J Comput Virol (2008) 4:347-356
DOI 10.1007/s11416-007-0075-8

INVITED PAPER

SQL infections through RFID

Anthonius Sulaiman - Srinivas Mukkamala -
Andrew Sung

Received: 5 October 2007 / Accepted: 23 November 2007 / Published online: 18 December 2007

© Springer-Verlag France 2007

Abstract Automatic identification and collection (AIDC)
technologies have made the life of a man much easier on
numerous platforms. Of the various such technologies the
radio frequency identification devices (RFID) have become
pervasive essentially because they can track from a greater
physical distance than the rest. The back end that supports
these RFID systems has always been working well until they
encounter a sbadly-formatted RFID tag. There have hardly
been any incidents where such tags, once identified by the
back-end systems, can in fact wreak havoc via the interact-
ing databases in the RFID infrastructure. Recently, there has
been significant research in this area. In the previous work,
the author managed to do an attack using a self-referential
query on Linux, Oracle, and PHP. However, they have been
unable to test it on SQL Server 2005. This paper differs from
the previous work in the way that it extends the attack using
a self-referential query to Windows, SQL Server 2005, and
ASP with their respective latest updates installed. The query
itself is more robust by making certain that the table can
contain it.

Keywords RFID attacks - RFID virus - SQL infections -
SQL injections

A. Sulaiman (<) - S. Mukkamala - A. Sung
Department of Computer Science,

Institute for Complex Additive Systems Analysis,
New Mexico Tech, Socorro, NM, USA

e-mail: ais@cs.nmt.edu

S. Mukkamala
e-mail: srinivas@cs.nmt.edu

A. Sung
e-mail: sung@cs.nmt.edu

1 Introduction

Essentially, it is the ease of tracking of various objects simul-
taneously from a distance that made the RFID technology
become so prevalent. Also, the fact that access control can be
enforced caused numerous business establishments to imple-
ment this technology in one way or the other, either for sup-
ply chain management or to keep a track of the employees
by embedding an RFID tag in their ID cards [1].

Similarly hospitals also keep a track of their doctors and
also trying to read medical data from sub-dermal RFID in the
patients RFid Gazette [2]. Numerous highway maintenance
authorities use RFID tags inserted on the vehicles for easy
and automated toll collection New Jersey [3]. More recently
efforts are underway by government authorities to introduce
these RFID chips citizens’ passports [4].

RFID systems have been around since the World War
II used by many nations’ military to keep a track of their
artillery. As stated earlier, the RFID systems are a part of
the AIDC technologies which also consists of other sys-
tems like the optical character recognition (e.g. barcodes) and
magnetic ink character recognition (e.g. magnetic stripe). An
estimated of 40 million people in the US are supposedly car-
rying some kind of RFID device with them [5]. This relatively
shows the ubiquity of the RFID devices. These devices are
controlled by corresponding computer infrastructure. In most
cases a database exists to contain the individual details of the
tags.

This technology has its down side too. There are various
security and privacy issues. Though privacy issues are not
of concern in this work, Sect. 2.1 illustrates a possible real
world scenario that can compromise privacy due to lack of
proper security of the technology. This work focuses on an
RFID tag triggered executable on a Windows machine using
Microsoft SQL Server 2005. While there are works focusing

@ Springer

348

A. Sulaiman et al.

Fig. 1 A RFID tag

on Linux using Oracle (both are freely downloadable), we
focus on commercial products and how they perform when
these types of attacks occur. This paper presents an RFID
attack on Microsoft SQL Server 2005 that had not been suc-
cessfully performed until now. We also extend the work by
making a more robust SQL query.

The following section explains the basic RFID technology
followed by possible threats. Section 3 explains the related
works and Sect. 4 talks about the RFID virus that this work
is concentrated on. Section 5 presents the experiments and
results of this work and finally in Sect. 6 concludes the paper
with possible future work.

2 RFID technology

RFID systems primarily consists of the RFID tags or chips,
the RFID readers, the antennas, the computer networks and
finally the software that takes care of the information carried
by these RFID tags. An RFID tag (shown in Fig. 1) is a tiny,
flat microchip with a built-in antenna, which is available in
various sizes, but with the same basic functionality.

When a radio signal is incident on an RFID tag, the RFID
is activated and broadcasts the information it contains. The
RFID tags can be attached to or incorporated into a product,
animal, or person for the purpose of identification using radio
waves [6].

These RFID tags are of two types: passive and active.
The passive ones do not have any power of their own. They
respond only if encountered by radio waves from the read-
ers. On the other hand, active RFID tags have a built-in
power source and more recently, certain computing or sens-
ing technology (e.g. sub-dermal chips) which emit the data
in the form of radio frequency waves to be received by a
legitimate reader. These active RFID tags usually have higher

@ Springer

storage capacities when compared to their passive counter-
parts. They usually provide communication ranges of 100 m
or more while passive can only provide up to 3m [7].

Table 1 shows the differences of passive and active tags
taken from [7].

We are concerned with the back-end entity of the RFID
infrastructure which is the software aspect essentially the dat-
abases. The databases have their own set of security issues.
With the rise of internet usage and computing power, a lot
of information from these databases is exchanged over the
internet. Hence, these databases are at the verge of facing the
various security problems that engulfed the internet.

2.1 Threats

RFID systems encountered a number of threats and privacy
issues. This work is an attempt to address the information
security issues chiefly the attacks through the databases that
these RFID tags communicate with. This paper provides a
proof-of-concept to run an executable on a windows machine
using SQL Server 2005 as the back-end architecture.

The authors of [8,9] enumerate a number of common
threats that can implement the above mentioned method. As
an example, the following classes of problems especially are
of major concern for both security and privacy in the RFID
tags incorporated in an individual’s problems:

e Identity spoofing. An attacker replaces an authorized
reader with their reader and reads the tags of an indi-
vidual without the individual’s authorization [8].

e Data tampering. Products often have RFID-enabled tags
to store pricing and item information. An attacker mod-
ifies the tag to show cheaper price when scanned at the
cashier.

e Repudiation. The government may use RFID-enabled
tags to track, hot-list, or profile individuals [8]. The gov-
ernment has already controlled people with RFID-laced
bracelets—and not just criminals [10].

e [Information disclosure. An attacker tracks an individual
determining where an individual is located and where
they have been by the tags carried by an individual being
read at multiple locations [8].

e Denial of service. An attacker deletes or modifies the
serial number in an RFID-enabled passport preventing or
delaying the individual from entering the country [8].

e FElevation of privilege. An attacker modifies the serial
number on a RFID enabled passport to be a citizen in
good standing instead of a criminal [8].

2.2 RFID risks

Though RFID technology has brought lots of usages and sig-
nificantly changed the business process, it has its own risks.

SQL infections through RFID

349

Table 1 Differences of active
and passive tags

Active RFID

Passive RFID

Tag power source

Internal to tag

Energy transferred from the reader

via RF
Tag battery Yes No
Availability of tag power Continuous Only within field of reader
Required signal strength Low High (must power the tag)
from reader to tag
Available signal strength High Low

from tag to reader
Communication range

Multi-Tag collection

Sensor capability

Data storage

Long range (100 m or more)

Collects thousands of tags overa 7 acre
region from a single reader

Ability to continuously monitor and
record sensor input; date/time stamp
for sensor events

Large read/write data storage (128
KB) with sophisticated data search

Short or very short range (3 m or
less)

Collects hundreds of tags within
3 m from a single reader

Ability to read and transfer sensor
values only when tag is powered
by reader; no date/time stamp

Small read/write data storage (e.g.
128 bytes)

and access capabilities available

For example, suppose an attacker tries to compromise the
system or damages the database using SQL injection attacks,
there would be a heavy loss in business. These risks can be
classified as high-level business risk [11]:

e Business process risk. The usage of RFID systems has
made lot of things easier. For example, RFID-enabled
systems replace the paper-based inventory management
system in warehouses [11]. It is because the paper system
might be more resilient to local disaster than the RFID
system. When there are any failures in RFID system such
as network failure, middleware infection by virus or any
interruption of signals while data is transmitting, the data
is less accurate. This, in turn, might sometimes lead to
even more critical stages of devastation to the business.
This type of risk is a cause from both human action and
natural causes, which might be intentional or uninten-
tional. An example of unintentional risks is when a tag
fails to be read due to some damage that occurred to the
RFID tag. An example of intentional risks is when an
attacker clones the tag.

e Business intelligence risk. An attacker can gain an unau-
thorized access over the RFID system and get sensitive
information such as password and other information from
the back-end database system. For example, an attacker
eavesdropping on the RF signals can capture the data.
Supply chain applications are most vulnerable to this kind
of attack [11].

e Privacy risk. In the case of when a customer purchases
a merchandise and the tag is not removed or destroyed,
the tag is still in active state. The seller might still use
the tag which stays on the customer. He can get the cus-
tomer’s location by tracking the tag’s location. He can

even get some personal information about the customer
with the help of the tag [11]. Privacy also depends on how
the information is stored in the tag, the built-in security
of the tag (e.g. encryption) and how secure the database
systems and the middleware.

e External risk. External risks always exist, since the RFID
systems are sometimes connected to non-RFID systems
or external network to connect to an enterprise system or
database servers. The major problems involving network
devices and applications are network attacks [11]. These
problems are caused by malware and vulnerabilities pres-
ent in the network devices and the middleware systems
(applications). These vulnerabilities lead to damaging the
database system and compromising the whole enterprise
system.

2.3 Attacks on RFID

The following defines data security in an RFID context [12]:

e Controlled access to the data: Authentication needs for
read and write access over information.

e Control over access to the system: All devices connected
to the system are authentic and trustworthy.

e Confidence and trust in the system: There is a general
perception that the system is safe and secure.

RFID technology has its own disadvantages in security and
privacy aspects. The security of an RFID-enabled system
depends mostly on how secure the middleware is developed.
It also relies on the data contained in RFID tags, which can
surprisingly lead to a SQL injection attack, denial of service
attack or even a buffer overflow.

@ Springer

350

A. Sulaiman et al.

Reads & Writes to Tags
S~
Fig. 2 Unauthorized tag access
Reads & Writes to Tags
o

Fig. 3 Clone tags

Tag readers can communicate in two ways. There are sev-
eral security issues based on these communication methods:
when tag readers convey data via internet protocol and when
tag readers provide and gather data to and from the tags via
low power radio frequency.

Tag readers convey data via internet protocol (IP) An unau-
thorized access through the network is the key threat. No
access should be allowed for any rogue devices to connect to
the network. The network can be secured by using techniques
like Secure Socket Layer (SSL) and Secure Shell (SSH).
These techniques ensure more security by closing all open
ports that can be used by intruders to gain access via telnet.
Because of the availability of secure tools and standard fea-
ture techniques, the back-end communication is strong and
somewhat secure. Hence, IP communication is an essential
feature of an RFID reader and RFID implementations.

Tag readers provides and gathers data to and from the tags
via low power radio frequency (RF) In this method, the
communication is done on-air and can lead to several key
threats:

e Unauthorized tag access (leads to Sniffing). All tags are
supposed to be read by an RFID reader which passes on
by the authentication key. The rogue readers, an unautho-
rized reader, are similar to an RFID reader which can read
any tags, as shown in Fig. 2. Because of a critical vulner-
ability in the tags, the rogue readers can read confidential
information from the tags, write any malicious data into

@ Springer

Clone

the tags and even can make inactive or kill the tags. Hence,
tags can be read anywhere at any reachable distance. One
recent controversy highlighting this issue concerns the
skimming of digital passports (a.k.a. Machine Readable
Travel Documents Biometrics [9,13].

Clone tags (lead to Spoofing). Clone tags are unautho-
rized replicas of the original tags, as shown in Fig. 3.
These clones can be used to gain unauthorized access,
since the readers will read these tags and assume to be
the original ones. Rogue tags can be used to inject some
false or malicious data into the system, which might dam-
age the integrity of the system and the data in the sys-
tem. One notable spoofing attack was performed recently
by researchers from Johns Hopkins University and RSA
Security [14]. The researchers cloned an RFID transpon-
der using a sniffed (and decrypted) identifier that they
used to buy gasoline and unlock an RFID-based car immo-
bilization system [9].

Side channel attacks (lead to Replay attacks). The biggest
threat is when there is a rogue device eavesdropping the
communication between the tags and the reader, as shown
in Fig. 4. The rogue devices can spoof the password and
other sensitive information from the tags. Man-in-the-
middle attack is also possible, where original data is mod-
ified and resent. For example, attackers can intercept and
retransmit RFID queries using RFID relay devices [15].
Digital passport readers and contactless payment systems
can also be fooled [9].

SQL infections through RFID

351

Reads & Writes to Tags

Fig. 4 Side channel attacks

2.4 SQL injection

Another threat related to RFID systems is SQL injection.
SQL injection is a security vulnerability that occurs in the
database layer of an application [11]. It is an attack tech-
nique used to exploit web sites by altering backend SQL
statements through manipulating application input [17]. In
the case of RFID systems, the vulnerability occurs mostly
in the middleware. Middleware is the software that connects
the RFID reader with the database system.

There are a few methods of SQL injection attacks, such as
incorrectly filtered escape characters or incorrect type han-
dling. Let us take a look at the most common mistakes that
occur during the development of the middleware.

Our middleware reads from the RFID reader. Since this
function does not relate to the database, there is no mean-
ingful attack that can be done to the database here. The next
step, however, authenticates the person trying to get in. The
RFID tag contains the ID and the name of the person. The
middleware authenticates with the following SQL query:

SELECT * FROM Table WHERE ID = $ID AND Name = ’‘S$Name’

The middleware substitutes the $ID and $Name variables
with the ID and the name read from the tag before submitting
it to the database for execution. If the query returns a non-null
value, he or she will be granted access to open the door.

A SQL injection attack using incorrectly filtered escape
characters would be having the following malicious string in
the Name field of the tag:

a’ OrR 'a’ = 'a
The resulting SQL query during execution is:

SELECT * FROM Table WHERE ID = 0 AND Name = ‘a’ OR ’‘a’ = ’'a’

Listens and gets

password or data

This query when executed will always return a value,
which in turn grants the person access to the door.

Manipulating string in a SQL query is widely practiced
and really dangerous as it can lead to executing another query.
Consider the following string [18]:

a’'; DROP TABLE Table;--

The resulting SQL statement has two queries which will
end up deleting the whole table. Now no one can get in
through the door. This is the real life denial of service. It is
becoming even more dangerous when the database is served
live on the network or the internet, especially when SQL
operations are done through the use of web sites and URLs
[19]. We chose SQL injection attack in our work because this
attack is very common among databases.

3 Related work

There has been very little work concerned with RFID tags
injecting viruses into the backend systems. Rieback et al.
have done significant work in this area while providing a
proof-of-concept for both Linux and Windows based sys-
tems [9]. In their paper they target Oracle with Server-Side
Includes (SSI) performing SQL injection and script based
attacks. They used PHP along with SSI to achieve the above.

Quines can be used to obfuscate the source code [11].
For increased stealth and generality this obfuscation can be
utilized. Essentially a quine is a program that produces its
source code as its output. The authors of [9] also mentioned
about this mechanism in their work.

SQL injection attacks have been around for quite a while.
In this work we show how attackers can use this in conjunc-
tion with RFID middleware to compromise the infrastructure.

@ Springer

352

A. Sulaiman et al.

SQL Injection happens when a developer accepts user input
that is directly placed into a SQL Statement and does not
properly filter out dangerous characters. This can allow an
attacker to not only steal data from your database, but also
modify and delete it [21].

Rieback et al. [9] managed to do an attack using a self-
referential query on Linux, Oracle, and PHP. However, they
have been unable to test it on SQL Server 2005. This paper
differs from their work in the way that it extends the attack
using a self-referential query to Windows, SQL Server 2005,
and ASP with their respective latest updates installed. The
query itself is more robust by making certain that the table
can contain it.

4 RFID virus

The intelligence of an RFID system lies in the back-end sys-
tems and the middleware. In general the RFID tags by them-
selves are non-computing devices. On an encounter with a
RFID reader they reply with a number or string as described
in Sect. 5. This replied data can be stored and queried in a
database.

The middleware application is the one that talks to the
database while creating SQL statements and inserting the
relevant information into the database. At this juncture an
RFID tag can exploit the vulnerabilities in the middleware
to send malicious payloads as input through the RFID mid-
dleware and hence perform a SQL injection attack [9]. This
work explores such class of attacks that could be used to
propagate RFID malware.

5 Experiments and results
The computer that we are using was configured as follows:

Operating System: Microsoft Windows XP SP2.
Database: Microsoft SQL Server 2005.

Web Server: WAMPS 1.6.6 (Apache 2.0.59 with PHP
5.2.0) running on port 80 and Microsoft Internet Infor-
mation Server included in Windows XP running on port
9919.

We use Windows and SQL Server as these are commercial
products that get regularly updated as new vulnerabilities are
discovered. The triggering mechanism is done through vul-
nerability in Server-Side Includes (SSI) which is available
in any web server that supports it. We use SSI in conjunc-
tion with ASP and PHP. PHP can be freely downloaded and
installed. ASP comes with Windows web server. This is to
demonstrate that as long as SSI is enabled with execution
capability, it can be exploited.

@ Springer

Table 2 An uninfected table

ID Data Mode
Toyota Camry
Chevy Blazer
Ford Taurus

5.1 SQL virus using a self-referential query for SQL Server

The first experiment is to ensure that the virus mentioned by
Rieback et al. can be applied to SQL Server 2005. In our
experiment, we consider an inventory table called Cars that
consists of car information under the Data column and model
of the cars under the Mode column in our database. Our table
is configured with the following columns:

e ID, int, primary key.
e Data, varchar(50).
e Mode, varchar(50).

We populate the table with the information shown in
Table 2 to represent an uninfected table.

To update the contents of a database table, we run the
following query:

UPDATE %Table% SET %$ColumnToChange% = ’%NewData%’ WHERE %TagID%='%id%’

We based our SQL virus from Rieback et al. that uses a
self-referential query. The modified query to work with SQL
Server is as follows:

ALTER TABLE Cars ALTER COLUMN Mode VARCHAR (MAX) UPDATE Cars SET
Data='Toyota’,6 Mode= (SELECT SUBSTRING (text,71,185)
FROM sys.dm_exec_requests CROSS APPLY sys.dm_exec_sqgl_text (sgl_handle)

WHERE CHARINDEX (’<!--#exec cmd="C:/windows/notepad.exe"-->', text)>0)--"
WHERE ID=1

The payload here is the execution of Windows Notepad.
However, it can be any very dangerous shell command like
FORMAT. The length of the query in SQL Server is con-
siderably longer than that of Oracle. The total length of the
query is 267 bytes, which may not be feasible to put into
some RFID tags.

The reasons for this length are as follows:

SQL Server has a longer name for system tables. The
queries’ handles are stored in sys.dm_exec_requests and the
query texts themselves are stored in sys.dm_exec_sql_text.
In order for the query to refer to itself, we must cross apply
both tables.

Function names in SQL Server are slightly longer than
their Oracle counterparts. There is a possibility that the tar-
get column does not have enough space to hold the virus. In
our case, we only set the Mode column to fifty characters. In
order to be able to infect the table, a modification is required.
We do so by altering the table and the column that we intend

SQL infections through RFID

353

Table 3 An infected table

Mode

Toyota’,Mode=(select substring(text,71,185) from sys.dm_exec_requests

cross apply sys.dm_exec_sql_text(sql_handle) where CHARINDEX(<!—
#exec cmd="C:/windows/notepad.exe”—>" text)>0)—

Toyota’,Mode=(select substring(text,71,185) from sys.dm_exec_requests

cross apply sys.dm_exec_sql_text(sql_handle) where CHARINDEX(<!—
#exec cmd="C:/windows/notepad.exe”—>" text)>0)—

ID Data

1 Toyota
2 Toyota
3 Toyota

Toyota’,Mode=(select substring(text,71,185) from sys.dm_exec_requests

cross apply sys.dm_exec_sql_text(sql_handle) where CHARINDEX(<!—
#exec cmd="C:/windows/notepad.exe”—>" text)>0)—

to infect. We use VARCHAR(MAX) as it modifies the col-
umn width to its maximum of 23! — 1 characters, so that we
are not limited to a certain number of characters anymore. If
we know for certain that the column width is adequate or if
we put the table alteration query into another RFID tag, we
can cut the table alteration from the query, thus cutting down
the total length by 48 bytes.

While the usual 128-byte passive RFID tags cannot han-
dle the length of this query, the active RFID tags will have a
bigger capacity that will be able to hold 256, 512, 1024, or
2048 bytes, or even more. The RFID tags used in the supply
chain management are primarily passive.

Once this query is run, the Data column will all change
to ‘“Toyota’ and the Mode column will now be infected with
the virus. With the data in the table corrupted, all the virus
requires to activate is the trigger which we will discuss in
Sect. 5.4.

5.2 Server-Side includes

The second part is to ensure that the same Apache-SSI exploit
in Linux can be applied to Windows. Since the exploit lies
on SSI capability, we also looked into IIS, which supports
SSI capability by default.

Before we go into enabling SSI, we need to provide a
database connection. In our case, we are using ODBC which
we set up from the ODBC Data Source Administrator [22].

Apache by default does not enable SSI. To enable SSI, the
steps that must be taken are as follows:

e In Apache’s configuration file called httpd.conf, we add
or remove the comment from the following lines:

LoadModule include_module modules/mod_include.so

e Stillin httpd.conf, in the <directory> section, we add the
following:

Options + Includes
AddType text/html.shtml
AddHandler server-parsed.shtml

Table 4 ASP code to retrieve data

<%

Dim conDatabase, rstRecords, strQuery, objID, objData, objMode
Set conDatabase = Server.CreateObject(“ADODB.Connection”)

LLINT3

conDatabase.Open “ODBC”, “username”, “password”

Set rstRecords = Server.CreateObject(“ADODB.Recordset”)
strQuery = “SELECT * FROM Cars”

rstRecords.Open strQuery, conDatabase

Set objID = rstRecords(“ID”)

Set objOld = rstRecords(“Data”)

Set objNew = rstRecords(“Mode”)

Dim fso, a

Set fso = Server.CreateObject(“Scripting.FileSystemObject”)
Set a = fso.CreateTextFile(“Public/write.shtml”, true)

Do While Not rstRecords.EOF

a.Write(objID & “ - & objData & *“ - & objMode & “
")
rstRecords.MoveNext

Loop

rstRecords.Close

a.Close

Set objID = Nothing

Set objData = Nothing

Set objMode = Nothing

Set rstRecords = Nothing

Set conDatabase = Nothing

Set a = Nothing

Set fso = Nothing

90>

e Restart Apache to enable the changes.
e Now, all SHTML files will be handled by SSI in Apache.

IIS supports SSI by default, so there is no change in config-
uration. However, should a configuration change be required,
it can be done from the IIS Manager tool provided by IIS
[23]. When SSI is enabled, all files with the extensions STM,

@ Springer

354

A. Sulaiman et al.

SHTM, and SHTML are treated with SSI. However, because
of a security concern, not all SSI directives are enabled in
IIS. The directive #exec cmd required a change in the regis-
try before it can be used in IIS [11,24].

5.3 PHP and ASP

Now that we enable both IIS and Apache to support SSI, we
are now ready to retrieve our malicious data. IIS requires the
use of Active Server Pages (ASP), so we prepare the ASP
as shown in Table 3. Meanwhile, Apache requires the use of
PHP, so we prepare one such as shown in Table 4.

There are a few drawbacks that prevent SSI from trigger-
ing the malicious data from the table. ASP and PHP do not
work together with SSI in one file. An SHTML file will be
handled by Apache or IIS; any PHP or ASP code in it will
not run. A PHP file will be run by PHP handler; it will not

Table 5 PHP code to retrieve data

run SSI directives. An ASP file can have #include directive,
but no other directives will work.

5.4 Triggering the virus

Current PHP and ASP handlers have incorporated many of
the directives supported by SSI into functions. Meanwhile,
SSI directives do not support any database connections to
retrieve data. PHP and ASP do, but both do not work well
with SSI directives.

To remedy this situation, we use a combination of
ASP/PHP and SHTML in two files. Triggering the SSI #exec
cmd directive infused in the table will be taken care of by the
SHTML file. Both the PHP and ASP files are used to query
the database and retrieve the data. The data retrieved then
will be written to an SHTML file.

<7php

$myServer = “localhost”;

$myUser = “username”;

$myPass = “password”;

$myDB = “DBname”;

$conn = new COM (“ADODB.Connection”)
or die(“Cannot start ADO”);

$connStr = “PROVIDER=SQLOLEDB;SERVER=".$myServer.*;UID=".$myUser.“;PWD=".$myPass.“;DATABASE=".$myDB;

$conn->open($connStr);

$query = “SELECT * FROM Cars”;

$rs = $conn->execute($query);
$num_columns = $rs->Fields->Count();
echo $num_columns . “
"";

for ($i=0; $i < $num_columns; $i++) {
$f1d[$i] = $rs->Fields($i);

1

echo “<table>";

while (!$rs->EOQOF) {

echo “<tr>";

for ($i=0; $i < $num_columns; $i++) {
echo “<td>" . $f1d[$i]->value . “</td>";
1

echo “</tr>";

$rs->MoveNext(); /move on to the next record
}

echo “</table>"";

$rs->Close();

$conn->Close();

$rs = null;
$conn = null;
7>

@ Springer

SQL infections through RFID

Fig. 5 Uninfected table T
Apghcations | Procetien | Paformance | Mstworkng | Lsen:
Inage fowra e b CPJ Mam Lisage
e LOCAL SERVICE o A K
Apacte. axe SYSTEM o 0,07 K
apache. exm SYSTEM o LK
shiap eve admin. oy LIME
hMalse.eve SYSTEM o 5% K
aihSery xn SYSTEM o ER
wihwebity ere SYSTEM o e
A eve SYSTEN w 19K
o35 e SYSTEM o 1,564 K
it awe TEM o 5,TS6 K
. TWM_NMT 5401 w B7®E
eplorer ge] HANE
‘mxplore. ave admin oy namK
metinfo. e SYSTEM o 440K
Lo SHSTEM oy 2,838 K
L Ty NETWORK SERVICE o 3,004 K
MlexinT eve NETWORK SEEVICE. 00 1L
maftesg eve SYSTEIM oy 1268 K
ey e SYSTEM o 594K
mrpscpdrtave ETEM oy "y
SErviCEs. ann SYSTEM o 1,0
E SYSTEM o 16K
k. exe SYSTEM o 153K
] SrITEM w n520K
swchost eve SYSTEM w 044K
swchost e MNETWORK SERVIE D0 1,796 K
Avchoat exe SHSTEM o 892K
wvchest exe NETWORK SERVICE o THK
wwchost ece LOCAL SERVICE w wox
swchost eve o 2,0 K
System o L1
System Lile Process SYSTEM b $113
tahrrey o w 1964k
ATCRaTVar aTe admin o 1K
varkogon.exe SYSTEM w 1,004
s gxe METWORK SERVICE DO BB K

2| 3 htp:f1 27,0.0,1:991 9P ublichvrite. shtmd - Microsaft Intornet Explorer =11
ar

Fle Edt Vew Faortes Took Help

Fig. 6 An infected table will

T Windews Task Managus,

x| 3 hp

Ackens |] brp {270,009 S{Pubkc perite. shiwl

Qua - © (8] [@ @ Prwt frrees @ 3- 55 8 -

Ackdwes |] hiapyL27.0.0.1: 951 5Publcpwrite. shiwd ~ Be -
1 Toyota - Camey

2« Chevy - Blazer

3 - Fead - Taurus

Fle Edt Vew Fovortes Took Heb [
Om: © HEG S frrm @ 3% B-

B k™

run the #exec cmd directive in
Apghcations | Frocenien | Performance | Bstworking | Liers
the background
Image hare [CA Mem Lisage
sp e LOCAL SERVICE oy K
Apacta wan SYSTEM o K
bpache eam SYITEN w Lo 19
ashilsp eve admin oy 10%K
mhMalSe. ene SYSTEM oy 08 K
aihSery axn SYETEM o 2,500 K
whwebiy oxe SYSTEM o L
A ave SYITEM o 152K
Corss.axe SYSTEM o 142K
it e TEM o AERK
E X TWAM_NMT 540, o 6,458 K
gk ave] 0,680 &
‘wephore. ave admin. w 656K
netrdo.exe SYSTEM o 3,090 K
Loy SYSTEM o 2812K
e aae NETWORK SERVICE o 2,080 K
eyt eve NETWORK SEEVICE. 00 LI
msftesd. SYSTEM o 152K
sy e SYSTEM oy 5,552 K
mrpscldrt e SYSTEM (] wor
rotegad ave TSR _NMT-SA00 o K
o SHSTEM o 164K
Lo EYSTEM o ne
ook g TN ow 1,200 K
savar e SYETEM [- H T
swvchost eve o 1,760 K
svchidt eve NETWORK SERVICE o 1476 K
wvchent sve SYETEM o EALEY
swchost e MITWORK SEEVICE 00 LMK
swchast e LOCAL SERVICE o TRE
swchost eve SYSTEM o LMK
System SYSTEM o 19
Syitem ke Process SYSTEM bl e
[adminy w 212K
ANDATVE S ‘s o 1,516 K
AR e E oy B
R NETWORK SERVICE o A 640K
[Ghow prescesses from ol usees
[Frocesses: 37 Commt Charge: J77TI76K | 6400

On a clean database, the SHTML file will not contain any
harmful directive. Therefore, it will show the contents of the
table Cars as shown in Table 5.

When the file infused with the virus is opened, the SSI
kicks in and runs the #exec cmd directive.

Notice that in the Taskbar, there is no new window open.
What exactly happens when a #exec cmd directive runs? This
directive executes the shell command to be run in the back-
ground.

The Windows Notepad runs in the background and can be
seen from the Task Manager as shown in Fig. 6. Since the
virus runs in the background, it is more difficult to notice
that there is a malicious activity going on without the Task
Manager window open.

] operrs page Hi127,0.0.1 315 PubAcivate .. [m | @ et

1 - Toyota - Toyota’ Mode={select substrmgitext, 71, 185) from rys.dm_exec_requests cross apply sys dm_exec_sql_text{ag]_bandle)
where CHARINDEX(" bet)>0)--

2 - Teyeta - Toyota’ Mede={select nbstrngliess 71.185) from rys. dm_emes_pequests cross apply sys.dm_exec_sql_texz(ag]_hasdle)
where CHARINDEX(" text)> ()

3 - Toyeta - Toyots’ Mode=(zelect substrng(iens, 71, 185) from sys dm_exec_requests cross apply sys dim_exec_eql_text(sg]_hande)
where CHARINDEX(

Casual users usually do not have the Task Manager win-
dow opened. The attacker most likely will use a non-suspi-
cious shell command or filename that will not alert the users
right away.

6 Conclusion and future work

From the attacker’s point of view, there are several things
that he or she needs to know before being able to launch the
attack.

e Through social engineering, a person may be able to get
a valid username and password, along with special per-
missions.

@ Springer

356

A. Sulaiman et al.

e An injection attack specified in Sect. 5.1 will only work
in an SHTML environment, so the attack is more likely
to succeed by running a shell command directly from the
query instead of running it through SHTML.

e Current self-referential SQL Server query is impractical
because of its length.

It is interesting to note that many websites are still using
SHTML. A percentage of these SHTML pages may have
been linked to some form of database application that can
be exploited. While this type of attack has a small range of
targets, it is not the only way of triggering an attack through
the means of an RFID tag.

So, from the server administrator’s point of view, the
important points that he or she must take care of are as fol-
lows:

e Stay away from SHTML as most directives supported by
SHTML are also supported by PHP and ASP.

e By not using SHTML, Server-Side Includes (SSI) can be
turned off.

e Limit any users to their requirement, so that only
appointed users are able to create, alter, insert, update,
or reconfigure the server. This is especially important on
an RFID environment.

In the future, we will be working on fragmented malicious
query. The reason for fragmenting the query is to shorten the
total length of the query so that it may fit on an RFID tag.
While this may require more than just a few RFID tags to
complete the virus injection, we will show this as a proof of
concept that such method of delivery is possible.

Acknowledgements Support for this research received from ICASA
(Institute for Complex Additive Systems Analysis, a division of New
Mexico Tech) and a Department of Defense and NSF IASP capac-
ity building grant is gratefully acknowledged. We also would like to
thank Jenny Ma for providing information on SQL Server 2000 and the
Computer Science Department staff for assisting us in setting up the
hardware.

References

1. Caton, M.: RFID Reshapes Supply Chain Management. http://
www.eweek.com. April 19th, 2004

2. RFid Gazette: FDA Approves Sub-dermal RFID VeriChip. Octo-
ber 14, 2004

@ Springer

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.
24.

New Jersey Customer Service Center: E-Z Pass Automated Toll
Collection

Singel, R.: American passports to get chipped. Wired Magazine,
October 21, 2004

Garfinkel, S., et al.: RFID: Application, Security and Privacy.
Addison-Wesley, Reading (2006)

Wikipedia: Radio Frequency Identification.

AutolD. Active and passive RFID: two distinct, but complemen-
tary, technologies for real-time supply chain visibility. May 24,
2002. Retrieved on 2 May, 2007

Thompson, D.R., et al.: Categorizing RFID privacy threats with
STRIDE. In: Proceedings ACM’s Symposium on Usable Privacy
and Security held at CMU (2006)

Rieback, M.R., et al.: Is your cat infected with a computer virus?
IEEE Percom (2006)

Albrecht, K., Mclntyre, L.: SpyChips: how major corporations and
government plan to track your every move with RFID. 4 October,
2005

Karygiannis, T., et al.: National Institute of Standards and
Technology.Guidance for Securing RFID Systems (Draft). http://
csrc.nist.gov/publications/drafts/800-98/Draft- SP800-98.pdf.
Retrieved on 30 July, 2007

Generation 2 Security, http://www.thingmagic.com/html/pdf/
Generation%202%?20-%20Security.pdf. Retrieved on 26 July,
2007

Biometrics deployment of machine readable travel documents:
http://www.icao.int/mrtd/download/documents/Biometrics %
20deployment%200%f%20Machine%20Readable%20Travel %
20Documents%202004.pdf. May 2004. Retrieved on 26 July,
2007

Bono, S., Green, M., Stubble_eld, A., Juels, A., Rubin, A.,
Szydlo, M.: Security analysis of a cryptographically enabled RFID
device. In: 14th USENIX Security Symposium, pp. 1-16. Balti-
more, Maryland, USA, July—August 2005. USENIX

Kfir, Z., Wool, A.: Picking virtual pockets using relay attacks on
contactless smartcard systems. In: 1st International Conference
on Security and Privacy for Emerging Areas in Communication
Networks. http://eprint.iacr.org/, September 2005. Retrieved on
26 July 2007

Wikipedia: SQL Injection

Web Application Security Consortium: Glossary. Retrieved on 21
March 2007

Anley, C.: Advanced SQL Injection in SQL Server Applications.
Retrieved on 21 March 2007

McDonald, S.: SQL Injection: Modes of Attack, Defence, and
Why It Matters. SANS Institute. Retrieved on 21 March, 2007
Bond, G.W.: Software as art. Commun. ACM 48(8), 118—
124 (2005)

CGI Security. What is SQL Injection? Retrieved on 10 December
2006

Ispirer: Setting Up ODBC Data Sources

Microsoft Technet: Using Server-Side Include Directives (IIS 6.0)
MSDN. Using #exec Directives

http://www.eweek.com
http://www.eweek.com
http://csrc.nist.gov/publications/drafts/800-98/Draft-SP800-98.pdf
http://csrc.nist.gov/publications/drafts/800-98/Draft-SP800-98.pdf
http://www.thingmagic.com/html/pdf/Generation%202%20-%20Security.pdf
http://www.thingmagic.com/html/pdf/Generation%202%20-%20Security.pdf
http://www.icao.int/mrtd/download/documents/Biometrics%20deployment%20o%f%20Machine%20Readable%20Travel%20Documents%202004.pdf
http://www.icao.int/mrtd/download/documents/Biometrics%20deployment%20o%f%20Machine%20Readable%20Travel%20Documents%202004.pdf
http://www.icao.int/mrtd/download/documents/Biometrics%20deployment%20o%f%20Machine%20Readable%20Travel%20Documents%202004.pdf
http://eprint.iacr.org/

	SQL infections through RFID
	Abstract
	1 Introduction
	2 RFID technology
	2.1 Threats
	2.2 RFID risks
	2.3 Attacks on RFID
	2.4 SQL injection

	3 Related work
	4 RFID virus
	5 Experiments and results
	5.1 SQL virus using a self-referential query for SQL Server
	5.2 Server-Side includes
	5.3 PHP and ASP
	5.4 Triggering the virus

	6 Conclusion and future work
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

