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Abstract In 2005 and 2006, two security researchers, Max-
imilian Dornseif and Adam Boileau, showed an offensive use
of the FireWire bus. They demonstrated how to take control
of a computer equipped with a FireWire port. This work has
been continued. After a brief summary of how memory works
on modern OS, we will explain how the FireWire bus works,
and it can be used to access physical memory. Since mod-
ern operating system and processors use virtual addresses
(and not physical ones), we rebuild the virtual space of each
process in order to retrieve and understand kernel structures.
Thus, we now have an instant view of the operating system
without being submitted to the security protections provided
by the processor or the kernel. We will demonstrate sev-
eral uses for this. First we will show what can be done only
with an interpretation of kernel structures (read access). For
example, we can have the list of all processes, access to the
registry with no control even for protected keys like the SAM
ones. This is used to dump credentials. Then, we see what
can be done when one modifies the memory (write access).
As an example, we show a 2 byte patch to unlock a worksta-
tion without knowing the password. Last but not least, code
execution is not supposed to happen through FireWire since
it is only a bus providing read/write access to the memory.
However, slightly modifying the running kernel lets us do
whatever we want. We will explain how to have a shell with
SYSTEM privileges before any authentication.

1 Memory basics

Virtual memory is a key concept for modern operating
systems. Instead of letting software deal with physical
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memory, the processor and the operating system create an
invisible layer between the software and the physical mem-
ory. Whenever the processor need to address memory, it con-
sults a table called “page table” that tells the processor which
physical memory address to actually use. The memory is
divided into pages which are fixed-size chunks of memory.
The size of a page of memory differs between processor
architectures. On x86 processors, 4K pages are generally
used but these processors also support 2 and 4 MB pages.
The mechanism to convert a virtual address is slightly dif-
ferent for each page size but it always uses several tables as
we can see on the Fig. 1.

Using page tables has several advantages. The first and
most important one is that it enables the creation of mul-
tiple address spaces. An address space is an isolated page
table that only allows access to memory useful for a pro-
cess. It ensures that every process is completely isolated
from each other. Another advantage is that it is very easy
to tell the processor which rules are to be enforced on mem-
ory access. For example, page-table entries have a set of flags
that determine several properties regarding this specific entry
(read/write access, supervisor/user access, etc.). Thus a sim-
ple flag ensures that userland processes cannot access kernel
data. That’s how kernelspace is separated from userspace.

As we can see on the Fig. 2, physical memory is like a jig-
saw puzzle. We can convert a virtual address into a physical
one but there is no straightforward way to convert a physical
address into a virtual one. Furthermore several adjoining vir-
tual pages are not necessarily adjoining in physical memory.
However two things are to be noted:

– kernel space is identically mapped for each process since
it is shared by each process;

– different virtual pages can be mapped to the same physi-
cal page.
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Fig. 1 Linear translation
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Fig. 2 Processes isolation

2 Accessing the physical memory

There are several methods for accessing physical memory.
We could use memory dumps obtained with forensics tools,
the FireWire bus, VMware files, hibernate files, even memory
dumps obtained with cold boot attacks.

The main advantage is that we have an unbiased view
of the data structures of the operating system. Because we
only interpret data, we also short-circuit all security mea-
sures enforced by the processor. Thus we have a privileged
position to access and modify key structures of the operating
system.

Before we go deep inside the kernel, we will view some
details about the use of the FireWire bus to read/write arbi-
trary locations in memory.

2.1 FireWire basics

Apple has developed FireWire in the late 80s. It was standard-
ized by the IEEE in 1995. In 2000, Sun, Apple, Microsoft,
Compaq, Intel, National Semiconductors and Texas Instru-
ments wrote the OHCI 1394 (Open Host Controller Interface)
specification.
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A little journey inside Windows memory 107

A FireWire device can read (and write) to a computer’s
main memory by accessing a system’s DMA controller, while
the operating system, be it Windows, Mac OS, Linux, etc., is
oblivious to the event. By pulling a copy of memory through
FireWire, the target CPU and operating system are bypassed
as are any infections, triggers or traps. This is not a bug
but exactly how DMA and PCI devices, like FireWire, were
designed to operate.

DMA allows memory transfers between devices and pro-
cesses to take place while a computer’s CPU performs other
tasks.

1. the CPU/operating system programs the DMA controller
to instruct a FireWire device to read a portion of memory;
the CPU/operating system is now free to work on other
tasks;

2. the DMA controller sends a message to the FireWire con-
troller, informing it of the read request and the location
and length in memory;

3. the FireWire device negotiates control of the PCI bus and
reads the memory location specified…;

4. …and once completed, it informs the DMA controller;
5. finally, the DMA controller triggers an interrupt, inform-

ing the CPU the read operation is complete.

It should be noted that devices are not limited only to
reading/writing to the memory address specified by the oper-
ating system. FireWire and other DMA bus master devices
act independently of the CPU; the CPU need not initiate the
transaction. A FireWire device can program the DMA con-
troller and set up its own reads and writes, as per the PCI and
IEEE 1394 specifications.

2.2 Abusing FireWire

In 2005, Maximilian Dornseif [5] explained how we can use
the FireWire bus to read or write to arbitrary locations in
physical memory. He uses an iPod to subvert a laptop run-
ning Mac OSX. In 2006, Adam Boileau continues Dornseif’s
work and explains how we can trick Windows in order to
access physical memory.

OHCI specifies “AsynchronousRequestFilter” and “Phys-
icalRequestFilter” CSRs (CSR stands for Control and Status
Register); if these CSRs are set to zero, the FireWire chipset
will reject requests to access host physical memory. Accord-
ing to the specification, they default to zero. Windows does
not set them. So, by default, Windows disallows FireWire
DMA.

Since FireWire bus is supported by PCI bus, CSRs are
mapped in memory. On our laptop, they are mapped from
0xf0500000. We can see on the Fig. 3 the offsets for the
registers responsible for gaining access to physical memory.
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Fig. 3 OHCI registers

Adam Boileau has shown how we can create a phony con-
fig ROM that, when read by the Windows host, will open up
the filter CSRs. This attack basically advertises his machine
as requiring DMA access, and Windows complies.

For more information, the reader can go on Boileau’s web-
site which explains in detail how everything works [2].

3 Reconstruction of virtual space

We have seen previously the mechanisms deployed by the
processor and the kernel to translate virtual addresses. But
no mechanism directly exists to translate physical addresses
into virtual addresses. Thus we have a find a way to do so.

As we have seen, the main advantage of pagination is the
isolation of the processes. To address its virtual space, we
need the value of the page table. Luckily the operating system
keeps a backup value inside the kernel structures responsible
for handling processes.

Andreas Schuster has proposed a method for searching for
processes and threads in memory dumps [8].
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108 D. Aumaitre

Listing. 1.1 struct
_DISPATCHER_HEADER

Listing. 1.2 struct _KPROCESS

Processes are synchronizable objects, therefore they share
a common substructure, the _DISPATCHER_HEADER
structure (see Listing 1.1).

This header contains some constants which will help to
find it. It contains a Type field and a Size field which have
hard-coded values for a given version of Windows. For exam-
ple, on Windows XP the Type field is 0x03 and the Size
field is 0x1b.

This is combined with additional tests in order to vali-
date the candidate _EPROCESS structure. The first field of
the _EPROCESS structure is a _KPROCESS structure that
contains a _DISPATCHER_HEADER (see Listing 1.2).

The cr3 value is found in the field DirectoryTable-
Base. Furthermore the ThreadListHead field must be
located in kernel space. As we can see on the Listing 1.3,
the _EPROCESS structure has several fields also situated in
kernel space. Combining these tests allow to find all _EPRO-
CESS structures residing in physical memory.

So we only need to find one of the _DISPATCHER_
HEADER structures by pattern-matching. Then we check that
it is the beginning of a _EPROCESS structure. Once we have

Listing. 1.3 struct _EPROCESS

it, we have the page table value that permits the mapping of
this particular process virtual space.

Now we want to map the other processes virtual space. The
kernel virtual space is identically mapped for each process.
All _EPROCESS structures belong to a doubly linked list.
This list is accessible with the ActiveProcessLinks
field. By following this list, we find the other _EPROCESS
structures and we can map their virtual space too.

The Fig. 4 summarizes all these steps.

4 Examples

Firstly we accessed memory through the FireWire bus. Sec-
ondly this memory was reconstructed in order to get a full
view of the operating system. Now we are able to show sev-
eral examples:

1. Read access to clone Process Explorer and Regedit with
no restriction.

2. Write access to login without password.
3. Tricks with the kernel structures in order to execute arbi-

trary code.
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Fig. 4 Following the
_EPROCESS list

4.1 Processes

In this section we will show how we can find all structures
involved in a process. We will rebuild a kind of Process
Explorer based on kernel structures. We can use this during
a forensic analysis of a memory dump or during a malware
analysis. Since we only interpret data, we short-circuit all
security measures.

On Windows, processes are just a container for the infor-
mation needed by the executive and the dispatcher. Thus we
find all necessary information in the _EPROCESS structure.
TheThreadListHeadfield points to the doubly linked list
of _ETHREAD structures. We can enumerate all the threads
by following this list.

The _EPROCESS structure contains also an interesting
structure named _PEB. All userland information resides in
this structure. In particular, we can find the list of the DLLs
loaded by the process. First we follow the field Ldr in the
_PEB structure (Listing 1.4).

This field is a _PEB_LDR_DATA structure (Listing 1.5).
In this structure, three doubly linked lists (InLoadOr-

derLinks, InMemoryOrderLinks, InInitiali
zationOrderLinks) point to the DLLs list (Listing 1.6).

Thus we have all necessary information to examine and
dump any processes. In order to improve our Process Explorer
we need now to find how handles are stored. The _EPRO-
CESS structure has a field named HandleTable which
points to a _HANDLE_TABLE structure (Listing 1.7).

The TableCode field points to a table of _HANDLE_
TABLE_ENTRY structures (Listing 1.8).

Depending on the number of handles, the TableCode
field can point on a table of pointers instead of _HAN-
DLE_TABLE_ENTRY structures.

In order to retrieve the object hidden behind the handle, we
need to apply a mask on the Object field because the ker-
nel uses some bits to store additional information about the
object. So the real object address is obtained with the follow-

Listing. 1.4 struct _PEB

Listing. 1.5 struct _PEB_LDR_DATA

ing formula: real_addr = (object_addr |0x80
000000) & 0xfffffff8.

On the Fig. 5, we can see all the interactions between these
structures.

In summary we have all the necessary information con-
tained in the _EPROCESS structure as we can see on the
Fig. 6.

4.2 GDT, IDT and SSDT

The PCR (Processor Control Region) is used by the kernel
and the HAL in order to contain specific hardware data. There
is one PCR per processor. The kernel uses a structure called
_KPCR (Listing 1.9) to store these pieces of information.

It contains several interesting fields and in particular a
pointer (PrcbData) to a structure named _KPCRB which
contains the processor control block. With this structure we
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Listing. 1.6 struct
_LDR_DATA_TABLE_ENTRY

Listing. 1.7 struct
_HANDLE_TABLE

Listing. 1.8 struct
_HANDLE_TABLE_ENTRY

find the value of the IDT and the GDT by following the
ProcessorState field.

However, the most interesting thing is that we have a
pointer to an undocumented structure which contains vari-
ous non-exported kernel variables: the KdVersionBlock
field. Two articles [1,6] on http://rootkit.com describe what
kind of structures are involved.
KdVersionBlock points to a _DBGKD_GET_VER-

SION64 structure (Listing 1.10).

With this structure we find the virtual address of the kernel
and the head of the doubly linked list of the kernel modules
(PsLoadedModuleList) which is the same kind of list
as the lists used for the DLLs. The DebuggerDataList
field points to a _KDDEBUGGER_DATA64 structure. For the
sake of brevity we only show its beginning.

These fields are used by the debugger but they are always
filled. Thus we have a long list of non-exported kernel vari-
ables which give us precious information about the kernel.
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Fig. 5 Handle of lsass.exe

Fig. 6 Structures involved in a
process
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Listing. 1.9 struct _KPCR

So in order to find these, we have to find the _KPCR struc-
ture. Luckily for us, on Windows XP, it is always mapped to
the 0xffdff000 virtual address. However, on Vista this is
not true. Due to the particular form of this structure, we can

use a signature plus some tests in order to find it by scanning
the physical memory.

The _KPCR structure is self-referencing since the Self-
Pcr field (offset 0x1c contains its virtual address. Further-
more the Prcb field which contains the _KPCRB structure is
located 0x120 bytes further. So we can find it with a simple
algorithm.

Another interesting piece of information to gather is the
system calls table. A system call takes place when user-mode
code needs to call a kernel-mode function. Since the arrival
of the Pentium II processors, Windows use the SYSTEN-
TER instruction to manage the system calls. This instruction
uses specific registers of the processor called MSR (Model
Specific Register).
SYSENTER is essentially a high-performance kernel

-mode switch instruction that calls into a predetermined func-
tion whose address is stored in a special MSR called SY-
SENTER_EIP_MSR. The implementation by the kernel is
quite simple. If we examine what happen when we use Cre-
ateFile we observe the following behaviour.

ntdll!NtCreateFile:
7c91d682 b825000000 mov eax,25h
7c91d687 ba0003fe7f mov edx,offset
SharedUserData!SystemCallStub (7ffe0300)

7c91d68c ff12 call dword ptr [edx]
7c91d68e c22c00 ret 2Ch

Listing. 1.10 struct
_DBGKD_GET_VERSION64
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Listing. 1.11 struct
_KDDEBUGGER_DATA64

Listing. 1.12 struct
_SYSTEM_SERVICE_TABLE

The number of the system call is stored in the eax regis-
ter. Then a stub (which is common for every system call) is
executed. This stub has the following instructions.

ntdll!KiFastSystemCall:
7c91eb8b 8bd4 mov edx,esp
7c91eb8d 0f34 sysenter

The arguments list is stored in the edx register, then the
SYSENTER instruction is executed.

Each thread has an array of system call tables. Its address is
stored inside the _KTHREAD structure in the field Servic-
eTable. A thread can have up to 4 system call tables (List-
ing 1.12). Generally only 2 are used, one for the kernel and
one for kernel-mode graphics subsystem (win32k.sys).

Listing. 1.13 struct _CM_KEY_BODY

4.3 Registry

Most parts of the registry reside in memory. Thus it will be
very interesting to be able to reconstruct a sort of Regedit. We
can bypass all security measures and manipulate some keys
that we cannot under normal circumstances. For example we
can use this to implement a Pwdump-like program.
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Listing. 1.14 struct
_CM_KEY_CONTROL_BLOCK

Before this, we will describe some structures manipulated
by the configuration manager. The type manipulated by the
object manager is Key. It is the type shown in the handles.
Behind this type it is a _CM_KEY_BODY structure (Listing
1.13).

The _CM_KEY_CONTROL_BLOCK (Listing 1.14) struc-
ture contains much information.

Several fields are important. For example the fields Key-
Hive and KeyCell point to a _HHIVE structure and an
index inside this hive. We will explain later how indexes are
converted into addresses. The NameControlBlock field
points to a structure that contains the name of the cell.

As we said before, cells are stored with indexes. The con-
figuration manager converts them into addresses. The method
is quite similar to the one used to convert virtual addresses.

The index is broken into several parts:

1. the 12 least significant bits are an offset in the page that
contains the data;

2. the 9 following bits are an index inside a _HMAP_TABLE
structure;

3. the 10 following bits are an index inside a_HMAP_DIREC
TORY structure;

Listing. 1.15 struct _HHIVE

4. the most significant bit indicates if the cell is volatile or
resident.

How can we find the appropriate _HMAP_TABLE and
_HMAP_DIRECTORY structures?

We need to examine the _HHIVE structure (Listing 1.15).
This structure has a field namedStoragewhich is a table

of two _DUAL structures (Listing 1.16). One is for volatile
storage, one is for resident storage. Volatile storage means
that the keys are only present in memory.

The Map field points to a table of _HMAP_DIRECTORY
which also points to a table of _HMAP_TABLEwhich points
to a table of _HMAP_ENTRY structures (Listing 1.17).

The field BlockAddress contains the address of the
memory area that contains the cell. By adding the offset found
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Listing. 1.16 struct _DUAL

Listing. 1.17 struct
_HMAP_ENTRY

Fig. 7 Interactions between cell-related structures

with the index, we find the address of the cell. The Fig. 7
shows all the interactions between these structures.

Since we now have a clone of Regedit, we can begin
to do interesting things! We can dump SAM hashes, LSA
secrets, domains credentials, etc. Everything you can do with
an unlimited access to the registry.

Since we could also write to the registry we could, for
example, login without knowing the password.

Adam Boileau released a tool, winlockpwn, that patches
the function responsible for checking the credentials used
during interactive login.

However, we can do that in a different way. The reg-
istry key holding details of the user account (HKLM\SAM
\Domains\Account\Users\[SID]\V) contains 2
bytes at the offsets 0xa0 and 0xac indicating whether pass-

words hashes are needed for this account [4]. For a password-
protected account, these bytes are equal to 0x14 (Fig. 8).
If we replace their values by 0x04 then no credentials are
checked before log in since we request that no hashes are
needed! As a result, we could log in with a simple keystroke.

4.4 Arbitrary code execution

It’s clear now that we can read or write anything in physical
memory. But how can we execute arbitrary code? The answer
is simple, we just need to overwrite some pointers. We will
show one way to do it but there are many ways.

We want to divert the flow of execution as quickly as we
can. So we choose to hijack the system calls. A particular
structure, called _KUSER_SHARED_DATA (Listing 1.18),
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Fig. 8 Bytes involved when unlocking workstation

has been used extensively in Windows exploitation [3,7].
This structure has the particularity of being mapped in user-
space and in kernelspace and at a fixed address. On top of
that it contains various useful data.

In particular we have the SystemCall field which con-
tains the address of the stub executed before any system calls.
By hooking this address, we gain control before every system
call.

By combining this with a few tests to determine if our pay-
load is already executing and under which process we want
to execute we have a reliable way to execute any userland
code.

For a proof-of-concept we decided to spawn an admin
shell before any authentication. To do so we just used a pay-
load that usesCreateProcesswith thewinlogon desk-
top.

As we can see on the Fig. 9, the result is self-explanatory!

Listing. 1.18 struct
_KUSER_SHARED_DATA

Fig. 9 Hack the planet: D
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5 Conclusion

We have seen how memory works on modern operating sys-
tems. We also explained how FireWire can be used to access
physical memory. We have combined these to show several
examples both for defensive and offensive purposes. Tech-
niques to reconstruct the virtual memory are mature enough
to allow the implementation of user-friendly tools.

It is always been said that physical access to a machine
is equivalent to owning it. This is even more true with a
machine equipped with a FireWire or a PCMCIA port. For
older machines, few things can be done. We can remove
the support of the FireWire with the aid of the operating
system. On the other hand with newer machines we could
use the IOMMU (Input/Output Memory Management Unit).
The IOMMU takes care of mapping device-visible virtual
addresses (also called I/O addresses) to physical ones. Thus
we can enforce some restrictions regarding the access of
memory with a DMA-capable device.
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