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Abstract Computer viruses are programs that can replicate
themselves by infecting other programs in a system. Bonf-
ante, Kaczmarek and Marion have recently proposed a clas-
sification of viruses which relies on the recursion theory and
its recursion theorems. We propose an extension of their for-
malism to consider in a more practical way the mutation
of viruses. In particular, we are interested in modelling any
depth of mutation, not just the first two levels. We show that
this formalism still relies on recursion theorems, whatever the
depth of mutation, even in the case of infinite depth. We also
extend furthermore this formalism to model the viability of
viral replication, which ensures that an infected program still
can propagate the virus. An application of the proposed for-
malism to the class of combined viruses (multi-part viruses)
is studied. Finally, given that metamorphic viruses can be
modelled by grammars operating on grammars, we study a
recursion-based approach of formal grammars and show that
the recursion theorems of the recursion theory can be ported
to the formal grammars theory.

1 Introduction

Computer infections are a serious concern in nowadays IT
infrastructures. These infections are carried out using
miscellaneous types of malware, among which computer
viruses: such programs replicate themselves in a host
environment, possibly mutating during the replication and
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possibly carrying a payload. These viruses have been
modelled very early by F. Cohen [4] using Turing machines,
and then by Adleman [1] using recursive functions. Lately,
Filiol [5] and Bonfante, Kaczmarek and Marion [2,3] have
proposed a new formalization of computer viruses which
encompasses any previous approach and allows a classifi-
cation where the existence of each class relies on a variant of
Kleene’s recursion Theorem [8].

The major stake in detecting viruses is virus mutation.
Simple viruses are detected by pattern-matching. However,
some viruses mutate their code along any replication:
polymorphic viruses encrypt their code and mutate the
decryption function only, whereas metamorphic viruses
mutate the whole code. Thus simple polymorphic viruses
always replicate using the same code: their mutation func-
tion is fixed. Metamorphic viruses however mutate
their code and thus are able to mutation their mutation
function.

In this paper, starting from the work of Bonfante et al., we
adopt a more practical approach by considering directly in
our formalism these mutation functions. However, rather than
limiting ourselves to one mutation function, we hypotheti-
cally consider the case of mutation at any depth. We study this
formalism according to two approaches, one being behav-
ioural, which corresponds to Bonfante et al.’s work, the other
one being syntactic. After formalizing these approaches, we
consider the case of infinite depth of mutation and conclude
with the problem of viability of the replication: how do we
ensure that an infected program continues replication. This
formalism is finally illustrated by the case of combined
viruses, which are multi-part viruses.

Poly/metamorphic viruses can also be modelled using for-
mal grammars [6]. Metamorphic viruses are in particular
modelled by grammars operating on other grammars: the
parallel with recursive functions seen as integers operating
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on integers is straightforward. Thus we investigate in the end
a recursion approach of the theory of formal grammars.

2 Viruses in the recursion theory

2.1 Notations

In the recursion theory, programs are represented by integers
(using Gödel’s numbering). For a given program p ∈ N, ϕp

is the semi-recursive function computed by p. Encoding of
tuples of integers into integers is denoted by 〈· · · 〉. When
unambiguous, brackets may be omitted.

2.2 Recursion theorems

Self-reproduction of programs relies on two fundamental the-
orems, established by Kleene [8]:

Theorem 1 (Iteration theorem) There exists a semi-recur-
sive function S : N× N→ N which verifies:

For any program p, for any integer x, the program S(p, x)
verifies:

∀y ∈ N, ϕS(p,x)(y) = ϕp(x, y)

S(p, x) is said to specialize program p on input x.

S is called the iteration function or the s-m-n function.

Theorem 2 (Recursion theorem) For any recursive function
f , there exists a program e such that:

∀x ∈ N, ϕe(x) = f (e, x)

This theorem proves the existence of self-reproducing pro-
grams. For instance, Quine programs1 merely correspond to
the function: f (p, x) = p.

Subsequently, Smullyan extended the recursion theorem
to two recursive functions [9]:

Theorem 3 (Double recursion theorem) For any recursive
functions f and g, there are programs e1 and e2 such that:

∀x, ϕe1(x) = f (e1, e2, x)

ϕe2(x) = g(e1, e2, x)

These theorems, along with their variants, provide a basis
to Bonfante et al.’s formalism, as detailed in the next section.

2.3 Current formalism

Bonfante, Kaczmarek and Marion defined a virus with respect
to a semi-recursive function B, which is called propagation
function [3]. This function describes how a virus can infect
(insert itself into) a program. We here recall the different
classes of viruses they defined and their associated results.

1 A Quine program is a program that outputs its own code.

Definition 1 (Virus) A program v is a virus wrt a semi-recur-
sive function B iff:

∀p,∀x, ϕv(p, x) = ϕB(v,p)(x)

Existence of such viruses comes from a simple applica-
tion of Kleene’s recursion theorem. Since the proof of this
theorem is constructive, a virus can be constructed for any
propagation function [3].

Moreover, Bonfante et al. proved that this generic def-
inition encompasses any previous definition of viruses by
Cohen [4], Adleman [1] and Zuo and Zhou [10].

2.3.1 Blueprint viruses

A blueprint virus [3] is defined wrt a semi-recursive function
g which specifies the behaviour of the virus in an environ-
ment. Such viruses simply duplicate their code when
replicating.

Definition 2 (Blueprint virus) A program p is a blueprint
virus wrt a semi-recursive function g iff:

• v is a virus wrt some propagation function.
• ∀p, x, ϕv(p, x) = g(v, p, x)

Definition 3 (Distribution engine) A semi-recursive func-
tion dv is a distribution engine iff there exists a fixed prop-
agation function B such that, for any i , dv(i) is a virus wrt
B.

Bonfante et al. show that there exists a blueprint distri-
bution engine which yields a blueprint virus for any semi-
recursive function g and wrt a fixed propagation function,
which happens to be the iteration function S.

In order to allow the mutation of blueprint viruses during
replication, evolving blueprint viruses are defined:

Definition 4 (Evolving blueprint virus) A program dv is a
distribution of evolving blueprint viruses wrt a semi-
recursive function g iff:

• dv is a distribution engine.
• ∀i, p, x, ϕdv(i)(p, x) = g(dv, i, p, x)

The existence of such viruses relies on a parameterized
variant of Kleene’s recursion theorem.

2.3.2 Smith viruses

Evolving blueprint viruses are defined wrt a fixed propaga-
tion function. We now define smith viruses wrt a specification
function which depends on their propagation function. Thus
a smith virus corresponds to the couple of the virus and its
propagation function:
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Definition 5 (Smith virus) Two programs v and B are a
smith virus iff:

• v is a virus with respect to B
• ∀p, x, ϕv(p, x) = g(B, v, p, x)

Existence of smith viruses relies on the double recursion
theorem (Theorem 3).

Definition 6 (Virus distribution) A virus distribution is a
pair (dv, dB) such that for any i ,ϕdv (i) is a virus wrt ϕdB (i).

Again, as for blueprint distribution engines, there exist
smith virus distributions which are virus distributions oper-
ating on specification functions and yielding smith viruses
wrt these specification functions.

Finally, the class of smith distributions is defined by the
viruses which can mutate their code along with their propa-
gation function (metamorphic viruses):

Definition 7 (Smith distribution) Two programs dv and dB
are a smith distribution wrt a semi-recursive function g iff:

• (dv, dB) is virus distribution.
• ∀i, p, x, ϕϕdv (i)(p, x) = g(dB, dv, i, p, x)

Existence of such viruses relies on a parameterized ver-
sion of the double-recursion theorem.

3 Recursion and vertical mutation

3.1 Vertical mutation chains

First, let’s consider the seeming equivalence between blue-
print viruses and smith distributions. A blueprint virus (along
with its propagation function) can be seen as a smith distribu-
tion, with constant virus distribution. Same goes for evolv-
ing blueprint viruses. Conversely, a smith distribution can
be seen as a distribution of evolving blueprint viruses. Let
(dv, dB) be a smith distribution wrt a specification func-
tion g: each virus generated by dv is a virus wrt its own
propagation function. However, if we consider the semi-
recursive function g′ defined by the specialization of g for
dB (g′ = S(g, dB)), then dv is an evolving blueprint virus
distribution wrt g′ and the propagation function S (iteration
function). Thus the classes of evolving blueprint viruses and
of viruses generated by smith distributions are formally iden-
tical.

Moreover, the proposed formalism only considers two lev-
els of mutation: a given virus can mutate its code and its prop-
agation function. We thus extend this formalism to model
any depth of mutation. This mutation is vertical, as opposed

with horizontal mutation which occurs on a given depth of
mutation between different virus generations.

Let’s call mutation function at level n the function that
models the mutation of the n − 1-mutation function, given
an environment and mutation functions at lower levels. At
level 0, the mutation function yields the infected program
when given as input the virus, a target program and an envi-
ronment. These functions will be formally defined later.

We are also interested in the number of mutation levels
from which the mutation functions can be considered fixed
and we will more particularly study the case of infinite (ver-
tical) mutation chains, as well as the notion of viable replica-
tion (i.e. an infected program can still effectively replicate).

From a syntactic perspective, let’s now suppose that a virus
has no access to its propagation function: then considering
this propagation function isn’t justified in a sense and we
could consider that this propagation function is the iteration
function. So the number of mutation levels is motivated by the
actual ability to extract the mutation function on any of these
levels. Similarly viruses that mutate their code in a fixed way
can actually be considered as strictly mutating their mutation
function. For instance, consider a virus v0 which yields its
own code (using a self reference provided by the environ-
ment) plus a space, and a virus v1 which is a variant of a
Quine program (a program that outputs its own code) mod-
ified in such a way that it appends a space at the end of its
code. v0 and v1 have then the same behaviour when repli-
cating, but v0 has a fixed mutation function whereas v1 has
a variable mutation function since it actually depends on the
current virus code.

3.2 Notations

Let v be a given virus, p a program to infect and x an environ-
ment. In the following, when program p and environment x
are unambiguous, we will denote by v′ the result of infection
of program p by virus v in environment x (i.e. the resulting
infected program).

We recursively define the mutation functions of the virus
v by:

µ0,v(v, p, x) = v′
∀i, µi,v(µi−1,v, . . . , µ0,v, p, x) = µi−1,v′

For sake of clarity, we may denote by φv the ground level
mutation function and by ψv the level 1 mutation function.

3.3 Behavioural and syntactic equations

The following results respond to two of the previous ques-
tions. When can we consider that a mutation function is fixed?
And, supposing we can consider that a mutation function is
fixed, on what basis should we actually consider that it is
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not? The first question will explain the prior considerations
on evolving blueprint viruses and smith distributions, while
the second question will make more explicit the reasons why
in some cases it remains interesting to consider the behaviour
of mutation functions. Having answered these questions, we
can formalize in more details the mutation on any level.

Mutation functions can be studied from two approaches: a
behavioural one and a syntactic one. The behavioural
approach corresponds to the one adopted by Bonfante et al.

Lemma 1 Let n be a given depth. If there exists a recursive
function gn−1 such that:

∀v, gn−1(v) = µn−1,v(µn−2,v, . . . , µ0,v, v)

Then:

1. There exists a fixed mutation function µn such that, for
any virus v (usually of a given strain), its mutation func-
tion µn−1,v mutates according to µn.

2. Any deeper mutation function is fixed, being equal to the
identity.

Proof µn,v verifies:

∀v, p, x µn,v(µn−1,v, . . . , µ0,v, v, p, x)

= µn−1,µ0,v(v,p,x) = µn−1,v′

The new mutation function must be valid wrt the infected
form of the virus, v′, which is expressed by:

∀v, p, x

µn (µn−1,v, . . . , µ0,v, v, p, x)(µn−2,v′ , . . . , µ0,v′ , v
′)

= µn−1,v′(µn−2,v′ , . . . , µ0,v′ , v
′)

= gn−1(µ0,v(v, p, x))

Since the constraints on µn are local (for a given v, µn

must yield a function that is valid at least on the v′ specific
input), takingµn(µn−1,v, . . . , µ0,v, v, p, x) = µn−2,w, . . . ,

µ0,w, w �→ gn−1(µ0,v(v, p, x)) ends the proof. �	

This lemma allows us to consider relations that charac-
terize the local behaviour of a mutation function, that is
equations expressing that a given function locally behaves
as the considered mutation function. If such a characteriza-
tion exists, then it is represented by the function gn−1. For
instance, in the case of the ground level mutation function
φv , we can characterize this function by the relation:φv(v) =
π1 ◦ v, which corresponds to the function g0 = v �→ π1 ◦ v
(where π1 corresponds to the projection on the first com-
ponent, assuming that this component contains the infected
program). Then Lemma 1 tells us that the first level mutation
function ψv can be considered fixed. This result has a local
extent, that is wrt the propagation. If for instance we are also

able to characterize the result of the mutation function ψv
with respect to a virus v, then the previous result would be
discarded. Yet it remains locally valid, which amounts to the
following consistency property:

∀v, p, x, g1(v)(p, x)(v′) = g0(v
′)

Thus, on a strictly functional perspective, we can con-
sider a single level of mutation, as deeper mutation func-
tions can be approximated. Nevertheless, in general, it makes
sense to consider the mutation of φ, since g0 is defined by:
g0 = v �→ π1 ◦ v.

As was previously explained, we also want to consider
the case of the mutation functions being explicitly and syn-
tactically enclosed into (and thus extractable from) the virus.
Then we would like to relate both perspectives and make
them compatible with each other. This second case leads to
the following lemma (derived from Lemma 1):

Lemma 2 Let n be a given depth. If there exist two recursive
functions h0 and hn−1 such that:

∀v, h0(v) = µ0,v and hn−1(v) = µn−1,v

Then:

1. There exists a fixed mutation function µn such that, for
any virus v (usually of a given strain), its mutation func-
tion µn−1,v mutates according to µn.

2. Any deeper mutation function is fixed, being equal to the
identity.

Proof Simply define µn as:

∀v, p, x µn(µn−1,v, . . . , µ0,v, v, p, x)

= hn−1(h0(v)(v, p, x)) �	

Thus functions hi are similar to functions gi but operate
at a deeper level and no longer on a local scale. Rather than
characterizing the behaviour of mutation functions wrt the
behaviour of the virus, they characterize the fact that muta-
tion functions can be syntactically and globally extracted
from the virus. This is the case for instance of viruses where
the mutation grammars of level 1 and possibly deeper are
directly encoded into the data of the virus, allowing us to
define h0, h1, etc. Thus, for a given virus strain, there is no
limit to the depth of mutation we should consider, since any
mutation function at any level could be hard-coded into the
virus.

Both perspectives yield consistent equations.
Given the recursive functions gi , we get the following

behavioural equations:

∀p, x µi,v(µi−1,v, . . . , µ0,v, v, p, x) = gi (v)(p, x)

123



Extended recursion-based formalization of virus mutation 213

Also, given the recursive functions hi , we get the following
syntactic equations:

∀p, x µi,v(µi−1,v, . . . , µ0,v, v, p, x)

= hi (v)(µi−1,v, . . . , µ0,v, v, p, x)

We finally redefine2 our original equation on v, for a given
depth n − 1:

∀p, x v(p, x) = f (µ0,v, . . . , µn−1,v, v, p, x)

Then application of the (n+1)-ary recursion theorem (see
Appendix B.1) to these equations, in any perspective, entails
the existence of v and of such mutation functions.

Thus the first perspective entails the existence of the muta-
tion functions but at a limited level as it is related to the char-
acterization of the corresponding mutation functions. Deeper
mutation functions must be approximated by fixed ones. And
the second perspective also entails existence of the mutation
functions, this time at any level—as long as the correspond-
ing mutation function can be extracted from the virus—but
then there is no proof that the mutation functions are locally
compatible with the actual ones. Thus, to make both perspec-
tives compatible with each other, we simply add the following
local constraints on the hi functions:

h0(v)(v) = g0(v)

= π1 ◦ v
∀p, x, hi (v)(µi−1,v,· · ·, µ0,v, v, p, x) = µi−1,v′

= hi−1(h0(v)(v, p, x))

These constraints are common sense as the hi functions
could return anything unrelated to the mutation functions.
Supposing the ground level mutation grammar is encoded
into the virus, then this constraint simply requires that the
grammar returned by h0 is the grammar being actually used
to mutate the virus.

The original propagation function concept was thus
extended by a more general consideration of mutation func-
tions at any level, whereas the requirement of a correlation
between a virus and its propagation function, as expressed
in the original definition3, is now an intuitive formulation of
the characterization of a mutation function with respect to a
virus. The latter approach also allows to directly infer these
mutation functions from the virus. Although that inference
is easily understood in the case of the ground level mutation
function φ, as it can be computed directly from the execution
of a virus in a controlled environment, it mostly depends on
the virus internal (programming) structure for deeper levels.

2 Note that this equation is furthermore justified by the fact that exis-
tence of these functions gi or hi relies precisely on the ability of the virus
to be able to access and alter its mutations functions, thereby justifying
the dependency of f on those.
3 Namely: ∀p, x, v(p, x) = B(v, p)(x)

These results, that require an analysis of viruses from a
more syntactic (implementation related) perspective, moti-
vate their study from a grammar perspective, though some
concepts are still easier to comprehend from the recursion
theory perspective.

3.4 Infinite vertical mutation chains

Finally, we might want to consider the case of an infinite
vertical mutation chain—i.e. in the mutation functions. As
was shown previously, no limit can be enforced on the depth
of mutation. However, apart from the practice where muta-
tions are usually limited to the first two levels, the case of
an infinite set of mutations in the mutation functions is inter-
esting to consider, with regards to its consistence as well as
its theoretical basis. One can actually show that, using the
previous equations and a countable version of the recursion
theorem (see Appendix B.2), we are able generalize the pre-
vious results to any number of mutation functions. Indeed,
this theorem entails the existence of a countable sequence of
mutation functions that follow the previous specifications.

Thus, although the previous results were corroborated by
the existence of actual implementations and thereby provided
a theoretical background to these ones, this precise result
actually shows that, even though there is currently no imple-
mentation of a virus with an infinite vertical mutation chain,
such viruses theoretically do exist. Their practical existence
is an open problem.

Also, when considering these mutation functions on a
vertical scale, one could wonder if this does not actually
correspond to a recursion structure, on a higher abstraction
level. Indeed, for any finite number of mutation functions, the
multary recursion theorem is derived from the basic recur-
sion theorem and remains on an horizontal scale. Looking
at the countable recursion theorem and its proof, one can
actually see that it precisely corresponds to moving to a
1-higher abstraction level: the proof considers semi-recursive
functions F and E that operate directly on the space of muta-
tion functions. Then the recursion theorem is applied in this
dimension. Thus the basic recursion theorem manipulates
functions, while the countable recursion theorem manipu-
lates sets of functions, and one could even go further in the
abstraction levels.

And necessarily, the previous remarks raise the question
of a new recursion level that would operate directly on the
scale of those F and E functions. This has not been investi-
gated in this article.

3.5 Viable replication

To conclude with this formalism, we consider the problem of
viable replication: how to make sure that the mutated form
of a virus will continue replication. This is the very basis of
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virus theory. The case of basic viruses that simply replicate
by copying themselves is straightforward. However mutat-
ing viruses do not anymore verify the equations that gave
birth to their strains. Though this is not explicitly mentioned
in Bonfante et al.’s article [3], they bring an answer for the
case n < 2 with the evolving blueprint viruses and the smith
distributions. We merely generalize their result to the previ-
ous formalism, for any depth of mutation, including infinite
depth.

Since the replication is linear, and rather than adding extra-
requirements, Bonfante et al. index the viruses by a param-
eter i : thus all mutated forms of a virus are gathered into a
so-called distribution engine, as explained in Sect. 2.3. Then
the recursion theorem is applied on this distribution engine
rather than on a given virus. In a sense, this is an application
of the countable recursion theorem to the countable set of all
mutated forms of the virus. Such a distribution engine can be
generalized to take into account any depth of mutation. Let’s
denote by dv the distribution engine of v and by d j

µ the distri-

bution engine of the mutation functionµ j,∗: d j
µ(i) ≡ µ j,dv(i).

Then the equations these distributions must verify are the
following:

∀p, x dv(i, p, x) = f (d0
µ, . . . , dn−1

µ , dv, i, p, x)

∀p, x d0
µ(dv, i, p, x) = f0(d

0
µ, . . . , dn−1

µ , dv, i, p, x)

· · ·
∀p, x dn−1

µ (dn−2
µ , . . . , d0

µ, dv, i, p, x)

= fn−1(d
0
µ, . . . , dn−1

µ , dv, i, p, x)

where the functions fi are functions gi or hi from Lemmas 1
and 2 (behavioural and syntactic functions).

Thus the (n + 1)-ary recursion theorem still applies. The
same goes for an infinite depth of mutation.

3.6 Application: combined viruses

Combined viruses, also called k-ary viruses [6], are a partic-
ular class of viruses that are composed of several parts, which
operate together, in a sequential or parallel way. Filiol decom-
posed these viruses into several classes [6], depending on
whether they operate independently (without any references
to each other) or not. Class A contains strongly dependent
codes, class B contains independent codes and class C con-
tains weakly dependent codes (one-way dependency). Such
viruses, whatever their class, are not compatible at first sight
with our previous model.

Each virus part vi might behave according to its own
mutation function fi . Thus each part might have its own
independent horizontal and vertical mutation chain. Fully
independent combined viruses are the simplest case: they
correspond to the action of independent viruses. We will con-
sider the two following cases:

3.6.1 Class B viruses—independent parts

First we shall note that a combined virus can be made of k
parts and replicate into k′ parts, which prevents us from con-
sidering mutation functions on the scale of each part. In the
present case, the fi functions have two arguments: the part vi

and the environment p, x that we will denote by x for sake of
simplicity. However they must be considered as taking part
to interactions with the other parts: depending on the virus,
a part may be waiting for another part to complete a task or
to answer a query. Consequently, we will consider the func-
tions f ∗i that take a third and fourth argument, namely the
execution state (subsequently denoted by j), which allows to
resume function fi at any stage of its execution, and a number
of execution steps (subsequently denoted by n) to perform
before being suspended. We could consider this execution
state to be the instruction pointer eip (along with viral data
contained in other registers and the memory). Repeated appli-
cation of Kleene’s recursion theorem now yields:

∃v∗1 ,∀ j, n, x, v∗1( j, n, x) = f ∗1 (v∗1 , j, n, x) (1a)

· · ·

∃v∗k ,∀ j, n, x, v∗k ( j, n, x) = f ∗k (v∗k , j, n, x) (1k)

Then the viral part vi is simply defined by: ∀x, vi (x) =
v∗i (0,∞, x), where 0 represents the initial execution state.

Execution of the combined virus v = {v1, . . . , vk} on an
environment x can be represented by an execution sequence:
E(v, x) = N �→ Steps, where Steps is defined by: Steps ={〈

i, j, n, x ′
〉 |i ∈ [1, . . . , k] , j, n ∈ N, x ′ ∈ Env

}
. i is the

index of the part to be executed, j is the execution state it will
start at, n is the number of execution steps to perform, and x ′
is the environment it will be executed into. We do not detail
the consistence properties like js being required to match the
last je of the current part (or 0 on the first execution) and
similar sequence properties on x ′.

Let’s denote by v(x) the result of the execution of v on
environment x and suppose that (where of course x0 = x):

E(v, x)= (〈i0, j0,n0,x0〉,〈i1, j1,n1,x1〉, . . ., 〈im, jm, nm, xm〉)
Then:

v(x)=v∗im
( jm, nm, v

∗
im−1

( jm−1, nm−1, . . . v
∗
i0
( j0, n0, x) . . .))

The miscellaneous interruptions are either the result of
manual ones or the result of interactions with the environ-
ment like waiting for resources or for a response to a query,
etc.

Finally, we represent this global interaction process as the
result of an interaction function f which, given the k viral
parts, represents the result of the execution of v on an envi-
ronment x . Since no physical entity is associated to the global
virus v, this function f can only consist of executing a part,
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interrupting it, executing another one, interrupting it, resum-
ing the first one, and so on. Thus this function f is merely
the execution function associated to the execution sequence
of the virus. We suppose that this execution sequence is nor-
malized in the sense that a viral part is executed until it is
automatically interrupted because of a resource need. We
express the viral property of v by:

v(x) = f (v1, . . . , vk, x) (2)

Since f consists of the action of a given part, followed by
the action of another part and so on, we have:

f (v1, . . . , vk, x) = f ∗im
(v∗im

, jm, nm, f ∗im−1

(v∗im−1
, jm−1, nm−1, . . . f ∗i0

(v∗i0
, j0, n0, x))

Using the previous Eqs. 1a–1k, one can then easily verify
that Eq. 2 is verified. Note that this result directly comes from
the very restrictive design of f , which models the behaviour
of v.

Other abstractions have also been studied that try to rec-
oncile the theories of recursive functions and of interac-
tion [7]. Although they would be interesting to investigate
with respect to our model, our current choice is only moti-
vated by the simplicity of the present abstraction with regards
to our problem.

Consideration of the mutation functions is a bit more
tricky. First, we have to review our definition of µ0,v ≡ φv .
As told previously, in the general case, the mutation function
only makes sense on the scale of the whole virus. So if v rep-
licates into v′, we want: µ0,v(v, x) = v′, where v and v′ are
actually multi-part viruses. As for the case of simple viruses,
v′ can be computed from the execution of v. The number
of parts depends on v and the environment only (whether
this number is randomly generated or not). Let κ denote the
function returning the new k′ from the current virus and the
environment: κ(v, x) = |v′|. Then, with the same simplifi-
cation as in the previous sections (for common viruses):

µ0,v(v, x) = 〈π1(v(x)), . . . , πκ(v,x)(v(x))〉
In other words: g0 = v �→ x �→ 〈π1(v(x)), . . . ,

πκ(v,x)(v(x))〉, where g0 is the function defined in Lemma 1.
Deeper mutation functions are unchanged, apart from the

fact that their argument v denotes the k parts of the virus.
Then Eqs. 1a–1k must be adapted:

∃v∗1 ,∀ j, n, x, v∗1( j, n, x) = f ∗1 (v∗1 , {µi,v}i , j, n, x) (3a)

· · ·

∃v∗k ,∀ j, n, x, v∗k ( j, n, x) = f ∗k (v∗k , {µi,v}i , j, n, x) (3k)

as well as Eq. 2:

v(x) = f (v1, . . . , vk, {µi,v}i , x) (4)

Thus, we are back with a similar system as previously.
Adding the equations on the µi,v—using the gi or hi func-
tions –, the polyadic recursion theorem entails the existence
of the v∗j and of the µi,v . Finally, using Eqs. 3a–3k, one can
ensure that Eq. 4 is still verified.

3.6.2 Class A viruses: dependent parts

The case of dependent parts is very similar, in its formaliza-
tion, to the independent one. This merely amounts to adding
a dependency of the fi (resp. f ∗i ) on all vi (resp. v∗i ). Then,
together with the equations on the mutation functions µi,v ,
we can apply the polyadic recursion theorem, which entails
existence of these functions.

The final equation must take into account these new depen-
dencies, in the f ∗i expressions, but, as one can check, it
remains verified.

Also, Filiol defined another class of combined viruses,
namely the class C, which corresponds to weakly dependent
codes, where the dependency only exists in one direction—
v1 is aware of v2 but this is not true conversely. This class
is a specific case of dependent parts where the function fi

(resp. f ∗i ) does not depend on the parts v j<i (resp. v∗j<i ).
In that particular case and when not considering the muta-
tion functions, Kleene’s recursion theorem can be repeatedly
applied k times—starting from the last part—in order to yield
the existence of parts vi , thanks to the special form of these
equations:

∃v∗1 ,∀ j, n, x, v∗1( j, n, x)=f ∗1 (v∗1 , . . . , v∗k ,{µi,v}i , j, n,x)

· · ·
∃v∗k ,∀ j, n, x, v∗k ( j, n, x) = f ∗k (v∗k , {µi,v}i , j, n, x)

Theoretically speaking, class C viruses are thus, despite
what we could have thought, closer to class B viruses (inde-
pendent parts) than to class A viruses. This similarity actually
motivated the choice of distinguishing into separate classes
weakly dependent codes from strongly dependent codes.

However this property is no longer verified when consid-
ering mutation functions—as one would expect since these
mutation functions strictly depend on all parts.

Finally, a particular case of such dependent viruses con-
sists of executing only the first virus part v1, which will in turn
execute the other parts when needed. This is the behaviour of
sequential class A combined viruses, which are, along with
class C viruses, the most common combined viruses. This
case corresponds to the following equation:

v(x) = f1(v1, . . . , vk, {µi,v}i , x)

which corresponds to a particular case of the execution
sequence of v (and hence of its execution function f ).

Thus, this difference between class A (dependent parts)
and class B viruses (independent parts) results—when not
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considering the mutation functions—in a unique application
of the k-ary recursion theorem, for the first case, with respect
to k independent applications of the basic recursion theo-
rem, for the second case. In a sense, “viral dimensions” are
preserved in the recursion theory.

4 Formal grammars and recursion

Viral mutation can be modelled by formal grammars, as
detailed in [6]. Syntactic polymorphism can consist in trans-
forming groups of instructions in other groups of instructions:
detection of a mutated form of a virus then relies on the com-
plexity of the associated formal grammar. Functional poly-
morphism can also be modelled by formal grammars, where
the terminal symbols are behaviours instead of instructions.
More generally, metamorphic viruses transform their code
entirely. Thus, a metamorphic virus can be represented by a
grammar which operates on other grammars. Filiol proposes
the following definition [6]:

Definition 8 (Metamorphic virus) A metamorphic virus is
represented by a grammar G = (N , T, S, R) where T is a
set of grammars (over programs) and S is the initial grammar
(first generation of the virus). Each generation of the virus
corresponds to a word of a grammar G ′ such that G ′ ∈ L(G).

Thus, when the form vi of a metamorphic virus repre-
sented by a grammar G replicates into a form vi+1, we have:

vi ⇒G vi+1 and vi ⇒vi vi+1

This definition involves that a grammar Gi associated to
generation i must behave locally (on Gi ) as the grammar G,
since G represents the global behaviour of the virus v for
any generation. Thus we perceive a first notion of recursion.
Also, grammars that operate on grammars are a second, more
straightforward, notion of recursion: in the recursion theory,
recursive functions can indeed be seen as integers operating
on integers.

Also, the equivalence between formal grammars and Tur-
ing machines gives sense to the study of recursion inside the
theory of formal grammars. We first consider the example
of Quine grammars which illustrates even more the inter-
est of considering formal grammars from a recursive point
of view.

4.1 Quine grammars

Quine programs are programs that exactly output their own
source code. For instance, a basic trick is to define a function
that outputs a string which contains a recursive reference to
itself: the program calls this function with its code, replacing
this very call with a recursive reference.

void print (char *s) {
... /* this outputs s and replaces

any occurence of %% by s.
}
void main () {
print ("void print (char *s) {"

...
"}"
"void main () {"
" print (\"%%\");"
"}");

}

Thus we can also imagine formal grammars that output—
in an encoded way—their own code—meaning an unambig-
uous encoding of their set of rewriting rules. Such Quine
grammars can follow the same algorithmic principles as for
Quine programs. We give a constructive example of such a
grammar in Appendix A.

4.2 Recursion theorems

Existence of Quine programs comes from Kleene’s recur-
sion theorem (Theorem 2), applied to function f : x, y �→ x ,
which entails the existence of a program p such that:

∀x, ϕp(x) = p

Thus it seems legitimate to define a recursion theorem
for formal grammars, given the equivalence between type 0
grammars (unrestricted grammars) and recursively enumer-
able languages (recognizable by Turing machines).

Theorem 4 (First recursion theorem) Given a formal
grammar G = (�, N , T ), there exists a grammar G ′ =
(�′, N , T ) such that:

∀X ∈ (N ∪ T )∗, ∃α ∈ T ∗ ∪∞, X
G ′−→∗ α ∗ G←− 〈G ′, X〉

X
G−→∗ ∞means that X cannot rewrite into any terminal

sequence (either because of an infinite sequence of rewrit-
ings, denoting a loop in a program, or because no rewriting
rule can be applied). 〈G ′, x〉 denotes the encoded pair of
a representation [G ′] of G ′ and x (using some appropriate
encoding).

A second recursion theorem can also be inferred:

Theorem 5 (Second recursion theorem) Given a formal
grammar G, there exists a grammar G ′ such that:

∀x, x ∈ L(G ′) ⇐⇒ 〈G ′, x〉 ∈ L(G)
Both theorems are direct formulations of Kleene’s recur-

sion theorem. The first theorem transforms a semi-
recursive function into a grammar which rewrites an input
into an output and conversely. The second theorem trans-
forms a semi-recursive function into a grammar recognizing
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the words on which this function is defined and conversely
(since any recursively enumerable language can be recog-
nized by a semi-recursive function).

Then, the existence of Quine grammars comes from The-
orem 4 applied to the grammar G with the following rule:

〈X,Y 〉 ⇒ X

We get:

∃G ′,∀X, X
G ′−→∗ [G ′]

Theorem 5 could also have been used with the grammar
G recognizing all couples 〈w,w〉. Thus G ′ recognizes only
one word, which is the representation of itself [G ′].

4.3 Iteration function

The iteration function, also called S-m-n function and
denoted by S, is easily transposable to formal grammars.
Consider a grammar G, that takes an input 〈x, y〉. Special-
ization of G for input x can be simply defined by the grammar
G ′ that first transforms y in 〈x, y〉 and then uses the rules of
G. Note that this is similar to the common programming way
which would specialize f (x, y) for its input x by defining the
function: g(y) = f (x, y). Thus this formal grammars per-
spective allows us to match the theory with its algorithmic
counterpart.

Theorem 6 (Iteration theorem) There exists a formal gram-
mar S which verifies:

For any grammar G, for any word X ∈ (N ∪T )∗, S trans-
forms 〈G, X〉 into the representation [G ′] of a grammar G ′
such that:

∀Y ∈ (N ∪ T )∗, ∃α ∈ T ∗ ∪∞, 〈X,Y 〉 G−→∗ α ∗ G ′←− Y

This section has highlighted the analogy between recur-
sive functions and formal grammars and built a bridge
between abstract virology studied from the somehow seman-
tic point of view based on the formal grammars theory and
abstract virology studied from the functional point of view
based on the recursion theory.

5 Discussion

Studying viruses in the frameworks of recursion theory and
of formal grammars allows to identify more precisely mech-
anisms on which virus reproduction relies or mechanisms
that it involves. While Bonfante et al. were more interested
in the replication itself, we were concerned with mutation

aspects that occur during this replication. Knowing these
mechanisms is then helpful in the following scopes:

• Understanding the underlying stakes and logic in viral
detection and protection. This is a necessary preliminary
step to the next application.

• Defining new detection models in which those mecha-
nisms are controlled and/or restricted, and studying their
viability, the involved limitations, etc.

• And last but not least: identifying new threats. The recur-
sion framework is well studied and allows, as our results
demonstrated it, to discover viral behaviours that are valid
from a theoretical perspective but have no equivalent
(yet) in the real world. Consider for instance the case
of infinite vertical mutation chains. Also, applying the
current results to a new compatible framework (like a
network configuration, etc.) may also appear to be use-
ful in order to assess the security of this framework and
identify threats that could plague it in a near future.

Thus, though this study might seem a bit abstract with regard
to the actual antiviral defense, the theories of recursion and of
formal grammars are very powerful frameworks where viral
techniques can be both modelled and studied. Furthermore,
studying viruses in such theories plays a key role in the nec-
essary proactive approach that aims to identify tomorrow’s
evolution of today’s threats.

6 Conclusion

We have extended the relation between the recursion the-
ory and the concept of viral replication and mutation to any
depth of mutation, showing by the way the theoretical exis-
tence of viruses with an infinite vertical mutation. This for-
malism considers a behaviour-based approach, as was done
in Bonfante et al. seminal work, along with a syntax-based
approach which allows for more practical considerations,
namely accessing the mutation functions of a virus. Also
we introduced some basic notions of recursion in the the-
ory of formal grammars: the formalization of metamorphic
viruses by grammars operating on other grammars makes this
approach somehow promising. Future work will investigate
this new approach in regards of virus behaviour and virus
detection.

We did not consider interactions in our formalism,
although actual viruses tend to use it more and more: the study
of combined viruses also showed the practical interest of con-
sidering such interactions. Some work has already been done
to address this need, like in [7]. Future work will thus try to
reconcile this formalism with the theory of interactions.
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Appendix A: Quine grammars

Consider the following example of a Quine program:

void print (char *s) {
... /* this outputs s and replaces

any occurence of %% by s. */
}
void main () {

print ("void print (char *s) {"
...
"}"
"void main () {"
" print (\"%%\");"
"}");

}

A Quine grammar can now use the same principle. Let’s
denote the initial non terminal symbol by S. We want our
grammar G to rewrite S in a representation of G. This rep-
resentation is free and should allow encoding and decoding
of any grammar. We will use the following convenient rep-
resentation:

• a sequence of rules δ1, . . . , δn is represented by [δ1];
[. . .]; [δn], where [δ] is the representation of the rule δ.

• a rule A⇒ B is represented by [A] : [B].
• a word X.W is represented by x .[W ], where x is a termi-

nal symbol associated to X .

This representation actually needs a slight modification
to build a Quine grammar. Let’s consider a rule A.x ⇒ B,
where x must match any possible non terminal symbol used
by the representation of this rule. Then, we will have the
rule: A.a ⇒ B but we now need to represent a, say by a′.
This requires the rule A.a′ ⇒ B, A.a′′ ⇒ B and so on.
To overcome this, we introduce terminal symbols n, t , s for
non terminal symbols, terminal symbols and special symbols
(like ; and :). Thus, we will have the following rules:

• A.a ⇒ B, represented by na.ta : [B].
• A.n ⇒ B, represented by na.tn : [B].
• A.t ⇒ B, represented by na.t t : [B].
• A. :⇒ B, represented by na.s :: [B].
• A.s ⇒ B, represented by na.ts : [B].

Such a representation allows unique encoding and decod-
ing.

Since our grammar will work as defined by our exam-
ple Quine program, we define a print macro, represented
by the non-terminal symbol P and the special symbol � to
denote the recursive reference. P must then replace this ref-
erence by the original word, so we need to duplicate this
word: P.a.b.�.c.� is transformed in a.b.♦′.c.�.a.b.♦.c.�

and finally in a.b.a.b.♦.c.c, with ♦ being the terminal rep-
resentation of �.

The following rules represent the print macro:

• Duplication rules:

– P ⇒�.P ′
– P ′.x ⇒≺ .x .x .P ′, foreach non terminal symbol x

appearing in the final representation of these rules.
– P ′.�⇒ �.
– P ′.�⇒≺ .♦′.♦.P ′.
– �. ≺ .y ⇒ y.� and x . ≺ .y ⇒≺ .y.x , foreach

non terminal symbols x and y appearing in the final
representation of these rules.

• Substitution rules:

– x .�.y ⇒≺ .y.x .�.
– x .�.�⇒≺ .�.x .
– x . ≺ .y ⇒≺ .y.x .
– ♦′. ≺ .y ⇒ y.♦′.
– ♦′. ≺ .�⇒.

The final rule looks like: S ⇒ P.. . ..; .ns. : .np.�.s.�.�,
where . . . contains the linear representation of the print macro
(previous rules). This grammar will first rewrite S in P. . . . .;
.ns. : .np.�.s�.�, then in . . . .; .ns. : .np.♦′.s.�.�. . . . .;
.ns. : .np.♦.s.�.� and finally in . . . .; .ns. : .np. . . . .; .ns. :
.np.♦.s.�.s.�, which will be interpreted as the P rules
followed by S ⇒ P. . . . .; .S. : .P.�.s.�.�.

Appendix B: Recursion theorems

B.1 Polyadic (or n-ary) recursion theorem

We generalize Smullyan’s double recursion theorem to any
number of recursive functions. First it can be extended to any
finite set of semi-computable functions.

Theorem 7 (Polyadic recursion theorem) Let f1, …, fn be
n semi-recursive functions, where n ≥ 1. Then there exist n
semi-recursive functions e1, …, en such that:

∀x, e1(x) = f1(e1, . . . , en, x)

. . .

en(x) = fn(e1, . . . , en, x)

Proof Let p, q be two semi-computable functions: 〈p, q〉
denotes the function that returns 〈p(x), q(x)〉 on an input x .

We will show this result for n = 3. The general case
follows by an easy induction. Let f1, f2, f3 be three semi-
computable functions, with inputs (p, q, r, x). We define the
semi-computable functions g1 and g2 by:
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g1(p, 〈q, r〉, x) = f1(p, q, r, x)

g2(p, 〈q, r〉, x) = 〈 f2(p, q, r, x), f3(p, q, r, x)〉
Then there exists e′1, e′2 such that: e′1(x) = g1(e′1, e′2, x) and
e′2(x) = g2(e′1, e′2, x). Finally we define e1, e2, e3 by: e1 =
e′1, 〈e2, e3〉 = e′2. �	

Note that this proof uses Smullyan’s double recursion the-
orem though we could have used Kleene’s recursion theorem
by considering functions of N× N

n .

B.2 Countable recursion theorem

The polyadic recursion theorem is defined for finite cases but
can be extended to the countable case.

Theorem 8 (Countable recursion theorem) Let { fi } be a
countable (recursive) set of semi-recursive functions. Then
there exists a countable set of semi-recursive functions {ei },
accessible through a semi-recursive function E, such that:

∀x, e1(x) = f1(E, x)

e2(x) = f2(E, x)

. . .

Proof Let F be the semi-recursive function such that:
∀i, F(i) = fi . Then the existence of E , and hence of the

corresponding ei ’s, comes from the recursion theorem applied
to the function f = 〈i, x〉 �→ F(i)(E, x). �	
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