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Abstract This article deals with kernel security protection.
We propose a characterization of malicious kernel-targeted
actions, based on how the way they act to corrupt the ker-
nel. Then, we discuss security measures able to counter such
attacks. We finally expose our approach based on hardware-
virtualization that is partially implemented into our demon-
strator Hytux, which is inspired from bluepill (Rutkowska in
subverting vista kernel for fun and profit. In: Black Hat in Las
Vegas, 2006), a malware that installs itself as a lightweight
hypervisor—on a hardware-virtualization compliant CPU—
and puts a running Microsoft Windows Operating System
into a virtual machine. However, in contrast with bluepill,
Hytux is a lightweight hypervisor that implements protection
mechanisms in a more privileged mode than the Linux kernel.

1 Introduction

1.1 Context and issue

Everybody agrees now that the use of computers (in partic-
ular through the Internet) has become essential in everyday
life. People use computers to work, to exchange information,
to make purchases, etc. Unfortunately, malicious computer
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activities are also regularly growing and try to exploit vul-
nerabilities which are more and more numerous due to the
inherent complexity of the software. Malwares may target
application software installed on the system but also the oper-
ating system itself and particularly its kernel. Corrupting the
kernel of an operating system itself is particularly interesting
from the attacker point of view because it signifies corrupting
potentially all the software that run upon this kernel. In par-
ticular, kernel rootkits [2] are a kind of malware dedicated to
perform such corruption. In order to operate, these malwares
need kernel security flaws in order to execute malicious code
inside the kernel. These kernel security flaws are particularly
spread across device drivers.1

As the corruption of the kernel of the operating system
provokes the corruption of all the sofware running upon it,
the kernel of an operating system needs strong protection
mechanisms. But, protecting the kernel in an efficient way is
particularly tricky because it is extremely difficult to make
the protection mechanisms impossible to escape. Regarding
software that run in user-space for example, it is possible to
implement effective user-space security mechanisms because
they can be implemented inside the kernel and act in a more
privileged mode that the entities they monitor. Now, the
issue is how to effectively protect the kernel against mali-
cious code execution? It has to be done from a more privi-
leged mode than the kernel itself and it has to be tamper-proof
(from the kernel, the user-space or hardware devices).

In this article, we present a mechanism that satisfies these
prerequisites thanks to hardware-assisted virtualization.

1 The main reasons for this are that first, the main part of a kernel
is constituted of device drivers; second, the rules that regulate device
drivers integration into the Linux vanilla kernel—with regard to code
quality—are less strict than the ones applied on main kernel subsystem
updates.
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Fig. 1 (simplified) x86
architecture

We do not cover in this paper how the system needs to boot so
that our hypervisor takes control over an initially safe kernel.
However this kind of action can be done through Static Root
of Trust Measurement (SRTM—that checks the BIOS then
the master boot record then the kernel) or Dynamic Root of
Trust Measurement (DRTM) allowed by Intel Trusted Execu-
tion Technology (TXT) [3] or AMD Secure Virtual Machine
(SVM).

1.2 Contents

The remaining of this paper is organized as follows. First,
we recall in Sect. 2 the technical background required to
make this paper self-contained. Then, we establish in Sect. 3
a characterization of malicious actions that can cause a loss
of integrity of a running operating system kernel. Section 4
discusses existing security measures that can be deployed
in order to partially cover the different classes of malicious
kernel-targeted actions. Section 5 is dedicated to the presen-
tation of our approach, called Hytux, that implements secu-
rity measures in a lightweight hardware-assisted hypervisor
in order to protect the Linux kernel from malicious actions.
Finally, Sect. 6 provides a summary and discusses future
work.

2 Technical background

This technical background focus on the IA-32 architecture2

[4,5] that is widespread. Although each architecture has its

2 We do not cover the IA-32e mode in this section as it would have
complicated the memory management explanation.

own characteristics, they share some common features:
memory management (less typical for embedded system),
processor’s privilege levels, communication between the
different hardware parts and the software (often through
interrupts), etc.

2.1 IA-32 architecture

An IA-32 computer is generally based on two main com-
ponents, a chipset and a processor (or CPU, for Computer
Processing Unit). All software components (BIOS, operat-
ing system, applications) run on the processor. Meanwhile,
the chipset is in charge of device handling. It is generally
composed of a Northbridge connected to the main memory
(through a component called the MCH—Memory Control-
ler Hub) and the video adapter, and of a Southbridge con-
nected through various buses to the other computer devices
(cf. Fig. 1).

On IA32, memory management is operated through a seg-
mentation unit (mandatory) and a paging unit (optional) (cf.
Fig. 2). Contrary to the segmentation unit, the paging one is
very common to all kind of architectures. As Linux is a multi-
platform kernel, the segmentation unit is only used in its bare
mode (i.e. the flat mode).3 This enables to easily cut oneself
off from it, to eventually use the paging mechanism only (cf.
Fig. 3). Nonetheless, let us briefly explain how the segmen-
tation unit is used. The kernel has to establish segments by
writing their description in memory inside a table of seg-
ment descriptors, called the GDT (Global Descriptor Table).

3 A single memory segment is set up and associated with the linear
addresses from 0 to 232 − 1 in 32 bits mode or 248 − 1 in 64 bits mode.
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Enforcing kernel constraints by hardware-assisted virtualization 3

Fig. 2 MMU, segmentation and paging units

Fig. 3 Paging mechanism

Then it loads the table address in the gdtr register in
order for the CPU to know where the GDT is. The CPU
needs a code segment (CS) from which it fetches the instruc-
tions to execute, a data segment (DS) and a stack segment
(SS).

The IA32 architecture is designed with a 4-ring structure,
and each of them represents a specific execution mode. A
privilege level is associated to each mode. The most privi-
leged ring is ring 0—the kernel execution mode—while the
least privileged mode is ring 3 which is dedicated to user
space applications.

The communication between kernel and user space—i.e
switching from ring 0 to ring 3 and conversely—can be estab-
lished by different events. Among them, interrupts are the
most frequent. They are divided into exceptions (i.e., inter-
rupts from the processor whenever a division by zero or a
page fault occurs, etc.), hardware interrupts (i.e. those which
are triggered by devices, such as pressing a key for exam-
ple) and finally software interrupts (i.e., interrupts that are

triggered by the software, e.g., when a user space applica-
tion invokes a system call).

On IA32 architecture, those interrupts are numbered from
0 to 255. Each of them is associated to a handler if it has
actually been set by the kernel. That handler is a function
that is executed when the interruption is raised. All these
functions are accessible from a specific table in memory: the
Interrupt Descriptor Table (IDT). The kernel fills this table
and then loads its address into the processor via the lidt
instruction.

A hardware interrupt or a processor exception stops
user space or kernel-space execution and launches the
corresponding kernel function. Hardware interruptions occur
asynchronously whereas processor’s exceptions trigger syn-
chronously. The kernel handles the interruption or exception
and then hands over to the user space. However, before that,
the kernel can decide to carry out more urgent tasks. Particu-
larly, in the Linux case, the scheduler verifies whether there
exists a higher priority process that needs to be executed.
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Fig. 4 Kernel address space
layout

2.2 Linux kernel address space layout

Figure 4 represents a simplified view of the kernel memory-
space layout. Let us take the opportunity of this section to
introduce the page attributes that allow the paging unit to
enforce memory access rights on a page basis. Those attri-
butes that qualify the different pages on memory are writ-
ten—in the 4 KB paging mode—on the 12 lower bits of each
page entry (as they are not used to reference a 4 KB page).
Similarly, attributes for group of pages are present in the 12
lower bits of each page directory entry. These page directory
entries can also be used as 4 MB page entries, if their Page
size attribute is set to one.

Let us now mention the attributes that especially have an
importance in this article. First, the Read/Write (R/W) attri-
bute allows a read or a write access from the CPU to the
affected page, if it is set to 1. Otherwise, the page is enforced
to be read-only by the MMU. The second attribute that has an
importance in our context is the No eXecution (NX) attribute
which, if set, enforces that the page cannot be accessed for
instruction execution. Let us emphasize that when the CPU
tries to access a page in a mode that is forbidden an exception,
more precisely a page fault, is triggered.

2.3 Hardware support for virtualization—the case
of Intel VT

Virtual-machine extensions of Intel processors define pro-
cessor-level support for virtual machines on IA32 processor.
They allow to support two classes of software: first, the Vir-
tual Machine Monitor (VMM, a.k.a. the hypervisor) that acts

as a host and has full control of the processor(s) and other
platform hardware; then, the Guest Software which is run
inside a Virtual Machine (VM). Each of these VM operates
independently of the other ones and uses the same interface
to processor(s), memory, storage, graphics, and I/O provided
by a physical platform.

Processor support for virtualization is provided by a form
of process operation called VMX operation. There are two
kinds of VMX operation: VMX root operation that is pro-
vided for the VMM execution, and VMX non-root opera-
tion that is provided for guest software execution. Processor
behavior in VMX root-operation is quite the same as it is
outside VMX operation with the main difference that a set
of new instructions is available. Processor behavior in VMX
non-root operation is restricted and modified to facilitate vir-
tualization. Instead of their ordinary operation, some instruc-
tions and events cause transition to the VMM, also called
VM-exits. Because these VM-exits replace ordinary behav-
ior, the functionality of software in VMX non-root operation
is limited. This limitation allows the VMM to retain control of
processor resources. Because VMX operation places restric-
tions even on software running with current privilege level 0
(a.k.a. ring 0 mode), guest software can run at the privilege
level for which it was originally designed. This capability
may simplify the development of a VMM.

The life cycle of a VMM can be summarized as fol-
lows. First, software enters VMX operation by executing
the VMXON instruction. Then, using VM-entries, a VMM
can launch guests into virtual machines (to carry out a
VM-entry, the VMM executes the instruction VMLAUNCH
and VMRESUME). It regains control using VM-exits.
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Fig. 5 Brief overview of Intel
VT-x

Those latter transfer control to an entry point specified by the
VMM. The VMM can take action according to the cause of
the VM-exit and can then return to the virtual machine using
a VM-entry. Optionally, the VMM may decide to shut itself
down and leave VMX operation (by executing the VMXOFF
instruction).

VMX non-root operation and VMX transitions are con-
trolled by a data structure called a Virtual-Machine Con-
trol Structure (VMCS). Access to the VMCS is managed
through a component of the processor state called the VMCS
pointer (which contains the address of the VMCS). This
pointer is read and written using the instructions VMPTRST
and VMPTRLD. The VMM configures a VMCS using the
VMREAD, VMWRITE, and VMCLEAR instructions. It is
worth noting these instructions trigger VM-exits if they are
executed from VMX non-root operation. The Fig. 5 summa-
rizes the way to use those instructions.

3 Malicious kernel-targeted actions

Only the malicious actions that imply a loss of integrity of
a running operating system kernel are considered. This loss
of integrity is related to an abnormal modification of either
(1) the kernel memory, or (2) the hardware components that
the kernel depends on for its execution (the CPU and the
MCH), or finally (3) the hardware components it communi-
cates with (i.e., the devices).

In our work we only consider logical malicious actions,4

and for the sake of brevity we call them malicious actions.
We also make the following hypotheses:

4 To oppose to physical malicious actions.

Assumption 1 The hardware structure5 on which the kernel
depends to execute itself is considered unalterable, except by
the provided functions if available (e.g., microcode update
facilities of Intel processors [4]).

Assumption 2 The hardware components on which the ker-
nel depends to execute itself do not contain exploitable bugs,
backdoors or undocumented functions [6] with regard to
security.

From the first hypothesis, we can consider that the part of
the hardware structure that can be altered by provided facil-
ities is included in the hardware state. Thus, regarding the
hardware components on which the kernel depends for its
execution, we consider that only the state of these hardware
components can be altered.

So it follows that the loss of integrity of a running kernel
stems from the alteration (i.e., an abnormal modification)
of either (1) the kernel memory, or (2) the state of at least
one hardware components on which the kernel depends to
execute itself (e.g. the registers and internal memory of the
processor), or finally (3) the hardware components that it
communicates with but does not directly depends on to exe-
cute itself (that is especially the devices that are connected
through the southbridge).

To be more succinct in the remainder of the article we
name: the state of the hardware components that the kernel
depends on to execute itself, the execution environment mem-
ory; and the hardware components that it communicates with
but does not directly depends on to execute itself, the devices.

5 Note that a system, in this case a hardware system, is made of a
structure that allows it to generate its behaviour, and to hold its state.
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We can thus classify at a first level the malicious actions
that affects kernel integrity, with regard to the kind of the
modification they make:

• the malicious actions that alter the kernel memory makes
up the Class 1;

• the malicious actions that alter the execution environment
memory makes up the Class 2;

• the malicious actions that alter the devices makes up the
Class 3.

In order to proceed with a more detailed classification of
these malicious actions, we first analyse the access vectors
to the kernel memory, then to the execution environment
memory and finally to the devices.

3.1 Access vectors to kernel memory

The first way to access to the kernel memory is through
the CPU. This access necessarily implies: first, the Memory
Management Unit (MMU) in CPU, then the Memory Con-
troller Hub (MCH) in the northbridge. Thus, an abnormal
modification of the kernel memory can stem from:

• A system feature that directly provides the means to mod-
ify any regions of kernel space memory. It can be either
a software feature (such as the kernel module loader [7],
the /dev/kmem and /dev/mem virtual devices in the
Linux case [8,9]) or a hardware feature (such as the CPU
System Management Mode [10,11]).

• A system feature that does not provide it but through the
exploitation of a flaw inside it (buffer overflows, format
strings, usage of incorrect data—null kernel-pointer dere-
ference [12]—or outdated data—cf. the vulnerability that
affected Linux kernels patched against the security pro-
tection PaX [13, Section 2], etc.).

The second way to access the kernel memory is from a
device connected to a DMA-capable (Direct Memory
Access) I/O bus. So it involves the MCH. These access vec-
tors can be divided in two categories depending on whether
the access is initiated by the device or ordered by the CPU:6

• In the case the access is initiated by the device, it concerns
the devices that are connected on a bus capable of bus
mastering (like the PCI or PCI Express bus on IA-32 and
Intel 64 architectures). These devices can then take con-
trol of the bus and perform a data transfer to the memory
without the processor involvement. Thus, for instance, the

6 In the case a device command another one to perform DMA, we
consider the latter as the initiator.

Firewire bus can be used to read or inject data in physical
memory without the operating system consent [14–16].

• In the case the access is ordered by the CPU, the abnor-
mal modification of the kernel memory comes from some
malicious software actions that is executed through the
operating system.

On recent computers, it is possible to control these acces-
ses through the northbridge by a hardware component called
the Input/Output Memory Management Unit (IOMMU) [17]
which acts as a router and a filter of data flows to the main
memory that come from system devices, and allows the ker-
nel to control DMA access from these devices.

3.2 Access vectors to the execution environment memory

The execution environment memory is composed first of the
registers and the internal memory of the CPU, and secondly
by the registers of the MCH.

The registers of the CPU are only accessible from the
CPU, thus from the software that is executed on it. Let us
note that for software running with the nominal mode of
x86 CPU7 in ring 0 privilege, all the registers are accessible
except specific SMM registers. In less privileged rings like
the ring 3, the software is restricted and cannot access all the
registers. In SMM mode, all the registers are accessible plus
some private CPU states indirectly (e.g., the SMBASE). Let
us remark that some internal memory or registers of the CPU
are not accessible at all (e.g., the hidden part of the segment
selectors).

The registers of the MCH are only accessible through the
CPU8 and thus by the software that runs upon it. These regis-
ters are accessible through the Memory-Mapped I/O (MMIO)
mechanism which is implemented by the MCH. The MCH
maps registers or internal memory of capable devices into
the physical address space, which are thus accessible like the
main memory (and can be read and written by the assembler
instruction mov [18]).

3.3 Access vectors to the devices

Only the CPU can access the devices of the computer.9 It
does it in order to configure those devices and access their
functions. Three main ways are provided by IA-32 and Intel
64 architectures and depends on the device that is accessed:

7 The protected mode for IA-32 architecture, and the IA-32e mode for
Intel 64 architecture.
8 Some hardware platform can support PCI peer-to-peer transactions
that traverse multiple PCI host bridges. In our work we do not consider
these platforms.
9 cf. Footnote 8.
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• the Memory-Mapped I/O (MMIO) mechanism: which
performs the mapping of the registers into the physical
address space (as explain previously);

• the Programmed I/O (PIO) mechanism: which performs
the mapping of the registers into a separate 16-bit address
space, and can be accessed by the assembler instruction
in and out [18];

• the PCI mechanism [19]: which is used to access PCI con-
figuration registers (included in each PCI device). These
registers are located in a third address space. They can
be accessed by specifying in the PIO register of address
0xcf8 the address of the register that we want to access.
Then, the chipset automatically updates the PIO regis-
ter of address 0xcfc with the value of the PCI register
expected, which can be then read and written thanks to
PIO access.

Access to MMIO or PIO is restricted to the ring 0, that
is the kernel mode. But it can be granted by the operating
system to privileged user space applications (for Unix-based
OS it usually means for application that runs with root privi-
leges) through the system callsiopl (for full access on PIO)
and ioperm (for access on specific PIO).

3.4 Malicious kernel-targeted action classes

We now discuss the kind of malicious actions that alter the
kernel behaviour. The analysis that we performed has lead to
a more detailed classification on these malicious actions.10

3.4.1 Class 1—alteration of the kernel memory

– Class 1.1—invalid modification of kernel-mode execution
path:
This class is characterized by malicious actions that need
to inject some code in order to achieve their work. This
class has some prerequisites that depend on the kind of
the action.

• Class 1.1.1—addition of a reachable malicious kernel
code region:
This class is characterized by the malicious actions
that inject a code region in the kernel memory space.
Examples of such malicious actions benefit from ker-
nel features such as a kernel module loader [20].

• Class 1.1.2—overwriting an existing kernel code
region with malicious code:
This class is characterized by the malicious actions
that need a code region to be writable. Either they
permanently overwrite existing code with no more

10 It is worth noting that an attack that targets a kernel is composed of
multiple malicious actions.

possible execution of this one; or they hijack the exist-
ing code and keep executing it but with some new
malicious instruction added (such malicious actions
were pioneered by Silvio Cesare [21]) thanks to pad-
ding in code pages.

• Class 1.1.3—injection of reachable malicious code
into a kernel data region:
This class is characterized by the malicious actions
that need a data region to be executable. For instance,
malicious actions that use buffer overflow techniques
[22] belong to this class. This class also encompasses
the malicious actions that inject code into data page
padding in order to carry out their work.

• Class 1.1.4—injection of a reachable malicious code
into a non-kernel region (typically user space region):
This class is characterized by the malicious actions
that only need that the kernel does not prevent invalid
pointers to be dereferenced from kernel mode.
It means that the malicious action exploits a flaw
in the kernel that enables the execution of random
non-kernel (e.g., user space, hypervisor space) code
in ring-0. This stems from kernel bugs that can be
exploited in order to write a valid user space address
into a kernel pointer, that allows at least an injection
of unexpected data from user space11 to kernel space
and in the worst case an execution of user space code.
An example of such a malicious action is depicted by
the local root exploit that was allowed by the vulnera-
bility of Linux’svmsplice system call [23,24] (cf. [12]
for an explanation on how an exploit based on a null
kernel-pointer dereference works).

– Class 1.2—invalid modification of kernel-mode variables:
This class is characterized by malicious actions that do
not inject code into the kernel, but provoke an abnormal
modification of the kernel behaviour by modifying its
variables.

• Classe 1.2.1—alteration of execution state variables:
The actions of this class alter the kernel behaviour by
modifying some of the variables which its execution
depends on.
Examples of such variables are: the control flow data
(especially the program counter) that reside in the
stack, the data used in a branching condition of some
code, the attributes of page tables (Present,Read/
Write, No eXecution flags, etc.).
Malicious actions that alter the control flow data in
the stack can be used in order to execute existing ker-
nel code in a wrong order [25,26]. For instance, the
malicious action could execute a function (or just only

11 The user space limit in Linux is represented by the constant
TASK_SIZE.
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some code) with forged parameters by modifying the
stack frame. It could replace the program counter that
has been saved in the stack with the address of an
existing code in kernel memory in order to divert the
execution flow, hence to execute an abnormal code
with regard to the execution flow.12

Other malicious actions overwrite some page attri-
butes in order to circumvent execution prevention on
a particular page.
Furthermore, integer overflows and especially refer-
ence count overflows are malicious actions part of this
class [27].
Likewise, all malicious actions that disable security
protection by overwriting only kernel data (without
any other code execution) are part of this class.

• Classe 1.2.2—alteration of auxiliary variables:
The actions of this class alter the kernel behaviour by
modifying some of the memory variables that do not
affect the execution flow, and that we call the auxiliary
variables.
Such actions can be used to blank out error messages,
alert messages, etc. (by nullifying for instance some
strings used by the primitive printk() in a partic-
ular section of kernel code).
Other actions can just modify auxiliary variables that
will be sent to another computer through the net-
work, from which they will be used as execution state
variables.

3.4.2 Class 2—alteration of the execution environment
memory

– Class 2.1—alteration of CPU registers or CPU internal
memory:
This class is characterized by the malicious actions that
abnormally alter:

• some critical CPU registers such as segment selectors
(cs, ds, ss, etc.), idtr register, gdtr register,
Memory Type Range Registers (MTRR), Model-
Specific Registers (MSR), and so on;

• parts of CPU internal memory such as the micro-
code region (if available) used to change the processor
behavior [4].

Some attackers, in order to install kernel rootkits [2], copy
the IDT, then modify this copy to finally load its address
into the idtr register of the processor (thus replacing

12 This approach is generalisable in order to execute in sequence many
parts of the legitimate existing code (by modifying the saved program
counters in the successive stack frames). We can name this approach, a
maliciously ordered execution flow.

the previous one) [28]. This last action is malicious and
is part of this class.
Another example of such malicious actions is shown by
Loïc Duflot [29] in his modification of the SMI handlers
(that is the routines executed in SMM by the CPU in
response to a System Management Interrupt). Its proof-
of-concept implies the modification of the internal CPU
register SMBASE, and some critical MTRR registers of
the CPU.

– Class 2.2—alteration of MCH registers:
This class is characterized by the malicious actions that
alter some registers of the MCH in order to alter the
behaviour of the kernel. Such malicious actions are also
illustrated by Loïc Duflot’s proof-of-concepts in [29,30].
In [29], it benefits from the modification of the SMRAMC
register of the MCH13 and in [30] it especially involves
theAGPM register (that is written in order to enable graph-
ics aperture accesses) of the MCH.

3.4.3 Class 3—alteration of the devices

This class is characterized by the malicious actions that alter
values on some registers of a device,14 or in its internal mem-
ory (if available), or even that alter the structure of a device
if this one is adaptable (like devices that use FPGA).

To our knowledge, there is no example of such malicious
actions that has been published. We can only imagine pos-
sible scenarios where a device, say a network adapter, built
with FPGA, could be reprogrammed in order to become hos-
tile to the kernel, and for instance exploits an hypothetical
vulnerability of its network stack, through the injection of
malicious network packets.

4 How to protect the kernel against malicious actions

In this section, we discuss how to provide some protection
against malicious actions on a running kernel. This discus-
sion led us to the development of a new approach based on
hardware-assisted virtualization that we detail in Sect. 5.

The discussion that follows is structured according to the
classification of malicious actions that we set up in the pre-
vious section.

4.1 About security mechanisms

The security measures used to protect an information system
are generally classified in three main groups: prevention,

13 Further information on that topic is available in [31], which discusses
SMM rootkits.
14 Let us recall that what we call devices are the hardware components
which the kernel communicates with but does not directly depends on
to execute itself.
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Enforcing kernel constraints by hardware-assisted virtualization 9

detection and recovery. It has been proved that malware
detection is an undecidable problem [32, Chap. 3]. Thus,
as recovery mechanisms need detection measures, we favour
in our approach prevention measures when possible. In the
remaining of the section, we only focus our attention on pre-
vention measures that protect the kernel space against mali-
cious actions.

4.2 Control of the access vectors

We identified two kinds of access vectors to the kernel mem-
ory for malicious actions in Sect. 3.1, and one kind of access
vectors to the execution environment memory in Sect. 3.2 and
to system devices in Sect. 3.3. We discuss existing security
measures at this level. Note that a malicious action uses only
one access vector but can then enable other access vectors,
for other malicious actions.

4.2.1 Control of the access vectors to the kernel memory

• Control of the CPU-based Access Vectors:
As explained in Sect. 3.1, kernel features that directly
provide write access to any region of the kernel space
(such as the kernel module loader, the /dev/kmem or
/dev/mem devices in the Linux case) are broadly used
by lots of malware to inject themselves into the kernel
memory space [2]. These features must obviously be con-
trolled. For instance, the /dev/kmem and /dev/mem
devices can be disabled (as done by grsecurity [33] for
instance) or can be filtered to only allow the access to
memory-mapped I/O (as done by current Linux kernels
if correctly configured). Also, to detect malicious kernel
modules, a solution is to set up an automatic verification
of modules through cryptographic signatures [34]. How-
ever, by this way we do not prevent exploitation of bugs
that can be present inside signed modules. Also, we must
ensure that the way to add modules is unique and cannot
be tampered with.
The other access vector used by malware in order to
alter kernel memory is the exploitation of flaws in ker-
nel features that are not supposed to provide the abil-
ity to modify the kernel space. Obviously, contrary to
the previous access vector, this one cannot be controlled
by the same techniques. Besides, finding this kind of
access vector inside the kernel is easier if more modules—
that can be potentially bogus—are added to it. Actu-
ally, the vast majority of kernel flaws stems from device
drivers (cf. Footnote 1). A security solution, called PaX
[35], developed for Linux contains mechanisms (such as
randkstack that implement kernel stack randomization) to
provide some generic ways to protect the kernel against
malicious actions. However, those mechanisms are cur-
rently implemented in the same level of privilege that the

kernel and thus only try to prevent malicious data from
entering the kernel space. They could not be effective if
malicious code is already present inside the kernel.

• Control of the DMA-based Access Vectors:
In order to circumvent this problem, it is possible to dis-
able the DMA channels from the kernel, but it is then
really CPU-time consuming to transfer data through I/O
devices, and it requires that device drivers are modified
in order to poll for data instead of setting DMA trans-
fer (which is unacceptable for some devices). To a lesser
extent, for Linux kernels, disabling raw I/O and the
/dev/port device (as done by grsecurity [33] for
instance) forbids DMA transfers to be established from
user space.
Finally, the most efficient approach applies to computer
systems that include an Input/Output Memory Manage-
ment Unit (on Intel the technology is VT-d, and on AMD
it is part of HyperTransport architecture). With that unit,
it is possible to protect main memory against malicious
devices [17]. An IOMMU is a memory management unit
(MMU) that connects a DMA-capable I/O bus to the main
memory. Like a traditional MMU, the IOMMU takes
care of mapping I/O addresses to physical addresses. The
translation tables are located in main memory and are
under the control of the CPU, i.e., the kernel, instead
of the device. That said, the translation tables for the
IOMMU are now a critical part that need to be protected
against malicious kernel actions. Again, the protection
mechanisms need to have a higher privilege level than
the kernel.

4.2.2 Control of the access vectors to the execution
environment memory and the devices

Currently, operating systems implement the control by the
kernel of user space applications (ring 3) to access execution
environment memory and devices. However there is no con-
trol of ring 0 access nor SMM access.15 Thus, these controls
may be evaded if the kernel suffers from a security flaw that
allows ring 0 or SMM code execution under the control of
the attacker.

4.3 Analysis of existing approaches to prevent kernel
corruption

4.3.1 How to protect against Class 1 actions

Here, we focus on existing approaches to protect the kernel
memory, i.e., the existing approaches that try to cover the
malicious actions of the Class 1 (refer to Sect. 3.4).

15 It is worthwhile to note that this kind of control cannot be effectively
performed in ring 0, as it need to be achieved at a more privileged level.
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Let us first note that techniques like the Address Space
Layout Randomization (such as the one proposed by PaX
[35]) are not effective to protect kernel space against mali-
cious actions. Not only the ASLR has to be carried out on
a 64 bits architecture [36] in order to have an effective pro-
tection but it solely applies to user space. Indeed, some vital
kernel structures may precisely be located in user space
regardless the ASLR. For instance, the GDT can be pin-
pointed in memory thanks to the execution of the instruction
sgdt which is legal in user mode.

• How to Protect Against Class 1.1 Actions:
Concerning Class 1.1, let us focus on the protection of
the kernel against malicious actions of each subclass.
To protect against Class 1.1.1, it is possible to develop
solutions restricting the use of kernel features able to
modify any region of kernel space memory (as described
in Sect. 4.2). To protect against Class 1.1.2, code regions
can be enforced to only be executable and not writable.
Similarly, to protect against Class 1.1.3, data region can
be enforced to only be readable and writable but not exe-
cutable. That all can be done through page table entry
attributes (cf. Sect. 2). However, there may be some issues
with the execution prevention of the kernel stack. Indeed,
code is sometimes legitimately injected inside the stack
as a way to implement certain features. The OpenWall
project faced this kind of problem in order to implement
non-executable user stack for Linux. So, implementing a
non-executable kernel stack could have led to the same
kind of problems. Fortunately, in the Linux case, these
issues do only target the user stack. Indeed, first, nested
functions are not used inside the kernel and thus there
is no need for gcc to use an executable stack (that is
needed for function trampolines). Then, the part of the
Linux kernel that relies on executable stack—the signal
handling subsystem—setup code only in the user stack.
Finally, functional languages and programs that use run-
time code generation, rely on executable stack, but they
are executed in user space and thus do not rely on execut-
able kernel stack.
However a malicious kernel action could break out this
protection by first changing the page attributes of a data
memory region that contains malicious code and then exe-
cuting this region. Thus, modification of the page attri-
butes must be prevented in order to forbid transition from
data to code region. We could prevent the page tables from
being modified, by setting to non-writable the pages that
contains them. But it would not be possible again for the
kernel to add new kernel memory mappings—for mod-
ules injection—as the pages that contain the page tables
would not be writable anymore. The only solution is then
to craft new page tables and to load the cr3 register with

the physical address that references them. But it can also
be done by a malware that lives inside the kernel. Thus,
we cannot rely on kernel protection that lives at the same
level than the kernel. In our approach, presented in Sect. 5,
we explain how to face such issues. By using hardware
virtualization it is possible to enforce the notion of kernel
data and code region with respect to execution rights.
Finally, to protect against Class 1.1.4, generic solutions
to deal with buffer overflow exploitation (such as Point-
Guard [37]) can be contemplated, since they protect
against malicious modification of pointers. Thus, they
protect against the diversion of execution to a specific
address in memory. Another practical approach is to pre-
vent user space pointers from being dereferenced in kernel
mode. This scheme is followed by the security solution
PaX [35] with their mechanism UDEREF [38].

• How to Protect Against Class 1.2 Actions:
To protect against Class 1.2, the approaches adopted for
Class 1.1 is not satisfactory because there is no code injec-
tion, only kernel variables are modified.
In order to prevent malicious actions of Class 1.2.1 (that
provoke the alteration of execution state variables) from
running, it is crucial to protect control-flow data (e.g., to
protect the control-flow information in the stack frame,
to prevent kernel pointers from being maliciously over-
written, etc.), but this is not sufficient.
Execution state variables are numerous, some examples
have been given in Sect. 3.4. There is no generic solution
to protect the kernel against the abnormal modification
of these variables. But approaches for some specific vari-
ables exist. We give some of them in what follows.
Concerning control-flow data, we can consider at a first
stage the mechanisms that protect against execution flow
diversion through stack overflow, like StackGuard [39]
or Propolice/SSP (Stack-Smashing Protection) by using
canaries. But they do not protect against buffer overflows
that overwrite function pointers [40] (like heap overflow
[41]). Thus, at a second stage we could follow a generic
approach to protect against all buffer overflows exploita-
tion, such as PointGuard [37] that encrypts pointers when
stored in memory.
This last solution is really intrusive, and relies on the
confidentiality of the encryption key. At this stage, we
propose a complementary approach that broadly prevents
some kernel actions from going mad. In other words, we
try to prevent the kernel from maliciously behaving.
In order to protect the kernel against more insidious mali-
cious actions like reference count overflows [27], the
security solution PaX [35] provides a generic protection
with their mechanism REFCOUNT.
In order to prevent malicious actions of Class 1.2.2 (that
provoke the alteration of auxiliary variables), there is, to
our knowledge, no existing approach.
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Fig. 6 Hytux—a lightweight
hypervisor

The next section presents our approach, based on the
preservation of constrained object through a hardware-
assisted virtualization solution, which provides a solution
to partially cover this class.

4.3.2 How to protect against Class 2 and Class 3 actions

To our knowledge malicious actions of these classes are only
partially covered for user space applications as they act in
ring 3, and thus can be controlled by the kernel, which can
grant or remove privileges to access critical devices or the
execution environment memory. However, these approaches
suffer from the way they act. They only control the ring 3
access to these resources. Thus they can be tricked by other
malicious actions that first exploit some security flaws in
the kernel in order to execute some ring 0 code which has
full access on the devices and the execution environment
memory.

In our work, we try to step up to a solution to this prob-
lem, and propose an original approach based on hardware
virtualization in Sect. 5.

5 Hardware virtualization enables kernel malware
prevention

The traditional security measures we have just discussed face
some unresolved issues with regard to malicious actions that
occur in kernel space. In our approach, we try to encompass
those problems by limiting the damages kernel actions can do
to the system. In order to provide this security measure, we
implement a lightweight hypervisor that controls some of the
actions the kernel can do. This approach is practicable thanks
to hardware virtualization technology that enables running
the hypervisor in a higher harware privilege level than the
kernel. Again, we need to act at a higher privilege level than
the kernel if we want to beat malicious actions that occur

inside the kernel. Also, as the hypervisor is lightweight, the
verification of its correctness is easier. In the next section we
discuss our approach. The broad concept is to try to ascertain
that some constraints of the system are preserved.

This approach as described in the remaining of this section
is self-satisfactory for the classes 1.1.2, 1.1.3 and 1.1.4. For
Classes 1.1.1 our approach is complementary to the previ-
ously discussed solutions. Finally, concerning the classes 1.2,
2 and 3, our approach provides a unique ability to restrict the
ring 0 mode (i.e., the kernel mode) and thus can partially
overcome malicious actions of this class.

5.1 Hytux overview

We have developed a partial proof-of-concept for a Linux
x86 target that runs on a 64 bits system that supports Intel
VT-x [5] and optionally Intel VT-d [42] (cf. Appendix A).
Our proof-of-concept is called Hytux and is a lightweight
hypervisor that relies on these virtualization technologies
(cf. Fig. 6). It borrows this concept from the bluepill pro-
ject [1]. It installs itself as a Virtual Machine Monitor (also
called an hypervisor) on a running Linux system16 and put
this one on-the-fly inside a Virtual Machine that is then mon-
itored and controlled (through the configuration of a unique
VMCS).

In what follows we explain the different activities that are
performed (or envisioned to be performed) by our hypervisor
(Fig. 6).

5.2 Protection of kernel-constrained object against
alteration through CPU-based access vectors

The reasoning behind this activity is to preserve the entities
that are considered to be constrained by the kernel. We define
the concept of Kernel-Constrained Object in what follows.

16 Note that Hytux is a Linux Kernel Module.

123



12 É. Lacombe et al.

Definition 1 A Kernel-Constrained Object (KCO) is an
entity of the system upon which the kernel runs and that
legitimately should be in a fixed state or in a state that is
predictable, during the system execution.

What we emphasize in this definition is that an entity is
considered to be a KCO if it is specified to be constrained, no
matter if the implementation is bogus or a design flaw exists.

Also what is worth noting is that if we want to preserve a
KCO, its constraints need to be verifiable, i.e., they first need
to be observable.

5.2.1 KCO preservation explained through an example

Thus, in this activity we try to prevent KCO from being
altered by any means. Note that the first state of the KCO
that our hypervisor (Hytux) sees is assumed to be safe. From
that point Hytux tries to prevent a KCO from being altered.
To fully understand this concept, let us take the example of
the processor register idtr that is a KCO from the Linux
kernel point of view. Indeed, it is set at the initialization time
to the address of the IDT and is not supposed to be modified
afterwards. However, the processor instruction lidt avail-
able in ring-0 mode—i.e., in kernel mode—allows a new
address to be loaded inside this register. Therefore if the ker-
nel contains a bug that can be exploited or a feature (that
we call in this context a design flaw) to execute this instruc-
tion with an arbitrary parameter, the KCO idtr could be
altered. Nonetheless the idtr register is a KCO. That is
why we need in that case to preserve the fixed constraint that
governs idtr. In order to achieve this goal our approach is
to emulate the instructionlidt inside our hardware-assisted
hypervisor. Thus, when the kernel executes it for the first time
the normal behaviour is emulated by Hytux, then it switches
permanently to an emulation that does nothing. In this way
this KCO is preserved.17 The lidt instruction emulation
is easily achieved through Intel VT-x. Indeed, a VM-exit is
enforced by setting to 1 theDescriptor-table exit-
ing field of the VMCS. We proceed the same way for the
gdtr register,18 that is also tagged as a KCO. For the con-
trol registers cr0 and cr4, we act quite the same, but only

17 In fact for the case of registers idtr or gdtr, the addresses that are
stored inside are linear addresses. Thus the two values in these registers
need to be checked against kernel page table entries in order to verify
that the corresponding physical addresses are never changed. Besides, it
needs to be checked that these physical addresses are uniquely mapped
in the linear address space. Thus, when page tables are modified, it needs
to be verified that no new mappings with these physical addresses are
written. We do not further develop on this topic, as the next section
illustrates it with an explanation on how to preserve the constraints of
the kernel memory space layout.
18 Refer to Footnote 17.

for their bits that can be considered to be KCO.19 Finally,
the case of the cr3 control register is singular, it is a part of
a more complicated KCO that encompasses code and data
memory region constraints. This KCO is further discussed
in the next paragraph.

5.2.2 The kernel memory space layout as multiple KCO

In order to protect against Class 1;1 malicious actions, Sect. 4
showed that kernel page attributes with regard to page usage
can be automatically set. More precisely, for a page that
contains code, the R/W flag is not set; for a page that con-
tains data that can be written, the NX flag and the R/W flag
are set; and finally for read-only data pages the NX flag is
set but the R/W flag is not. As presented in Sect. 2, the
first part of the kernel space is full of 4 MB mapped pages
and their attributes are not supposed to be modified. Thus,
page attributes must be set in order to enforce executable-
only pages, read/write-only pages and read-only pages. Sim-
ilarly, for the VMALLOC area that is composed of 4 KB
pages, we could reflect these constraints with page attri-
butes. However, in this case it is a little bit tricky as this
memory space is mainly used to load Linux Kernel Mod-
ule (LKM). Thus, no page is mapped at all except the ones
that contain the already loaded modules. That is why the
kernel primitive vmalloc—used to allocate memory for
LKM—must be modified. In our approach, this kernel prim-
itive must take a flag parameter that informs itself about
the type of allocation, that is: code, data or read-only data.
With this mechanism in place, vmalloc can then set page
attributes accordingly to the constraints needed by the dif-
ferent segments of the module (code, data and read-only
data), at the time this one is loaded and thus vmalloc
called. This scheme leads to the situation that is shown
in Fig. 7.

However, a malicious kernel action could modify the page
attributes of a kernel page it wants to use for another purpose
(typically a data page transformed in a code page). To face
this problem the R/W page attribute on the pages that con-
tains all the kernel page tables must be unset as the Fig. 8
shows.

But this solution is not satisfactory as the kernel cannot
further writes new kernel page table entries when it needs
to, i.e., when it loads a module, because a fault page would
be triggered and this trap could not be handled. This is obvi-
ously not the expected behaviour. To bypass this problem
our approach benefits from hardware virtualization and trig-
gers VM-exit when the kernel page tables are accessed. To
achieve that goal, the hypervisor sets the bit 14 in the Excep-
tion Bitmap of the VMCS in order to trigger VM-exit on page

19 Intel VT-x provides guest/host masks for these control registers,
which simplify the process.
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Fig. 7 Kernel address space
layout (first modification)

Fig. 8 Kernel address space
layout (second modification)

faults. Then when a page fault occurs the CPU switches to the
hypervisor. Let us mention at this point that our hypervisor
has its own kernel page tables—automatically loaded during
a VM-exit—that allows it to write in all memory. Besides,
in order to preserve the KCO, the hypervisor needs to keep a
copy of the initial kernel space layout with regard to execut-
able-only, read/write-only and read-only pages, (i.e., it keeps
a copy of the kernel page tables) in order to validate or not,
the future modifications of page table entries. However, page

table entries in kernel space are not changed after the sys-
tem initialisation except for the VMALLOC area.20 Thus the
hypervisor only needs to be kept informed on the VMALLOC
area layout. That implies a modification of the vmalloc
function in order to inform the hypervisor from the allocation
of new pages (through the VMCALL instruction that merely

20 We voluntary forget to talk about theKMAP area because the approach
deployed to handle this case is similar to the VMALLOC one.
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triggers a VM-exit). First, it allows the hypervisor to update
its KCO (the constrained memory layout) and then, it allows
it to effectively write the page table entries with the attributes
that depend on the needed constraints.

Let us now explain what happens when the hypervisor
takes control of the CPU as a result of the page fault. At
this time the hypervisor checks if the fault occurs due to
an access to the kernel page tables (by reading the fault-
ing address in the exit qualification field of the
VMCS). If the faulting address is not in the range of the ker-
nel page tables, then the hypervisor hands over to the kernel
(through a VM-entry).21 Otherwise, if the faulting address is
inside the range of the kernel page tables, then the hypervisor
replays the instruction that causes the page fault in order to
effectively write the page table entry. Then it verifies that the
page constraints are preserved with regard to the kernel mem-
ory layout it knows.22 If the instruction results in the inval-
idation of the constraints on an already existing page table
entry (in the kernel page tables), the hypervisor restores the
constraints. If the instruction results in the writing of a new
page table entry (in the kernel page tables), the hypervisor
merely erases this new entry. This last case is justified by the
fact the kernel only adds new page table entries in the kernel
space through the vmalloc function (cf. Footnote 20) and
this primitive is modified in order to inform the hypervisor
when it wants to add an entry.

We now have to handle a last problem. Consider that a
malicious action crafts its own kernel page tables based on
the existing ones but with malicious constraints (e.g., a data
page with execution rights). Then, it injects them in a ker-
nel data region, and eventually triggers the loading of the
cr3 register with the address of the top of these malicious
page tables. This scenario circumvents our protection. This
is why all cr3 loads must be controlled. This is again easily
done through hardware-virtualization. In our approach, the
CR3-load exiting field of the VMCS is set, in order
to trigger a VM-exit on each cr3 load. At this time the hy-
pervisor checks the last entries of the top-level page table
(known as the Page Directory in the IA32 mode and as the
PML4 table in the IA32e) from the address that is going to be
loaded on cr3. These entries constitute the kernel address
space. Thus, they must be equal to the ones it knows. If it
is not the case the hypervisor emulates the instruction that
triggers a cr3 load by doing nothing, then it hands over to
the kernel (through a VM-entry).

21 Note that in this case the hypervisor needs to perform extra work. It
must write information about the page fault—that just triggered—into
the VMCS in order for the VM-entry to deliver this event within the
guest context.
22 Note that doing the verification without replaying the instruction
would be more complicated and so, more time-consuming as we would
have to first determine what is the instruction and then check its
arguments.

Finally, it is worth noting on this KCO that there are
some kernel regions that need to be placed inside read-only
pages. This is the case, at least, for the region that contains
all the kernel page tables, the GDT and the IDT. Also, in
this section, we have not covered the case of the collection
of page tables that describe the user address-space for each
process. In our context, we try to prevent the kernel space
from being corrupted. Thus, our hypervisor should verify—
in a similar way that has been explained for kernel page
tables—that no page table entry, that is written for describ-
ing user space layout, contains a physical address of a kernel
page.

5.2.3 Generic handling of simple kernel-constrained data

Let us note that the security measure we have just presented
to preserve the kernel page tables can easily be used for
any simple Kernel-Constrained data in memory. The generic
approach consists in allocating the specific kernel-constrai-
ned data in an empty specific page (for instance in 4 KB pages
in the VMALLOC area) and to unset its R/W page attribute.
Then, the hypervisor preserves the constraint in the same way
that has previously been described. With that mechanism,
kernel or user code cannot break covered data constraints.

To conclude on this hypervisor activity, it is worth noting
that the KCO that we have focused on does not constitute an
exhaustive list. We only aim at pointing some KCO of the Li-
nux kernel and how to protect themselves against alteration.
We hold to highlight the fact that all KCO could not be easily
captured. However, just preserving some well-chosen KCO
can protect the kernel against most existing malware at the
kernel level in a global way (such as the ones that rely on
overwriting either the GDT, or the IDT, or the system call
table, or registers like idtr, gdtr, etc.).

5.3 Prevention of hypervisor memory corruption

5.3.1 Through the control of cpu-based access vectors

In order to prevent the corruption of the hypervisor memory
space, this one must virtualize the paging unit. That is, it must
retain control over the processor’s address-translation mech-
anisms. In our case, it means that the register cr3 must only
be accessed by the hypervisor and that it needs to emulate
the modification of the guest page tables in order to check
that the physical addresses that cover its memory space are
never used inside them.23

23 It is worth noting that the instruction invlpg that invalidates an
entry in the Translation Lookaside Buffer (TLB) does not need to be
emulated, as our hypervisor does only have one guest that coincides
with the host. Thus, it does not need to maintain shadow page tables.
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Also, the hypervisor must filter some I/O ports24 (at least
the PCI address ports—0xCF8-0xCFB, and the PCI data
ports—0xCFC-0xCFF) in order to protect it against CPU
System Management Mode hacks [10,11].

5.3.2 Through the control of DMA-based access vectors

A primary approach is to control and filter I/O port accesses
(cf. Footnote 24) that originate from a kernel device driver
(or user space) in order to prevent the setting of a DMA trans-
fer from the related device to the hypervisor memory space.
In that case, we need to trigger a VM-exit when an access
to the specific I/O ports is done, and then to take measures
with regard to the physical address that is set to be writ-
ten by the device. Nonetheless, this approach really seems
hard to implement as the I/O ports involved in the establish-
ment of DMA transfers depend on the kind of the bus from
which it originates and on the device itself [43]. Also, it pre-
vents insiders from corrupting hypervisor memory space, but
it does not protect this space against malicious BusMaster-
DMA devices that would take control of a bus such as the
Firewire bus [14], without the CPU involvement. To protect
against this kind of issue, a system that contains an IOMMU
is needed.

5.4 Prevention of kernel memory corruption from hardware
features

Section 5.3 discusses solutions in order to protect the
hypervisor memory-space against corruption. The envisioned
solutions (except for the processor’s address-translation
mechanisms) can also prevent the kernel memory-space from
being corrupted through malicious access to hardware
features.

6 Conclusion and future work

In this paper, we have presented security mechanisms that
protect the system against some classes of malicious kernel
actions. However, these mechanisms are limited. To make
them impossible to evade, they must run in a more privi-
leged mode than the kernel itself and thus must use dedi-
cated hardware. That is why we propose to implement them
in a light-weight hypervisor called Hytux. Such a hypervisor

24 Note that an access to any I/O ports can trigger a VM-exit if the
VMCS is correctly configured.

performs different verifications in order to prevent the cor-
ruption of some crucial constrained-object of the guest kernel
running on top of the hypervisor. We propose a first classi-
fication of the possible attacks and for some of them the
corresponding virtualization-based solutions. We have also
presented a first proof of concept for a IA32 Linux kernel on
a 64 bits system that supports the Intel Virtualization Tech-
nology. The Hytux demonstrator is currently under devel-
opment, and we intend to publish it as open source when
it is achieved.25 Although we cannot, for the moment, pre-
cisely evaluate the system slowdown that would be induced
by Hytux, we can still roughly estimate it through simple
considerations. Basically, our hypervisor does not perform a
lot of work, it just checks some constraints and then directly
hands over to the kernel. Moreover, the impact on the sys-
tem performance also depends on how the hardware exten-
sions for virtualization perform (i.e., how prompt VM-exit,
VM-entry and event injections are). At this level, we can look
at existing hypervisors that use hardware virtualization (such
as KVM—Kernel Based Virtual Machine [44]). These solu-
tions do not cause major system slowdown and thus similar
results are expected with our approach.

Additionally, we work on a hypervisor-based solution
that protects the kernel from the malicious actions of the
Class 1.1.4. Furthermore, in order to validate our approach
based on Kernel-Constrained Objects, we currently work on a
model that proposes a formal framework in order to represent
interactions between the hardware platform and the differ-
ent software layers (in our case, the hypervisor, the kernel
and the user space layers). We hope this formalization will
help us to verify if our approach is efficient in preserving the
integrity of the kernel space. We also try to make the model
useful for representing Kernel-Constrained Objects as soon
as the stage of kernel specification.

Appendix A: Hytux code sample

A “hardware hypervisor” needs to handle specific events
from the guest operating system as we have seen in Sect. 2.3.
In what follows, we show the way we do it in our demon-
strator as well as the way we put the current running Linux
kernel into a virtual machine. Note that this sample of code
is only given to illustrate the design we adopted, and for that
matter we do not try to explain it in details.

25 The lightweight hypervisor is implemented, and the security mech-
anisms are currently partially implemented.
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/* It is the core hypervisor function. It fills the VMCS,
* puts the current running Linux kernel into the corresponding VM,
* executes it, and handles the VM-exits. */

int init_and_run_vm(struct vmx_conf *vmx_conf)
{

hytux_vm.fail = 0;
hytux_vm.launched = 0;
hytux_vm.exit_count = 0;

local_irq_disable();

/* We write all the fields of the VMCS. They represents the state of the VM, plus
* additional information about event restriction/interception. */

vmcs_write_hoststate_area(&hytux_vm, vmx_conf);
vmcs_write_vmexit_ctrl_fields(vmx_conf);
vmcs_write_vmentry_ctrl_fields(vmx_conf);
vmcs_write_vmexec_ctrl_fields(vmx_conf);
vmcs_write_gueststate_area(vmx_conf);

/* We put the current running Linux kernel into the just configured VM
* (we assume that VMCLEAR has been executed on that VMCS)
* Then the hypervisor hands over the processor to the VM (ASM_VMX_VMLAUNCH). */

asm volatile(
/* vmwrite of GUEST_RSP */
"mov %[GUEST_RSP], %%rdx \n\t"
ASM_VMX_VMWRITE_RSP_RDX "\n\t"
/* vmwrite of GUEST_RFLAGS */
"pushq %%rax \n\t"
"pushfq \n\t"
"popq %%rax \n\t"
"mov %[GUEST_RFLAGS], %%rdx \n\t"
ASM_VMX_VMWRITE_RAX_RDX "\n\t"
"popq %%rax \n\t"
"movb $1, %c[guest_mode](%[vm]) \n\t"
ASM_VMX_VMLAUNCH "\n\t"
".Lvmlaunch_fail: "
"setbe %c[fail](%[vm]) \n\t"
"movb $0, %c[guest_mode](%[vm]) \n\t"
".Lvmx_guest_entry: "
: :
[vm]"c"(&hytux_vm),
[fail]"i"(offsetof(struct vmx_vm, fail)),
[GUEST_RSP]"i"((unsigned long)GUEST_RSP),
[GUEST_RFLAGS]"i"((unsigned long)GUEST_RFLAGS),
[guest_mode]"i"(offsetof(struct vmx_vm, in_guest_mode))

: "cc", "rax", "rdx", "memory");

/* If VMLAUNCH has not failed we are in guest mode for the first time
* (the VM has been set to enter here), so we return to the init module
* function. */
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if (hytux_vm.in_guest_mode) {

hytux_vm.launched = 1;
local_irq_enable();

return 0;
}

/* VMLAUNCH failed during the first step of the guest launching
* (intel chap22), so we inform the user. */

vmx_dump_guest_register();

/* We do not use a simple "else" because gcc will make
* optimization that screw things up, i.e., it will end the
* function before .Lvm_exit_handler (thus this label will be
* undefined at link time). */

if (hytux_vm.fail == 1) {

printk(KERN_ERR "Hytux: VMLAUNCH failed\n");

hytux_vm.exit_info.fail_entry_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
printk(KERN_ERR "Hytux: INSTRUCTION_ERROR = %d\n",

hytux_vm.exit_info.fail_entry_reason);

local_irq_enable();
return -1;

} else if (hytux_vm.fail == 0) {

printk(KERN_ERR "Hytux: VMLAUNCH failed but no indication of failure
in RFLAGS\n");

local_irq_enable();
return -1;

}

/* This is the entry point for VM-exits. We first store some registers
* that are not saved in the VMCS at VM-exit. Then we handle these VM-exits
* through the function vmx_check_error_fields() (which implements the
* verification and preservation of constraints). Finally we reload the VM
* previously stored registers and resume VM execution

(through ASM_VMX_VMRESUME). */

asm volatile(".Lvm_exit_handler: ");

/* (23.5.3) When a VM-exit occurs, rflags is cleared except
* bit 1 (so rfalgs.IF = 0, i.e., local interrupts are
* disabled). */

store_vm_regs(&hytux_vm);
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/* Now, gcc cannot rely on any previous registers’ value as
* they are all clobbered in store_vm_regs(). This is what we
* want as we land here because of a VM-exit (all registers’
* value come from the guest context). */
hytux_vm.exit_count++;

/* Here, we handle the VM-exit. */

hytux_vm.ret = vmx_check_error_fields(&hytux_vm);

if (hytux_vm.ret < 0) {
local_irq_enable();
panic("Hytux Dead! (VM-exit not handled)");

}

load_vm_regs(&hytux_vm);

asm volatile(".Lvmx_resume: " ASM_VMX_VMRESUME "\n\t");

/* VMRESUME failed during the first step of the guest
* launching (chap22), so we inform the user. */

vmx_dump_guest_register();

local_irq_enable();
panic("Hytux Dead (VMRESUME failed)!");

}

The functions store_vm_regs() and load_vm_
regs() are really part of the previous function (they are
inlined), and are shown in what follows (for the sake of
clarity, only their 64-bit version is shown).

static inline void store_vm_regs(struct vmx_vm *vm)
{
/* We do not store rsp, cr3, rflags, as they are VMCS fields. */

asm volatile(
"pushq %%rcx \n\t"
:::"rcx");

asm volatile(
/* Save guest registers */
"mov %%rax, %c[rax](%0) \n\t"
"mov %%rbx, %c[rbx](%0) \n\t"
"popq %c[rcx](%0) \n\t"
"mov %%rdx, %c[rdx](%0) \n\t"
"mov %%rsi, %c[rsi](%0) \n\t"
"mov %%rdi, %c[rdi](%0) \n\t"
"mov %%rbp, %c[rbp](%0) \n\t"
"mov %%r8, %c[r8](%0) \n\t"
"mov %%r9, %c[r9](%0) \n\t"
"mov %%r10, %c[r10](%0) \n\t"
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"mov %%r11, %c[r11](%0) \n\t"
"mov %%r12, %c[r12](%0) \n\t"
"mov %%r13, %c[r13](%0) \n\t"
"mov %%r14, %c[r14](%0) \n\t"
"mov %%r15, %c[r15](%0) \n\t"
"mov %%cr2, %%rax \n\t"
"mov %%rax, %c[cr2](%0) \n\t"
: : "c"(vm),

[rax]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RAX])),
[rbx]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RBX])),
[rcx]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RCX])),
[rdx]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RDX])),
[rsi]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RSI])),
[rdi]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RDI])),
[rbp]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RBP])),
[r8]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R8])),
[r9]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R9])),
[r10]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R10])),
[r11]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R11])),
[r12]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R12])),
[r13]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R13])),
[r14]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R14])),
[r15]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R15])),
[cr2]"i"(offsetof(struct vmx_vm, arch.cr2))

: "cc", "memory"
, "rax", "rbx", "rdx", "rdi", "rsi"
, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"

/* ’rbp’ must be added to the clobbered list if the kernel is compiled
* without CONFIG_FRAME_POINTER, as gcc could use ’rbp’ for anything and
* screw things up (and that’s exactly what it does in this situation). */

#ifndef CONFIG_FRAME_POINTER
, "rbp"

#endif
);

}

static inline void load_vm_regs(struct vmx_vm *vm)
{

/* We do not load rsp, cr3, rflags, as they are VMCS fields */

asm volatile(
/* Load guest registers. */
"mov %c[cr2](%0), %%rax \n\t"
"mov %%rax, %%cr2 \n\t"
"mov %c[rax](%0), %%rax \n\t"
"mov %c[rbx](%0), %%rbx \n\t"
"mov %c[rdx](%0), %%rdx \n\t"
"mov %c[rsi](%0), %%rsi \n\t"
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"mov %c[rdi](%0), %%rdi \n\t"
"mov %c[rbp](%0), %%rbp \n\t"
"mov %c[r8](%0), %%r8 \n\t"
"mov %c[r9](%0), %%r9 \n\t"
"mov %c[r10](%0), %%r10 \n\t"
"mov %c[r11](%0), %%r11 \n\t"
"mov %c[r12](%0), %%r12 \n\t"
"mov %c[r13](%0), %%r13 \n\t"
"mov %c[r14](%0), %%r14 \n\t"
"mov %c[r15](%0), %%r15 \n\t"
"mov %c[rcx](%0), %%rcx \n\t"
: : "c"(vm),

[rax]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RAX])),
[rbx]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RBX])),
[rcx]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RCX])),
[rdx]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RDX])),
[rsi]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RSI])),
[rdi]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RDI])),
[rbp]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_RBP])),
[r8]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R8])),
[r9]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R9])),
[r10]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R10])),
[r11]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R11])),
[r12]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R12])),
[r13]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R13])),
[r14]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R14])),
[r15]"i"(offsetof(struct vmx_vm, arch.regs[VM_REGS_R15])),
[cr2]"i"(offsetof(struct vmx_vm, arch.cr2))

: "cc", "memory"
, "rax", "rbx", "rdx", "rdi", "rsi"
, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"

);

}
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