://ntsecurity.nu/onmymind/2006/2006-09-02.html

Challenges

28. [DFRWS] 2005 Challenge http://www.dfrws.org/2005/challenge/
index.html

29. [Securitech] 2005, Challenge 16 http://www.challenge-securitech.
com/archives/2005/displaylevel.php?level=21

Conference Materials

30. Remote [Library Injection] http://www.nologin.org/Downloads/
Papers/remote-library-injection.pdf

31. [Tribble] “A Hardware-Based Memory Acquisition Procedure for
Digital Investigations” http://www.digital-evidence.org/papers/
tribble-preprint.pdf

32. [iPod] “Firewire—all your memory are belong to us” http://md.
hudora.de/presentations/firewire/2005-firewire-cansecwest.pdf

33. Joanna [Rutkowska] “Beyond The CPU: Defeating Hard-
ware Based RAM Acquisition Tools (Part I: AMD case)”
http://invisiblethings.org/papers/cheating-hardware-memory-
acquisition-updated.ppt

34. David [Piegdon] and Lexi [Pimenidis] “Targeting Phys-
ically Addressable Memory” http://david.piegdon.de/papers/
SEAT1394-svn-r432-paper.pdf

35. [Adam Boileau] “Hit by a Bus: Physical Access Attacks
with Firewire” http://www.security-assessment.com/files/
presentations/ab_firewire_rux2k6-final.pdf

36. Joanna Rutkowska [Subverting Vista Kernel]
http://invisiblethings.org/papers/joanna%20rutkowska%20-%
20subverting%20vista%20kernel.ppt

37. Loïc Duflot [SMM] Security Issues Related to Pentium System
Management Mode http://cansecwest.com/slides06/csw06-duflot.
ppt

38. Sherri Sparks, Jamie Butler [Shadow Walker]: Raising the Bar for
Rootkit Detection http://www.blackhat.com/presentations/bh-jp-
05/bh-jp-05-sparks-butler.pdf

39. Bradley Schatz [BodySnatcher]: Towards reliable volatile memory
acquisition by software https://www.dfrws.org/2007/proceedings/
p126-schatz.pdf

40. Andreas Schuster [DFRWS 2006] Searching for processes and
threads in Microsoft Windows memory dumps http://dfrws.org/
2006/proceedings/2-Schuster.pdf

Specialized companies

41. [Komoku] http://www.komoku.com/
42. [PicoComputing] http://www.picocomputing.com/
43. [Lexfo] http://www.lexfo.fr/

Free tools

44. [LiveKD] http://www.microsoft.com/technet/sysinternals/
SystemInformation/LiveKd.mspx

45. [PTFinder] 0.3.0 http://computer.forensikblog.de/en/2006/09/
ptfinder_0_3_00.html

46. [Volatools] http://www.komoku.com/forensics/basic.html
47. [SystemDump] http://citrite.org/blogs/dmitryv/2006/09/12/new-

systemdump-tool/
48. [FATKit] http://www.4tphi.net/fatkit/
49. [MemParser] http://sourceforge.net/projects/memparser
50. [pmodump.pl] and the Truman Project http://www.secureworks.

com/research/tools/truman.html

Commercial and or private forensics tools

51. Guidance Software: [EnCase] Forensics
http://www.guidancesoftware.com/products/ef_index.asp

52. The [Sleuth Kit] & Autopsy: Digital Investigation Tools for Linux
and other Unixes http://www.sleuthkit.org/

53. [Disk Explorer] http://www.runtime.org/
54. [Forensic Toolkit] http://www.accessdata.com/catalog/partdetail.

aspx?partno=11000
55. [X-Ways Forensics] http://www.x-ways.net/forensics/index-m.

html
56. [iLook] http://www.ilook-forensics.org/
57. [WOLF] http://blogs.technet.com/robert_hensing/archive/2005/

01/17/354471.aspx
58. [KnTTools] http://users.erols.com/gmgarner/KnTTools/

Other software

59. [VMWare] http://www.vmware.com/
60. Microsoft [Virtual PC] http://www.microsoft.com/windows/

products/winfamily/virtualpc/default.mspx

123

http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://www.microsoft.com/whdc/devtools/debugging/default.mspx
http://technet2.microsoft.com/WindowsServer/en/library/e0f862a3-cf16-4a48-bea5-f2004d12ce351033.mspx?mfr=true
http://technet2.microsoft.com/WindowsServer/en/library/e0f862a3-cf16-4a48-bea5-f2004d12ce351033.mspx?mfr=true
http://technet2.microsoft.com/WindowsServer/en/library/e0f862a3-cf16-4a48-bea5-f2004d12ce351033.mspx?mfr=true
http://computer.forensikblog.de/en/2006/03/dmp_file_structure.html
http://computer.forensikblog.de/en/2006/03/dmp_file_structure.html
http://support.microsoft.com/kb/244139
http://support.microsoft.com/kb/244139
http://support.microsoft.com/kb/254649
http://support.microsoft.com/kb/254649
http://support.microsoft.com/kb/237740
http://support.microsoft.com/kb/886429
http://support.microsoft.com/kb/886429
http://en.wikipedia.org/wiki/IOMMU
http://www.idc.com/getdoc.jsp?containerId=prUS20778407
http://en.wikipedia.org/wiki/Session_Manager_Subsystem
http://en.wikipedia.org/wiki/Session_Manager_Subsystem
http://www.microsoft.com/mspress/books/6710.aspx
http://www.microsoft.com/mspress/books/6710.aspx
http://ntsecurity.nu/onmymind/2006/2006-09-02.html
http://www.dfrws.org/2005/challenge/index.html
http://www.dfrws.org/2005/challenge/index.html
http://www.challenge-securitech.com/archives/2005/displaylevel.php?level=21
http://www.challenge-securitech.com/archives/2005/displaylevel.php?level=21
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.nologin.org/Downloads/Papers/remote-library-injection.pdf
http://www.digital-evidence.org/papers/tribble-preprint.pdf
http://www.digital-evidence.org/papers/tribble-preprint.pdf
http://md.hudora.de/presentations/firewire/2005-firewire-cansecwest.pdf
http://md.hudora.de/presentations/firewire/2005-firewire-cansecwest.pdf
http://invisiblethings.org/papers/cheating-hardware-memory-acquisition-updated.ppt
http://invisiblethings.org/papers/cheating-hardware-memory-acquisition-updated.ppt
http://david.piegdon.de/papers/SEAT1394-svn-r432-paper.pdf
http://david.piegdon.de/papers/SEAT1394-svn-r432-paper.pdf
http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
http://www.security-assessment.com/files/presentations/ab_firewire_rux2k6-final.pdf
http://invisiblethings.org/papers/joanna%20rutkowska%20-%20subverting%20vista%20kernel.ppt
http://invisiblethings.org/papers/joanna%20rutkowska%20-%20subverting%20vista%20kernel.ppt
http://cansecwest.com/slides06/csw06-duflot.ppt
http://cansecwest.com/slides06/csw06-duflot.ppt
http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf
http://www.blackhat.com/presentations/bh-jp-05/bh-jp-05-sparks-butler.pdf
https://www.dfrws.org/2007/proceedings/p126-schatz.pdf
https://www.dfrws.org/2007/proceedings/p126-schatz.pdf
http://dfrws.org/2006/proceedings/2-Schuster.pdf
http://dfrws.org/2006/proceedings/2-Schuster.pdf
http://www.komoku.com/
http://www.picocomputing.com/
http://www.lexfo.fr/
http://www.microsoft.com/technet/sysinternals/SystemInformation/LiveKd.mspx
http://www.microsoft.com/technet/sysinternals/SystemInformation/LiveKd.mspx
http://computer.forensikblog.de/en/2006/09/ptfinder_0_3_00.html
http://computer.forensikblog.de/en/2006/09/ptfinder_0_3_00.html
http://www.komoku.com/forensics/basic.html
http://citrite.org/blogs/dmitryv/2006/09/12/new-systemdump-tool/
http://citrite.org/blogs/dmitryv/2006/09/12/new-systemdump-tool/
http://www.4tphi.net/fatkit/
http://sourceforge.net/projects/memparser
http://www.secureworks.com/research/tools/truman.html
http://www.secureworks.com/research/tools/truman.html
http://www.guidancesoftware.com/products/ef_index.asp
http://www.sleuthkit.org/
http://www.runtime.org/
http://www.accessdata.com/catalog/partdetail.aspx?partno=11000
http://www.accessdata.com/catalog/partdetail.aspx?partno=11000
http://www.x-ways.net/forensics/index-m.html
http://www.x-ways.net/forensics/index-m.html
http://www.ilook-forensics.org/
http://blogs.technet.com/robert_hensing/archive/2005/01/17/354471.aspx
http://blogs.technet.com/robert_hensing/archive/2005/01/17/354471.aspx
http://users.erols.com/gmgarner/KnTTools/
http://www.vmware.com/
http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx
http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx

	Windows memory forensics
	Abstract
	Introduction
	Live memory collection
	Hardware-based acquisition
	Firewire bus
	``dd''& ``nc'' tools
	``CrashDump'' (keyboard-triggered)
	``CrashDump'' (EMS-triggered)
	``Snapshot''
	Pagefile issues
	Hibernation file
	Alternative OS injection
	Deeper into the CrashDump
	Dynamic reconfiguration of keyboard driver
	Issue #1: reloading the driver
	Issue #2: unsupported USB keyboards
	CrashDump configuration
	Pagefile configuration
	Windows management instrumentation (WMI)-based configuration
	Memory analysis tools
	Virtual memory reconstruction
	Post-intrusion forensics samples
	Meterpreter evidence
	Securitech challenge 2005
	DFRWS 2005 challenge
	Counter measures
	Conclusion
	Instrusion
	Cryptovirology
	Blogs
	Documentations
	Challenges
	Conference Materials
	Specialized companies
	Free tools
	Commercial and or private forensics tools
	Other software

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

