J Comput Virol (2011) 7:95-105
DOI 10.1007/s11416-010-0140-6

ORIGINAL PAPER

Determining malicious executable distinguishing attributes

and low-complexity detection

Hassan Khan . Fauzan Mirza . Syed Ali Khayam

Received: 19 July 2009 / Accepted: 7 January 2010 / Published online: 27 January 2010

© Springer-Verlag France 2010

Abstract Detection of rapidly evolving malware requires
classification techniques that can effectively and efficiently
detect zero-day attacks. Such detection is based on a robust
model of benign behavior and deviations from that model
are used to detect malicious behavior. In this paper we pro-
pose a low-complexity host-based technique that uses devi-
ations in static file attributes to detect malicious executables.
We first develop simple statistical models of static file attri-
butes derived from the empirical data of thousands of benign
executables. Deviations among the attribute models of benign
and malware executables are then quantified using infor-
mation-theoretic (Kullback-Leibler-based) divergence mea-
sures. This quantification reveals distinguishing attributes
that are considerably divergent between benign and malware
executables and therefore can be used for detection. We use
the benign models of divergent attributes in cross-correlation
and log-likelihood frameworks to classify malicious execu-
tables. Our results, using over 4,000 malicious file samples,
indicate that the proposed detector provides reasonably high
detection accuracy, while having significantly lower com-
plexity than existing detectors.

H. Khan (X)) - F. Mirza - S. A. Khayam

School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST),
Islamabad 44000, Pakistan

e-mail: 43mhassan @seecs.edu.pk; hassankh@usc.edu

F. Mirza
e-mail: fauzan.mirza@seecs.edu.pk

S. A. Khayam
e-mail: ali.khayam@seecs.edu.pk

1 Introduction

Malware is a serious global problem that has repeatedly
caused losses in productivity, time, reputation, service avail-
ability, and data integrity for both individuals as well as enter-
prises. Consequently, over the last decade this problem has
emerged as one of the biggest challenges for the information
security community. The rapidly evolving nature of contem-
porary malware adds an additional layer of complexity to
this already-challenging problem domain. Due to the rapid
evolution and unseen natures of emerging malware threats,
it is important to develop real-time defenses that can detect
zero-day attacks. Moreover, a pragmatic host-based malware
detection technique should have low processing and memory
requirements in order to cater for the complexity-constrained
natures of endhost systems.

In this paper, we propose a host-based approach that lever-
ages static attributes of binary executables to detect mali-
cious files. We first identify distinguishing attributes that dif-
fer considerably among benign and malicious executables
using a diverse dataset containing thousands of benign and
malicious executables. We statistically model static attributes
observed in benign and malicious files and then quantify the
divergence between these attributes in a Kullback-Leibler
based information-theoretic framework. This quantification
yields distinguishing attributes that are considerably differ-
ent among malicious and benign executables.

After identifying distinguishing file attributes, we pres-
ent a simple and low-complexity classifier which employs
these attributes for malware detection using cross-correla-
tion and log-likelihood tests. In empirical tests, on a sample of
5,290 previously unseen executables, our classifier provides
a detection rate of 86.3, 85.5 and 62.5% for worms, viruses
and Trojans, respectively, with an average false positive rate
of 6.7%. During empirical tests, we do not distinguish among

@ Springer

96

H. Khan et al.

compressed (packed) or uncompressed (unpacked) malware.
Performance comparison with machine learning and existing
host-based malware detection techniques show that the pro-
posed detector, while having significantly lower complexity
(less than an order of magnitude in most cases), provides
much better accuracy than existing techniques.

The rest of this paper is organized as follows: Sect. 2
describes related work in this area. Section 3 describes the
data collection and the diversity of the executables that are
used in this work. Section 4 statistically models executable
file attributes and then compares the models derived from
malicious and benign executables to quantify their attributes’
differences. Section 5 evaluates the performance (accuracy
and complexity) of statistical and machine learning classi-
fication tools and also compares performance with existing
techniques. Section 6 discusses possible attacks and coun-
termeasures on the proposed detector. Section 7 summarizes
the key findings of this paper.

2 Related work

Pattern-recognition approaches are well-known and conven-
tional approaches to reliable known malicious software detec-
tion. A great deal of research has been done in this area [1],
including study of techniques for automatic signature extrac-
tion [2] and the application of machine learning and data min-
ing algorithms [3,4]. Techniques for specifically analyzing
Win32 malware have also been developed [5,6].

High accuracy rates have been achieved by using a generic
n-gram based detection approach [7]. Stolfo et al. [8] discuss
possibilities to detect embedded malware and malicious ex-
ecutables using 1-gram and 2-gram patterns. Various other
heuristic based malware detection approaches which attempt
analysis of the machine code [9,10] have been explored.
However, except for the pattern recognition approach, these
techniques are computationally expensive and unsuitable for
real-time analysis and classification. On other hand, the
pattern-recognition approach is much less effective at detect-
ing zero-day malware.

While many malware detection techniques have been pro-
posed, in this section we only discuss relevant Win32 portable
executable malware detection techniques and their limita-
tions. A closely related study to the present work is by Schultz
et al. [11] where the authors conducted experiments on
viruses and trojan horses and used data mining techniques
for detection of malicious code. Three methods proposed by
Schultz et al. include binary signature, hexdump and string
sequence analysis. For the binary signature they used 38
malicious and 206 benign executables of the PE file for-
mat and extracted three types of information: (1) DLLs used
(2) function calls from the DLLs, and (3) number of differ-
ent system calls from each DLL. Their processing resulted

@ Springer

in 2,229 binary attributes and 30 integer attributes. The hex-
dump method worked by extracting two-byte words from an
executable which were treated as a binary attribute that were
either present or from an executable. Their strings method
extracted strings from a binary file and each string was treated
as an attribute that was either present or missing from an exe-
cutable. The hexdump approach could generate up to 65,536
attributes and the possible attributes from the strings method
is also very large.

Our approach is similar to the binary signature technique
of Schultz et al., because we focus on the static attributes of
the file which also contains the signature. The high process-
ing and storage requirements of [11] make it impractical for
resource-constrained endhosts. On the other hand, we treat
complexity as a fundamental design objective in our detec-
tion algorithm. We compare our results with the detection
results for binary signature reported in [11] and n-gram based
approaches in [8]. It should also be mentioned that details of
DLL names and attribute values are not provided in [11], and
the URL for the dataset used in that paper is also inaccessible.
Therefore, it is not possible to develop the detector of [11]
or to reproduce its results. To compare performance with the
binary signature approach, we simply borrow the detection
and false positive rates from [11]. Performance comparison
with [8] is based on our dataset which contains more malware
than the dataset used by [8].

3 Dataset description

While our modeling, analysis and detection approaches are
quite generic, we design and evaluate our proposed detec-
tor on the PE file format, which is the standard executable
(EXE) file format used by the Microsoft Windows operating
system. This format was chosen because a large number of
Windows-based malware samples in this format were avail-
able on the Internet. We downloaded various malicious sam-
ples from VX Heaven Virus Collection website [12], which
included infected executables, virus loaders, worms and tro-
jans horses. VX Heaven Virus Collections is the largest pub-
licly available free malware data set which contains distinct
samples or distinct variants of a sample and uses the malware
nomenclature. This dataset has already been used by [7,8].
The benign and malicious executables contain both com-
pressed and encrypted samples (packed). In our benign data-
set 61.3 and 38.7% of the executables were non-packed and
packed respectively. Similarly 47.2 and 52.8% of malicious
executables were non-packed and packed respectively.
We do not distinguish between packed and non-packed sam-
ples. In particular, since we wanted to conduct this work
on typical malware and benign executable samples, we did
not preprocess (e.g.,unpack) any of the samples prior to the
analysis or tests. Although generic unpacking techniques

Determining malicious executable distinguishing attributes and low-complexity detection 97

Table 1 Executable file
attributes analyzed in this paper

text section.

1. DOS checksum. 2. Number of sections. 3. Time stamp. 4. Number of symbols. 5. Size of code.

6. Size of initialized data section. 7. Size of un-initialized data section. 8. Major OS version. 9. Minor

OS version. 10. Major image version. 11. Minor image version. 12. Major subsystem version. 13. Minor
subsystem version. 14. Entry point. 15. Image file checksum. 16. Size of exports. 17. Size of imports.

18. Size of resources. 19. Size of exceptions. 20. Size of attribute certificate table. 21. Size of base
relocations. 22. Size of copyright. 23. Size of thread local storage. 24. Size of bound imports.

25. Size of import table. 26. Dynamic link libraries used. 27. Registry references made. 28. Cursors.

29. Bitmaps. 30. Icons. 31. Menus. 32. Dialogs. 33. Strings. 34. Font directories. 35. Fonts. 36. Accelerators.
37. RC data. 38. Message tables. 39. Group cursors. 40. Group icons. 41. Version. 42. Entropy of code/

for executable files exist [13,14], these techniques require
simulation of executable files which significantly increases
the complexity of proposed approach. In the following sec-
tion, we identify distinguishing features of malware without
discriminating between packed and non-packed executable
samples. However, we consider entropy of code section as a
discriminating feature.

Throughout this paper, we refer to benign, worms, viruses
and trojans as different genres of executables. For our exper-
iments we have collected 1410 viruses, 160 worms and 2520
trojans. We also gathered 1,200 benign samples from
machines running Microsoft Windows XP and Microsoft
Windows 2000 operating systems. The benign samples
include executable files bundled with operating system, third
party installers, third party executables, and third party unin-
stallers. Our diverse selection of benign executables ensures
soundness of our results in worst case scenarios.

In order to select the attributes that could distinguish
among the benign and malicious samples, we analyze the
DOS header, COFF header, PE optional header, data directo-
ries, import table, sections and resources related information
of a PE file. All the attributes that are derived from these file
sections are listed in Table 1. These attributes are extracted
from our diverse dataset of benign and malicious executables.
Some attributes are specific to a malicious class yet most of
the attributes hold their properties throughout the malicious
(worms, viruses and trojan horses) genres.

4 Statistical analysis and quantification of executable
file attributes

Like prior zero-day malware detection studies [7,11], we sub-
divide the present problem of malware detection using exe-
cutable file attributes into two sub-problems: identification
of distinguishing attributes and classification using the iden-
tified attributes. This section focuses on the former problem
where we compare malware and benign files to identify dis-
tinguishing or divergent attributes. The main challenge in this
context is accurate modeling and quantification of the diver-

gence in file attributes. To this end, we statistically model the
executable file attributes as discrete random variables, and
then use information divergence measures to quantify the
differences between benign and malicious files’ attributes.

4.1 Modeling file attributes as discrete random variables

We model each file attribute as a discrete random variable
by mapping each plausible value of an attribute to an integer
outcome. Using the benign and malware datasets, for each
random variable we compute histograms of each outcome.
By normalizing these histograms, we obtain the probabil-
ity mass functions (PMFs) of the attribute random variables.
The outcomes to integer mappings for some representative
random variables are enumerated in Table 2. The first three
attributes in Table 2 are checked for their presence only, that
is whether value of these attributes is present (non-zero) or
absent (zero). The entropy of code section is the byte distri-
bution entropy.! We should emphasize that Table 2 lists all
the file attributes that are used for classification in the next
section. Using this mapping and our dataset, future studies
can compare accuracy of their results with the technique pro-
posed in this work.

4.2 Quantification of attribute dissimilarities using
information divergence

After modeling the file attributes as discrete random vari-
ables, for each attributed random variable we need to quan-
tify the difference between the PMF derived from the benign
samples and the PMFs derived from malware samples.
In order to quantify these differences, we use Kullback-
Leibler based information divergence measures [15]. A brief
description of these measures follows.

For two PMFs p(X) and ¢ (X) of a discrete random vari-
able X, the Kullback-Leibler divergence provides a measure
of how statistically different p and g are from each other.

! The standard formula for information entropy of a byte-distribution
was used: H(X) = — 323 p(i) log, p(i).

@ Springer

98

H. Khan et al.

Table 2 Possible values for

attribute random variable Attribute Possible Condition
outcomes
PE checksum 2 Value is zero OR non-zero
Debug 2 Value is zero OR non-zero
OS and image versions 2 Value is zero OR non-zero
Number of sections 6 <3,3,4,5,6,>6
Entropy of code section 3 Indeterminable, <4, > 4
Resources 5 0, <10, <20, <30, >30
Entry point 3 Invalid, Valid, Obfuscated
Registry keys 3 0,1,>1
Registry startup keys 2 0,1
Networking related DLLs 5 {wininet, ws2_32, wsock32, raspi}.dll
High frequency DLLs in benign 7 {winmm, shell32, comctl32, gdi32, version,
shellwapi }.dll
Size 6 <500 KB, <1000 KB, <2000 KB, <3000 KB,

<4000 KB, >4000 KB

Mathematically it can be expressed as

. . p(X =1i)
D(p(X)llg (X)) = gA‘,p(X = i) log, (—q(x — l.)) M

where A represents the set of all possible values that the
random variable X can take. The Kullback-Leibler (K-L)
divergence provides a non-negative information divergence
measure which is zero if and only if p = gq.

As an example, let us use the K-L divergence measure to
quantify the difference between the PE Checksum random
variable in the benign and worm samples. Let this binary ran-
dom variable (see Table 2) be represented by X, and denote
its benign and worm-based PMFs as p(X) and g (X), respec-
tively. Then the K-L divergence of X between the benign and
malicious datasets is:

0
Dplg) = pOlogs P2 1 p(1) log,
q(0)

p(h)

2
q(1) @

A closer examination of Egs. (1) and (2) reveals the two prop-
erties of the K-L divergence that are of direct relevance to the
present problem. First, the K-L divergence is non-symmetric:
In general, D(p(X)llg(X)) # D(g(X)[p(X)), and there-
fore K-L is not a true distance metric [16]. Thus for accurate
feature quantification, we need to evaluate both D(p(X)||
q(X)) and D(q(X)| p(X)). Second, the g(X) PMF should
be continuous with respect to the p(X) distributions. That is,
atany X =i, where i € A, if we have p(i) #0,q(@{) =0,
then D(pllg) = oo. Since we do not have control over the
benign and malware PMFs, this condition is quite stringent
and can lead to biased results.

To cater for the above problems of K-L divergence, we use
the Resistor Average (RA) information divergence measure
[17,18]. The Resistor Average divergence,)i ,of two discrete

@ Springer

PMFs p(X) and ¢ (X) is defined as:

1 1

D(p(X)llq(X)) - D(q(X)|lp(X))
3)

RA divergence uses two K-L divergence D(p(X)| ¢ (X)) and
D(g(X)| p(X)) to generate a symmetric metric. Moreover,
the PMFs need not be continuous with respect to the other.

RA divergence provides us with a quantification of the dif-
ference between two attributes’ PMFs derived from
different genres, and hence can be used to identify distin-
guishing attributes. However, to establish the reliability of
the identified attributes, we also need to ensure that these
attributes exhibit consistent behavior within each file genre.
For instance, let us assume that the PE Checksum attribute’s
RA divergence is very high between benign and worm sam-
ples. While RA divergence will quantify the divergence of
this attribute across file genres, if this is a truly distinguish-
ing attribute then its value should be consistent within each
file genre. That is, if we randomly subdivide the benign
(worm) dataset into smaller subsets, the statistics of this attri-
bute should be similar for all the benign (worm) subsets.
RA divergence across file genres does not provide such
quantification. Therefore, we propose a new metric, called
Differential RA divergence (DiffRA), which quantifies the
similarity between samples from the same file genre.

Given two RA divergence values 94 and N p generated
from distinct pairwise subsets of the same file genre, DiffRA
divergence dg, is defined as:

R(p(X), q(X)) =

In(Ma, Np) = [Na — Np| “

If an attribute has consistent statistical behavior within a file
genre, dg, Will be close to zero, while for dissimilar 9t dis-
tributions, dy will be large.

Determining malicious executable distinguishing attributes and low-complexity detection 99
Fig. 1 Resistor Average () 2
divergence values for 2 18 1M B WORMS
distinguishing executable 3
attributes: BEN benign, TRJ g 1.6 1 m VIRUSES
trojan horse, VIR virus, and o 14 - OTROJANS
WRM worm (only 13 attributes g 12
having the highest)i values are s
shown) > 1 -
<
o 08-
g 06
g
w 04
|
o | 0 I , mm e & |
] &) & O & o .
& @o@ 65\00 & &oa" % é)og \@Q‘\ Qo\'i‘ & @ G@““ ~£-“""§G
& @ ® O o ST & Q\c\ _{\Q‘i K
O 5 i§ @ & oS & S
CQQ.I Q;() N, C_;\ z,o)
S > @ &
& & o8
SRS &S
o‘o é_e- 6?6 X
o @
) 2
N
‘2;>Q'
Attributes

4.3 Identification of distinguishing attributes

We now use the measures described in the last section to iden-
tify distinguishing attributes that are considerably different
across benign and malware samples. After identifying these
attributes, the next section will show how these attributes can
be used for malware classification.

Throughout this paper, we use the fivefold cross validation
technique [19] to ensure the accuracy and reliability of the
results over unseen data. To this end, executable files in each
of the four file genres (benign, worm, virus and trojan horses)
were subdivided into 10 distinct subsets. For each file genre,
we created 5 pairs of these subsets for pair-wise comparison
of the statistics of the executables file attributes. Results for
each pair in a file genre were compared with the results of
other pairs in order to determine the validity of results among
a large number of unseen samples.

Using 5-fold cross validation, we first calculate the diver-
gence values among attributes of benign and worm execu-
tables, benign and virus executables, and benign and trojan
executables. We also calculate the DiffRA divergence (dg.)
among benign executables, among worm executables, among
virus executables, and among trojan executables. For a dis-
tinguishing feature, we expect that the)i divergence between
different benign and malicious genres will be large, while the
DiffRA (0g.) values within a genre will be small.

Figure 1 shows the results of RA divergence for the 13
attributes that resulted in the highest values. Similarly, Fig. 2
shows the DiffRA (dg.) values within each file genre. It is
apparent from Fig. 1 that the) values are large enough to
prove that these top-13 attributes differ significantly for the

benign and malicious executables. Also, it is apparent from
Fig. 2 that dg, values of these attributes are quite small within
a genre. In order to avoid overfitting, we only use these 13
attributes with highest RA divergence and do not consider
the remaining attributes listed in Table 1.

4.4 Discussion

Based on the %t and dg, divergence values, we deduce that
the attributes shown in Figs. 1 and 2 are significantly diver-
gent between benign and malware samples, and hence can be
used for classification. Classifiers that employ these attributes
for malware detection are proposed in the following section.
Before we proceed to develop classifiers that rely on the dis-
tinguishing attributes, some important questions should be
highlighted. For instance, under what conditions is a mal-
ware executable classified as benign (missed detections)?
And how much does each attribute contribute to the detection
accuracy? Also, how difficult or easy is it to launch mimicry
attacks on the distinguishing attributes? We discuss these
points in detail in Sect. 6.

5 Detection using statistical and machine learning
techniques

In this section, we leverage the distinguishing attributes iden-
tified in the preceding section to detect zero-day malicious
executables. A fundamental constraint that we invoke in this
section is to only use benign data to train the attribute models.
Malware are then detected using the (trained) benign attribute

@ Springer

100 H. Khan et al.
Fig. 2 DiffRA Divergence 2 q
(09) between samples of the 18 -
same file genre ’
1.6
E 14 -
o 121
> 1-
5
0.8 4
=
O 0.6 -
04 -
0.2 4
0 o :J - _m [0 [=
& Y E P & ST
(@& K & o0 r:,@(} Q < &‘\S\ _o@e R & S
&) & b 5 & 6(-39
¥ & > 9 «
> S S
& &P &)
© e & oL
O oa- @@P
=) <
&
"
Attributes

models in a true anomaly detection framework. The detec-
tion dataset contains different samples from training dataset
and no sample overlaps among these datasets. We also com-
pare the accuracy (in terms of true and false positive rates)
and complexity (in terms of CPU cycles) of our proposed
detector with existing techniques.

First, we propose a simple and low-complexity statisti-
cal detector which compares the learned statistical models
of file attributes with the attributes observed in an unknown
file using cross-correlation and log-likelihood tests. The out-
put of these tests is used to classify the unknown file. As a
baseline for performance evaluation, we compare the per-
formance of the proposed detector with a support vector
machine (SVM) based classifier; SVMs have been used
extensively for anomaly detection in prior studies [20,21].

In order to evaluate the accuracy of the detectors, we com-
pute the count for true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN) as described
in [11]. True positives and true negatives occur when our
approach correctly classifies a benign or malicious execut-
able. A false positive occurs when our approach mislabels a
benign executable as malicious. A false negative is reported
when our approach mislabels a malicious executable as

benign. Detection rate is defined as TPIFN false positive

TP+TN

rate as TPTTN+FPFFN-

%, and overall accuracy as

5.1 Detection using statistical models of distinguishing
attributes

We employ two low-complexity statistical measures to lever-
age the distinguishing executable file attributes identified in
the preceding section. For both the measures, we first learn

@ Springer

the benign attribute PMFs using half of the benign dataset,
referred to as the “training dataset”. The other half is used to
ascertain false positive rates and is henceforth referred to as
the “benign test dataset”. The training dataset and test dataset
contain distinct samples and there are no samples that over-
lap in these datasets. The attributes observed in the unknown
file are then compared against the benign PMFs using cross-
correlation and log-likelihood tests.

We again emphasize that many of the existing anom-
aly detectors (including the SVM-based anomaly detector
discussed in the following section) leverage malware statis-
tics to train the anomaly detectors [7,21]. Consequently, the
accuracy of these detectors is dependent on the malware that
are used to train them. We, on the other hand, want to develop
a true anomaly detector that does not rely on malicious sta-
tistics and flags maliciousness by characterizing deviations
from a robust model of benign attributes. Hence, both the
statistical tests employed in this section rely only on the
benign statistics.

Detection using cross-correlation test

For classification, we first use the cross-correlation measure
[22] which quantifies the similarity between two vectors.
To use this measure, we treat the ordered list of distinguish-
ing attributes as a discrete random process, Y, where each
constituent random variable of the process corresponds to
a distinct attribute random variable. From the benign sam-
ples, we know the PMFs of each constituent random vari-
able. We treat the distinguishing attribute vector X from the
unknown file as a realization of this random process. To find
the cross-correlation of the unknown realization with benign

Determining malicious executable distinguishing attributes and low-complexity detection 101

realizations, we use the benign attributes’ PMFs to gener-
ate an ensemble of n realizations of the random process, say
Yi,i =1,2,..., n. We then generate a process realization Y
by taking the ensemble average of each attribute; i.e., for an
attribute indexed at k, Y[K] = % Zf: 1 Yilk]. We compute
the cross-correlation of X with each Y as:

O(X.Y) = > X[kIY[k])

kegp

where ¢ is an ordered set of distinguishing attribute ran-
dom variables. High values of cross-correlation imply that the
unknown file’s attributes closely match the statistics observed
in the training dataset. Low values of cross-correlation imply
that the file is potentially malicious. For our experimental
evaluation, we set n=25 and use different threshold values
to classify the malware and benign test dataset files. Based
on these varying thresholds, we observe different accuracies
using the cross-correlation measure.

Detection using log-likelihood test

Another measure that we use for classification is the log-like-
lihood [23] of the random process realization observed in the
unknown file. Specifically, assuming independence across
attributes, the likelihood that the unknown realization X has
been derived from the learned (benign) random process Y is

LX|Y) =[] P{YIk] = X[k]}
kegp

- _ng P{Y[k] = X[k]} (6)
ke

where ¢ is an ordered set of distinguishing attribute random
variables. Like the correlation measure, higher values of this
measure imply a potentially benign file, while malicious sam-
ples should have low likelihood values.

5.2 Detection using SVM

To compare our results with an alternative technique for
classification, we employed a machine learning technique,
Support Vector Machines (SVMs), for the classification pur-
pose. Due to their binary classification and non-statistical
nature, SVMs have been used quite frequently for anom-
aly detection in prior studies [20,21]. SVMs are a set of
related supervised learning method used for linear classi-
fication [24,25]. SVMs classify by mapping input vectors
to a higher dimensional space where a maximal separating
hyperplane is constructed. The distinguishing characteristic
of SVM is that they simultaneously minimize the empirical
classification error and maximize the geometric margin.
Given training vectors x; € W, i = 1,2,...,[in two
classes, and a vector y € 0’ such that each y; € {+1, —1},

an SVM for non-separable data considers the following pri-
mal optimization problem [26]:

1
o1
min EwTw + 0 Z;‘aiyi (0T K (si,x) +b) 7
=

such that derivatives of the objective function vanish with
respect to and subject to the constraint that o; > 0,i =
1,2, ..., In the objective function w is a perpendicular to
the hyperplane that separates the positive and negative points,
O isaparameter thatis used to costthe «;’s , K (s;, x) isanon-
linear kernel that maps the input data to another (possibly infi-
nite dimensional) Euclidean space, and s;’s are points called
the support vectors that maximize the separation between the
positive and negative examples.

For SVM-based classification, we use SVM”gh[, which
is an open-source implementation of SVM in the C language
[27]. For each file genre, we used half of the samples for
training and the remaining samples for testing. The points V,
W and T in Fig. 3 show the SVM results for viruses, worms
and trojans, respectively.

5.3 ROC-based performance evaluation of the proposed
detector

We plot Receiver Operating Characteristics (ROC) curves
for our approach and compare it with [11] and [8]. For our
technique, we classify a file as malicious if either cross-
correlation or log-likelihood classifiers flag it as malicious.
For the classifiers, the detection threshold was changed over
arange of values, and for each threshold, detection and false
positive rates were logged.

Figure 3 shows the ROC curves of our Statistical Mod-
els approach, and the Mahalanobis [28] and Exemplars [16]
based implementation of [8] for worms, viruses and trojans
on our dataset. It can be observed that our approach gives
very good detection rates with negligible false positive rates
as compared to Mahalanobis and Exemplars based imple-
mentations of n-gram. For instance, at a false positive rate of
2%, our approach performs substantially better than the rest
of the approaches. The detection rates of Mahalanobis and
Exemplars based approaches of [8] commensurate with our
results at a false positive rate of approximately 50%, which
is unacceptable for any detector. We also show the binary
signature approach as it is related to our detection approach.
The binary signature method gives a constant detection rate
of 30%. As well as having higher accuracy, it will also be
shown shortly that in terms of time and memory complexity,
our approach is considerably better than the signature based
method approach of Schultz et al. At a false positive rate of
6.7%, our proposed detector achieves a detection rate of 86.3,

@ Springer

102

H. Khan et al.

a0 e
i
80 | o e
701 Seaad
601~ oT

50 1|
all

I i/
30 _.4._._._._._._._.;4._._ s e i R
| r Statistical Modsl
21 s Mahalancbis
10 - 7 [Exenplars
-] i -~ Binary Signature
g1 . 1] ey
0 20 40 60 80 100
False Postive Rate %

Detection Rate %

b 10
90 4 i —_—
goff W
70)
60
50 | i
ol /

301 _
20 ¥

0d ---- Mahalanobis
.‘."/ e Exemplars

Detection Rate %

— Statistical Model

0 20 40 60 80 100
False Positive Rate%

Detection Rate %
o
o

—— Statistical Model
7 ===~ Mahalanobis
104 ‘4.»' oo Exemplars

], ot === Binary Signature
0 20 40 60 80 100
False Positive Rate %

Fig. 3 Statistical Model and n-gram ROC for a worms, b viruses and ¢
trojans. Statistical Models curve shows the results of proposed approach.
Mabhalanobis [28] and Exemplars [16] show the ROCs of [29]. Binary
Signature shows the results of [11]. The points V, W and T in graph
show the detection results for viruses, worms and trojans using SVMs,
respectively (a) Worms, (b) Viruses, (¢) Trojans

85.5 and 62.5% for worms, viruses and trojans, respectively,
which is much better than an SVM approach operating on
the same attributes.

@ Springer

We note that the detection results for trojans are not as
encouraging as for viruses and worms. This is because
trojans are typically quite similar to benign executables.
We are currently investigating approaches to improve the
detection rate for trojans.

5.4 Comparison of algorithm complexity

In addition to its accuracy advantages, CPU and memory
requirements of our statistical model approach are far lower
than other approaches of static malware detection. An intui-
tive explanation for this is that our detection algorithm may
be considered as two sequential algorithms: (1) extraction of
attributes from a given executable file; and (2) evaluation of
the cross-correlation and log-likelihood tests. The complex-
ity of the first part is O (n), since the memory required and
time taken to extract the attributes from the file is directly pro-
portional to the size of the file. The complexity of the second
part is O(1), since both the cross-correlation and the log-
likelihood tests are evaluated on constant-size inputs that are
independent of the file properties, using only a small amount
of memory (between 10-80bytes), and will take the same
amount of time and memory regardless of any of the file
properties or values of the attributes (i.e., file contents).

To verify our complexity estimates, we conducted empir-
ical tests to compare the complexity of our approach with
the other approaches under consideration. Table 3 shows
the complexity comparison of the statistical model based
approach with Exemplar and Mahalanobis distance based
approaches for different file sizes. It can be observed that
for large file sizes the training complexity of the proposed
detector is an order of magnitude lower than the other two
detectors. Similarly, the run-time complexity of the proposed
approach increases linearly with file size, while complexities
of the other two approaches increase exponentially. For a file
size of 2KB, our approach is twice as efficient as n-gram
based approaches in training and for detection it is 100 times
more efficient. For a file size of 15.5MB, our approach is
43 times more efficient in training and 55 times more effi-
cient in detection.

It should be clear that the training time for the statistical
model based detector is negligible as compared to the exten-
sive and lengthy training of SVMs. Similarly, as opposed to
the signature based approach which uses 2,229 binary attri-
butes and 30 integer attributes, our proposed detector uses
only 4 binary and 7 integer attributes.

6 Attacks and countermeasures
To defeat our approach, a malicious executable must have

a sufficient number of attributes that match those of typ-
ical benign executables. By studying the divergence mea-

Determining malicious executable distinguishing attributes and low-complexity detection 103

Table 3 CPU cycle count for . . 3 3

complexity analysis of the File size Training Detection (real-time)

proposed statistical model based Statistical Mahalanobis ~ Exemplar Statistical Mahalanobis ~ Exemplar

detector with and Mahalanobis

and Exemplars based 2KB 1.0 x 107 2.6 x 107 2.8 x 107 1.0 x 107 1.4 x 10° 1.1 x 10°

approaches 5KB 2.0 x 107 3.6 x 107 3.6 x 107 1.0 x 107 1.5 x 10° 1.8 x 10°
50KB 3.1 x 107 1.7 x 108 1.7 x 108 3.2 x 107 7.4 % 10° 9.7 x 10°
475KB 6.54 x 107 1.3 x 10° 1.4 x 10° 6.86 x 107 9.6 x 10° 2.2 x 1010
15883KB 1 x 10° 4 x 10'0 45%x100 1x10° 4.8 x 1010 6.1 x 1010

Table 4 Modification of - — — — — — —

existing attributes of Attribute Mimic-1 Mimic-2 Mimic-3 Mimic-4 Mimic-5 Mimic-6

W32.Rontokbro@ t

OMOKOID FMM [0 Modified OS & image versions N Y Y Y Y Y

demonstrate robustness against Modified PE. check N N Y Y Y Y

mimicry attacks o 1 € checksum
Modified debug N N N Y Y Y
Modified eesources N N N N Y Y
Modified size N N N N 28% inc. 72% inc.
Cross-correlation 21.72 29.82 36.59 38.0 40.7 45.5
Log-likelihood 1.34 1.83 1.95 2.11 3.24 445

sures of benign and malicious executables, one can determine
which attributes in a malicious executable must be modified
to make it appear benign. For example, in Fig. 1, we see that
our approach uses file size and number of GUI resources as
distinguishing attributes. These attributes stand out because
both of these attributes describe features which are gener-
ally quite specific to the nature of malware, as opposed to
benign software. File size is usually an effective distinguish-
ing attribute because a relatively small file size is useful for
malware to spread effectively (i.e., less space for storage and
quicker transmission over networks). Most malware exec-
utables lack attributes relating to GUIs (e.g., menu or dia-
log box resources, or GUI-related DLLs), because unlike
benign applications, most malware are not designed for user
interaction.

In order to demonstrate the robustness of our approach, we
first identify those attributes that can be easily defeated by a
malware author without compromising the efficiency of mal-
ware and then test our technique by exploiting those features
for the W32.Rontokbro@ mm worm. Table 2 lists all attri-
butes that our approach uses. Although all of these attributes
can be defeated, we categorize each attribute on the basis of
how easily it can be changed in a malicious executable file
and the inefficiency (in terms of execution or network trans-
mission time) which such a change introduces. First, three
attributes can be easily modified by making minor changes in
the headers of an executable, and consequently they do not
affect malware’s efficacy in its operations. Resources can
be added by using a tool like XN Resource Editor,> while
Number of Sections can be increased by specifying options
during the compilation. Addition of Resources and Sections

2 http://www.wilsonc.demon.co.uk/d10resourceeditor.htm

modifies the Size attribute, but these features reduce the effi-
cacy of malware in replication. Finally, remaining attributes
in Table 2, require addition of source code. Fixing entry point
is relatively complex task while Imported DLLs and Registry
Keys can be added by modifying the code. Due to the unavail-
ability of source code, we only show the results by modifying
those attributes which do not require source code for modifi-
cation. Table 4, shows the results of our experiments and dem-
onstrates robustness of our approach against such mimicry
attacks. It can be observed that after forging most of the eas-
ily modifiable attributes; the Mimic-1, Mimic-2, Mimic-3,
Mimic-4 and Mimic-5 can still be detected for threshold value
of 3.25 and 41 for Log-Likelihood and Cross-Correlation,
respectively, which has an associated false positive rate of
9.8%.

To gain a better understanding of why our detection appr-
oach misclassifies some samples, resulting in false positives/
negatives, we present the details of some samples in Table 5,
which shows the attribute values for two samples from each
executable genre (worm, trojan, virus and benign). For each
genre, one sample was correctly identified as malicious or
benign and the other sample resulted in a misclassification.
This table shows that W32.Blaster.Worm, trojan.KillAv,
W32.Segax.Gen and explorer.exe® are correctly identified
samples from worm, trojan, virus and benign genres, respec-
tively. This table also shows W32.HLLP.Zwqq, MSNpws.
trojan, W32.Bacros.A and BurnInTestPro* which are mis-
classified, generating false alarms,from worm, trojan, virus
and benign genres, respectively.

3 Bundled with Microsoft Windows XP SP2.

4 BurnInTest 3.2: http://www.passmark.com/

@ Springer

http://www.wilsonc.demon.co.uk/d10resourceeditor.htm
http://www.passmark.com/

104 H. Khan et al.
Table 5 Attribute values for benign and malicious executables (w = worm, v = virus, t = trojan, b = benign)
Attribute Positive identification False alarm
w32.blaster. trojan.Kill ~w32.segax. explorer. w32.HLLP. MSNpws. w32.bacros. BurnInTes
worm(w) Av(v) gen(t) exe(b) Zwqq(w) trojan(v) A(t) tPro(b)
PE checksum 0 0 0 1 0 0 0 0
Debug 1 0 0 1 1 0 0 0
OS & image versions 0 0 0 1 0 0 0 0
Number of sections 5 8 4 4 6 3 8 8
Entropy of code section 5.20 6.49 4.07 6.28 5.24 7.92 6.10 6.13
Resources 0 29 0 201 2 33 27 10
Entry point 1 2 2 1 1 2 2 2
Registry keys 0 3 0 4 4 1 7 0
Registry startup keys 1 0 0 0 1 0 2 0
Socket-related DLLs 3 1 0 0 5 0 0 0
High frequency DLLs in benign 0 3 0 4 4 3 3 1
Size 176,193 421,376 8,192 1,032,192 2,797,650 181,760 356,352 981,551

It can be observed that many attributes from the false alarm
samples differ substantially from their correctly identified
counterparts, indicating those attributes and corresponding
values that have a significant role in the effectiveness of
accurate detection. The W32 HLLP.Zwqq is very similar to
a benign application in size and imports many of the high
frequency DLLs that are used in benign files. Consequently,
its large size reduces its efficacy in replication. The W32.
Bacros.A has quite a few resources and registry key refer-
ences along with imported benign DLLs. The detection rate
can be improved in this case by borrowing concepts from [30]
to make intelligent decisions about the references to regis-
try. Similarly, MSNpws.trojan contains an unusually high
number of resources and registry keys, which is generally
true for a large number of trojan samples that we evaluated;
this similarity with benign files is the main reason for low
trojan detection rates. We are currently investigating how to
incorporate more low-complexity attributes to improve the
detection rate for trojans. False alarms for benign application
typically arise due to the missing attributes in headers related
to OS and User versions, missing debug information, and/or
very few imported DLLs as compared to the size of file. One
conclusion that may be drawn from this table is that the effec-
tiveness of our approach depends largely on the selection of
the distinguishing attributes, which in turn are selected from
a specific initial set of features. For this study, we chose our
initial set of features based on complexity of extraction from
executables and wanted to avoid working with attributes that
necessitated more complex algorithms (e.g., detailed pars-
ing of the PE file format or disassembling of code); how-
ever, study of differences in accurately and falsely classified
samples indicates that our approach may give better accuracy
rates if either more distinguishing attributes are considered
or if the initial set of features also includes features that may
involve more complexity to extract (e.g., instruction or API
call references).

@ Springer

Due to the simplicity of our approach and the relatively
few attributes used, it is easy for someone to implement our
approach and, while continually testing its ability for evad-
ing detection, modify the attributes of some malware execut-
able until it is no longer detected. However, this may cause
the malware to be significantly larger and more complex
(e.g., dependent on irrelevant DLLs), thus defeating some
key objectives of “effective malware design” that necessitate
small size and fast execution.

Our approach does not provide sufficiently high detection
rates to replace pattern-recognition-based detection.
However, our approach may be implemented in a real-time
malware detection/prevention system since the memory and
time required for analysis are very low. It is also suitable for
implementation in forensic toolkits, where computer inves-
tigators have to scan a large number of files on a system to
identify potential malware (especially zero-day or custom
malware) [29].

We are currently studying techniques to improve the app-
roach described in this paper. One strategy appears to give
better detection rates at the cost of slightly higher complexity,
and is based combining the approach in this paper with
multiple-passes on the executable file to “intelligently”
extract and process static distinguishing attributes. In this
case, the number and location of features is dependent on a
small set of initially extracted features.

7 Conclusion

In this paper, we identified a small number of easily-extracted
static attributes of binary executable files that can be used to
detect malicious executables. To identify these attributes, we
presented a novel application of information-theoretic met-
rics to the problem of malware detection. A simple and low-
complexity statistical classifier was proposed for malware

Determining malicious executable distinguishing attributes and low-complexity detection

105

detection which is substantially more efficient than machine
learning-based classifiers and is suitable for deployment in
real-time or high-speed malware detection systems.

References

11.

12.
13.

14.

. Spafford, E.H.: The Internet Worm Program: An Analysis. Tech.

Report CSD-TR-823. Department of Computer Science, Purdue
University (1988)

Kephart, J.O., Arnold, W.C.: Automatic extraction of computer
virus signatures. In: 4th Virus Bulletin International Conference,
pp. 178-184 (1994)

Kephart, J.O., Sorkin, G.B., Arnold, W.C., Chess, D.M., Tesauro,
G.J., White, S.R.: Biologically inspired defenses against computer
viruses. In: Proceedings of the Fourteenth International Joint Con-
ference on Artificial Intelligence, pp. 985-996. Morgan Kaufmann,
San Francisco (1995)

Lo, R.W.,, Levitt, K.N., Olsson, R.A.: MCF: a malicious code
filter. Comput. Secur. 14(6), 541-566 (1995)

Arnold, W., Tesauro, G.: Automatically generated Win32 heuris-
tic virus detection. In: Proceedings of the 2000 International Virus
Bulletin Conference (2000)

Bayer, U.: TTAnalyze: A Tool for Analyzing Malware. Distributed
System and Automation Groups, Technical University of Vienna
(2005)

Kolter, J., Maloof, M.: Learning to detect malicious executables in
the wild. In: Proceedings of ACM SIGKDD (2004)

Stolfo, S.J., Wang, K., Li, W.-J.: Towards stealthy malware detec-
tion. In: Christodorescu, M., Jha, S., Maughan, D., Song, D.,
Wang, C. (eds.) Malware Detection. Advances in Information Secu-
rity, vol. 27. Springer, US (2007)

Ashcraft, K., Engler, D.: Using programmer-written compiler
extensions to catch security holes. In: Proceedings of the 2002
IEEE Symposium on Security and Privacy, pp. 143—-159 (2002)
Krugel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassem-
bly of obfuscated binaries. In: Proceedings of USENIX Security
Symposium (2004)

Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining
methods for detection of new malicious executables. In: Proceed-
ings of the IEEE Symposium on Security and Privacy, pp. 38-49,
Los Alamitos, CA, 2001. IEEE Press, USA (2001)

VX heavens. http://vx.netlux.org

Martignoni, L., Christodorescu, M., Jha, S.: Omniunpack: fast,
generic, and safe unpacking of malware. In: ACSAC’07: Pro-
ceedings of the 23rd Annual Computer Security Applications
Conference on Annual Computer Security Applications Confer-
ence (2007)

Royal, P., Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Poly-
unpack: automating the hidden-code extraction of unpack-exe-
cuting malware. In: ACSAC’06: Proceedings of the 22nd Annual

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

Computer Security Applications Conference on Annual Computer
Security Applications Conference (2006)

Kullback, S., Leibler, R.A.: On information and sufficiency. Ann.
Math. Stat. 22, 79-86 (1951)

Yeung, R.W.: A First Course in Information Theory. Kluwer
Academic/Plenum Publishers, New York (2002)

Lin, J.: Divergence measures based on the shannon entropy. IEEE
Trans. Inf. Theory 37(3), 145-151 (1991)

Johnson, D.H., Sinanovic, S.: Symmetrizing the Kullback-Leibler
distance. Technical Report (2001)

Kohavi, R.: A study of cross-validation and bootstrap for accuracy
estimation and model selection. In: Mellish, C.S. (ed.) Proceedings
of the 14th International Joint Conference on Artificial Intelligence,
pp. 1137-1143. Morgan Kaufmann, Menlo Park (1995)

Li, K.-L., Haung, H.-K., Tian, S.-F., Xu, W.: Improving one-class
SVM for anomaly detection. In: Proceedings of the Second Inter-
national Conference on Machine Learning and Cybernetics, Wan,
2-5 November 2003

Mukkamala, S., Janoski, G.I., Sung, A.H.: Intrusion detection using
support vector machines. In: Proceedings of the High Performance
Computing Symposium—HPC 2002, pp. 178-183, San Diego,
April 2002

Brockwell, P., Davis, R.: Introduction to time series and forecast-
ing. Springer, Berlin (1996)

Self, S.C., Liang, K.Y.: Asymptotic properties of maximum likeli-
hood estimators and likelihood ratio tests under non-standard con-
ditions. J. Am. Stat. Soc. 82, 605-610 (1987)

Boser, B.E., Guyon, .M., Vapnik, V.N.: A training algorithm for
optimal margin classifiers. In: Haussler, D. (ed.) Proceedings of 5th
Annual ACM Workshop on COLT, pp. 144-152, Pittsburgh, PA,
1992. ACM Press, New York (1992)

Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20,
273-297 (1995)

Burges, C.J.C.: A tutorial on support vector machines for pattern
recognition. Data Mining Knowl. Discov. 2(2), 121-167 (1998)
Joachims, T.: Making large-scale SVM learning practical.
In: Scholkopf, B., Burges, C., Smola, A. (eds.) Advances in
Kernel Methods—Support Vector Learning. MIT-Press, Cam-
bridge (1999)

Mabhalanobis, P.C.: On the generalised distance in statistics. Proc.
Natl. Inst. Sci. India 2(1), 49-55 (1936)

Haagman, D., Ghavalas, B.: Trojan defence: a forensic view.
Digital Investigation, vol. 2, Issue 1, pp. 23-30 (2005)

Stolfo, S.J., Apap, F., Eskin, E., Heller, K., Hershkop, S., Honig,
A., Svore, K.: A Comparative evaluation of two algorithms for win-
dows registry anomaly detection. J. Comput. Secur. 13(4), 659—
693 (2005)

@ Springer

http://vx.netlux.org

	Determining malicious executable distinguishing attributes and low-complexity detection
	Abstract
	1 Introduction
	2 Related work
	3 Dataset description
	4 Statistical analysis and quantification of executable file attributes
	4.1 Modeling file attributes as discrete random variables
	4.2 Quantification of attribute dissimilarities using information divergence
	4.3 Identification of distinguishing attributes
	4.4 Discussion

	5 Detection using statistical and machine learning techniques
	5.1 Detection using statistical models of distinguishing attributes
	5.2 Detection using SVM
	5.3 ROC-based performance evaluation of the proposed detector
	5.4 Comparison of algorithm complexity

	6 Attacks and countermeasures
	7 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

