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Abstract A malware mutation engine is able to transform
a malicious program to create a different version of the pro-
gram. Such mutation engines are used at distribution sites or
in self-propagating malware in order to create variation in
the distributed programs. Program normalization is a way to
remove variety introduced by mutation engines, and can thus
simplify the problem of detecting variant strains. This paper
introduces the “normalizer construction problem” (NCP),
and formalizes a restricted form of the problem called
“NCP=”, which assumes a model of the engine is already
known in the form of a term rewriting system. It is shown that
even this restricted version of the problem is undecidable. A
procedure is provided that can, in certain cases, automatically
solve NCP= from the model of the engine. This procedure is
analyzed in conjunction with term rewriting theory to create
a list of distinct classes of normalizer construction problems.
These classes yield a list of possible attack vectors. Three
strategies are defined for approximate solutions of NCP=,
and an analysis is provided of the risks they entail. A case
study using the W32.Evol virus suggests the approximations
may be effective in practice for countering mutated malware.

1 Introduction

Malicious programs—worms, viruses, Trojans and the like—
are collectively known as “malware” [27]. In 1989, Cohen
[10] anticipated that self-mutating malware would one day
be created: the malicious program would be able to transform
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its own code so as to create variants of itself. Six years later,
such self-mutating viruses began to appear [25]. Variants cre-
ated by such malware might still behave like the original
program, but their code could be different. For example, an
early mutating virus called W95.RegSwap rewrote itself so
that use of one general-purpose register was swapped for
use of another [25]. More sophisticated program-to-program
transformations have been used over the years, including sub-
stitution of equivalent code, insertion of irrelevant instruc-
tions, and reordering of code without ordering dependencies
[30]. Apart from being carried by self-propagating malware,
mutation engines can also be used at hosts distributing non-
propagating malware.

Mutation was introduced in order to evade malware detec-
tors. The variety introduced by the mutation has the potential
to create tremendous detection challenges. In particular, if a
detection technique relies on recognizing some pattern of
features, and the mutation engine serves to modify these fea-
tures, the detector can be defeated. For instance, if a detec-
tor relies on matching a “signature” (an identifying pattern)
of bytes or system calls, then the mutating transformations
may alter those bytes or system calls such that the pattern no
longer matches. An approach to counteracting the effects of
mutation is to normalize the input programs in order to try
to remove the variety that challenges the pattern matching.
Arguably, the “perfect” normalizer would transform all vari-
eties of any family to a single form. We call the problem of
creating a normalizer for a family of variants the “normalizer
construction problem” (NCP).

Several different malware normalizers have been created
[21,9,6]. To date, these efforts have proceeded without a
theoretical basis from which to understand the prospects
for success. The situation is troubling because it is already
suspected, via Chess and White [7], that perfect detection
of all variants of a mutated malware family is impossible
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even when one is provided a sample variant from the family.
However, perfect normalizers are possible if one restricts
conditions sufficiently well. As a simple existence proof,
consider that perfect normalization is straightforward for
self-mutating programs such as W95.RegSwap mentioned
above. So important questions are: (1) can we define useful
classes of normalization problems for sets of variants created
by mutation engines?, (2) is perfect normalization possible in
pragmatically interesting cases?, and (3) what can be done for
classes that provably cannot be perfectly normalized? This
paper addresses all three of these questions, and introduces
a new approach to generating normalizers from models of
mutation engines.

A restricted version of the NCP is formalized using the the-
ory of term rewriting [3]. This restricted problem is denoted
“NCP=”, and is a restriction in two ways. First, it assumes
one has an accurate model of the mutation engine in the
form of a term rewriting system. In the unrestricted nor-
malization problem, such a model is not assumed: it must
either be unnecessary, or else it must first be created—by
inferring the transformations from multiple samples, reverse-
engineering the rules from the engine itself, etc. Second,
NCP= is restricted to those cases where the rewrite rules
are all semantics-preserving. Solving NCP= involves creat-
ing a TRS that induces the same equivalence classes as the
self-mutating program such that it is convergent, i.e., that the
normalizer is terminating and confluent. The theory of term
rewriting is used to show that NCP= is undecidable.

Because NCP= is undecidable, no procedure can exist
which is guaranteed to halt and produce a correct normal-
izing transformer. In practical terms, however, all hope need
not be lost. Procedures may be defined that solve it in some
circumstances, so it may be practically important to have
such procedures at hand. A two-phase normalizer construc-
tion procedure is defined that will work for certain classes of
self-mutating programs. It is based on two well-known term
rewriting procedures. A case study using the well-known
W32.Evol virus demonstrates that this procedure can fail in
realistic circumstances, while also demonstrating that is nev-
ertheless possible to construct perfect normalizers—in our
case by manual introduction of suitable rules that can be said
to “complete” the rule set with respect to the normalization
engine.

Three approximation approaches to NCP= are introduced.
Approximate solutions may be desirable in cases where it is
impossible or impractical to either construct an exact nor-
malizer, or to correctly evaluate conditions in a conditional
normalization rule system. The approximation approaches
are: (1) using “incomplete” rule sets, (2) using a priority
scheme, and (3) ignoring conditions in conditional normali-
zation rule sets. A second part of the case study on W32.Evol
demonstrates that the NCP= problem is not so restricted
that it is uninteresting in practice, shows the problem of

approximation is practically relevant, and illustrates the
promise of the priority-based approach to approximation.

Section 2 provides background on the NCP, and formal-
izes the NCP= using term rewriting theory. The section also
introduces the fallible two step procedure for solving NCP=.
Section 3 introduces the approximation solution strategies.
Section 4 describes a case study using the W32.Evol virus
which sought to evaluate the general feasibility of the term-
rewriting based normalization approach, and to examine the
efficacy of the different approximations. Section 5 documents
relations to other work. Conclusions are drawn in Sect. 6.

2 The problem of normalizing mutants

Self-mutating malware may be conceptually decomposed
into two components: a mutation engine, which performs
program-to-program transformations, and a payload, which
is the body of code that implements the malicious behavior.
Many malicious programs are structurally decoupled in this
way, since the separation makes it possible to easily reuse a
given mutation engine by attaching it to a different payload.
The scope of this paper are those mutation engines that trans-
form the malware so that the program code itself changes;
these were called “metamorphic” by Ször and Ferrie [30].
Existing mutation engines have targeted their attacks on mal-
ware detectors that utilize signatures defined over the pro-
gram’s form—i.e., its syntax. The engines modify the code
bodies during replication with the intention of ensuring that
signatures cannot be constructed which match all variants the
engine can produce. Following Cohen [10], we call the set of
all such variants the “viral set”. For such malware, multiple
signatures would be required, as illustrated in Fig. 1a. When
the number of signatures required grows sufficiently large,
the signature-based methods may fail to provide adequate
detection rates for the entire viral set. In the worst case an
unbounded number of signatures are required to match all
possible variants.

Several different approaches have been proposed for dete-
cting mutating malware. One such approach attempts to
detect variants within the viral set by matching some facet
that may not be easily disguised by mutations. Perhaps the
best known example is the use of signatures based on some
type of behavior rather than form. The merit of this approach
stems from the empirical fact that current mutation engines
tend to be behavior-preserving, that is, they modify their
form while keeping the behavior constant or nearly con-
stant (at least, when considered at some level). Signatures
defined on behavior may be matched either by dynamic or
static analysis. Dynamic analysis frequently entails emulat-
ing or tracing the programs while looking for telltale call
sequences or data use [29]. Indeed, emulation-based signa-
ture matching was one of the techniques that commercial
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Fig. 1 Intended effect of normalization: pattern space simplification

detectors used to detect W32.Evol, a parasitic self-mutating
virus [29]. Published static techniques for matching behavior
include those by Singh et al. [26], Christodorescu et al. [8],
Kruegel et al. [19], and Kinder et al. [17]. While behavior-
based signature detection has been successful, it also has its
share of problems. Regardless of whether it is done statically
or dynamically, it can be costly, error-prone, and introduces
its own set of vulnerabilities and limitations.

A second approach to detecting mutating malware is to
use more powerful pattern matching to define and match the
signatures. The intent is to permit the use of more general sig-
natures, namely ones that match any variant in the viral set.
This strategy was used to catch early self-mutating malware.
In the case of W95.RegSwap, for example, certain malware
detectors were enhanced to use wild-card based matching,
allowing them to match variants regardless of their specific
assignment of registers [30]. While the benefits of more pow-
erful matching are clear, adding the power can introduce its
own set of problems also. These include: increased cost of
matching, and difficulty in specifying patterns that precisely
match all variants in the viral set, but no other programs.

A third approach to detecting mutating malware is to
try to normalize the input programs. Because normalization
removes unimportant variations, it may allow less powerful
pattern matching to be (or remain) effective. As illustrated in
Fig. 1b, the goal is to shrink the effective input space—from
the original viral set to a smaller set—thereby decreasing the
variations a detector needs to consider during recognition.
The normalization approach to matching self-mutating mal-
ware was exemplified by the methods of Lakhotia et al. [21].
As a proof-of-concept, Lakhotia et al. developed a “generic”
normalizer for C programs—i.e., one not tuned to any par-
ticular mutation engine. It removed variations via program
transformations such as expression reshaping and constant
propagation. These are techniques common to optimizing
compilers. It also employed the strategy of imposing order
on unordered items, such as reordering instructions in a fixed
way. While this approach was shown to be unable to reduce all

variants in a family to a single form, Lakhotia et al. reported
a massive reduction in the number of possible normalized
forms: from 10183 possible forms to 1020. Other malware
normalization methods have also been proposed using com-
piler-like transformations, including Christodorescu et al. [9]
and Bruschi et al. [6]. None of these approaches required—
nor took advantage of—knowledge about the specific muta-
tion engine producing the variants.

Though these normalizers are important first steps, ques-
tions arise as to how well these approaches will fare. It might
be hoped that the transformations will collectively result in
only a few normal forms for all the variants. But what guaran-
tees can be had, and in what conditions can a “perfect” nor-
malizer be constructed? Exploration of such questions has
been limited to either mathematical analysis of the reduction
in space of variants [21], or empirical studies of pragmatic
effectiveness using limited case studies [21,9,6]. No theo-
retical analyses of the problem have been able to answer the
key open questions: (a) When are perfect normalizers possi-
ble? (b) How can they be constructed? and (c) If they are not
possible then what approximate solutions are feasible?

The remainder of this section introduces key problems
in normalizing self-mutating programs, and formalizes the
NCP= using term rewriting theory. Required definitions from
term rewriting theory are recalled, and a two-step procedure
is defined that can be used to try to solve the NCP=. Its possi-
ble application is discussed, and a selection of relationships
between NCP= and other normalization problems are listed.

2.1 How not to “reverse” a transformation set

The normalizers of Lakhotia et al. [21] and Bruschi et al. [6]
applied “generic” transformations in the sense that they are
not tailored specifically for a given mutation engine. Unfortu-
nately, at the moment it is not clear that they would
normalize variants to a single normal form. Perhaps the
generality of the transformation set is a liability? One
might wonder whether it is possible to correctly normalize
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programs by choosing transformations tailored to an already-
known mutation engine. While such normalizers would not
provide a general solution, they might still be practical due to
the limited number of engines needing normalizers. Powerful
mutation engines have been written by few authors, are thus
rare, and are not known to evolve rapidly [29]. This is likely
due, in part, to the difficulty even experts have in design-
ing and writing correct program transformers (cf. the exten-
sive work on compiler verification [13]). So while mutation
engine-specific normalizers would not provide a universal
solution, they may nonetheless form a useful part of a prac-
tical defense regime.

If one already knows the transformations a mutation
engine uses, perhaps the naive approach of simply “revers-
ing” all the transformations would yield an effective normal-
izer? That is, if A→ B appears in the mutation engine (i.e.,
statements A are transformed into statements B), could one
not create an effective normalizer simply by applying B → A
for all such rules? So, for example, suppose P is a self-mutat-
ing program, M is the mutation engine of P , and S(P) is
the set of possible variants of P that can be created through
transformations of M . The essence of the naive approach is:
since any element in S(P) must have been created through
some sequence of transformations T = m1, m2, . . . , mk , if
one reverses the transformations that were applied then one
would “undo” the variations, yielding the original program
P again. That is, the idea is that the inverse of T , namely
T R = mk, mk−1, . . . , m1 could be performed by revers-
ing the transformations of M . While the scheme may appear
prima facie sound, and it might be made to work well enough
in select circumstances [20], it will not work in general. The
problem is that reversing the direction of the transformations
of M fails to guarantee correct reversal of T .

The limitation of this naive approach is illustrated using
an example subset of transformations selected from the virus
W32.Evol. The example selection is Fig. 2. The disassembly
of the parent’s code (in IA32 code) is shown in the left col-
umn and the corresponding transformed offspring code in the
right column. The parts of the code changed in the offspring
are shown in bold face. The transformation shown in Fig. 2a
replaces the “mov [edi], 0x04” instruction with a code
segment that saves the value of register ecx by pushing it onto
the stack, moves 0x04 into ecx, and then into the memory
location pointed to by edi, and finally restores the previous
value of ecx by popping it from the stack back into ecx. The
transformation shown in Fig. 2b, replaces the “push 0x04”
instruction with a code segment that moves 0x04 into reg-
ister eax, which it then pushes onto the stack. The transfor-
mation shown in Fig. 2c inserts “mov eax, 0x09” which,
because of the specifics of W32.Evol, is a “junk” or irrelevant
statement—i.e. one that has no effect on the computation.
Note that none of these transformations will affect program
semantics in the ordinary sense (i.e., ignoring such nuances as

Parent Offspring (transformed) Brief Description

push eax

push eax push ecx Use temporary register

(a)

mov [edi], 0x04 mov ecx, 0x04 to transfer immediate value

jmp label mov [edi], ecx

pop ecx

jmp label

push 0x04 mov eax, 0x04 Immediate push turned into
(b)

mov eax, 0x09 push eax push through dead register

jmp label mov eax, 0x09

jmp label

mov eax, 0x04 mov eax, 0x04

(c)

push eax push eax “Junk” code insertion

jmp label mov eax, 0x09

jmp label

Fig. 2 Three sample transformations from W32.Evol

new memory faults due to increase in code size, measurable
differences in performance, self-inspecting or modifying
code, etc.).

Inspection of the transformations shown in Fig. 2 reveals
some problems that can arise if one naively applies the trans-
formations in reverse. Consider, for instance, the hypothetical
sequence

mov eax, 0x04 ; push eax ; mov eax, 0x09

which can be part of the output of either of the transforma-
tions (b) or (c) from Fig. 2. The normalizer must be able to
decide which of transformations (b) or (c) to apply in reverse;
that is, it must correctly decide which of the transformations
created the observed code. If it cannot, the inverse of T will
not be created, and the normalization may be incorrect. More
specifically, if it applies the wrong transformation then it may
either transform a non-variant into a variant, or transform a
variant into a non-variant. In such cases, no one unique nor-
malized form is guaranteed for all variants. For example, if
the “mov eax, 0x09” in the hypothetical sequence is not a
junk instruction, then applying transformation (c) in reverse
removes a non-junk instruction, which yields a different pro-
gram, which means it should not be in S(P), and the transfor-
mation is incorrect. Similar transformation choice problems
can also arise when transformations must occur in a specific
order.

The above issues of transformation selection, ordering,
unique normalized forms, and ensuring equivalence are dealt
with elegantly by the theories of term rewriting systems.
Using these, it is possible to formalize NCP= terms of con-
structing what is called a “convergent rule set” that satisfies
specific equivalence properties.
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add(1, 1) → 2 ; add(1, 2) → 3 ; add(0, 3) → 3

Fig. 3 Sample rewrite rules

2.2 NCP= as a term rewriting problem

Some definitions and results from term rewriting are required.
The reader is referred to Baader et al. [3] for detailed expla-
nations.

Terms, subterms, atomic, and ground.
For appropriately chosen domains, terms are constants,
variables, functions, or functions on terms. The term
multiply(2, add(3, 1)), for example, is built using the
binary functions add and multiply on integers and the
constant integers 1, 2, and 3. A term t may contain other
terms; these are subterms of t . An atomic term is one
that does not contain subterms. A ground term is one that
does not contain variables.

Term rewriting system (TRS).
A term rewriting system is a set of rewrite rules. A rewrite
rule s → t maps term s to term t . A conditional TRS is
one that has conditions attached to its rules. The notation
p|R means that rule R may be applied only when con-
dition p holds. Figure 3 shows a simple example of an
unconditional TRS.

Reduction relation (→T ).
A TRS T induces a relation→T on terms, which is also
denoted→ where clear from the context. Given terms s
and t ,→T is defined as follows: s →T t holds iff, for
some rewrite rule s′ → t ′, s has, as a subterm, an instance
of s′ which, if replaced with its corresponding instance
of t ′, turns s into t .

Equivalence relation (
�←→).

The → relation on terms induces an equivalence rela-

tion
�←→ defined by the reflexive symmetric transitive

closure of→.
�←→ partitions the set of terms into equiv-

alence classes. Given a TRS T , [t]T denotes the equiva-

lence class of term t under
�←→.

Normal form.
If a term t is not related to any other term under→T , then
t is said to be in normal form with respect the rewriting
system T . NormT (x) is the set of terms in [x]T which are
in normal form. For the TRS in Fig. 3, the term add(2, 2)

is in normal form, and add(1, add(1, 1))→T add(1, 2)

by application of the rule mapping add(1, 1) to 2.
Termination.

A TRS T is terminating if there exists no infinite chain
of reductions (t1 → t2→ t3 · · · ).

Confluence.
Let x, y and z denote arbitrary terms. Suppose there is a

sequence of applications of rewriting rules that reduces
x to y and another sequence that reduces x to z. The sys-
tem is confluent if every such y and z are joinable. Two
terms y and z are said to be joinable if there is a sequence
of applications of rewriting rules that reduces y and z to
some term w. Confluence of a TRS is, in general, unde-
cidable, although it is decidable for finite, terminating
TRSs [3]. In the general case, the problem of converting
an arbitrary TRS into an equivalent one that is confluent
is undecidable regardless of whether it is conditional or
not.

Convergence.
A TRS is convergent if it is confluent and terminating.
If a TRS T is convergent then it can be used to decide
membership in any of the equivalence classes defined by

�←→. This can be done by repeatedly applying the rules
of T (in arbitrary order) to any given input x ; this process
is guaranteed to result in the normal form that is unique
to x’s equivalence class. Testing membership in class c
then becomes a matter of comparing the normal form of
x to the normal form associated with all members of class
c: if the normal forms of the two terms differ, they are in
different equivalence classes.

For a certain class of semantics-preserving mutation engi-
nes, it will be possible to use a TRS to model the transfor-
mation behavior of the engine. This can be done for ordinary
machine languages by modeling instructions as terms that
consist of a function applied to one or more variables or
constants. The function is the operation (mov, push, etc.,
complete with mode of the operation) and the variables and
constants are the registers and immediate operands. A pro-
gram (or a code segment) is a term obtained by applying a
concatenate function (written “;”, or using a new line) to
such terms. We consider only those engines that are, in fact,
semantics-preserving.

This formalization of the mutation engine closely matches
the prior formalization of viral set constructors via formal
grammars by Zuo et al. [15]. In their formulation, the viral set
is generated by an unconditional rewriting rule set that trans-
forms strings of both terminal and non-terminal characters (as
compared to term rewriting entities of functions, variables,
and constants). Naturally, real mutation engines always trans-
form terminal strings to other terminal strings. Our approach
models the mutation engine as first mapping terminal sym-
bols to non-terminals, i.e., from concrete specific registers
or constants to non-terminals. A similar approach in the for-
mal language formalization would be to assume rules that
transform terminals to non-terminals.

Figure 4 gives an example of how a transformation of a
mutation engine may be formalized as a rewrite rule. The
rule in the figure is not a conditional one: its left hand side, if
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mov (reg1, imm) −→
push (reg2);
mov (reg2, imm);
mov (reg1, reg2);
pop (reg2)

Fig. 4 Code substitution rewrite rule

interpreted as a code segment, is semantically equivalent to
its right hand side, no matter its context. This is also true for
the first rule of Fig. 2. Other rewrite rules may need to be con-
ditional in order to accurately model the condition-sensitivity
of the mutation engine’s transformations. Examples of these
are shown in Fig. 2b and c. Conditions are written as predi-
cates to the left of the left hand side. For simplicity, we will
henceforth write rules in assembly language with embedded
term variables, rather than in the function application form
shown in Fig. 4.

Assume a mutation engine E is a closed-world engine,
meaning that it operates without using external information.
Assume further that E can be modeled as a term rewrit-
ing system as above. Let M denote a TRS modeling engine
E . The equivalence relation induced by M partitions terms
into equivalence classes. If M is convergent, then it can be
used to decide whether two terms x and y belong to the
same equivalence class by verifying that their normal forms
(with respect to M) are equal. A convergent M implies that
any sequence of transformations of any variant will eventu-
ally result in the (a priori computable) normal form of the
program. A convergent M therefore essentially defeats the
purpose of mutation, as the malicious program will fail to
create distinct variants once it transforms itself into its nor-
mal form. A convergent M also provides a potential way for
the detector to recognize the program (i.e., by applying the
malware’s own M until it converges to the normal form).
Thus one would normally expect malicious engines to be
non-convergent.

Any suitable normalizer N will be convergent and there-
fore terminating. Moreover, the “perfect” normalizer will be
such that the equivalence relation induced by N is the same
as that induced by M . In particular, all members of the viral
set reduce to one normal form and no non-member reduces
to this same normal form. These observations are used to
formalize NCP= in TRS terms and show it may be treated as
a problem of transforming M into a suitable N .

NCP= as a TRS transformation problem. Given a finite, pos-
sibly conditional rewrite system M that accurately models a
semantics-preserving mutation engine E , construct a rewrite
system N that satisfies the following properties:

1. Equivalence: ∀x .[x]M = [x]N .
2. Termination: N must be terminating.
3. Confluence: N must be confluent.

The equivalence condition states that for any term x , neither
∃y.y ∈ [x]M ∧ y �∈ [x]N nor ∃y.y �∈ [x]M ∧ y ∈ [x]N
holds. This implies that, for any term x , the terms that are
related to x under the reflexive symmetric transitive closure
of M remain related to x under the reflexive symmetric tran-
sitive closure of N , and vice versa. The termination condition
requires that any sequence of applications of the rules of N
to some term t will eventually halt. The confluence condition
implies that if a normal form for some term is reached, then
this normal form is unique.

Once NCP= is defined as above it is trivial to see that it
is undecidable: it is known that creating an equivalent con-
fluent TRS from a non-confluent one is undecidable in the
general case, and since we have not otherwise restricted M
then NCP= is also undecidable. If the problem is undecidable
given the model M , it is surely no easier without M . Thus it
can be said from the outset that the perfect generic normalizer
will be unattainable for those classes of mutation engine that
are formalizable using a TRS as above. This places at least
an outer limit on what can be expected from efforts similar
to Lakhotia et al. [21] or Christodorescu et al. [9].

While this is in a sense a negative result, it is also positive
in the sense that it outlines some conditions when perfect
normalizers are possible. From the theory, it is known that if
such an N can be produced, and the conditions on its condi-
tional rules can be statically computed, it will form a perfect
normalizer for M . Recall that programs are modeled as terms.
The rules of N can be applied to an input program I , in any
order, and eventually any input will be transformed into the
single normal form of its equivalence class with respect to N .
Since N is equivalent to M and M is semantics-preserving,
that means all programs normalizing to the same form as P
will be semantically-equivalent to P . Given a single variant
of P , one can therefore extract the unique normal form and
test for an exact match to normalized input programs. This
test will yield no false positives or negatives.

Formalizing NCP= in this way restricts discussion only to
those cases where the mutation engine can be modeled as a
TRS, as above. This class of malware is not so restricted that
it defines an uninteresting problem space. The problem is not
decidable and, as will be shown in Sect. 4, important real-
istic self-mutating programs fall in the class. Engines using
instruction-substitution transformations can be modeled in
this manner. Using a conditional TRS it is possible to model
mutation engines that perform transformations only under
certain conditions. Probabilistic mutation engines can be sub-
sumed in the framework as well; these engines fire trans-
formations only probabilistically, that is, only when some
random (or pseudorandom) condition occurs. By making rule
application probabilistic, the engine can turn the path that
an outbreak takes through the space of variants into a ran-
dom walk. When E makes only semantics-preserving trans-
formations, probabilities can be ignored for the purposes of
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Table 1 Reorienting example
Rule

Label Condition li → ri Reorient?

push eax

M1 T mov [reg1+imm], reg2 → mov eax, imm y

mov [reg1+eax], reg2

pop eax

M2 eax is dead push imm → mov eax, imm y

push eax

M3 eax is dead push eax → push eax y

mov eax, imm

M4 T nop → n

normalization since the confluence property makes the
probabilistic application issue moot.

2.3 A procedure for solving NCP=

Even though NCP= is undecidable, procedures can be defined
that attempt to solve it—they just can never come with a guar-
antee to halt with a correct output. Using the term rewriting
literature, we define a two-phase procedure that involves first
applying a reorienting procedure to M to ensure termination,
and then a completion procedure to the resulting system. If
the completion procedure halts, it returns a rewriting system
that satisfies the equivalence and confluence properties and,
hence, is a solution to NCP=. We introduce this procedure
because: (1) it may be useful in practice, and (2) the analysis
of when the procedure fails can be used to define boundaries
between problem classes, and thus exposes potential attack
vectors.

2.3.1 Reorientation: ensuring termination and equivalence

Although a rewrite rule relates equivalent terms, the term-
rewriting system may apply the rule in only one direction,
namely, the direction indicated by the arrow in the rule. A
rule is said to be “reoriented” when the application direction
is reversed, i.e., reorientation transposes the left hand side
(li ) for the right hand side (ri ). A reorienting procedure is
a procedure that assigns orientations of the rules in a TRS
such that the reduction procedure of the TRS is guaranteed
to terminate. To ensure that a set of reoriented rules Mt is
terminating, it is sufficient to show that for every directed
rule x → y ∈ Mt , x > y, for some reduction order > on
terms [3].

The well-founded length-lexicographic ordering is fre-
quently used to reorient string rewriting systems [3], i.e.,
on systems with only ground terms. The reorientation pro-
cedure traverses M and reorients the rules whose right hand

sides are length-lexicographically greater than their left hand
sides. So long as M has no identity rules (rules of the form
x → x) the resulting system Mt is terminating because any
rule application will decrease the length-lexicographic size
of the term being reduced, and any finite term cannot be end-
lessly reduced in length. In certain cases, the ordering can be
extended so it can be used on systems using variables. In the
case of the TRS in this paper, by inspection we know the reori-
ented systems will terminate (we can define an appropriate
ordering on the variables being used; also they are equivalent
to notational shorthands, so that rules with variables can be
replaced by a finite number of rules using only ground terms).
Table 1 shows a fragment of an example rewriting system.
The last column shows the decision of whether to reorient the
rule. Note that the conditions of the second column are post
conditions for the code on the left hand side of the rules. That
is, the conditions shown must hold whenever the end of the li
block is reached. A “T” means the condition is always true,
i.e., that the rule is effectively unconditional. Rule M1 is to
be reoriented because r1 is length-lexicographically greater
than l1. So, for example, Mt

2 (the reoriented rule M2) is
“eax is dead | mov eax, imm ; push eax → push

imm”. Here, a register is dead when its value is not needed
before the register is assigned [2].

Since the reflexive symmetric transitive closure of Mt

is identical to that of M (no rules were modified apart
from their orientation), the set of equivalence classes defined
by Mt is identical to that defined by M ; in other words,
∀x .[x]M = [x]Mt . Hence, Mt satisfies the termination and
equivalence properties, which are part of the requirements
for a rewriting system to solve the NCP=.

2.3.2 Completion: ensuring confluence

Confluence is decidable for finite terminating TRSs [3]. If a
TRS is not confluent, then additional rules may be added to
it to make the system confluent. A process of adding rules to
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mov eax, imm

push imm

mov eax, imm

push eax

mov eax, imm

push eax

mov eax, imm
push imm

M’2

M’3 M’

New Rule

Critical Pair

Critical Overlap

2

Fig. 5 Completion step for Mt
2 and Mt

3

make a TRS confluent is called a “completion procedure.”
The resulting confluent TRS is said to be “completed.”

Recall that the problem of completing a TRS is undecid-
able in the general case, so that any procedure attempting
it cannot be guaranteed success. In practical contexts, try-
ing to ensure confluence may be a matter of selecting one or
more completion procedures to try, and then choosing suit-
able results, if they complete. The Knuth–Bendix comple-
tion procedure (KB) [18] is the most prevalent method used
in term-rewriting literature. Detailed discussions of this pro-
cedure are available elsewhere [3,18]; it is explained below
only to the degree needed to later enumerate sub-classes of
NCP=.

The KB procedure works to resolve critical overlaps
between rules by adding new rules. For finite terminating
ground TRSs, the left hand sides of a pair of (not necessar-
ily distinct) rules are said to critically overlap if the prefix
of one is identical to the suffix of the other, or if one is a
subterm of the other. Critical overlaps indicate conflicts in
a rewriting system that may make the system non-confluent
[3]. For the example, in Table 1, Mt

1 and Mt
2 critically over-

lap at “push eax”. The same is true for Mt
2 and Mt

3. KB
resolves such critical overlaps by repeatedly adding rules to
the system in fashion similar to that shown in Fig. 5. The
figure shows that KB adds the rule

push imm
mov eax, imm −→ push imm

to the set. KB is not guaranteed to terminate. However, if it
does terminate then the TRS it produces will be confluent.

For the TRS of W32.Evol, if the left hand side of some
rule has, as a suffix, the prefix of the left hand side of some
other rule, it is not enough to conclude that the rules criti-
cally overlap. Neither is it sufficient for the left hand side of
some rule to be a subterm of the left hand side of another.
This is due to the fact that either of the rules may be condi-
tional. It may even be the case that the condition of one is
a negation of the other. Rules Mt

1 and Mt
3 from our exam-

ple (see Table 1) overlap at “push eax ; mov eax, imm”.
This overlap does not create any conflicts between the rules
because Mt

3 can be applied only when register eax is dead

while Mt
1 can be applied only when eax is live. The comple-

tion procedure terminates on the TRS of Table 1, and returns
the confluent system of Table 2.

2.4 Classes of mutation engines

Section 2 showed that it will not be possible to automatically
construct a perfect normalizer for certain mutation engines.
Nonetheless, certainly the viral sets for some types of muta-
tion engines can be normalized, and some mutation engines
present more challenges for constructing normalizers than
others do. The definition of NCP= makes it possible to par-
tition normalization construction problems into well-defined
problem classes. Several distinct classes of solvable NCPs
can be delimited by noting conditions on rule sets which
make it possible to prove that NCP= can be solved. Note that
a condition on a rule set identifies a subset of the universe of
TRSs. Classes of program normalization problems that fall
outside the scope of NCP= can be defined according to how
they fail to meet conditions that permit automatic solutions.
Knowing about these classes is important in defense since
each class can indicate when a given technology or approach
can work, and each class formalizes a possible attack vector
for defeating (automatic) normalizer construction defenses.

Several classes of NCPs are listed in the following sub-
sections; each is defined by noting when NCP= is known
to be solvable and by recognizing conditions in which muta-
tion engines are not formalizable using TRSs, as above. There
may be other restrictions or extensions that yield further sub-
classes (e.g., using different rewriting systems such as string,
graph, or constrained rewriting systems), however, the pres-
ent list is not intended to be comprehensive in this respect.
Rather the aim is utilize the definition of NCP= to explore
the contours of the local problem space surrounding NCP=.
Listed in each class are possible attacks on the normalizer
constructor that can be associated with the class. That is,
regardless of whether the normalizer construction is auto-
mated or not, these are attacks that can make the problem
more difficult.
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Table 2 N , the completed version of example rule set Mt

Rule

Label Condition li → ri

push eax

N1 T mov eax, imm → mov [reg1+imm], reg2

mov [reg1+eax], reg2

pop eax

N2 eax is dead mov eax, imm → push imm

push eax

N3 eax is dead push eax → push eax

mov eax, imm

N4 T nop →
N5 eax is dead push imm → push imm

mov eax, imm

push imm

N6 T mov eax, imm → mov eax, imm

mov [reg1+eax], reg2 mov [reg1+imm], reg2

pop eax

2.4.1 NCP=NV: formalizable without using variables

Consider the class of TRS as in NCP=, but without variables.
For any mutation engine that can be modeled using such a
TRS (using a finite set of rules) the two-phase procedure of
Sect. 2.3—i.e., the length-lexicographic ordering followed
by Knuth–Bendix completion procedure—is guaranteed to
complete, and the result will create a perfect normalizer. This
NCP problem subspace, denoted by “NCP=NV”, is therefore
decidable.

A strong attack would ensure that transformations are
complex enough that variables must be used to correctly
model it.

2.4.2 NCP=NO: no critical overlaps

Consider the class of TRS as in NCP=, but without over-
laps defined as critical in the Knuth–Bendix procedure. For
any mutation engine that can be modeled in this way, the
two-phase procedure of Sect. 2.3 is guaranteed to terminate,
and thus will create a perfect normalizer. This NCP problem
subspace, denoted by “NCP=NO”, is therefore decidable.

A strong attack would ensure that critical overlaps are
present.

2.4.3 NCP=IC: conditions or assumptions are not
computable

In defining NCP=, no explicit guarantee was made as to
whether the conditions attached to the rules of N would be

feasibly computable. However, the procedure described in
Sect. 2.3 for constructing N from M does not alter the con-
ditions, so if the conditions in M are feasibly and statically
computable conditions in the general case, then those of N
are too. Significantly though, it can be the case that E can
determine the appropriate conditions yet, for practical pur-
poses the normalizer may not be able to, or be permitted
to. Specifically, E can make use of assumptions or encoded
data rather than compute the conditions explicitly, whereas
the normalizer may not be able to [33]. In fact, W32.Evol
does not calculate its conditions at all; it only makes use of a
carefully crafted property of the code. Specifically, it utilizes
implicit indications of register liveness to avoid the need to
extract it from its own code. In theory, any assumption E
makes, the normalizer could make; in practice, if multiple
similar engines use opposing assumptions it could lead to
a new and potentially unsolvable problem of deciding on
the correct assumptions. When these conditions are undecid-
able, the mutation engine falls outside of the class defined by
NCP=.

One may also wish to restrict NCP= to only those cases
where it is feasible for the normalizer to evaluate the condi-
tions during normalization. In practice, the question of feasi-
bility may not be the same for the engine as the normalizer, as
the normalizer may be required to be significantly faster. The
engine E may gain an additional computational advantage in
that it can directly inspect the state of the running system;
this may make certain conditions much easier to check as
compared to static analyses. While the normalizer is free to
try to emulate the program, of course, to discover the same

123



316 A. Walenstein et al.

information the same way, this may entail such a high over-
head as to make the approach infeasible for the normalizer.

A strong attack would ensure that hard-to-compute
conditions are attached to some of the rules. An even stronger
attack would ensure that these conditions are non-comput-
able using known techniques.

2.4.4 NCP�=: semantics non-preservation

The formulation of NCP= explicitly considers only muta-
tion engines whose rules preserve program semantics. In part
this is because the conditions attached to rules can relate
to operational semantics. For example, conditions based on
register liveness are defined in terms of the computational
interpretation of the program statements. The terms in the
rewrite rules themselves, however, are purely syntactic. We
required, however, that the rewrite rules do ensure that term
equivalence maps to program equivalence. In this way the
NCP= approach is both like and unlike the purely syntac-
tic formal language-based approach of Zuo et al. [15] and
Filiol [14]. In their formulation, the rewrite rules are syntactic
transformations between (uninterpreted) strings of terminals
and non-terminals. In the NCP= formalization, the left and
right hand sides of the rules of M and N are, by definition,
intended to be considered equivalent and replaceable both in
the term rewriting sense and the program semantics sense.

It would be possible to discard the requirement that the
rules of M be semantics-preserving, as many mutation engi-
nes that do not preserve semantics can be modeled in the
way proposed in the paper. For example, an engine might
turn a push into a pop, and nothing would be amiss from
the term rewriting point of view. The equivalence class under
M (i.e., the viral set) would merely contain programs that are
not equivalent—as it should. However, doing so can make it
difficult or impossible to reason meaningfully about the prob-
lem of malware detection. For this reason, our formulation
of NCP= requires that semantics be preserved in the rule set
of M . Engines that modify program semantics are relegated
into the superclass NCP�=.

An example may help illustrate the problem. Suppose that
one has a semantics-preserving mutation engine M , to which
one adds the following probabilistic rule:

rB : rand() < 2−31 | P −→ B

where P is the whole program itself and B is a known benign
program (perhaps the common program notepad.exe).
Call this new augmented TRS “M+”. The probabilistic con-
dition on the left hand side assures that the likelihood that
this rule fires is extremely small. Nonetheless, with respect to
[t]M+, the benign file B is equivalent to the original malware
P , since there is a rule (rB) that makes them equivalent. Any
normalizer N+ for this set will induce the same equivalence

relation as M+, so the normal form for B will be identical
to the normal form of P . Practically, though, one may wish
to say that matching B should be considered a false positive,
yet from a theoretical point of view it is not. As a second
example, consider adding probabilistic rules of the form

rand() < 2−31 | op(arg1,arg2) −→ λ

for every possible operation op, i.e., low probability rules that
will map any possible program instruction into the empty
string. The normal form for such a program is the empty
string. Granted, these are perhaps imaginary examples and,
if a human were creating the rule set is modeling the engine,
then she might choose to exclude rules such as rB . Still, the
examples serve to illustrate the problems that can occur when
rule equivalence does not map to program equivalence.

Requiring semantic equivalence restricts the problem
space that NCP= defines in significant ways since certain
important classes of mutation engine cannot be formalized
by it. These include:

1. Engines that introduce irrelevant externally observable
behavior, that is, computations that do not affect the mali-
cious behavior, but which nonetheless can be detected
without examining the internal workings of the executing
program. For example, an engine may contain a trans-
formation that inserts code to: create a file, write ran-
dom content to it, and then remove the file some time
later. While one might reasonably argue that the inserted
code does not change the essential nature of the pro-
gram, it certainly changes the behavior. If the temporary
file is not removed, or if the file writing causes observ-
able side effects (writing to error logs on disk failures,
for example) the variants are not functionally or seman-
tically equivalent.

2. Engines with bugs or limitations that prevent them from
correctly performing semantics-preserving transforma-
tions. This is a significant omission in the sense that it
may be rare to find complicated mutation engines that
are completely bug-free.

3. Evolutionary engines, i.e., ones that make changes to
the functionality of the program as they reproduce. Such
changes could be changes to the payload, the engine
itself, or both.

4. Open-world engines. A closed-world engine operates
with only the information contained in its own program.
An open-world engine may utilize information from the
environment. An example is an engine that downloads
transformation rules from an external source.

In some of these cases, no approach based on term rewrit-
ing will be satisfactory because it is not feasible to model
the mutation engine using a reasonable rule set (e.g., the
open-world engines). In cases where it is possible to model
the engine as a term rewriting system that does not preserve
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program semantics, the normalizer construction approaches
of this paper will work as expected: with the possible excep-
tion of the first class above, they may just fail to map mean-
ingfully onto malware detection problems.

From the list it appears that, when semantics are allowed
to change, a Pandora’s box is opened in terms of attacks to
normalization.

3 Approximate solutions to the NCP

There exist classes of mutation engines for which perfect nor-
malizers can be constructed. However, even when a perfect
normalizing rule set can be constructed, it may be infeasible
to implement the normalizer in a practical implementation.
The conditions attached to the rules may be too costly, dif-
ficult, or even impossible to calculate in the general case.
Moreover, there are mutation engines in NCP= for which it
is difficult to construct a normalizing rule set (e.g., the pro-
cedure of Sect. 2.3 does not halt).

These observations motivate the search for approximate
solutions to NCP=. Precise solutions to NCPs preserve the
equivalence classes of M and produce only a single normal
form for each equivalence classes. Approximate solutions
may create multiple normal forms for any given equivalence
class, or they may fail to ensure that the equivalence classes
of M are preserved by N . Three approximations are intro-
duced in this section. For each, implications (in terms of
errors introduced) are explained, and practical considerations
are outlined for application in malware detection.

3.1 Using an non-completed (non confluent) rule set

Since the completion process of KB—which repeatedly adds
rules to Mt —may or may not halt, restrictions are normally
imposed: if the completion procedure does not terminate
within a “reasonable” amount of time, or if the repeated addi-
tion of rules yields a rule set that is simply too large to be
useful for normalization purposes, then it may be reasonable
to preempt the procedure and seek alternative means. If these
also fail, the non-confluent Mt might be considered for the
normalizer.

Normalizers whose rule sets are not confluent will be
approximate since non-confluence of the terminating system
Mt implies that there may be some equivalence classes of M
whose members reduce to different normal forms under Mt .
More specifically, the members of the malware’s equivalence
class—the variant offspring—may have more than one nor-
mal form. The actual number of these normal forms depends
entirely on the specifics of the malicious program and the
transformation system.

It may be practically useful to use a non-confluent Mt for
malware detection. It is important to note that while using the

non-completed set may result in multiple normal forms, so
long as condition checking is done correctly it is not possible
for two members of different equivalence classes under M be
normalized to the same normal form. This is because terms
that were unequal under M are still never joinable under Mt

since none of its rules break equivalence. This is important
for detectors because even though it is approximate it can
never create a false positive. Moreover, even when Mt yields
more than one normal form for the malware variants, it may
still be able to reduce the number of variants from a vast
number to a tractable number. In addition, the different nor-
mal forms for the equivalent set of P [i.e., that of P(S)] may
be similar enough that matching them using conventional
means (e.g., signatures) may be feasible even if there are
many of them. In any case, it is an empirical question as to
whether the results are sufficient for whatever purposes the
normalization is being used for: the reduction in the number
of variants to consider, and the possibly increased similarity
of variants may make it possible to use detection methods
that would not otherwise work without the normalization.

3.2 Incorrectly evaluating conditions

Ordinarily, the term rewriting process requires that any
conditions attached to the rules of N must evaluate to true
before they are allowed to fire. These conditions can require
knowing certain program properties in order to evaluate them
correctly. Such properties include control or data flow, regis-
ter liveness, and points-to information [2]. Such information
can be challenging to extract [22]. Most interesting extrac-
tion problems are undecidable. Known analyses may fail to
return accurate results, particularly if obfuscation is used spe-
cifically to thwart static analysis techniques [11]. It may be
reasonable, however, to approximate the condition checking.
For example, a default decision on liveness might be taken
when the liveness is not calculable precisely within an allot-
ted time. Or perhaps no condition checking is performed at
all.

Such a normalizer will be approximate because it may
fire a rule when its condition does not hold, in which case the
program semantics may be altered. Such changes can result
in multiple normal forms for a given equivalence class. In
addition, the changes can alter the equivalence class of the
program. In some cases, therefore, a program in the mali-
cious class might be transformed into a non malicious class,
and vice versa. In some cases a default rule or simple heu-
ristic might keep the number of incorrect rule applications
tolerably small.

It may be practically useful to use such a normalizer for
malware detection. In some cases the improper rule firings
may not change equivalence classes between malicious and
non-malicious, meaning no false matches occur. Moreover,
the false matches might fall primarily into only one class
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(false positives or negatives) and there may be a greater
tolerance in practice for that class of error. Finally, it is a
practical issue of whether the error rates for the normalizer
are suitable enough for application. The practical implica-
tions for multiple normal forms are the same as when using
an non-completed rule set.

3.3 Priority scheme

If a TRS is confluent then rule application order does not
affect the eventual result. Conversely, in a non-confluent sys-
tem there exist different rule application orders that yield dis-
tinct terms which are not joinable. According to Visser [32], a
rule application strategy can be imposed on a non-convergent
TRS to make it behave like a convergent one. If successful,
the strategy chooses rule orderings that yield only one nor-
mal form for any given equivalence class. This possibility is
important if one wishes to use a non-convergent rule set in
cases where the correctness of the condition checks cannot
be guaranteed. The rule application strategy may allow one
to choose the ordering of rules that minimize the extent of
errors introduced by the approximation. This motivated our
design and use of a priority scheme that seeks to reduce
the likelihood of false matches due to non-checking of
conditions.

Our proposed priority scheme works as follows. First, the
initial set N ′ of rules is partitioned into two subsets N ′U and
N ′C , where N ′U contains the unconditional rules of N ′, and
N ′C contains the conditional rules. For the rule set in Table 2,
N ′U = {N1, N4, N6} and N ′C = {N2, N3, N5}. When consid-
ering a rule from N ′C , assume the system uses a fallible or
heuristic condition check; for instance, perhaps the condition
is not checked at all but is instead assumed always to be true.
A suspect code segment is normalized with respect to N ′ by
giving priority to rules of N ′U over the rules of N ′C . That is,
whenever a rule from N ′C is applicable on a term, it is chosen
for application only if no rule from N ′U is applicable.

The priority scheme capitalizes on our knowledge that the
rules in N ′U preserve semantics, whereas those in N ′C may
not. Assigning a lower priority to the latter guarantees that
the former will be applied before any (potentially) seman-
tics-altering transformation is applied. The intent is to avoid
the case where a conditional rule should have fired before
an unconditional rule. Such error conditions occur on criti-
cal overlaps between rules of N ′U and N ′C . They will occur
more frequently when conditions are not being precisely eval-
uated since, if the condition were evaluated correctly, the
rules might not ever overlap critically. The priority scheme
does nothing to avoid the problems caused when the overlaps
are within either N ′C or N ′U ; using this priority scheme with
an exact condition checker, therefore, cannot be expected to
improve the approximation.

The practical implications for using normalizers with such
a priority scheme are the same as for using non-completed
rule sets and approximate checking of conditions. That is,
multiple normal forms may be produced for equivalence clas-
ses, and false matches may occur due to erroneous applica-

tion of rules that join terms that are not joinable under
�←→.

These approximations occur whenever the priority scheme
does not result in the correct rule application order, or when
the condition is incorrectly calculated.

4 Case study

A case study was performed in order to explore the feasi-
bility of the introduced normalization techniques in realistic
settings, and to help quantify the impact of the proposed
approximation techniques. For the study we selected a self-
mutating virus and then constructed several normalizers for
it using the different methods outlined in previous sections.
Variants of the virus were collected by allowing it to repli-
cate in a controlled environment, and the normalizers were
applied to the variants. Measures were then taken of the
number of normal forms and the amount of differences bet-
ween equivalent normal forms. These measures were then
inspected for indications of the impact of the approxima-
tions, particularly with respect to their likely practical utility.

4.1 Subject and preparation

We obtained a copy of a 12,288-byte long variant of an
executable, infected with W32.Evol, from the VX Heavens
archive [1]. The length of this sample matches the published
size of the “first generation” variant according to Symantec’s
report [28]. We refer to this variant as the Eve. The engine of
this virus is a relatively sophisticated one—it is the first entry
listed by Ször in his text on anti-virus defense as under the
section “More Complex Metamorphic Viruses and Permuta-
tion Techniques” [29]. It substitutes instructions with equiv-
alent code segments, inserts irrelevant code at some sites,
and replaces immediate operands with arithmetic expressions
computing them [20]. By calculating the number of distinct
choices for register and constant assignments in the places
these can vary, we conservatively estimated that the Eve var-
iant can generate at least 10686 second generation variants,
101,339 third generation variants, and 101,891 fourth genera-
tion variants. The behavior of the payload of this particular
virus makes it possible for some emulation-based techniques
to detect its variants [30].

Several factors make W32.Evol a suitable study subject.
First, we are able to make it replicate and safely experiment
on it in our secure environment. Second, its mutation engine
is capable of generating enormous numbers of variants, and
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Table 3 The three normalizers used in the study

Normalizer Rule set Priority scheme Condition checking?

I 0 N0 No priority scheme No

I 0
p N0 Scheme of Sect. 3.3 No

I 1
p N1 Scheme of Sect. 3.3 No

the variants it creates are significantly different from each
other. This makes it a realistic study subject in that it is
nontrivial to develop form-based signatures for the entire
viral set. Third, W32.Evol’s mutation engine uses a condi-
tional transformation system that contains critical overlaps;
this makes W32.Evol a suitable candidate for illustrating and
evaluating the normalization approaches. Furthermore, the
conditions attached to certain rules require knowledge of reg-
ister liveness in order to be evaluated. Since register liveness
is undecidable (and costly to even approximate) it is a real-
istic situation in which approximation may be required.

Over 50 offspring were generated spanning 6 generations.
26 of these were selected, taking multiple samples randomly
from each generation, except for the Eve and 6th generation,
for which there was but one sample to choose from.

4.2 Materials and protocol

We first extracted the transformation rules of W32.Evol by
manually reading the code, and occasionally tracing its exe-
cution in a debugger. We then implemented these rules as a
term rewriting system M . Next, we used the reorienting pro-
cedure of Sect. 2.3 to transform M into an initial normalizing
rewriting system N0. N0 was not completed. N0 consisted of
55 rules, five of which did not participate in any overlaps.
A second normalization set N1 was constructed by manu-
ally adding rules to complete the rule set with respect to the
priority scheme of Sect. 3.3. That is, when using the priority
scheme for rule application, the system is convergent. In total,
two rules were added. We selected this completion approach
because it was apparent that the Knuth–Bendix procedure
would not terminate on the rule set, as each rule addition
created new critical overlaps.

Three prototype normalizers were implemented using the
TXL [12] system version 10.4 (2005/01/05). These are named
I 0, I 0

p and I 1
p; they differ in the rule sets used and the prior-

ity scheme employed. I 0 and I 0
p both used the N0 rule set,

i.e., the non-completed one. I 0
p and I 1

p both used the prior-
ity scheme. None implemented condition checking. Table 3
summarizes these normalizers. Additional implementation
information may be found in Mathur [23].

Each of the normalizers was applied to the 26 variant sam-
ples, and three different groups of measurements were col-
lected. The first group relates to the sizes of the normal forms.

These are: ASNF, the average length of the normal forms,
and MSNF, the maximum size of the normal forms. Both
measures are defined in terms of instructions and are aver-
aged over a given generation. The second group relates to how
different the normal forms are, on average, from the normal
form of the Eve sample. These are: LNC, the number of lines,
on average, that the normal forms differ (as measured by the
common program diff), and PC, the average raw percent-
age of sequence commonality between the normal form of
the Eve, and the normal form of the sample variant, that
is, they list the average of ASN F(Eve)/ASN F(x) for all
samples x within any given generation. The third group are
simple performance measures of execution time (ET) and the
count of the number of rule applications performed during
normalization (TC).

4.3 Results

Table 4 lists the results split into three sections. The top sec-
tion lists the measures relating to differences in normal forms
compared to the Eve’s normal form, the middle section pro-
vide measurements of the normal forms created using the
prioritized normalizer, and the bottom section provides exe-
cution information for this prototype. I 1

p was convergent: all
variants in all generations reduced to the same 2,166-line nor-
mal form. As a result, the measures are not listed in Table 4.
The running times were similar for all prototypes, so only
the prioritized version is listed.

4.4 Discussion

Because the case study is limited, any generalizations must
be tentative. The study serves as a useful feasibility test, par-
ticularly of the approximations. Furthermore, W32.Evol is a
good representative sample, so the positive results are at least
suggestive of some usefulness for similar mutation engines.
Other complex viruses, like RPME, Zmist, Benny’s Mutation
Engine, Mistfall, Metaphor, etc [5,31,34,35] have transfor-
mations similar to that of W32.Evol, and it appears likely
that for some subset of self-mutating programs, a syntac-
tic normalizer built according to the strategy in Sect. 2.2 will
normalize all variants sufficiently well for ordinary signature
matching to succeed in practice.

Regarding feasibility, Table 4 shows that, even without
completion or condition checking, the prioritization scheme
creates normal forms that are highly similar—more than 98%
in common. The differences indicate the possibility of false
positives or negatives. This result was expected, as the prior-
ity scheme could not be a complete substitute for an accurate
condition-sensitive rule set evaluator. Nevertheless, the high
level of similarity suggests the likelihood of false matches
may be low in practice. We manually inspected the differ-
ences between the normal forms of various generations and
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Table 4 Results of normalizers
on various W32.Evol
generations

ASO average size of original
(LOC), LNC lines not in com-
mon, PC percentage common,
MSNF maximum size of normal
form (LOC), ASNF average size
of normal form (LOC), ET exe-
cution time (CPU secs), TC trans-
formation count

Eve 2 3 4 5 6

ASO 2,182 3,257 4,524 5,788 6,974 8,455

LNC I 0 0 0 108 316 803 1129

LNC I 0
p 0 0 10 16 24 37

PC I 0 100.00 100.00 95.25 87.27 72.96 65.74

PC I 0
p 100.00 100.00 99.54 99.27 98.90 98.32

MSNF I 0
p 2,167 2,167 2,184 2,189 2,195 2,204

ASNF I 0
p 2,167 2,167 2,177 2,183 2,191 2,204

ET I 0
p 2.5 3.0 4.3 6.3 8.0 11.2

TC I 0
p 16 533 980 1,472 1,902 2,481

the normal form of the Eve (and of the Eve itself) to assess
the amount and type of differences. We found that incorrect
rule application occurred at three and two sites for the I 0

p and
I 1

p prototype, respectively. The chances seem remote that a
program would be found on an actual user’s computer which
is benign yet different from W32.Evol on only three lines.

Regarding the impact of the priority scheme, it appears
that it can make a relatively sizable difference in the amount
of code that is incorrectly normalized, particularly for later
generations of Eve. For instance, for the fifth generation,
the priority increased the accuracy over 25% points over the
non-prioritized version. This relates to the number of sites at
which the conditional rule may be fired incorrectly.

Regarding practicality, the timing information reflects
the fact that our prototypes are proofs-of-concepts: they work
on ordinary textual disassemblies, and are unoptimized. The
time growth curve is shallow for the sizes of samples invol-
ved, taking less than five times as long on the largest sample,
which is almost four times as large. Moreover, it may happen
that the upper end of the asymptotic curve is not problematic
in certain practical cases where input growth is constrained.
For instance, while W32.Evol always grows in size, grow-
ing very large is not a good survival strategy for malware, so
some recent self-mutating malware include transformations
that try to keep the size of their code within reasonable limits
by applying ‘code-shrinking’ transforms [29].

One might find fault with the fact that the normalization
technique depends upon having a formalization of the spe-
cific mutation engine. This means the technique cannot be
expected to find malicious programs for which the muta-
tion engine is unknown. While this certainly is an issue, the
limitation may be tolerable. Signature-based techniques gen-
erally cannot detect novel malware either, and signatures are
instance-specific rather than family specific, yet these tech-
niques have proved to be a useful technology when the sig-
nature database can be updated at the same rate as malware
production. Given that new mutation engines appear at a
much lower rate than ordinary malware instances, an engine-
specific scheme seems at least plausible.

One might also argue that modeling the mutation engine
can be too difficult, or too costly. In response, we first note
that mutation engines evolve slowly—much slower than the
worms and viruses themselves [29], so the number of new
mutation engines released in a year is low enough to make
them amenable for such analysis. Second, the mutation engi-
nes tend to be reused, often in the form of libraries. This is
because, at least for now, only certain malware authors have
both the motivation and capability of writing transformation
engines with a sophistication level that forces the use of non-
trivial normalizers.

5 Relations to other work

Normalization of input is a concern common to many
domains, including databases, and text and speech process-
ing. Program normalization is commonly performed on
source code in the context of plagiarism detection and
so-called “code clone” detection. The normalization aids
matching copied code by removing detail that is consid-
ered unimportant. Variable names, white space, and syntac-
tic forms are all commonly normalized. CCFinder [16],
for example, normalizes input code by tokenizing many fea-
tures. As with the present work, each of these normaliza-
tions attempt to defeat attempts at obfuscating the fact that
two programs are variants in disguise. The main difference
is that these normalizations generally attack relatively super-
ficial differences in the code, and are not expected to aid in
normalizing comprehensive semantics-preserving obfuscat-
ing transformations performed on the code.

In the plagiarism and code clone literature, some more
complicated obfuscations are accounted for by abstracting
to a comparison domain in which the differences can be nor-
malized out (e.g., Baxter et al. [4]). Müller et al. [24] present
an approach to matching programs which attempts to account
for obfuscating transformations. They define a program simi-
larity metric based on the similarity of specific tree-structured
data flow structures. Unlike the approach in the present paper,
their approach is motivated by the supposition that these
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data flow structures will be relatively constant even when
the program has been transformed via obfuscators. They do
not explicitly consider transformations in the style of known
mutation engines. However, they also define normalizations
on their structures which they hope will allow successful
matches to variants created through the obfuscators.

Specifically malicious program normalization approaches
are surveyed in Sect. 2. The works by Lakhotia et al. [21],
Bruschi et al. [6], and Christodorescu et al. [9] share several
attributes: they require complex static analysis (e.g., control
flow or liveness), and utilize transformations that are not spe-
cific to a particular strain of malware. While these approaches
do not depend on a priori knowledge of the mutation engines
they are, nonetheless, limited by the specific techniques they
utilize. These methods do not theoretically guarantee that
equivalent variants will be mapped to the same normal form.
For example, there is no guarantee that the compiler optimi-
zation techniques will yield the same optimized program for
any two arbitrary variants. They leave open the possibility of
defeat by introducing variations that ensure the optimizations
yield different optimized programs. In contrast, the present
work is specific to a mutation engine, but suggests that deeper
semantic analysis may not always be necessary. An interest-
ing research question arises as to the tradeoffs and benefits
of general normalization rules versus ones targeted towards
specific mutation engines. It is also an interesting question
as to whether the precision offered by the completed normal-
izers offsets the initial cost of developing the normalizer.

The static techniques introduced in the paper can be
contrasted with static detection techniques that use generic
behavior patterns that can detect malicious programs even in
the presence of variations in their code. Classic emulation-
based techniques also look for behavior patterns, but they
do so through dynamic methods, which may be attacked.
Rather than emulation, Christodorescu et al. [8] and Kruegel
et al. [19] proposed the use of static program analysis meth-
ods for detecting potentially obfuscated variants of specified
behavior patterns. Works in this vein constitute pursuits of
a more capable pattern matcher, rather than a normalization
approach. The normalization and behavior-match approaches
are complementary and can be used together.

6 Conclusions

This paper presents an approach to construct a normalizer for
a particular class of mutating malware by leveraging con-
cepts and results from term rewriting literature [3]. It was
shown that mutating malware which use instruction substi-
tution transformations or insert irrelevant instructions can
be modeled as a conditional rewrite system. The problem
of constructing a normalizer for this system then maps to
the problem of constructing a convergent rewrite system by

starting from the mutation engine’s rule set. The latter prob-
lem has been well-studied: its problems and requirements for
solution are known.

A general method was proposed for constructing either
exact or approximated normalizers. When the rule set is com-
pleted, all variants are transformed into a single normal form.
This proves that it is sometimes possible to develop “perfect”
normalizers for a nontrivial class of mutated malware. The
case study results suggest that this may be feasible in practice.
Thus, the method has the potential to augment current static
signature based scanners to detect automatically-constructed
mutants. That said, it was noted that not every rule set can be
feasibly completed using an automated completion method.
An analysis of the conditions when the completion procedure
breaks down revealed attack points that might potentially be
exploited by malware authors. Research is still needed to
understand the potential attacks and their possible remedies.

Finally, the approximations show that the general approach
may have practical merit even when completion and accurate
condition calculation cannot be guaranteed. Even without
completion, and even without correctly calculating condi-
tions, the prioritization approach yielded encouraging results
on the test case. Though the normalizer did not map the 26
variants to a single normal form, there was over 98% sim-
ilarity between the normal forms and the original program.
Since the approximated normalizers forgo expensive analy-
sis, they may be better suited in a scanner requiring real-time
performance. Further research is needed to understand the
practicality of using uncompleted rule sets, and for approxi-
mating the rule conditions.
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