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Abstract In 2005 and 2006, two security researchers, Max-
imilian Dornseif and Adam Boileau, showed an offensive use
of the FireWire bus. They demonstrated how to take control
of a computer equipped with a FireWire port. This work has
been continued. After a brief summary of how memory works
on modern OS, we will explain how the FireWire bus works,
and it can be used to access physical memory. Since mod-
ern operating system and processors use virtual addresses
(and not physical ones), we rebuild the virtual space of each
process in order to retrieve and understand kernel structures.
Thus, we now have an instant view of the operating system
without being submitted to the security protections provided
by the processor or the kernel. We will demonstrate sev-
eral uses for this. First we will show what can be done only
with an interpretation of kernel structures (read access). For
example, we can have the list of all processes, access to the
registry with no control even for protected keys like the SAM
ones. This is used to dump credentials. Then, we see what
can be done when one modifies the memory (write access).
As an example, we show a 2 byte patch to unlock a worksta-
tion without knowing the password. Last but not least, code
execution is not supposed to happen through FireWire since
it is only a bus providing read/write access to the memory.
However, slightly modifying the running kernel lets us do
whatever we want. We will explain how to have a shell with
SYSTEM privileges before any authentication.

1 Memory basics

Virtual memory is a key concept for modern operating
systems. Instead of letting software deal with physical
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memory, the processor and the operating system create an
invisible layer between the software and the physical mem-
ory. Whenever the processor need to address memory, it con-
sults a table called “page table” that tells the processor which
physical memory address to actually use. The memory is
divided into pages which are fixed-size chunks of memory.
The size of a page of memory differs between processor
architectures. On x86 processors, 4K pages are generally
used but these processors also support 2 and 4 MB pages.
The mechanism to convert a virtual address is slightly dif-
ferent for each page size but it always uses several tables as
we can see on the Fig. 1.

Using page tables has several advantages. The first and
most important one is that it enables the creation of mul-
tiple address spaces. An address space is an isolated page
table that only allows access to memory useful for a pro-
cess. It ensures that every process is completely isolated
from each other. Another advantage is that it is very easy
to tell the processor which rules are to be enforced on mem-
ory access. For example, page-table entries have a set of flags
that determine several properties regarding this specific entry
(read/write access, supervisor/user access, etc.). Thus a sim-
ple flag ensures that userland processes cannot access kernel
data. That’s how kernelspace is separated from userspace.

As we can see on the Fig. 2, physical memory is like a jig-
saw puzzle. We can convert a virtual address into a physical
one but there is no straightforward way to convert a physical
address into a virtual one. Furthermore several adjoining vir-
tual pages are not necessarily adjoining in physical memory.
However two things are to be noted:

— kernel space is identically mapped for each process since
it is shared by each process;

— different virtual pages can be mapped to the same physi-
cal page.
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Fig. 1 Linear translation
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2 Accessing the physical memory

There are several methods for accessing physical memory.
We could use memory dumps obtained with forensics tools,
the FireWire bus, VMware files, hibernate files, even memory
dumps obtained with cold boot attacks.

The main advantage is that we have an unbiased view
of the data structures of the operating system. Because we
only interpret data, we also short-circuit all security mea-
sures enforced by the processor. Thus we have a privileged
position to access and modify key structures of the operating
system.
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Before we go deep inside the kernel, we will view some
details about the use of the FireWire bus to read/write arbi-
trary locations in memory.

2.1 FireWire basics

Apple has developed FireWire in the late 80s. It was standard-
ized by the IEEE in 1995. In 2000, Sun, Apple, Microsoft,
Compag, Intel, National Semiconductors and Texas Instru-
ments wrote the OHCI 1394 (Open Host Controller Interface)
specification.
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A FireWire device can read (and write) to a computer’s
main memory by accessing a system’s DMA controller, while
the operating system, be it Windows, Mac OS, Linux, etc., is
oblivious to the event. By pulling a copy of memory through
FireWire, the target CPU and operating system are bypassed
as are any infections, triggers or traps. This is not a bug
but exactly how DMA and PCI devices, like FireWire, were
designed to operate.

DMA allows memory transfers between devices and pro-
cesses to take place while a computer’s CPU performs other
tasks.

1. the CPU/operating system programs the DMA controller
to instruct a FireWire device to read a portion of memory;
the CPU/operating system is now free to work on other
tasks;

2. the DMA controller sends a message to the FireWire con-
troller, informing it of the read request and the location
and length in memory;

3. the FireWire device negotiates control of the PCI bus and
reads the memory location specified...;

4. ...and once completed, it informs the DMA controller;

5. finally, the DMA controller triggers an interrupt, inform-
ing the CPU the read operation is complete.

It should be noted that devices are not limited only to
reading/writing to the memory address specified by the oper-
ating system. FireWire and other DMA bus master devices
act independently of the CPU; the CPU need not initiate the
transaction. A FireWire device can program the DMA con-
troller and set up its own reads and writes, as per the PCI and
IEEE 1394 specifications.

2.2 Abusing FireWire

In 2005, Maximilian Dornseif [5] explained how we can use
the FireWire bus to read or write to arbitrary locations in
physical memory. He uses an iPod to subvert a laptop run-
ning Mac OSX. In 2006, Adam Boileau continues Dornseif’s
work and explains how we can trick Windows in order to
access physical memory.

OHClI specifies “AsynchronousRequestFilter”” and “Phys-
icalRequestFilter” CSRs (CSR stands for Control and Status
Register); if these CSRs are set to zero, the FireWire chipset
will reject requests to access host physical memory. Accord-
ing to the specification, they default to zero. Windows does
not set them. So, by default, Windows disallows FireWire
DMA.

Since FireWire bus is supported by PCI bus, CSRs are
mapped in memory. On our laptop, they are mapped from
0xf0500000. We can see on the Fig. 3 the offsets for the
registers responsible for gaining access to physical memory.

1394 Open HCI Registers

0x00 Version » 0xf0500000
0x04 GUID ROM (optional)

0x08 ATRetries

0x0c CSR Data

0x10 CSR Compare Data

0x14 CSR Control

0x18 Config ROM Header

Ox1c Bus Identification

0x100 nchronousRequestFilterHi (se

0x104 nchronousRequestFilterHi (cle

0x108 ynchronousRequestFilterLo (s

0x10c
0x110

nchronousRequestFilterLo (cle

PhysicalRequestFilterHi (set)

0x114 PhysicalRequestFilterHi (clear)

0x118 PhysicalRequestFilterLo (set)

Ox11c PhysicalRequestFilterLo (clear)

0x7f8 Reserved

Unknown
——

0x7fc

Fig. 3 OHCI registers

Adam Boileau has shown how we can create a phony con-
fig ROM that, when read by the Windows host, will open up
the filter CSRs. This attack basically advertises his machine
as requiring DMA access, and Windows complies.

For more information, the reader can go on Boileau’s web-
site which explains in detail how everything works [2].

3 Reconstruction of virtual space

We have seen previously the mechanisms deployed by the
processor and the kernel to translate virtual addresses. But
no mechanism directly exists to translate physical addresses
into virtual addresses. Thus we have a find a way to do so.

As we have seen, the main advantage of pagination is the
isolation of the processes. To address its virtual space, we
need the value of the page table. Luckily the operating system
keeps a backup value inside the kernel structures responsible
for handling processes.

Andreas Schuster has proposed a method for searching for
processes and threads in memory dumps [8].
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Listing. 1.1 struct typedef struct _DISPATCHER_HEADER // 6 elements, 0z10 bytes (sizeof)
_DISPATCHER_HEADER

/*0z000%/ UINTS Type;

/*0x001*/ UINTS Absolute;

/*02002%/ UINTS Size;

/*0x003*/ UINTS Inserted;

/*0x004 %/ LONG32 SignalState;

/*0x008*/ struct _LIST_ENTRY WaitListHead;

}DISPATCHER_HEADER,

typedef struct _KPROCESS // 29 elements, 0z6C bytes (sizeof)
{

/*¥0x000%*/ struct _DISPATCHER_HEADER Header;
/*02010*/ struct _LIST_ENTRY ProfilelListHead;
/*%0z018%/ ULONG32 DirectoryTableBase [2];
/*02020*/ struct _KGDTENTRY LdtDescriptor;
/*0x028%*/ struct _KIDTENTRY Int21Descriptor;
/*0x030%/ UINT16 IopmOffset;
/*0x032*/ UINTS8 Iopl;
/*¥0x033%/ UINT8 Unused;
/*0T034 %/ ULONG32 ActiveProcessors;
/*0x038%*/ ULONG32 KernelTime;
/*0z03C*/ ULONG32 UserTime;
/*¥0x040%/ struct _LIST_ENTRY ReadyListHead;
/*0x048%/ struct _SINGLE_LIST_ENTRY SwapListEntry;
/*0x04C*/ VOID* VdmTrapcHandler;
/*%02050%*/ struct _LIST_ENTRY ThreadListHead;
/*0x058%*/ ULONG32 ProcessLock;
/*0x05C*/ ULONG32 Affinity;
/*0x060*/ UINT16 StackCount;
/*0x062%/ CHAR BasePriority;
/*0x063*/ CHAR ThreadQuantum;
/*0x064 %/ UINT8 AutoAlignment;
/*0x065%/ UINTS8 State;
/*0x066%*/ UINTS8 ThreadSeed;
/*0z067*/ UINTS8 DisableBoost;
/*0x068*/ UINTS8 PowerState;
/*0x069*/ UINTS8 DisableQuantum;
/*0x06A*/ UINTS8 IdealNode;

union

{
/*0x06B*/ struct _KEXECUTE_OPTIONS Flags;
/*0x06B*/ UINT8 ExecuteOptions;

}KPROCESS, *PKPROCESS;

Listing. 1.2 struct _KPROCESS

Processes are synchronizable objects, therefore they share
a common substructure, the _DISPATCHER_HEADER
structure (see Listing 1.1).

This header contains some constants which will help to
find it. It contains a Type field and a Si ze field which have
hard-coded values for a given version of Windows. For exam-
ple, on Windows XP the Type field is 0x03 and the Size
field is Ox1b.

This is combined with additional tests in order to vali-
date the candidate _ EPROCESS structure. The first field of
the _EPROCESS structure is a _KPROCESS structure that
contains a _DISPATCHER_HEADER (see Listing 1.2).

The cr3 value is found in the field DirectoryTable-
Base. Furthermore the ThreadListHead field must be
located in kernel space. As we can see on the Listing 1.3,
the _EPROCESS structure has several fields also situated in
kernel space. Combining these tests allow to find all _ EPRO-
CESS structures residing in physical memory.

So we only need to find one of the _DISPATCHER_
HEADER structures by pattern-matching. Then we check that
itis the beginning of a_ EPROCESS structure. Once we have
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*PDISPATCHER_HEADER;

typedef struct _EPROCESS // 107 elements, 0x260 bytes (sizeof)
{

/*0z000%*/ struct _KPROCESS Pcb; // 29 elements, 0z6C bytes
/*¥0x06C*/ struct _EX_PUSH_LOCK ProcessLock;
/*0x070*/ union _LARGE_INTEGER CreateTime;
/*0x078%/ union _LARGE_INTEGER ExitTime;
/*0z080%*/ struct _EX_RUNDOWN_REF RundownProtect;
/*0x084 %/ VOID* UniqueProcessId;
/*0x088*/ struct _LIST_ENTRY ActiveProcessLinks;
[...1

/*0x0C8*/ struct _EX_FAST_REF Token;

/*0x0CC*/ struct _FAST_MUTEX WorkingSetLock;
/*0z0EC*/ ULONG32 WorkingSetPage;

/*0z0F0+*/ struct _FAST_MUTEX AddressCreationLock;
/*0x110*/ ULONG32 HyperSpaceLock;

/*0x114%/ struct _ETHREAD* ForkInProgress;
/*0x118%/ ULONG32 HardwareTrigger;
/*0x11C*/ VOID=* VadRoot;

/*0x120%/ VOID=* VadHint;

[...]

/*0x174 %/ UINT8 ImageFileName [16];
/*0x184 %/ struct _LIST_ENTRY JobLinks;

/*0z18C*/ VOIDx* LockedPagesList;
/*0x190%*/ struct _LIST_ENTRY ThreadListHead;

[.. .1

/*0z25C*/ UINT8 _PADDING1_[0x4];

}EPROCESS, *PEPROCESS;

Listing. 1.3 struct _EPROCESS

it, we have the page table value that permits the mapping of
this particular process virtual space.

Now we want to map the other processes virtual space. The
kernel virtual space is identically mapped for each process.
All _EPROCESS structures belong to a doubly linked list.
This list is accessible with the ActiveProcessLinks
field. By following this list, we find the other _EPROCESS
structures and we can map their virtual space too.

The Fig. 4 summarizes all these steps.

4 Examples

Firstly we accessed memory through the FireWire bus. Sec-
ondly this memory was reconstructed in order to get a full
view of the operating system. Now we are able to show sev-
eral examples:

1. Read access to clone Process Explorer and Regedit with
no restriction.

2. Write access to login without password.

3. Tricks with the kernel structures in order to execute arbi-
trary code.
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Fig. 4 Following the

Kernel space

_EPROCESS list —

struct _EPROCESS @ 0x80eedd20

+@x@d@ Pcb : struct _I(PRCICESSJ’

1 J
»(40xP88 ActiveProcessLinks : struct _LIST_ENTRY)
-]

struct _KPROCESS @ 0x80eedd20
+0x000 Header : struct _DISPATCHER_HEADER

T

A

struct _EPROCESS @ @Oxffbb8550
+0x000 Pcb :
||

struct _KPROCESS

L1
( +0x@18 DirectoryTableBase : [2] Uint48 ]—‘
1

»(40xDB8 ActiveProcessLinks : struct _LIST_ENTRY)
L...]

v

Y

struct _EPROCESS @ @0x80dc8c90
+0x000 Pcb :
1

struct _KPROCESS

cr3 value |

-3 h{&mss ActiveProcesslinks :

struct _LIST_ENTRY)

||

4.1 Processes

In this section we will show how we can find all structures
involved in a process. We will rebuild a kind of Process
Explorer based on kernel structures. We can use this during
a forensic analysis of a memory dump or during a malware
analysis. Since we only interpret data, we short-circuit all
security measures.

On Windows, processes are just a container for the infor-
mation needed by the executive and the dispatcher. Thus we
find all necessary information in the _ EPROCESS structure.
The ThreadListHead field points to the doubly linked list
of _ETHREAD structures. We can enumerate all the threads
by following this list.

The _EPROCESS structure contains also an interesting
structure named _ PEB. All userland information resides in
this structure. In particular, we can find the list of the DLLs
loaded by the process. First we follow the field Ldr in the
__PEB structure (Listing 1.4).

This field is a _ PEB_LDR_DATA structure (Listing 1.5).

In this structure, three doubly linked lists (InLoadOr-
derLinks, InMemoryOrderLinks, InInitiali
zationOrderLinks) point to the DLLs list (Listing 1.6).

Thus we have all necessary information to examine and
dump any processes. In order to improve our Process Explorer
we need now to find how handles are stored. The _EPRO-
CESS structure has a field named HandleTable which
points to a _HANDLE_ TABLE structure (Listing 1.7).

The TableCode field points to a table of _ HANDLE__
TABLE_ENTRY structures (Listing 1.8).

Depending on the number of handles, the TableCode
field can point on a table of pointers instead of _HAN-
DLE_TABLE_ENTRY structures.

In order to retrieve the object hidden behind the handle, we
need to apply a mask on the Object field because the ker-
nel uses some bits to store additional information about the
object. So the real object address is obtained with the follow-

typedef struct _PEB // 65 elements, 0x210 bytes (sizeof)

/*¥0x000*/ UINT8 InheritedAddressSpace;
/*0x001*/ UINTS8 ReadImageFileExecOptions;
/*¥0x002*/ UINT8 BeingDebugged;

/*¥0x003*/ UINT8 SpareBool;

/*0x004 %/ VOID=* Mutant ;

/*¥0x008*/ VOID=* ImageBaseAddress;
/*¥0x00C*/ struct _PEB_LDR_DATA* Ldr;

[...1

}PEB, *PPEB;

Listing. 1.4 struct _PEB

typedef struct _PEB_LDR_DATA // 7 elements, 0x28 bytes (sizeof)
{

/*¥0z000*/ ULONG32 Length;

/*0x004 %/ UINTS8 Initialized;

/*0x005*/ UINTS8 _PADDINGO_[0x3];

/*0x008%/ VOID* SsHandle;

/*0xz00C*/ struct _LIST_ENTRY InLoadOrderModulelist;

/*0x014*/ struct _LIST_ENTRY InMemoryOrderModuleList;
/¥0z01C*/ struct _LIST_ENTRY InInitializationOrderModuleList;
/*¥0x024*/ VOID* EntryInProgress;

}PEB_LDR_DATA, *PPEB_LDR_DATA;

Listing. 1.5 struct _PEB_LDR_DATA

ing formula: real_addr =
000000) & Oxfffffff8.
On the Fig. 5, we can see all the interactions between these
structures.
In summary we have all the necessary information con-
tained in the _EPROCESS structure as we can see on the
Fig. 6.

(object_addr |0x80

4.2 GDT, IDT and SSDT

The PCR (Processor Control Region) is used by the kernel
and the HAL in order to contain specific hardware data. There
is one PCR per processor. The kernel uses a structure called
_KPCR (Listing 1.9) to store these pieces of information.

It contains several interesting fields and in particular a
pointer (PrcbData) to a structure named _KPCRB which
contains the processor control block. With this structure we

@ Springer



110

D. Aumaitre

Listing. 1.6 struct
_LDR_DATA_TABLE_ENTRY

typedef struct

_LDR_DATA_TABLE_ENTRY

/*%02000*/ struct
/*02008*/ struct
/%02010*/ struct
/*0x018%*/ VOID=*
/*0x01C*/ VOID=*
/*0x020*/ ULONG32
/*0z024 %/ struct
/*0x02C*/ struct

[...1]

}LDR_DATA_TABLE_ENTRY,

Listing. 1.7 struct typedef struct

_HANDLE_TABLE

// 18 elements, 0z50 bytes (sizeof)
_LIST_ENTRY InLoadOrderLinks;
_LIST_ENTRY InMemoryOrderLinks;
_LIST_ENTRY InInitializationOrderLinks;
Dl11Base;
EntryPoint;
SizeOfImage;
_UNICODE_STRING FullDllName;
_UNICODE_STRING BaseDllName;

*PLDR_DATA_TABLE_ENTRY;

// 14 elements, Oz44 bytes (sizeof)

_HANDLE_TABLE {
/*0x000*/ ULONG32 TableCode;
/*0x004 %/ struct _EPROCESS* QuotaProcess;
/*¥0x008*/ VOID=* UniqueProcessId;
/*0x00C*/ struct _EX_PUSH_LOCK HandleTableLock [4];
/*0x01C*/ struct _LIST_ENTRY HandleTablelList;
/*0x024 %/ struct _EX_PUSH_LOCK HandleContentionEvent;
/*0x028*/ struct _HANDLE_TRACE_DEBUG_INFO* DebuglInfo;
/*0x202C*/ LONG32 ExtralnfoPages;
/*0x030*/ ULONG32 FirstFree;
/*0x034 %/ ULONG32 LastFree;
/*¥02038%*/ ULONG32 NextHandleNeedingPool;
/*0x03C*/ LONG32 HandleCount;
union
{
/*¥0x040*/ ULONG32 Flags;
/*0x040%/ UINTS StrictFIFO 1; // 0 BitPosition
} .

}HANDLE_TABLE, *PHANDLE_TABLE;

Listing. 1.8 struct typedef struct _HANDLE_TABLE_ENTRY // 8 elements, 0z8 bytes (sizeof)
_HANDLE_TABLE_ENTRY
union
{
/*0x000*/ VOID* Object;
/*0x000*/ ULONG32 ObAttributes;
/*0x000*/ struct _HANDLE_TABLE_ENTRY_INFO* InfoTable;
/*0x000*/ ULONG32 Value;
};
union
{
/*0x004*/ ULONG32 GrantedAccess;
struct
{
/*0x004 */ UINT16 GrantedAccessIndex;
/*0xz006 */ UINT16 CreatorBackTraceIndex;
};
/*0z2004 */ LONG32 NextFreeTableEntry;
}.

}HANDLE_TABLE_ENTRY, *PHANDLE_TABLE_ENTRY;

find the value of the IDT and the GDT by following the
ProcessorState field.

However, the most interesting thing is that we have a
pointer to an undocumented structure which contains vari-
ous non-exported kernel variables: the KdVersionBlock
field. Two articles [1,6] on http://rootkit.com describe what
kind of structures are involved.

KdversionBlock points to a _DBGKD_GET_VER-
SION64 structure (Listing 1.10).
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With this structure we find the virtual address of the kernel
and the head of the doubly linked list of the kernel modules
(PsLoadedModuleList) which is the same kind of list
as the lists used for the DLLs. The DebuggerDatalList
field points to a_KDDEBUGGER_DATA64 structure. For the
sake of brevity we only show its beginning.

These fields are used by the debugger but they are always
filled. Thus we have a long list of non-exported kernel vari-
ables which give us precious information about the kernel.


http://rootkit.com

A little journey inside Windows memory 111

Fig. 5 Handle of lsass.exe Process : Isass.exe
struct _EPROCESS, 107 elements, 0x260 bytes
+@xc4 ObjectTable : 0xel5586a0 (Ptr32 to struct _HANDLE_TABLE, 14 elements, Ox44 bytes)
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L...]
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[...]
HANDLE TABLE
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Entry 0 st LE_ENTRY, B elements, @x8 bytes
T +8x000 Ob; : 0xel0096c9 (Ptr32 to Void)
3 +OX ributes 1 0xel0096c9 (Uint4B)
+0x000 InfoTable 1 0xel@096c9 (Ptr32 to struct
Entw 1 _HANDLE_TABLE_ENTRY_INFO, 1 elements, Ox4 bytes)
+0x000 Value 1 0xel0096c9 (Uint4B)
+0x004 GrantedAccess 1 0x000f0003 (Uint4B)
+0x004 GrantedAccessIndex : @x0003 (Uint2B)
+0x006 CreatorBackTraceIndex : 0x000f (Uint2B)
+0x004 NextFreeTableEntry 1 0x000f0003 (Int4B)
0xe10096c8 =(0xe10096c8 | 0xB0000000) & OxHiffia
struct _OBJECT_HEADER, 12 elements, 0x20 bytes
+0x000 PointerCount : 0x00000013 (Int4B)
Entry N L]  +0x004 HandleCount : 0x00000012 (Int4B)
+0x004 NextToFree : 0x00000012 (Ptr32 to Void)
R +0x008 Type : Ox81fc4add (Ptr32 to struct _OBJECT_TYPE,
12 elements, 0x190 bytes)
+@x00c ' : 0x10 (UChar)
Xt [andleInfoUf fset : 0x00 (UChar)
+0x00e QuotaInfoOffset : 0x00 (UChar)
+0x0Q0f Flags : 0x32 (UChar)
+0x010 ObjectCreateInfo : 0x00000001 (Ptr32 to struct
_OBJECT_CREATE_INFORMATION, 1@ elements, @x3@ bytes)
+0x010 QuotaBlockCharged : 0x00000001 (Ptr32 to Void)
N +0x014 SecurityDescriptor : 0xel@@956f (Ptr32 to Void)
ame A J +0x018 Body : Not implemented => _QUAD (0x8 bytes)
i e
CritSecOutOfMemoryEvent

Fig. 6 Structures involved in a
process
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typedef struct

/*¥0z000*/
/*%0z01C*/
/*0z020%*/
/*02024 %/
/*0xz025*/
/*%0z028*/
/*0z02C*/
/*¥0xz030*/
/*02034*/
/*0z038*/
/*¥0xz03C*/
/%0z040%/
/*0T044 %/
/*0T046%/
/%0z048%/
/%0T04C*/
/*¥0xz050*/
/*%0z051 %/
/*¥0z052*/
/*¥0xz053*/
/%0x054 %/
/*¥0z058*/
/*¥0xz090*/
/*02094 %/
/*0z0D4 */
/*%0z0D8*/
/*0xz0D9 */
/*0xz0DC*/
/*¥0x120*/

}KPCR, *PKPCR;

_KPCR

struct
struct
struct
UINT8
UINT8
ULONG32
ULONG32
ULONG32
VOID=*
struct
struct
struct
UINT16
UINT16
ULONG32
ULONG32
UINT8
UINT8
UINT8
UINT8
ULONG32
ULONG32
ULONG32
ULONG32
ULONG32
UINT8
UINT8
ULONG32
struct

// 27 elements, 0zD70 bytes (sizeof)

_NT_TIB NtTib;
_KPCR* SelfPcr;
_KPRCB* Prcb;
Irql;
_PADDINGO_[0x3];
IRR;
IrrActive;
IDR;
KdVersionBlock;
_KIDTENTRY* IDT;
_KGDTENTRY* GDT;
_KTSS* TSS;
MajorVersion;
MinorVersion;

use a signature plus some tests in order to find it by scanning
the physical memory.

The _KPCR structure is self-referencing since the Self-
Pcr field (offset Ox1c contains its virtual address. Further-
more the Prcb field which contains the _ KPCRB structure is
located 0x120 bytes further. So we can find it with a simple
algorithm.

Another interesting piece of information to gather is the
system calls table. A system call takes place when user-mode
code needs to call a kernel-mode function. Since the arrival

SetMember;

StallScaleFactor; 3

Debughctive ; of the Pentium II processors, Windows use the SYSTEN-

jumber; TER instruction to manage the system calls. This instruction
pare0; . .

SecondLevelCacheAssociativity; uses specific registers of the processor called MSR (Model

VdmAlert; S ﬁ R . t

KernelReserved [14]; peCI Y eng er)'

SecondLevelCacheSize; SYSENTER is essentially a high-performance kernel

HalReserved [16]; . K K i .
InterruptMode; -mode switch instruction that calls into a predetermined func-
Sparel;

_PADDING1_[0x3];
KernelReserved2 [17];
_KPRCB PrcbData;

Listing. 1.9 struct _KPCR

tion whose address is stored in a special MSR called SY-
SENTER_EIP_MSR. The implementation by the kernel is
quite simple. If we examine what happen when we use Cre-
ateFile we observe the following behaviour.

ntdll!NtCreateFile:

So in order to find these, we have to find the _KPCR struc-  7¢91d682 1825000000 mov eax, 25h

ture. Luckily for us, on Windows XP, it is always mapped to

7¢91d687 ba0003fe7f mov edx,offset
SharedUserData!SystemCallStub (7££e0300)

the Ox££d4££000 virtual address. However, on Vista thisis  7.91g68¢c f£f12 call dword ptr [edx]
not true. Due to the particular form of this structure, we can 7c91d68e ¢22c00 ret 2Ch

Listing. 1.10 struct
_DBGKD_GET_VERSION64 UINT16
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typedef struct _DBGKD_GET_VERSION64 {

UINT16
UCHAR
UCHAR
UINT16
UINT16

MajorVersion;

MinorVersion;

ProtocolVersion;

KdSecondaryVersion; // Cannot be ’A’ for compat with dump header
Flags;

MachineType;

// Protocol command support descriptions.

// These allow the debugger to automatically

// adapt to different levels of command support
// in different kernels.

// One beyond highest packet type understood, zero based.

UCHAR

MaxPacketType;

// One beyond highest state change understood, zero based.

UCHAR

MaxStateChange;

// One beyond highest state manipulate message understood, zero based.

UCHAR

MaxManipulate;

// Kind of execution environment the kernel is running in,
// such as a real machine or a simulator. Written back
// by the simulation if ome ezists.

UCHAR

UINT16

Simulation;

Unused [1];

ULONG64 KernBase;
ULONG64 PsLoadedModuleList;

// Components may register a debug data block for use by
// debugger eztensions. This 7s the address of the list head.

/7

// There will always be an entry for the debugger.

ULONG64 DebuggerDatalist;

} DBGKD_GET_VERSION64, *PDBGKD_GET_VERSIONG64;
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typedef struct _KDDEBUGGER_DATA64 {
struct _DBGKD_DEBUG_DATA_HEADER64 Header;

Listing. 1.11 struct
_KDDEBUGGER_DATA64

// Base address of kernel
ULONG64 KernBase;

tmage

// DbgBreakPointWithStatus 4is a function which takes an argument
// and hits a breakpoint. This field contains the address of the
// breakpoint instruction. When the debugger sees a breakpoint
// at this address, it may retrieve the argument from the first
// argument register, or on x86 the eax register.

ULONG64 BreakpointWithStatus; // address of breakpoint

// Address of the saved contezt record during a bugcheck

V4

// N.B. This is an automatic in KeBugcheckEz’s frame, and
// is only walid after a bugcheck.

ULONG64 SavedContext;

// help for walking stacks with user callbacks:

V4

// The address of the thread structure is provided in the

// WAIT_STATE_CHANGE packet. This is the offset from the base of
// the thread structure to the pointer to the kernel stack frame
// for the currently active usermode callback.

UINT16 ThCallbackStack; // offset in thread data

// these wvalues are offsets into that frame:

UINT16 NextCallback; // saved pointer to mezt callback
frame
UINT16 FramePointer; // saved frame pointer

// pad to a quad boundary
UINT16 PaeEnabled;

callout routine.
// kernel routine

// Address of the kernel
ULONG64 KiCallUserMode;

// Address of the usermode entry point for callbacks.
ULONG64 KeUserCallbackDispatcher; // address in ntdll

[...1]

} KDDEBUGGER_DATA64, *xPKDDEBUGGER_DATA64;

Listing. 1.12 struct typedef struct _SYSTEM_SERVICE_TABLE

_SYSTEM_SERVICE_TABLE {
PNTPROC ServiceTable; // array of entry points
PDWORD CounterTable; // array of usage counters
DWORD ServiceLimit ; // number of table entries
PBYTE ArgumentTable; // array of byte counts
)

SYSTEM_SERVICE_TABLE

typedef struct _CM_KEY_BODY // 7 elements, Ox44 bytes (sizeof)

The number of the system call is stored in the eax regis-

: : . /*¥0x000*/ ULONG32 Type;
ter. Then a stub (which is common for every system call) is 02004 5/ struct _CH_KEY GONTROL_BLOCK# KeyControlBlock:
executed. This stub has the following instructions. /*02006x/ struct _CH_NOTIFY_BLOCKx NotifyBlock;
/*0xz00C*/ VOID=* ProcessID;
/*¥0x010%/ ULONG32 Callers;
/*%0z014 %/ VOID* CallerAddress [10];
/*¥0x03C*/ struct _LIST_ENTRY KeyBodyList;

ntdll!KiFastSystemCall:
7c91eb8b 8bd4 mov edx, esp
7c91eb8d 0£f34 sysenter

}CM_KEY_BODY, *PCM_KEY_BODY;

Listing. 1.13 struct _CM_KEY_BODY

The arguments list is stored in the edx register, then the 4.3 Registry

SYSENTER instruction is executed.

Each thread has an array of system call tables. Its address is
stored inside the _KTHREAD structure in the field Servic-
eTable. A thread can have up to 4 system call tables (List-
ing 1.12). Generally only 2 are used, one for the kernel and
one for kernel-mode graphics subsystem (win32k.sys).

Most parts of the registry reside in memory. Thus it will be
very interesting to be able to reconstruct a sort of Regedit. We
can bypass all security measures and manipulate some keys
that we cannot under normal circumstances. For example we
can use this to implement a Pwdump-like program.
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Lmﬁng,1J4 struct typedef struct _CM_KEY_CONTROL_BLOCK // 25 elements, O0z48 bytes (sizeof)
_CM_KEY_CONTROL_BLOCK {
/*0x000%*/ UINT16 RefCount;
/*¥0x002%*/ UINT16 Flags;
struct
{
/*0x004 */ ULONG32 ExtFlags : 8;
/*0x004 */ ULONG32 PrivateAlloc : 1;
/*¥0x004 %/ ULONG32 Delete : 1;
/*0x004 %/ ULONG32 DelayedCloseIndex 12;
/*¥0x004 %/ ULONG32 TotalLlevels 10;
};
union
{
/*0x008*/ struct _CM_KEY_HASH KeyHash;
struct
{
/*0x008*/ ULONG32 ConvKey;
/*0x00C*/ struct _CM_KEY_HASH* NextHash;
/*0x010%*/ struct _HHIVE* KeyHive;
/*0x014*/ ULONG32 KeyCell;
};
};
/*0x018%*/ struct _CM_KEY_CONTROL_BLOCK* ParentKcb;
/*0x01C*/ struct _CM_NAME_CONTROL_BLOCK* NameBlock;
/*0x020%*/ struct _CM_KEY_SECURITY_CACHE* CachedSecurity;
/*0x024 %/ struct _CACHED_CHILD_LIST ValueCache;
union
{
/*0x02C*/ struct _CM_INDEX_HINT_BLOCK#* IndexHint;
/*¥0z02C*/ ULONG32 HashKey;
/*0x02C*/ ULONG32 SubKeyCount;
};
union
{
/*0x030%*/ struct _LIST_ENTRY KeyBodyListHead;
/*0x030%*/ struct _LIST_ENTRY FreeListEntry;
};
/*0x038*/ union _LARGE_INTEGER KcbLastWriteTime;
/*0x040*/ UINT16 KcbMaxNamelLen;
/*0x042%/ UINT16 KcbMaxValueNameLen;
/*0x044 %/ ULONG32 KcbMaxValueDatalen;

}CM_KEY_CONTROL_BLOCK,

Before this, we will describe some structures manipulated
by the configuration manager. The type manipulated by the
object manager is Key. It is the type shown in the handles.
Behind this type it is a _CM_KEY_BODY structure (Listing
1.13).

The _CM_KEY_CONTROL_BLOCK (Listing 1.14) struc-
ture contains much information.

Several fields are important. For example the fields Key -
Hive and KeyCell point to a _HHIVE structure and an
index inside this hive. We will explain later how indexes are
converted into addresses. The NameControlBlock field
points to a structure that contains the name of the cell.

As we said before, cells are stored with indexes. The con-
figuration manager converts them into addresses. The method
is quite similar to the one used to convert virtual addresses.

The index is broken into several parts:

1. the 12 least significant bits are an offset in the page that
contains the data;

2. the 9 following bits are an index inside a _ HMAP_ TABLE
structure;

3. the 10following bits are anindex insidea _ HMAP_DIREC
TORY structure;

@ Springer

*PCM_KEY_CONTROL_BLOCK;

typedef struct _HHIVE // 24 elements, 0z210 bytes (sizeof)

{

/*¥0z000%*/ ULONG32 Signature;
[.. .1

/*%02058*/ struct _DUAL Storage[2];
}HHIVE, *PHHIVE;

Listing. 1.15 struct _HHIVE

4. the most significant bit indicates if the cell is volatile or
resident.

How can we find the appropriate _ HMAP_TABLE and
_HMAP_DIRECTORY structures?

We need to examine the _ HHIVE structure (Listing 1.15).

This structure has a field named Storage whichis atable
of two _DUAL structures (Listing 1.16). One is for volatile
storage, one is for resident storage. Volatile storage means
that the keys are only present in memory.

The Map field points to a table of _ HMAP_ DIRECTORY
which also points to a table of _ HMAP_ TABLE which points
to a table of _ HMAP_ ENTRY structures (Listing 1.17).

The field BlockAddress contains the address of the
memory area that contains the cell. By adding the offset found
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Listing. 1.16 struct _DUAL typedef struct _DUAL // 7 elements, 0xzDC bytes (sizeof)
{
/*0x000*/ ULONG32 Length;
/*¥0x004 */ struct _HMAP_DIRECTORY* Map;
/*0x008*/ struct _HMAP_TABLE* SmallDir;
/*0x00C*/ ULONG32 Guard;
/*0x010*/ struct _RTL_BITMAP FreeDisplay [24];
/*0x0D0*/ ULONG32 FreeSummary;
/*0x0D4 */ struct _LIST_ENTRY FreeBins;
}DUAL, *PDUAL;
Listing. 1.17 struct typedef struct _HMAP_ENTRY // 4 elements, 0xz10 bytes (sizeof)
_HMAP_ENTRY {
/*0x000*/ ULONG32 BlockAddress;
/*%0x004*/ ULONG32 BinAddress;
/*0x008*/ struct _CM_VIEW_OF_FILE* CmView;
/*0x00C*/ ULONG32 MemAlloc;

}HMAP_ENTRY,

struct _CM_KEY_BODY
! s |

*PHMAP_ENTRY ;

struct _CM_KEY_CONTROL_BLOCK

[t0u0@4 KeyControlBlock : Ptr32 to struct _CM_KEY_CONTROL_BLOCKJ
L...]

| W |
{40x010 KeyHive : Ptr3z to struct HHIVE)

+ 5 Uintdl

[::2]

struct _HHIVE

| P |
—{+@xe58 Storage : [2] struct _DUAL }
L...J

Y Cell Index
9 bits 12 bits

1 bit 10 bits

Table

struct _DUAL

——(+ax004 Wap : Ptr3Z to struct VAP DIRECTORY)

| |

HE |
Directory Offset
_1

—

struct _HMAP_DIRECTORY

1024 pointers

Fig. 7 Interactions between cell-related structures

with the index, we find the address of the cell. The Fig. 7
shows all the interactions between these structures.

Since we now have a clone of Regedit, we can begin
to do interesting things! We can dump SAM hashes, LSA
secrets, domains credentials, etc. Everything you can do with
an unlimited access to the registry.

Since we could also write to the registry we could, for
example, login without knowing the password.

Adam Boileau released a tool, winlockpwn, that patches
the function responsible for checking the credentials used
during interactive login.

However, we can do that in a different way. The reg-
istry key holding details of the user account (HKLM\ SAM
\Domains\Account\Users\ [SID]\V) contains 2
bytes at the offsets 0xa0 and Oxac indicating whether pass-

struct _HMAP_TABLE Y

struct _HMAP_ENTI

512 struct _HMAP_ENTRY

- ‘ struct _CELL_DATA l

r

struct _HMAP_ENTRY

((+8x@0@ BlockAddress : Uint48 }
|

words hashes are needed for this account [4]. For a password-
protected account, these bytes are equal to 0x14 (Fig. 8).
If we replace their values by 0x04 then no credentials are
checked before log in since we request that no hashes are
needed! As a result, we could log in with a simple keystroke.

4.4 Arbitrary code execution

It’s clear now that we can read or write anything in physical
memory. But how can we execute arbitrary code? The answer
is simple, we just need to overwrite some pointers. We will
show one way to do it but there are many ways.

We want to divert the flow of execution as quickly as we
can. So we choose to hijack the system calls. A particular
structure, called _KUSER_SHARED_DATA (Listing 1.18),
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0x00000000 00 00 00 00
0x00000010 Qe 00 00 60
0x00000020 00 00 00 00
O0x00000030 cc 00 00 00
0x00000040 00 00 00 00
0x00000050 00 60 00 00
0x00000060 cc 00 00 0O
0x00000070 00 00 00 00
0x000000E0 00 00 00 00

Ox0000005! 00 00 00
0x000000a! 00 00
obo 00 00 00

0x000000c0 00 01 00 00
0x000000d0 Sc 00 00 00
O0x000000=0 02 00 30 00
Ox000000f0 01 O1 00 00
ox00000100 Ff 07 of 00
0x00000110 02 00 58 00
Dx00000120 01 05 00 00
0x00000130 dd &8 e4 1lc
Gx00000140 FF 07 of 00
0x00000150 20 02 00 0O
O0x000001E60 00 00 00 01
0x00000170 20 00 00 0O
O0x00000180 20 00 0O 0O
0x00000150 6e 00 69 0O
0x000001a0 01 00 01 00
0x000601b0 3b 67 35 c4
0x000001c0 13 @5 13 41
Ex000001d0

bc 00 00 00 02
00 00 00 00 cc
cc 00 00 0O 0O
00 00 00 0O @0
00 00 00 00 cc
cc 00 00 B0 00
00 00 0D 00 00
00 0@ 00 80 cc
cc 00 00 00 00
68 00 00 0O 01
00 00 0O 00 e8
fc 00 0O 00 04
04 00 0O 00 00
ac 00 00 0O 14
02 00 00 00 62
00 00 00 01 00
01 61 00 oo 00
03 00 00 00 00
60 0@ 00 85 15
16 c0 ea 32 eb
01 82 00 o0 o0
00 00 14 00 Sb
00 00 00 00 01
20 62 00 00 01
20 02 00 o0 7O
78 00 00 00 01
14 7c d6 11 27
01 08 61 oo 1f
bf d2 50 f2 01

00 01 00
00 00 00
00 00 00
60 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
00 00 00
€0 14 00
00 00 00
00 00 85
00 24 00
00 00 00
03 00 00
00 00 05
03 02 00
02 00 00
62 00 00
00 68 00
02 00 00
6b a3 ab
55 30 a7
00 01 00

has been used extensively in Windows exploitation [3,7].
This structure has the particularity of being mapped in user-
space and in kernelspace and at a fixed address. On top of
that it contains various useful data.

In particular we have the SystemCall field which con-
tains the address of the stub executed before any system calls.

be 00 00 00
00 00 00 0O
00 00 00 QO
cc 00 00 B0
00 00 00 00
60 00 00 o0
cc 00 00 00
60 00 00 o0
00 00 00 00

8 00 00

g; edhas By hooking this address, we gain control before every system
o1 00 14 80 call.

44 00 0O DO .. . . . .

44 00 05 01 By combining this with a few tests to determine if our pay-
et load is already executing and under which process we want
oo to execute we have a reliable way to execute any userland
00 90 18 00 Code'

20 00 00 GO . .
o1 o1 00 00 For a proof-of-concept we decided to spawn an admin
60 00 00 @5 . . .

00 00 00 05 shell before any authentication. To do so we just used a pay-

f . .

b o load that uses CreateProcess with the winlogon desk-
07 00 o0 oo

ca 30 35 27

67 b3 45 de tOp :

01 00 01 00

As we can see on the Fig. 9, the result is self-explanatory!

Fig. 8 Bytes involved when unlocking workstation

Listing. 1.18 struct

_KUSER_SHARED_DATA

Fig. 9 Hack the planet: D
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typedef struct _KUSER_SHARED_DATA // 39 elements, 0x338 bytes (sizeof)
{

/*0x000*/ ULONG32 TickCountLow;
/*0x004*/ ULONG32 TickCountMultiplier;
/*0x008+*/ struct _KSYSTEM_TIME InterruptTime;
/*0x014*/ struct _KSYSTEM_TIME SystemTime;
/*0x020%*/ struct _KSYSTEM_TIME TimeZoneBias;
[...]
/*%0x300*/ ULONG32 SystemCall;
/*%0x304 %/ ULONG32 SystemCallReturn;
/*0x308*/ UINT64 SystemCallPad [3];
union
{
/*0x320%*/ struct _KSYSTEM_TIME TickCount;
/*%0x320*/ UINT64 TickCountQuad;
};
/*0x330%*/ ULONG32 Cookie;
/*0x334 %/ UINTS _PADDING5_[0x4];

}KUSER_SHARED_DATA, *PKUSER_SHARED_DATA;

Hack The Plasst [TM] Shell

Pour commancer, cliquez sur votre
nom d'uliisateur

[&] Arréter lordinateur
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5 Conclusion

We have seen how memory works on modern operating sys-
tems. We also explained how FireWire can be used to access
physical memory. We have combined these to show several
examples both for defensive and offensive purposes. Tech-
niques to reconstruct the virtual memory are mature enough
to allow the implementation of user-friendly tools.

It is always been said that physical access to a machine
is equivalent to owning it. This is even more true with a
machine equipped with a FireWire or a PCMCIA port. For
older machines, few things can be done. We can remove
the support of the FireWire with the aid of the operating
system. On the other hand with newer machines we could
use the IOMMU (Input/Output Memory Management Unit).
The IOMMU takes care of mapping device-visible virtual
addresses (also called I/O addresses) to physical ones. Thus
we can enforce some restrictions regarding the access of
memory with a DMA-capable device.
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