
J Comput Virol (2008) 4:323–334
DOI 10.1007/s11416-008-0082-4

ORIGINAL PAPER

An intelligent PE-malware detection system based on association mining

Yanfang Ye · Dingding Wang · Tao Li · Dongyi Ye ·
Qingshan Jiang

Received: 24 September 2007 / Revised: 8 January 2008 / Accepted: 13 January 2008 / Published online: 5 February 2008
© Springer-Verlag France 2008

Abstract The proliferation of malware has presented a
serious threat to the security of computer systems. Tradi-
tional signature-based anti-virus systems fail to detect poly-
morphic/metamorphic and new, previously unseen malicious
executables. Data mining methods such as Naive Bayes and
Decision Tree have been studied on small collections of exe-
cutables. In this paper, resting on the analysis of Windows
APIs called by PE files, we develop the Intelligent Mal-
ware Detection System (IMDS) using Objective-Oriented
Association (OOA) mining based classification. IMDS is
an integrated system consisting of three major modules: PE
parser, OOA rule generator, and rule based classifier. An
OOA_Fast_FP-Growth algorithm is adapted to efficiently
generate OOA rules for classification. A comprehensive
experimental study on a large collection of PE files obtai-
ned from the anti-virus laboratory of KingSoft Corporation is

A short version of the paper is appeared in [33]. The work is partially
supported by NSF IIS-0546280 and an IBM Faculty Research Award.
The authors would also like to thank the members in the anti-virus
laboratory at KingSoft Corporation for their helpful discussions and
suggestions.

Y. Ye
Department of Computer Science, Xiamen University,
Xiamen, People’s Republic of China

D. Wang · T. Li (B)
School of Computer Science, Florida International University,
Miami, FL, USA
e-mail: taoli@cs.fiu.edu

D. Ye
College of Maths and Computer Science, Fuzhou University,
Fuzhou, People’s Republic of China

Q. Jiang
Software School, Xiamen University, Xiamen,
People’s Republic of China

performed to compare various malware detection approaches.
Promising experimental results demonstrate that the accu-
racy and efficiency of our IMDS system outperform popular
anti-virus software such as Norton AntiVirus and McAfee
VirusScan, as well as previous data mining based detec-
tion systems which employed Naive Bayes, Support Vector
Machine (SVM) and Decision Tree techniques. Our sys-
tem has already been incorporated into the scanning tool of
KingSoft’s Anti-Virus software.

1 Introduction

Malicious executables are programs designed to infiltrate
or damage a computer system without the owner’s consent,
which have become a serious threat to the security of compu-
ter systems. New, previously unseen malicious executables,
polymorphic malicious executables using encryption and
metamorphic malicious executables adopting obfuscation
techniques are more complex and difficult to detect. Accor-
ding to its propagation methods, malicious code is usually
classified into the following categories [1,7,21]: viruses,
worms, trojan horses, backdoors and spyware. Malicious exe-
cutables do not always exactly fit into these categories and
the malicious code combining two or more categories can
lead to powerful attacks. For instance, a worm containing a
payload can install a back door to allow remote access. Due
to the significant loss and damages induced by malicious
executables, the malware detection becomes one of the most
critical issues in the field of computer security.

Currently, most widely-used malware detection software
uses signature-based method to recognize threats [8,9].
Signatures are short strings of bytes which are unique
to the programs. They can be used to identify particular
viruses in executable files, boot records, or memory with

123

324 Y. Ye et al.

small error rate [14]. However, this signature based method
is not effective against modified and unknown malicious exe-
cutables. The problem lies in the signature extraction and
generation process, and in fact that these signatures can easily
be bypassed. Heuristic-based recognition, relating to more
complex signature based detection techniques, tends to pro-
vide protection against new and unknown threats, but this
kind of virus detection is usually time consuming and still
fail to detect new malicious executables.

Our efforts for detecting polymorphic, metamorphic and
new, previously unseen malicious executables lead to the
Intelligent Malware Detection System (IMDS), which
applies Objective-Oriented Association (OOA) mining based
classification [19,25,34]. The IMDS rests on the analysis of
Windows Application Programming Interface (API) execu-
tion calls which reflect the behavior of program code pieces.
The associations among the APIs capture the underlying
semantics for the data which are essential to malware det-
ection. Our malware detection is carried out directly on
Windows Portable Executable (PE) code with three major
steps: (1) first constructing the API execution calls by develo-
ping a PE parser; (2) followed by extracting OOA rules using
OOA_Fast_FP-Growth algorithm; (3) and finally conducting
classification based on the association rules generated in the
second step. So far, we have gathered 29,580 executables,
of which 12,214 are referred to as benign executables and
17,366 are malicious ones. These executables called 12,964
APIs in total. All of these samples are obtained from the anti-
virus laboratory of KingSoft Corporation. The collected data
in our work is significantly larger than those used in previous
studies on data mining for malware detection [15,24,30].
The experimental results illustrate that the accuracy and effi-
ciency of our IMDS outperform popular anti-virus software
such as Norton AntiVirus, Dr. Web, McAfee VirusScan and
KAV, as well as the systems using data mining approaches
such as Naive Bayes, support vector machine (SVM) and
Decision Tree.

Our approach for malware detection has been incorpora-
ted into the KingSoft’s AntiVirus software. In summary, our
main contributions are: (1) We develop an integrated IMDS
system based on analysis of Windows API execution calls.
The system consists of three components: PE parser, rule
generator and classifier; (2) We adapt existing association
based classification techniques to improve the system effec-
tiveness and efficiency; (3) We evaluate our system on a large
collection of executables including 12,214 benign samples
and 17,366 malicious ones; (4) We provide a comprehensive
experimental study on various anti-virus software as well as
various data mining techniques for malware detection using
our data collection; (5) Our system has been already incor-
porated into the KingSoft’s AntiVirus software.

The rest of this paper is organized as follows. Section 2
discusses the related work. The IMDS system architecture is

described in Sect. 3. We, respectively, present our data col-
lection and OOA mining based classification methodology
in Sects. 4 and 5. In Sect. 6, we describe the feature selec-
tion and classification methodologies that have been used
in previous studies. These techniques are used in our expe-
riments to compare with our IMDS system. Section 7 pre-
sents and discusses the experimental results. Finally, Sect. 8
concludes.

2 Related work

Besides the traditional signature-based malware detection
methods [14,20] as mentioned in the previous section, there is
some work to improve the signature-based detection
[5,18,23,26] and also a few attempts to apply data mining and
machine learning techniques, such as Naive Bayes method,
support vector machine (SVM) and Decision Tree classifiers,
to detect new malicious executables. Theoretical studies on
computer viruses can be found in [35,36].

Sung et al. [26] developed a signature based malware
detection system called SAVE (Static Analyzer of Vicious
Executables) which emphasized on detecting polymorphic
malware by calculating a similarity measure between the
known virus and the suspicious code. The basic idea of this
approach is to extract the signatures from the original mal-
ware with the hypothesis that all versions of the same malware
share a common core signature. Although this work improves
the traditional signature-based detection in polymorphic mal-
ware detection, it fails against the unknown malware.

Schultz et al. [24] applied Naive Bayes method to detect
previously unknown malicious code. The authors downloa-
ded 1,001 benign executables and 3,265 malicious execu-
tables from several FTP sites and labeled them by a
commercial virus scanner. Furthermore, they examined a
small data set of 38 malicious programs and 206 benign pro-
grams in Windows PE format. The authors compared their
results with traditional signature-based methods and claimed
that the voting Naive Bayes classifier outperformed other
methods.

Decision Tree was studied in [15,30]. In [30], the authors
used the same data set described in [24], and worked on a
subset of the data which consists of 125 benign programs
and 875 malicious code. They conducted experiments with
both Naive Bayes and Decision Tree classifiers, and then
concluded that the Decision Tree outperformed the Naive
Bayes method in detection rate, false positive rate, and accu-
racy. Kolter et al. [15] gathered 1,971 benign executables and
1,651 malicious executables in Windows PE format, and exa-
mined the performance of different classifiers such as Naive
Bayes, support vector machine (SVM) and Decision Tree
using tenfold cross validation and plotting Receiver Ope-
rating Characteristics (ROC) curves [27]. Their results also

123

An intelligent PE-malware detection system based on association mining 325

showed that the ROC curve of the Decision Tree method
dominated all others.

The detail classification methodologies of Naive Bayes,
SVM and Decision Tree are described in Sect. 6. Although
results were generally good, it would be interesting to know
how these classifiers performed on larger collections of exe-
cutables. And also, it seems that no attempt has been made
on other learning methods such as association mining.

Different from earlier studies, our work is based on a large
collection of malicious executables collected at KingSoft
Anti-Virus Laboratory. In the field of data mining, frequent
patterns found by association mining carry the underlying
semantics of the data, therefore, we applied OOA mining
technique to extract the characterizing frequent patterns to
achieve accurate malware detection.

3 The system architecture

Our IMDS system is performed directly on Windows PE
code. The system consists of three major components: PE
parser, OOA rule generator, and malware detection module,
as illustrated in Fig. 1.

The functionality of the PE parser is to generate the
Windows API execution calls for each benign/malicious exe-
cutable. If a PE file is previously compressed by a third party
binary compress tool such as UPX and ASPack Shell or
embedded a homemade packer, it needs to be decompres-
sed before being passed to the PE parser and we use the

Fig. 1 IMDS system architecture

dissembler W32Dasm developed by KingSoft Anti-Virus
Laboratory to dissemble the PE code and output the assembly
instructions as the input of our PE parser. Through the API
query database, the API execution calls generated by the PE
parser can be converted to a group of 32-bit global IDs which
represents the static execution calls of the corresponding API
functions. For example, the API “KERNEL32.DLL, Open-
Process” executes the function that returns a handle to an
existing process object and it can be encoded as 0x00500E16.
Then we use the API calls as the signatures of the PE files
and store them in the signature database. After that, an OOA
mining algorithm is applied to generate class association
rules which are recorded in the rule database. To finally deter-
mine whether a PE file is malicious or not, we pass the selec-
ted API calls together with the rules generated to the malware
detection module to perform the association rule based clas-
sification. The detail procedures of data collection and OOA
mining based classification are described in the following
two sections, respectively.

4 Data collection and transformation

PE is designed as a common file format for all flavors of
Windows operating system, and PE viruses are in the majority
of the viruses rising in recent years. Some famous viruses
such as CIH, CodeRed, CodeBlue, Nimda, Sircam, Killonce,
Sobig, and LoveGate all aim at PE files.

As stated previously, we obtained 29,580 Windows PE
files of which 12,214 were recognized as benign executables
while 17,366 were malicious executables. The malicious exe-
cutables mainly consisted of backdoors, worms, and trojan
horses and all of them were provided by the Anti-virus
laboratory of KingSoft Corporation. The benign executables
were gathered from the system files of Windows 2000/NT
and XP operating system.

Since a virus scanner is usually a speed sensitive appli-
cation, in order to improve the system performance, we
developed a PE parser as described in the previous section to
construct the API execution calls of PE files instead of using
a third party disassembler. However, if a PE file adopts Entry
Point Obscuring (EPO) techniques or is previously compres-
sed by a third party binary compress tool such as UPX and
ASPack Shell, we firstly use the dissembler W32Dasm deve-
loped by KingSoft Anti-Virus Laboratory to dissemble the
PE code and output the assembly instructions as the input of
our PE parser.

Before proposing our design of the PE parser, let us firstly
look at the general outline of PE file format. Figure 2 is the
general layout of a PE file. All PE files must start with a
simple DOS MZ header, thus DOS can verify whether a file
is a valid executable or not when the program is running
under DOS system. Next to the DOS header, there is a PE

123

326 Y. Ye et al.

Fig. 2 General layout of a PE file

header which contains essential information used to load a
PE file. The content of a PE file is divided into sections and
each section stores data with common attributes.

Then we look at the import table from which our PE parser
extracts the APIs called by a PE file. If the PE file calls another
piece of executable code, we call it an import function. For
example, the code of a Windows API is always in the corre-
lative Dynamic Linked Library (DLL) file of the “system32”
directory. The pointers to the names of the import functions
and their resident DLL are recorded in the Imported Address
Table (IAT). In order to extract statically the API execution
calls of a PE file, our PE parser performs the following three
major steps. First of all, it locates the IAT which contains
the pointers to the hints and names of the imported API, and
then builds a binary lookup tree from all imported APIs. The
second step is to scan the code section(s) to extract the CALL
instructions and their target addresses, and then the PE par-
ser searches the target addresses in the binary lookup tree to
find the corresponding API. In the final step, we map the API
name along with its module name to a 32-bit unique global
API ID. For example, the API “MAPI32.MAPIReadMail”
is encoded as 0x00600F12. By using integer representation,
the costly string comparisons are avoided in later operations.

The implementation of our PE parser involves the follo-
wing procedures:

1. Verifying if the file is a valid PE file;
2. Locating the PE header by examining the DOS header;
3. Obtaining the address of the data directory in Image_

Optional_Header;
4. Extracting the value of VirtualAddress in the data

directory;
5. Finding Image_Import_Descriptor structures using the

value of VirtualAddress;
6. Checking the RVA value in each Image_Import_

Descriptor structure found in step 5 to locate the arrays
which contain the API function names;

7. Extracting API function names.

Fig. 3 Core algorithm of PE parser

Fig. 4 API calls samples with integer representation generated by PE
parser

The six functions of the core algorithm in Fig. 3 illustrate
the above procedures implemented in the PE parser. And
Fig. 4 shows a sample API calls generated by the PE parser.
These APIs are called by a malicious software named Trojan-
Downloader.exe.

Once we get the API calls, we can use them as the signa-
tures of the PE files and stored them in the signature database.

123

An intelligent PE-malware detection system based on association mining 327

Fig. 5 Sample data in the signature database

As shown in Fig. 5, there are six fields in the signature
database, which are record ID, PE file name, file type (“0”
represents benign file while “1” is for malicious file), called
APIs name, called API ID and the total number of called API
functions. The transaction data can also be easily converted
to relational data if necessary. Now the data is ready for the
next step, i.e., OOA mining based classification to finally
achieve the goal of detecting the malware.

5 Classification based on OOA mining

Both classification and association mining play important
roles in data mining techniques. Classification is “the task of
learning a target function that maps each feature set to one of
the predefined class labels” [28]. For association rule mining,
there is no predetermined target. Given a set of transactions in
the database, all the rules that satisfied the support and confi-
dence thresholds will be discovered [3]. As a matter of fact,
classification and association rule mining can be integrated
to association rule based classification [4,19]. This technique
utilizes the properties of frequent patterns to solve the sca-
lability and overfitting issues in classification and achieves
excellent accuracy [4]. In our IMDS system, we adapted
OOA mining techniques [25] to generate the rules.

5.1 OOA definitions

Other than traditional itemset correlation oriented association
mining, OOA mining models association patterns that are
explicitly relating to a user’s objective. In our IMDS system,
the goal is to find out how a set of API calls supports the

specific objectives: Obj1 = (Group = Malicious), and
Obj2 = (Group = Benign).

• Definition 1 (support and confidence) Let I =
{I1, . . . , Im} be an itemset and I → Obj (os%, oc%) be
an association rule in OOA mining. The support and confi-
dence of the rule are defined as:

os% = supp(I, Obj)= count (I ∪ {Obj}, DB)

|DB| × 100%

oc% = con f (I, Obj)= count (I ∪ {Obj}, DB)

count (I, DB)
× 100%

where the function count (I ∪ {Obj}, DB) returns the
number of records in the dataset DB where I ∪ {Obj}
holds.

• Definition 2 (OOA frequent itemset) Given mos% as a
user-specified minimum support. I is an OOA frequent
itemset/pattern in DB if os% ≥ mos%.

• Definition 3 (OOA rule) Given moc% as a user-specified
confidence. Let I = {I1, . . . , Im} be an OOA frequent
itemset. I → Obj (os%, oc%) is an OOA rule if oc% ≥
moc%.

In order to better explain different OOA mining algorithms,
we use a sample file in Table 1 as a simple example in the
following subsections.

5.2 OOA_Apriori algorithm

Apriori algorithm [2] can be extended to OOA mining. It can
be achieved in two major steps: (1) generate OOA frequent
patterns by Apriori algorithm; (2) estimate all of such OOA
frequent pattern; if the confidence of the itemset satisfies
oc% ≥ moc%, then insert it into the OOA rule set. Given the
example data as shown in Table 1, mos%=25%, moc%=65%,
and Obj1 = (Group = Malicious) as the objective, the
frequent itemsets by using OOA_Apriori algorithm are:
{AP I1}, {AP I2}, {AP I3}, {AP I4}, {AP I5}, {AP I1, APT3},

Table 1 Sample dataset

ID Called API File type

1 AP I1, AP I5 Benign

2 AP I1, AP I3 Malicious

3 AP I1, AP I2, AP I4, AP I5 Benign

4 AP I1, AP I2, AP I3, AP I4, AP I5 Malicious

5 AP I3, AP I5 Malicious

6 AP I2, AP I4 Benign

7 AP I2, AP I4, AP I5 Malicious

8 AP I2, AP I5 Benign

123

328 Y. Ye et al.

{AP I2, APT4}, {AP I2, APT5}, {AP I3, APT5}, {AP I4,

APT5}, {AP I2, AP I4, APT5}. The association rules gene-
rated are:

1. {AP I3} → Obj1 (37.5%,100%);
2. {AP I1, AP I3} → Obj1 (25%,100%);
3. {AP I3, AP I5} → Obj1 (25%,100%);
4. {AP I4, AP I5} → Obj1 (25%,66.7%);
5. {AP I2, AP I4, AP I5} → Obj1 (25%,66.7%).

5.3 OOA_FP-Growth algorithm

Although OOA_Apriori algorithm can be implemented eas-
ily, it requires many iterations to generate all of the frequent
itemsets before generating the association rules. An alter-
native OOA mining algorithm called OOA_FP-Growth is
designed based on FP-Growth algorithm [10,11]. This algo-
rithm encodes the dataset using an FP-tree structure and
extracts frequent itemsets from it. There are two steps in the
OOA_FP-Growth algorithm.

1. Construct the FP-tree:
(a) First of all, select all records satisfying the objective

as a sub-dataset.
(b) Scan the sub-dataset to determine the support count

of each item; sort the frequent items in decreasing
order of their support counts.

(c) Create a set of nodes for each record; form a path to
encode the record and increase the frequency count
of each node along the path by 1.

(d) Algorithm stops when every record has been mapped
onto one of the paths in the FP-tree.

2. Generate frequent itemsets: similar to the FP-Growth
algorithm, OOA_FPGrowth generates frequent itemsets
by exploring the FP-tree in a bottom-up fashion.

Now, we use the example data file shown in Table 1 to illus-
trate the OOA_FP-Growth algorithm. Given that the mini-
mum support count is 2 and the objective is Obj1 = (Group
= Malicious), we obtain the sub-dataset as shown in
Table 2. Based on the sub-dataset we construct the OOA_FP-
tree as illustrated in Fig. 6. Searching the tree in a bottom-up
fashion, we generate the following frequent itemsets:
{AP I2, AP I4}, {AP I4, AP I5}, {AP I2, AP I5}, {AP I2,

AP I4, AP I5}, {AP I1, AP I3}, {AP I3, AP I5}.

5.4 OOA_Fast_FP-Growth algorithm

In general, OOA_FP-Growth algorithm is much faster than
OOA_Apriori for mining frequent itemsets. However, when
the minimum support is small, OOA_FP-Growth generates
a huge number of conditional FP-trees recursively, which is
time and space consuming. Our malware detection relies on

Table 2 Sub-dataset from Table 1

ID Called API File type

2 AP I1, AP I3 Malicious

4 AP I1, AP I2, AP I3, AP I4, AP I5 Malicious

5 AP I3, AP I5 Malicious

7 AP I2, AP I4, AP I5 Malicious

Fig. 6 FP-tree constructed from Table 2

finding frequent patterns from large collections of data, the-
refore, the efficiency is an essential issue to our system. In our
IMDS system, we extend a modified FP-Growth algorithm
proposed in [6] to conduct the OOA mining. This algorithm
greatly reduces the costs of processing time and memory
space, and we call it OOA_Fast_FP-Growth algorithm.

Similar to OOA_FP-Growth algorithm, there are also two
steps in OOA_Fast_FP-Growth algorithm: constructing an
OOA_Fast_FP-tree and generating frequent patterns from
the tree. But the structure of an OOA_Fast_FP-tree is dif-
ferent from that of an OOA_FP-tree in the following way:
(1) The paths of an OOA_Fast_FP-tree are directed, and
there is no path from the root to leaves. Thus, fewer poin-
ters are needed and less memory space is required. (2) In
an OOA_FP-tree, each node is the name of an item, but in
an OOA_Fast_FP-tree, each node is the related order of the
item, which is determined by the support count of the item.
Based on the sub-dataset shown in Table 2, we construct
the OOA_Fast_FP-tree as illustrated in Fig. 7. The support
counts from API1 to API5, respectively, are 3, 3, 2, 2, 2 and
their related orders are 3, 4, 1, 5, 2.

The rule generation procedure of the algorithm relies on
the definition of the constrained subtree. Let ki ≺ · · · ≺
k2 ≺ k1 be a set of the items’ orders and P is a subpath
from the root to the node N in the OOA_Fast_FP-tree, we
say path P is constrained by the itemset {ki , . . . , k2, k1} if
the following two conditions are satisfied: (1) There exists
a node M, which is a child node of N, and the orders of
ki , . . . , k2, k1 appear in the subpath from node N to M; (2) ki

appears in the children of the node N, and k1 appears in the

123

An intelligent PE-malware detection system based on association mining 329

Fig. 7 Fast FP-tree constructed from Table 2

node M. If a subtree consists of all the subpaths which are
constrained by {ki , . . . , k2, k1}, we call it constrained subtree
by {ki , . . . , k2, k1}, and denote it as ST (k1, k2, . . . , ki).

The constrained subtree ST (k1, k2, . . . , ki) is a special
subtree of the OOA_Fast_FP-tree, so we need to record the
sum of the frequency counts of the nodes with the same
order. Then, the constrained subtree ST (k1, k2, . . . , ki) can
be obtained by searching the OOA_Fast_FP-tree in a bottom-
up fashion. The detailed description can be referred in [6].

5.5 An illustrating example

At the beginning of this section, we state that frequent pat-
terns are essential to accurate classification. To demonstrate
the effectiveness of the frequent patterns, we show an
example rule generated by OOA_Fast_FP-Growth algorithm.
We sample 5,611 records from our signature database, of
which 3,394 records are malicious executables and 2,217
records are benign executables. One of the rules we genera-
ted is:
(2230, 398, 145, 138, 115, 77) → Obj1 = (Group
= Malicious)(os = 0.296739, oc = 0.993437),
where os and oc represent the support and confidence, repre-
sentatively. After converting the API IDs to API names via
our API query database, this rule becomes:
(K E RN E L32.DL L , Open Process; CopyFileA;
CloseHandle; GetV ersionEx A;
Get ModuleFileNameA; WriteFile;) → Obj1 =
(Group = Malicious) (os = 0.296739, oc = 0.993437).
After analyzing the API calls in this rule, we know that the
program actually executes the following functions:

• returns a handle to an existing process object;
• copies an existing file to a new file;
• closes the handle of the open object;
• obtains extended information about the version of the cur-

rently running operating system;

• retrieves the complete path of the file that contains the
specified module of current process;

• writes data to the file.

with the os and oc values, we know that this API calls appears
in 1,665 malware, while only in 11 benign files. Obviously,
it is one of the essential rules for determining whether an
executable is malicious or not. In the experiments section,
we perform a comprehensive experimental study to evaluate
the efficiency of different OOA mining algorithms.

5.6 Associative classifier

For OOA rule generation, we use the OOA_Fast_FP-Growth
algorithm to obtain all the association rules with certain sup-
port and confidence thresholds, and two objectives: Obj1 =
(Group = Malicious), Obj2 = (Group = Benign).
The number of the rules is also correlated to the number
of the samples. We sample 5,611 records from our signature
database, of which 3,394 records are malicious executables
and 2,217 records are benign executables. Thus we gene-
rate 50 rules with mos = 0.38 and moc = 0.90. Then we
apply the technique of classification based on association
rules (CBA) to build a CBA classifier [19] as our malware
detection module. The CBA classifier is built on rules with
high support and confidence and uses the association between
frequent patterns and the type of files for prediction. So, our
malware detection module takes the input of generated OOA
rules and outputs the prediction of whether an executable is
malicious or not.

6 Other data mining techniques for malware detection

Several data mining techniques such as Naive Bayes, SVM
and Decision Tree have been applied to malware detection. In
our work, we have performed a comprehensive experimen-
tal study comparing our IMDS with those methods. Here,
we briefly describe the methods used in our experimental
comparisons.

6.1 Classification methods

Naive Bayes. Naive Bayes is one of the most successful
learning algorithms for text categorization which is based
on the Bayes rule assuming conditional independence bet-
ween classes. Based on the rule, using the joint probabilities
of sample observations and classes, the algorithm attempts
to estimate the conditional probabilities of classes given an
observation.

Support Vector machines (SVMs). SVMs [29] have exhibi-
ted superb performance in binary classification tasks. SVM
aims at searching for a hyperplane that separates the two

123

330 Y. Ye et al.

classes of data with largest margin (the margin is the dis-
tance between the hyperplane and the point closest to it).

Decision Tree. Decision Tree builds a binary classification
tree. Each node corresponds to a binary predicate on one
attribute. One branch corresponds to the positive instances
of the predicate and the other to the negative instances. Thus,
each node corresponds to a sequence of predicates and their
values appearing on the downward path from the root to it.
Each leaf is labeled by a class. To predict the class label of
an input, a path to a leaf from the root is found depending on
the value of the predicate at each node visited. The predicates
are chosen from top to bottom by calculating the information
gain of each attribute, which is the expected reduction in
entropy caused by partitioning of the samples according to
the attribute.

6.2 Feature selection

Feature selection is important for many pattern classification
systems [13,16,17]. Identifying the most representative fea-
tures is critical to minimize the classification error. As not
all of the API calls are contributing to malware detection
[26,32], in the experiments, we applied the Max-Relevance
[22] feature selection algorithm to improve the efficiency and
accuracy of the classifiers.

The main idea of Max-Relevance algorithm is to select a
set of API calls with the highest relevance to the target class,
i.e., the file type. Given ai which represents the API with ID
i , and the file type f (“0” represents benign executables and
“1” is for malicious executables), their mutual information
is defined in terms of their frequencies of appearances p(ai),
p(f), and p(ai , f) as follows:

I (ai , f) =
∫ ∫

p(ai , f)log
p(ai , f)

p(ai)p(f)
d(ai)d(f).

With this algorithm, we select the top m APIs in the descent
order of I (ai , f), i.e., the best m individual features correla-
ted to the file types of the PE files.

In the experiments, we use Max-Relevance on the clas-
sifiers of Naive Bayes, SVM and Decision Tree, and then
compare the results of these classifiers with our IMDS sys-
tem.

7 Experimental results and analysis

We conduct three sets of experiments using our collected
data. In the first set of experiments, we evaluate the effi-
ciency of different OOA mining algorithms. The second set
of experiments is to compare the abilities to detect poly-
morphic/metamorphic and unknown malware of our IMDS
system with current widely used anti-virus software. The effi-
ciency and false positives by using different scanners have

also been examined. Finally, we compare our IMDS system
with other classification based methods. All the experiments
are conducted under the environment of Windows 2000 ope-
rating system plus Intel P4 1 GHz CPU and 1 GB of RAM.

7.1 Evaluation of different OOA mining algorithms

In the first set of experiments, we implement OOA_Apriori,
OOA_FP-Growth, and OOA_Fast_FP-Growth algorithms
under Microsoft Visual C++ environment. We sample 5,611
records from our signature database, which includes 3,394
records of malicious executables and 2,217 records of benign
executables. By using different support and confidence thre-
sholds, we compare the efficiency of the three algorithms.
The results are shown in Table 3 and Fig. 8. From Table 3,
we observe that the time complexity increases exponentially
as the minimum support threshold decreases. However, it
shows obviously that the OOA_Fast_FP-Growth algorithm
is much more efficient than the other two algorithms, and
it even doubles the speed of performing OOA_FP-Growth
algorithm. Figure 8 presents a clearer graphical view of the
results.

Table 3 Running time of different OOA mining algorithms (min)

Experiment 1 2 3 4

Mos 0.355 0.35 0.34 0.294

Moc 0.9 0.95 0.9 0.98

OOA_Apriori 25 260.5 ∞ ∞
OOA_FP-Growth 8 16.14 60.5 280.2

OOA_Fast_FP-Growth 4.1 7.99 28.8 143.5

Mos and Moc represent the minimum support and minimum confidence
for each experiment

Fig. 8 Comparison on the efficiency of different OOA mining algo-
rithms

123

An intelligent PE-malware detection system based on association mining 331

7.2 Comparisons of different anti-virus scanners

In this section, we examine the abilities of detecting poly-
morphic malware and unknown malware of our system in
comparison with some of the popular software tools such as
Norton AntiVirus 2007, Dr. Web 2007, McAfee VirusScan
2007 and Kaspersky Anti-Virus 2007. We use all of their
newest versions of the base of signature on the same day (20
September, 2007) for testing. The efficiency and the number
of false positives are also evaluated.

7.2.1 Polymorphic/metamorphic virus detection

In this experiment, we sample 3,000 malicious files and 2,000
benign files in the training data set, then we use 1,500 mal-
ware and 500 benign executables as the test data set. Several
recent Win32 PE viruses are included in the test data set for
analysis such as Lovedoor, My doom, Blaster, and Beagle.
For each virus, we apply the encryption and obfuscation tech-
niques described in [26], including flow modification, data
segment modification and insertion of dead code, to create
a set of polymorphic/metamorphic versions. Then we com-
pare our system with current most widely used anti-virus
software. The results shown in Table 4 demonstrate that our
IMDS system achieves better accuracy than other software
in polymorphic malware detection.

7.2.2 Unknown malware detection

In order to examine the ability of identifying new and pre-
viously unknown malware of our IMDS system, we use 1,000

Table 4 Polymorphic/metamorphic malware detection

Software N M D K IMDS

Beagle
√ √ √ √ √

Beagle V1
√ √ × √ √

Beagle V2
√ × × √ √

Beagle V3 × × × √ √
Beagle V4

√ √ × × √
Blaster

√ √ √ √ √
Blaster V1

√ √ √ √ √
Blaster V2 × × × × √
Lovedoor

√ √ √ √ √
Lovedoor V1 × × √ × √
Lovedoor V2 × × × × √
Lovedoor V3 × √ × √ √
Mydoom

√ √ √ √ √
Mydoom V1 × × × × √
Mydoom V1 × × × ?

√

N Norton AntiVirus, M MacAfee, D Dr. Web, K Kaspersky, “
√

” suc-
cessful detection, “×” failure to detect, “?” only an “alert”; all the scan-
ners used are of most current and updated version

Table 5 Unknown malware detection

Software N M D K IMDS

malware 1
√ √ √ × √

malware 2 × × √ √ √
malware 3

√ × × × √
malware 4 × × × × ×
malware 5 × √ × × √
malware 6 × × √ × √
malware 7

√ × × × √
malware 8 × × × × √
malware 9 × √ √ × √
malware 10 × × × × √
malware 11 × × × √ √
malware 12 × √ × √ √
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

malware 1000
√ × × × √

Stat. 633 753 620 780 920

Ratio. (%) 63.3 75.3 62 78 92

malware for test. These malware are not simple modifications
of well known malware and we do not have any informa-
tion about their nature. They are analyzed by the experts in
KingSoft Anti-virus laboratory and their signatures have not
been recorded into the virus signature database. Comparing
with other anti-virus software, our IMDS system performs
most accurate detection. The results are listed in Table 5.

7.2.3 System efficiency and false positives

In malware detection, a false positive occurs when the scan-
ner marks a benign file as a malicious one by error. False
positives can be costly nuisances due to the waste of time
and resources to deal with those falsely reported files. In this
set of experiments, in order to examine the system efficiency
and the number of false positives of the IMDS system, we
sample 2,000 executables in the test data set, which contains
500 malicious executables and 1,500 benign ones.

First, we compare the efficiency of our system with dif-
ferent scanners including the scanner named “SAVE” [26,32]
described in related work and some widely used anti-virus
software.

The results in Fig. 9 illustrate that our IMDS system achie-
ves much higher efficiency than other scanners when being
executed in the same environment.

The number of false positives by using different scanners
are also examined. By scanning 1,500 benign executables
whose signatures have not been recorded in the signature
database, we obtain the results shown in Fig. 10. Figure 10

123

332 Y. Ye et al.

Fig. 9 Efficiency of different scanners

Fig. 10 False positives by using different scanners

clearly shows that the false positives by using our IMDS
system are much fewer than other scanners.

7.3 Comparisons of different classification methods

In this set of experiments, we compare our system with
other classification methods described in Sect. 6. We ran-
domly select 2,843 executables from our data collection,
in which 1,207 files are benign and 1,636 executables are
malicious. Then we convert the transactional sample data in
our signature database into a relational table, in which each
column corresponds to an API and each row is an executable.
This transformation makes it easy to apply feature selection
methods and other classification approaches.

First, we rank each API using Max-Relevance algorithm
introduced in Sect. 6.2, and then choose top 500 API calls
as the features for later classification. In the experiments,
we use the Naive Bayes classifier and J4.8 version of Deci-
sion Tree implemented in WEKA [31], and also the SVM
implemented in LIBSVM package [12]. For the OOA_Fast_
FP-Growth mining, we select thresholds based on two cri-
teria: setting moc as close to 1 as possible; and selecting a
big mos without exceeding the maximum support in the data
set. Then, in the experiment, we set mos to 0.294 and moc
to 0.98. Tenfold cross validation is used to evaluate the accu-
racy of each classifier. The following evaluation measures
are used in the results:

• True positive (TP): the number of executables correctly
classified as malicious code.

• True negative (TN): the number of executables correctly
classified as benign executables.

Table 6 Results by using different classifiers

Algorithms TP TN FP FN DR (%) ACY (%)

Naive Bayes 1,340 1,044 163 296 81.91 83.86

SVM 1,585 989 218 51 96.88 90.54

J4.8 1,574 1,027 609 62 96.21 91.49

IMDS 1,590 1,056 151 46 97.19 93.07

Fig. 11 True positives and true negatives of different classification
methods

Fig. 12 Detection rate and accuracy of different classification methods

• False positive (FP): as discussed in Sect. 7.2.3, it is the
number of executables mistakenly classified as malicious
executables.

• False negative (FN): the number of executables mista-
kenly classified as benign executables.

• Detection rate (DR): T P
T P+F N .

• Accuracy (ACY): T P+T N
T P+T N+F P+F N

Results shown in Table 6 indicate our IMDS system
achieve most accurate malware detection.

Figures 11 and 12 gives a graphic illustration of the effec-
tiveness of different approaches. From the comparison, we
observe that our IMDS outperforms other classification
methods in both detection rate and accuracy. This is because
“frequent patterns are of statistical significance and a clas-
sifier with frequent pattern analysis is generally effective to
test datasets” [4].

123

An intelligent PE-malware detection system based on association mining 333

8 Conclusions and future work

In this paper, we describe our research effort on malware
detection based on window API calls. We develop an inte-
grated IMDS system consisting of PE parser, OOA rule gene-
rator and rule based classifier. First, a PE parser is developed
to extract the Windows API execution calls for each Windows
portable executable. Then, the OOA_Fast_FP-Growth
algorithm is adapted to generate association rules with the
objectives of finding malicious and benign executables. This
algorithm achieves much higher efficiency than previous
OOA mining algorithms. Finally, classification is performed
based on the generated rules. Experiments on a large real data
collection from anti-virus lab at Kingsoft Corp. demonstrate
the strong abilities of our IMDS system to detect polymor-
phic and new viruses. And the efficiency, accuracy and the
scalability of our system outperform other current widely
used anti-virus software and other data mining based mal-
ware detection methods. Our work results in a real malware
detection system, which has been incorporated into the scan-
ning tool of KingSoft’s AntiVirus software.

In our future work, we plan to extend our IMDS sys-
tem from the following avenues: (1) Collect more detailed
information about the API calls such as their dependencies
and timestamps and use it for better malware detection. We
will investigate methods such as frequent structure mining to
capture the complex relationships among the API calls. (2)
Predict the types of malware. Our IMDS currently only pro-
vides binary predictions, i.e., whether a PE file is malicious
or not. A natural extension is to predict the different types of
malware. (3) Improve the efficiency and effectiveness of our
frequent pattern based classification.

References

1. Adleman, L.: An abstract theory of computer viruses (invited
talk). In: CRYPTO ’88: Proceedings on Advances in Cryptology,
pp. 354–374, New York, NY, USA. Springer, New York (1990)

2. Agrawal, R., Imielinski, T.: Mining association rules between sets
of items in large databases. In: Proceedings of SIGMOD (1993)

3. Agrawal, R., Srikant, R.: Fast algorithms for association rule
mining. In: Proceedings of VLDB-94 (1994)

4. Cheng, H., Yan, X., Han, J., Hsu, C.: Discriminative frequenct pat-
tern analysis for effective classification. In: Proceedings of IEEE
23rd International Conference on Data Engineering (ICDE-07)
(2007)

5. Christodorescu, M., Jha, S.: Static analysis of executables to detect
malicious patterns. In: Proceedings of the 12th USENIX Security
Symposium (2003)

6. Fan, M., Li, C.: Mining frequent patterns in an fp-tree without
conditional fp-tree generation. J. Comput. Res. Dev. 40, 1216–
1222 (2003)

7. Filiol, E.: Computer Viruses: from Theory to Applications.
Springer, Heidelberg (2005)

8. Filiol, E.: Malware pattern scanning schemes secure against black-
box analysis. J. Comput. Virol. 2(1), 35–50 (2006)

9. Filiol, E., Jacob, G., Liard, M.L.: Evaluation methodology and
theoretical model for antiviral behavioural detection strategies.
J. Comput. Virol. 3(1), 27–37 (2007)

10. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd
edn. Morgan Kaufmann, San Francisco (2006)

11. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate
generation. In: Proceedings of SIGMOD, pp. 1–12, May (2000)

12. Hsu, C., Lin, C.: A comparison of methods for multiclass support
vector machines. IEEE Trans. Neural Netw. 13, 415–425 (2002)

13. Jain, A., Duin, R., Mao, J.: Statistical pattern recognition: A
review. IEEE Trans. Pattern Anal. Mach. Intell. 22, 4–37 (2000)

14. Kephart, J., Arnold, W.: Automatic extraction of computer virus
signatures. In: Proceedings of 4th Virus Bulletin International
Conference, pp. 178–184 (1994)

15. Kolter, J., Maloof, M.: Learning to detect malicious executables
in the wild. In: Proceedings of KDD’04 (2004)

16. Kwak, N., Choi, C.: Input feature selection by mutual informa-
tion based on parzen window. IEEE Trans. Pattern Anal. Mach.
Intell. 24, 1667–1671 (2002)

17. Langley, P.: Selection of relevant features in machine learning. In:
Proceedings of AAAI Fall Symposium (1994)

18. Lee, T., Mody, J.: Behavioral classification. In: Proceedings of
2006 EICAR Conference (2006)

19. Liu, B., Hsu, W., Ma, Y.: Integreting classification and association
rule mining. In: Proceedings of KDD’98 (1998)

20. Lo, R., Levitt, K., Olsson, R.: Mcf: A malicious code filter. Com-
put. Secur. 14, 541–566 (1995)

21. McGraw, G., Morrisett, G.: Attacking malicious code: report to
the infosec research council. IEEE Softw. 17(5), 33–41 (2002)

22. Peng, H., Long, F., Ding, C.: Feature selection based on mutual
information: Criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27
(2005)

23. Rabek, J., Khazan, R., Lewandowski, S., Cunningham, R.: Detec-
tion of injected, dynamically generated, and obfuscated malicious
code. In: Proceedings of the 2003 ACM Workshop on Rapid
Malcode, pp. 76–82 (2003)

24. Schultz, M., Eskin, E., Zadok, E.: Data mining methods for detec-
tion of new malicious executables. In: Security and Privacy, 2001
Proceedings. 2001 IEEE Symposium on 14–16 May, pp. 38–49
(2001)

25. Shen, Y., Yang, Q., Zhang, Z.: Objective-oriented utility-based
association mining. In: Proceedings of IEEE International Confe-
rence on Data Mining (2002)

26. Sung, A., Xu, J., Chavez, P., Mukkamala, S.: Static analyzer of
vicious executables (save). In: Proceedings of the 20th Annual
Computer Security Applications Conference (2004)

27. Swets, J., Pickett, R.: Evaluation of Diagnostic System: Methods
from Signal Detection Theory. Academic Press, New York (1982)

28. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data
Mining. Addison Wesley, Reading (2005)

29. Vapnik, V.: The Nature of Statistical Learning Theory. Springer,
Heidelberg (1999)

30. Wang, J., Deng, P., Fan, Y., Jaw, L., Liu, Y.: Virus detection using
data mining techniques. In: Proceedings of IEEE International
Conference on Data Mining (2003)

31. Witten, H., Frank, E.: Data Mining: Practical Machine Learning
Tools with Java Implementations. Morgan Kaufmann, San Fran-
cisco (2005)

32. Xu, J., Sung, A., Chavez, P., Mukkamala, S.: Polymorphic mali-
cous executable sanner by api sequence analysis. In: Proceedings
of the International Conference on Hybrid Intelligent Systems
(2004)

33. Ye, Y., Wang, D., Li, T., Ye, D.: IMDS: Intelligent malware detec-
tion system. In: Proccedings of ACM International Conference on
Knowlege Discovery and Data Mining (SIGKDD 2007) (2007)

123

334 Y. Ye et al.

34. Yin, X., Han, J.: Cpar: Classification based on predictive associa-
tion rules. In: Proceedings of 3rd SIAM International Conference
on Data Mining (SDM’03), May (2003)

35. Zuo, Z., Tian Zhou, M.: Some further theoretical results about
computer viruses. Comput. J. 47(6), 627–633 (2004)

36. Zuo, Z., Zhu, Q.-x., Zhou, M.-t.: On the time complexity of
computer viruses. IEEE Trans. Inf. Theory 51(8), 2962–2966
(2005)

123

	0pt An intelligent PE-malware detection system based on association mining
	Abstract
	1 Introduction
	2 Related work
	3 The system architecture
	4 Data collection and transformation
	5 Classification based on OOA mining
	5.1 OOA definitions
	5.2 OOA_Apriori algorithm
	5.3 OOA_FP-Growth algorithm
	5.4 OOA_Fast_FP-Growth algorithm
	5.5 An illustrating example
	5.6 Associative classifier

	6 Other data mining techniques for malware detection
	6.1 Classification methods
	6.2 Feature selection

	7 Experimental results and analysis
	7.1 Evaluation of different OOA mining algorithms
	7.2 Comparisons of different anti-virus scanners
	7.3 Comparisons of different classification methods

	8 Conclusions and future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

