
J Comput Virol (2010) 6:57–64
DOI 10.1007/s11416-009-0123-7

ORIGINAL PAPER

Advanced fuzzing in the VoIP space

Humberto Abdelnur · Radu State · Olivier Festor

Received: 20 January 2008 / Accepted: 17 July 2008 / Published online: 21 June 2009
© Springer-Verlag France 2009

Abstract Voice over IP is emerging as the key technology in
the current and future Internet. This paper shares some essen-
tial practical experience gathered over a two years period
in searching for vulnerabilities in the VoIP space. We will
show a terrifying landscape of the most dangerous vulner-
abilities capable to lead to a complete compromise of an
internal network. All of the described vulnerabilities have
been disclosed responsibly by our group and were discov-
ered using our in-house developed fuzzing software KIF. The
paper provides also mitigation techniques for all described
vulnerabilities.

1 Introduction

Over the past few years, protocol fuzzing emerged as a key
approach for discovering vulnerabilities in software imple-
mentations. The conceptual idea behind fuzzing is very sim-
ple: generate random and malicious input data and inject it
in an application. This approach is different from the well
established discipline of software testing where functional
verification is checked. In fuzzing, this functional testing
is marginal; much more relevant is the goal to rapidly find
potential vulnerabilities. Protocol fuzzing is important for
two main reasons. Firstly, having an automated approach
eases the overall analysis process. Such an process is usually
tedious and time consuming, requiring advanced knowledge

H. Abdelnur (B) · O. Festor
INRIA Nancy – Grand Est, Vandoevre-Les-Nancy, France
e-mail: abdelnur@loria.fr

O. Festor
e-mail: festor@loria.fr

R. State
University of Luxembourg, Luxembourg, Luxembourg
e-mail: state@uni.lu

in software debugging and reverse engineering. Second, there
are many cases where no access to the source code/binaries is
possible, and where a “black box” type of testing is the only
viable solution. Protocol fuzzing can be applied to a broad
scope of applications, ranging from device level implemen-
tations [9] and up to presentation layer [15].

We describe in this paper the practical experience gained
over a two years period with fuzzing in the VoIP space. We
performed fuzzing of different devices and SIP stacks in order
to validate our research activity on automated and smart fuz-
zing. All of the described tests, were performed with our
developed tool, described in [8]. Our fuzzing approach is
based on stateful protocol fuzzing for complex protocols (like
for instance SIP). To the best of our knowledge, this is the
first SIP fuzzer capable to go beyond the simple generation of
random input data. Our method is based on a learning algo-
rithm where real network traces are used to learn and train an
attack automata. This automata is evolving during the fuz-
zing process. Our work in this area is motivated by two major
factors: firstly we validate practically the formal research
contributions in the area of fuzzing. Secondly, we discover
vulnerabilities and follow an responsible disclosure policy
by helping vendors to fix them and notifying the affected
parties via large distribution mailing lists, web sites and pod-
cast.

We will cover these issues in depth in our paper, which is
structured as follows:

Section 2 starts with a short overview on the VoIP infra-
structure that has been used for the study described in this
paper. The next remaining sections detail the broad scope
of the types of vulnerabilities, ranging from simple input
validation vulnerabilities and up to cross-layer and multi-
technology comprising examples. The final section in this
paper concludes the paper and point out future relevant
evolutions.

123

58 H. Abdelnur et al.

2 Fuzzing voice over IP devices

Voice over IP infrastructures are application level specific
devices using internet technology as underlying transport
layer. End users operate simple end devices (phones) by
leveraging different types of servers in order to manage the
mobility, localization and user to user call establishment.
This call establishment is performed by a signaling proto-
col, where SIP [14] is becoming the de-facto standard body
endorsed protocol. Therefore all VoIP devices do embed SIP
stacks which are responsible to process SIP messages and to
implement a rather complex state machine. In most cases, the
access to the source code of the SIP stacks is impossible and
for most VoIP hardphones, running in dedicated equipment,
no debugging possibility exists for an independent security
researcher. The only resort to perform a security assessment
is in this case to perform black-box security testing. We have
performed our security and fuzzing experiments over a broad
scoped and heterogeneous testbed which is summarized in
Table 1

All the experiments were performed with our tool, KiF
[8]. KiF consists in two autonomous components, the Syntax
Fuzzer and the State Protocol Fuzzer, which jointly provide a
stateful data validation entity. The tests may be similar to the
normal behavior or can flood the device with malicious input
data. Such malicious data can be syntactically non compliant
(with respect to the protocol data units), or contain semantic
and content wide attack payload (buffer overflows, integer
overflows, formatted strings, or heap overflows).

The Syntax Fuzzer takes a fuzzer scenario and the pro-
vided ABNF [10] syntax grammar to generate new and cra-
fted messages. The fuzzer scenario drives the generation of

Table 1 Tested equipment

Device Firmware

Asterisk v1.2.16, v1.4.1

asterisk-addons-v1.2.8

asterisk-addons-v1.4.4

Cisco 7940/7960 vP0S3-07-4-00

vP0S3-08-6-00

vP0S3-08-7-00

Cisco CallManager v5.1.1

FreePBX v2.3.00

Grandstream Budge Tone-200 v1.1.1.14

Grandstream GXV-3000 v1.0.1.7

Linksys SPA941 v5.1.5

v5.1.8

Nokia N95 v12.0.013

OpenSer v1.2.2

Thomson ST2030 v1.52.1

Trixbox v2.3.1

the rules in the syntax grammar and may also depend on the
State Protocol Fuzzer in order to generate the final message
(appropriated or not) to be sent to the target entity.

The State Protocol Fuzzer does passive and active testing.
Therefore, two state machines are required: (1) one specify-
ing the SIP state machine and (2) one specifying the testing
state machine. The first state machine is used for the passive
testing and it controls if there is any abnormal behavior com-
ing from the target entity during the execution of the tests.
This state machine may be inferred from the SIP traces of
the target entity. The second state machine is used for the
active testing and it’s driving the profile of the security test.
This state machine is defined by the user and can evolve over
time. Figure 1 shows the overall framework of KiF.

3 Weak input validation

The most frequent vulnerability that we encountered is rel-
ated to weak filtering of input data. This filtering does not
properly deal with metacharacters, special characters, over
lengthy input data and special formatting characters. Most
of these vulnerabilities are due to buffer/heap overflows, or
format string vulnerabilities. The most probably cause is that
developers assumed a threat model in which VoIP signaling
data would be generated only by legitimate SIP stacks. The
real danger of this vulnerability comes from the fact that
in most cases, one or very few packets can completely take
down a VoIP network. This is even more dangerous when
realizing that in these cases the SIP traffic is carried over UDP,
such that highly effective attacks can be performed stealthy
via simple IP spoofing techniques. Table 2 shows some of our
published vulnerabilities, where we have decided to high-
light two extreme cases: The first vulnerability (disclosed in
CVE-2007-4753) reveals that even the simplest check for the
existence of the input is not performed and that even simple
attacks can lead to effective attacks. The second case, (CVE-
2007-1561) is situated at the opposite site, since a VoIP server
is concerned by an attack with a rather complex input struc-
ture. The danger in this case is that one single packet will
take down the core VoIP server and thus lead to a complete
take down of the whole VoIP network.

Preventing these types of attacks at a network defense level
is possible with deep packet inspection techniques and proper
domain and application specific packet filtering devices.

3.1 Attacks against the internal network

Most VoIP devices have embedded web servers that are typ-
ically used to configure them, or to allow the user to see the
missed calls, and all the call log history. The important issue
is that the user will check the missed calls and other device
related information from her machine, which is usually on the

123

Advanced fuzzing in the VoIP space 59

Fig. 1 KiF framework

Table 2 Input validation vulnerabilities

Device Synopsis CVE-Identifier Impact

Asterisk v1.4.1 Invalid IP address in the SDP body CVE-2007-1561 DoS

Cisco 7940/7960 Invalid Remote-Party-ID header CVE-2007-1542 DoS

vP0S3-07-4-00

Grandstream Budge Invalid WWW-Authenticate header CVE-2007-1590 DoS

Tone-200 v1.1.1.14

Linksys SPA941 v5.1.5 Invalid handling of the \377 character CVE-2007-2270 DoS/String overflow

Thomson ST2030 v1.52.1 Invalid SIP version in the Via header CVE-2007-4553 DoS

Invalid URI in the To header CVE-2007-4753

Empty packet

Linksys SPA-941 v5.1.8 Unescaped user info CVE-2007-5411 XSS attacks

Asterisk v1.4.3 Unescaped URI in the To header CVE-2007-54881 SQL injection and Toll-fraud

FreePBX v2.3.00 Unescaped URI in the To header [7] XSS attacks

Trixbox v2.3.1

internal network. If the information presented is not properly
filtered, this same user will expose her machine (located on
the internal network) to malicious and highly effective mal-
ware. We will illustrate the following example discovered
during a fuzzing process (see CVE-2007-5411). The VoIP
Phone Linksys SPA-941 (Version 5.1.8) has an integrated
web server that allows for configuration and call history
checking. A Cross Site Scripting vulnerability (XSS) [11]
allows a malicious entity to perform XSS injection because
the ”FROM” field coming from the SIP message is not prop-
erly filtered. By sending a crafted SIP packet with the FROM
field set to :

"<script x=’"
<sip:’src=’beef.js’>@domain>;tag=1"

the browser is redirected to include a javascript file (y.js)
from an external machine (baloo) as shown in Fig. 2. This
external machine is under the control of an attacker and the
injected javascript [11] allows a remote attacker to use the
victim’s machine in order to scan the internal network, per-
form XSRF (Cross Site Request Forgery) attacks, as well
as obtain highly sensitive information (call record history,
configuration of the internal network), deactivate firewalls
or even redirect the browser towards malware infested web
pages (like for instance MPACK [2]) to compromise the vic-
tim’s machine. The major and structural vulnerability comes
in this case, by the venture of two technologies (SIP and
WEB) without addressing the security of the cross-techno-
logical information flow.

123

60 H. Abdelnur et al.

Fig. 2 Linksys SPA-941 XSS attack

The impact of this vulnerability is very high : most fire-
walls/IPS will not protect the internal network against XSS
attacks delivered over SIP. Additionally, users will connect to
these devices directly from the internal network and therefore
the internal network can be compromised. Jeremiah Gross-
mann [11] showed how firewalls can be deactivated with XSS
attacks and many other malicious usages do exist. Unfortu-
nately, most VoIP devices have weak embedded WEB
applications, such that other vulnerable systems exist and
are probably exploited in the wild.

4 Protocol tracking vulnerabilities

Protocol tracking vulnerabilities go beyond simple input fil-
tering of single messages. In this type of vulnerability, several
messages will lead a targeted device in an inconsistent state,
albeit each message on its own does not violate the SIP RFC
[14]. These vulnerabilities are caused by weak implementa-
tions of protocol state engines. Exploiting this vulnerability
can be done in three main ways:

1. the device might receive inputs that are not expected in
its current protocol state: for instance, when waiting for
a BYE method, an INVITE is received

2. the input might consist in simultaneous messages add-
ressed to different protocol states

3. slight variations in SIP dialog/transaction tracking fields
leading a device towards an inconsistent state

The discovery of such vulnerabilities is truly difficult. The
fuzzing process should be able to identify where a targeted
device is not properly tracking the signaling messages and
which fields can be fuzzed in order to detect it. The search
space in this case is huge being spread over many messages
and numerous protocol fields, requiring thus advanced and

machine learning driven fuzzing approaches. Table 3 shows
such disclosed vulnerabilities having different complexity
grades.

A simple case (CVE-2007-6371), where a CANCEL mes-
sage arrives earlier than expected, can turn the device into an
inconsistent state which will end up in a Denial of Service
state, as showed in Fig. 3.

The major danger with this type of attacks is that no appli-
cation level firewall can completely track so many flows in
real time and that even in the case of known signatures, poly-
morphic versions of known attacks can be obtained easily
and these will remain under the security radar. As of today,
unfortunately no effective solution to prevent this type of
attacks exists.

4.1 Toll fraud vulnerabilities

Toll frauds occur when the true source of a call is not charged.
This can happen by the usage of a compromised VoIP infra-
structure or by manipulating the signaling traffic. It is rather
amazing to see that although technology evolved, the basic
conceptual trick of the 70’s, where phreakers reproduced the
2600 Hz signal used by the carriers is still working. Thirty
years after, the signaling plane can be still tampered with
and manipulated by a malicious user. What did change how-
ever, is the needed technology. Nowadays, we can inject SQL
commands (Chapter VI [13]) in the signaling plane, and the
toll fraud is possible. In the following, we will describe in
detail one vulnerability found during a fuzzing process [7].
Some SIP proxies store information gathered from SIP head-
ers into databases. This is necessary for billing and account-
ing purposes. If this information is not properly filtered, once
it will be displayed to the administrator it can perform a
second order SQL injection, that is during the display, the
data is interpreted as SQL code by the application. In this
case, two consequences can result: First, the database can
be changed—for instance the call length can be changed to
a small value—and thus the caller can do toll fraud. If we
consider Asterisk [3], the popular and largely deployed open
source VoIP PBX, Call Detail Records (CDR) are stored in
a MySQL database.

FreePBX [1] and Trixbox [5] use the information stored in
such database in order to manage, compute generate billing
reports or display the load of the PBX.

Some functions do not properly escape all the input char-
acters from fields in the signaling packets.

A first flavor of this specific attack can be performed by
an subscribed user of the domain and the attack consists
of injecting negative numbers in the CDR table in order to
change the recorded length/other parameters of a given call.
The direct consequence is that no accurate accounting is per-
formed and the charging process is completely controlled by
an attacker.

123

Advanced fuzzing in the VoIP space 61

Table 3 Stateful vulnerabilities

Device Synopsis CVE-Identifier Impact

Cisco 7940/7960 Does not handle unexpected messages (e.g. OPTIONS) CVE-2007-4459 DoS

vP0S3-08-6-00 inside an existing INVITE transaction

Grandstream GXV-3000 Unexpected message inside an INVITE transaction CVE-2007-4498 Remote

v1.0.1.7 allows to remotely accept the call Eavesdropping

CallManager v5.1.1 Authentication uses not one-time nonces CVE-2007-5468 Replay Attacks

OpenSer v1.2.2 CVE-2007-5469 Â

SIP Protocol Attacker can trigger the target entity to authenticate [6] Toll-Fraud

Relay Attack to him

Cisco 7940/7960 Does not handle six INVITE transaction destinated CVE-2007-5583 DoS

vP0S3-08-7-00 to any user

Nokia N95 v12.0.013 Does not handle a CANCEL at an unexpected timing CVE-2007-6371 DoS

in an INVITE transaction

Fig. 3 Nokia N95 DoS attack

A second and more serious consequence is that this attack
can be escalated by injecting JavaScript [11] tags to be exe-
cuted by the administrator PC when she will perform simple
management operations. In this case, a Cross-Site Scripting
Attack (XSS) [11] is resulted, because malicious JavaScript
can be stored into the database by the SQL injection. This
malware gets executed on the browser when the administrator
will check it—this is a very similar process to the log injection
attacks known by the Web application security community.
Similarly to the previous case, tools like Beef and XSS proxy
can scan the internal network, deactivate firewalls and realize
all the CSRF/XSRF specific attacks.

The main issue is that most current applications that deal
with CDR data are not considering this type of threat. If the
target system is not well secured, SQL injection can lead
to system compromise because most database servers allow
some interaction with the target OS [13].

This type of vulnerability is rather dangerous because few
application (none of which we have tested) implement filter-

ing on SIP headers. All applications do consider SIP related
information to be sourced from a trusted origin and no secu-
rity screening is performed. The mitigation should be proper
input and output filtering whenever data is stored/read from
another software component.

4.2 Remote eavesdropping vulnerabilities

A rather unexpected vulnerability was discovered by us in
CVE-2007-4498. Several SIP messages sent to the affected
device put the phone off-hook without ringing or making
any other visual notification. The attacker is thus capable to
remotely eavesdrop all the conversations performed at the
remote location. Figure 4 shows the messages exchanged
by the attack. The impact if this vulnerability goes beyond
the simple eavesdropping of VoIP calls, because an entire
room/location can be remotely monitored. This risk is major
and should be considered when deploying any VoIP equip-
ment. Although in the presented case, a software error was
probably the cause, such backdoors left by a malicious ent-
ity/device manufacturer represent very serious and dangerous
threats.

4.3 Weak cryptographic implementations

The authentication mechanism in SIP is a standard shared
secret and challenge-response based one [12]. Nonces are
generated by the server and submitted to an authenticating
entity. The latter must use its shared key to compute a hash
which is afterwards sent to the authenticator. This hash is
computed on several values: SIP headers, nonces and ran-
dom values. A received hash is validated by the server and
checked to authenticate a client. For efficiency reasons, very
few server implementations track the life-cycle of a valid

123

62 H. Abdelnur et al.

Fig. 4 Grandstream GXV-3000 remote eavesdrop

token. We have found at least two vulnerabilities CVE-2007-
5468 and CVE-2007-5469, where intercepted tokens could
be replayed. These vulnerabilities are not simple man in the
middle attacks, since intercepted tokens were reusable for
long time periods and they could be used for the authenti-
cation of any other call. Figure 5 shows the flow of mes-
sages for such attack. The impact of such a vulnerability
is very high. Toll frauds and spoofing call identifiers are
the straightforward consequences. The mitigation consists
in trading off performance versus security and implement-
ing efficient and secure cryptographic token management
procedures.

5 Specification level vulnerabilities

Our main work consisted in searching for vulnerabilities in
specific SIP implementations without considering the secu-
rity of the SIP protocol per se. We were however surprised
to discover during a complex fuzzing scenario the same

anomaly (and apparent vulnerability) shared by all devices
under test (Table 1). Under a more careful analysis, we did
realize that in fact the SIP protocol itself has a major design
vulnerability that makes toll fraud possible on any VoIP net-
work [6]. The major issue is that a classical relay attack is
possible by forcing a called party to issue a re-Invite opera-
tion. Due to the novelty and severity of it, we will detail the
attack in the following:

An attacker issues a call to the victim, the victim answers
it and later on, put the attacker on hold. To address this put on
hold, an accomplice of the attacker may initiate another call.
Once the attacker receives the re-INVITE specifying the “On
hold”, he/she will request the victim to authenticate. This last
authentication may be use by the attacker to impersonate the
victim at its own proxy.

Notations:

• P is the proxy located at URL: proxy.org
• X is the attacker located at URL: attacker.lan.org
• V is the victim located at URL: victim.lan.org
• V is also registered with P under the username victim at

proxy.org
• Y is the accomplice of X (it can be in fact X), but we use

another notation for clarity sake

The described attack will show how X calls a toll fraud
number 1-900-XXXX impersonating V.

1. X calls’ directly V.
“The route set MUST be set to the list of URIs in the
Record-Route header field from the request...The remote
target MUST be set to the URI from the Contact header
field of the request.” RFC 3261[14] Section 12.1.1 UAS
calls

Fig. 5 Replay attack

123

Advanced fuzzing in the VoIP space 63

X ----- INVITE victim.lan.org ----> V
From : attacker at attacker.lan.org
To: victim at victim.lan.org
Contact: 1900-XXXX at proxy.org
Record-Route: attacker.lan.org

2. The normal SIP processing

X <--------- 180 Ringing ---------- V
X <------------ 200 OK ------------ V
X <---------- Media Data ---------> V

3. The accomplice Y steps in and invites victim V, and then
the victim decides to put X on hold

4. The victim, V, sends a re-INVITE to X (to put it on hold)
“The UAC uses the remote target and route set to build the
Request-URI and Route header field of the request.” RFC
3261 [14] 12.2.1.1 Generating the Request (Requests
within a Dialog)

X <-- INVITE 190XXXX at proxy.org -- V
From: victim at victim.lan.org
To : attacker at attacker.lan.org

5. X calls 1900-XXXX using the proxy P and the proxies
asks X to authenticate using a Digest Access Authentica-
tion with nonce=“Proxy-Nonce-T1” and realm
=“proxy.org”

6. X request the victim to authenticate the re-INVITE
from step 4 using the same Digest Access Authentication
received in step 5

X ----- 401/407 Authenticate -----> V
Digest: realm ="proxy.org",

nonce="Proxy-Nonce-T1"

7. In this step the victim will do the work for X (Relay
Attack)

X <-- INVITE 190XXXX at proxy.org -- V
Digest: realm ="proxy.org",

nonce="Proxy-Nonce-T1"
username= "victim",
uri="1900XXXX at proxy.org",
response="the victim response"

8. X may reply now to the Proxy with the valid Digest
Access Authentication computed by the victim. Note that
the Digest itself it is a perfectly valid one.

6 Conclusions and future works

The quantitative conclusions after a long term work on sea-
rching vulnerabilities in the VoIP space are rather pessimis-
tic. Feedback and support when contacting vendors remains

highly unpredictable and poor. All tested devices have been
found vulnerable. The scope of the detected vulnerabilities is
very large. Trivial input validation vulnerabilities affecting
highly sensitive communication materials are rather usual.
More complex and protocol tracking related ones do also
exist, though their discovery and exploitation is rather com-
plex. The cause of these vulnerabilities is the weak software
security life-cycle of their vendors. The integration of Web
and VoIP technology is a Pandora’s box comprising even
more powerful and hidden dangers. Web specific attacks can
be carried out over the SIP plane leading to potential dev-
astating effects, like for instance the complete compromise
of an internal network. This is possible since no application
specific firewall today can easily interwork with several tech-
nologies and no proper guidelines for the secure interworking
of Web and VoIP exist. The more structural cause is a miss-
ing VoIP specific threat model. The VOIPSA did develop
a threat model [4] which however does not reflect the cur-
rent state. Highly efficient Denial of Service attacks can be
done with single-shot packets, remote eavesdropping goes
beyond the simple call interception and the VoIP plane itself
can be a major security threat to the overall IT infrastruc-
ture. Much remains to be done in the future, among which
“Security Build in VoIP devices” remains the major among
them. Changes in the software development cycles must be
followed by an comprehensive security assessment and test-
ing. Protocol fuzzing is one essential building block in this
landscape, since no other additional approach can be used
by independent security research. We have described in this
paper our practical and hand-on experience in testing embed-
ded SIP stack implementation. These tests were performed in
order to validate our research on advanced security fuzzing
techniques and the discovered vulnerabilities were properly
and responsibly disclosed. Our future work will extend it by
addressing additional protocols, case studies, implementa-
tions and formal approaches.

References

1. FreePBX: full-featured PBX web application. http://freepbx.org
2. MPack: Insight into MPACK Hacker kit. http://www.malwarehelp.

org/news/article-6268.html/
3. The Asterisk PBX. http://www.asterisk.org/
4. The Voice over IP Security Alliance (VOIPSA). http://www.voipsa.

org/Activities/taxonomy.php
5. trixbox: Asterisk-based IP-PBX. http://www.trixbox.com/
6. Abdelnur, H., State, R., Festor, O.: Security Advisory: “SIP

Digest Access Authentication RELAY-ATTACK for Toll-Fraud”.
http://voipsa.org/pipermail/voipsec_voipsa.org/2007-November/
002475.html

7. Abdelnur, H., State, R., Festor, O.: Security Advisory: “SQL injec-
tion in asterisk-addons and XSS injection in WWW application
in Areski, FreePBX and Trixbox”. http://voipsa.org/pipermail/
voipsec_voipsa.org/2007-October/002466.html

123

http://freepbx.org
http://www.malwarehelp.org/news/article-6268.html/
http://www.malwarehelp.org/news/article-6268.html/
http://www.asterisk.org/
http://www.voipsa.org/Activities/taxonomy.php
http://www.voipsa.org/Activities/taxonomy.php
http://www.trixbox.com/
http://voipsa.org/pipermail/voipsec_voipsa.org/2007-November/002475.html
http://voipsa.org/pipermail/voipsec_voipsa.org/2007-November/002475.html
http://voipsa.org/pipermail/voipsec_voipsa.org/2007-October/002466.html
http://voipsa.org/pipermail/voipsec_voipsa.org/2007-October/002466.html

64 H. Abdelnur et al.

8. Abdelnur, H., State, R., Festor, O.: KiF: a stateful SIP fuzzer. In:
Proceedings of Principles, Systems and Applications of IP Tele-
communications, IPTComm, pp. 47–56, New-York, NY, USA, July
2007. ACM Press, New York (2007)

9. Butti, L., Tinnes, J.: Discovering and exploiting 802.11 wireless
vulnerabilities. J. Comput. Virol. 4(1), 25–37 (2008)

10. Crocker, D.: Augmented BNF for Syntax Specifications: ABNF.
Standards Track, November 1997

11. Fogie, S., Grossman, J., Hansen, R., Rager, A., Petkov, P.D.:
XSS Exploits: Cross Site Scripting Attacks and Defense. Syngress
(2007)

12. Johnston, A.B., Piscitello, D.M.: Understanding Voice over Ip
Security. Artech (2006)

13. Litchfield, D., Anley, C., Heasman, J., Grindlay, B.: The Database
Hacker’s Handbook: Defending Database Servers. Wiley, New
York (2005)

14. Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks,
R., Handley, M., Schooler, E.: SIP: Session Initiation Protocol.
http://www.ietf.org/rfc/rfc3261.txt, June 2002

15. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnera-
bility Discovery. Addison-Wesley Professional, Reading (2007)

123

http://www.ietf.org/rfc/rfc3261.txt

	Advanced fuzzing in the VoIP space
	Abstract
	1 Introduction
	2 Fuzzing voice over IP devices
	3 Weak input validation
	3.1 Attacks against the internal network

	4 Protocol tracking vulnerabilities
	4.1 Toll fraud vulnerabilities
	4.2 Remote eavesdropping vulnerabilities
	4.3 Weak cryptographic implementations

	5 Specification level vulnerabilities
	6 Conclusions and future works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

