
J Comput Virol (2011) 7:159–172
DOI 10.1007/s11416-010-0145-1

ORIGINAL PAPER

Joint network-host based malware detection
using information-theoretic tools

Syed Ali Khayam · Ayesha Binte Ashfaq ·
Hayder Radha

Received: 21 July 2009 / Accepted: 12 July 2010 / Published online: 27 July 2010
© Springer-Verlag France 2010

Abstract In this paper, we propose two joint network-host
based anomaly detection techniques that detect self-propa-
gating malware in real-time by observing deviations from a
behavioral model derived from a benign data profile. The pro-
posed malware detection techniques employ perturbations in
the distribution of keystrokes that are used to initiate network
sessions. We show that the keystrokes’ entropy increases and
the session-keystroke mutual information decreases when
an endpoint is compromised by a self-propagating malware.
These two types of perturbations are used for real-time mal-
ware detection. The proposed malware detection techniques
are further compared with three prominent anomaly detec-
tors, namely the maximum entropy detector, the rate limiting
detector and the credit-based threshold random walk detector.
We show that the proposed detectors provide considerably

Parts of this work appeared in the Proceedings of IEEE International
Conference on Communications (ICC) 2007 [1].

S. A. Khayam’s work was supported in part by Pakistan National ICT
R&D Fund and Higher Education Commission (HEC), Pakistan.
H. Radha’s work was supported in part by NSF Award CNS-0430436,
NSF Award CCF-0515253, MEDC Grant GR-296, and an unrestricted
gift from Microsoft Research.

S. A. Khayam (B) · A. B. Ashfaq
School of Electrical Engineering and Computer Science (SEECS),
National University of Sciences and Technology (NUST),
Islamabad, Pakistan
e-mail: ali.khayam@seecs.edu.pk

A. B. Ashfaq
e-mail: ayesha.ashfaq@seecs.edu.pk

H. Radha
Department of Electrical and Computer Engineering,
Michigan State University (MSU), East Lansing, USA
e-mail: radha@egr.msu.edu

higher accuracy with almost 100% detection rates and very
low false alarm rates.

1 Introduction

A recent and dramatic increase in automated network intru-
sions has necessitated defense mechanisms that can curb the
spread of self-propagating malicious software (malware1) in
real-time. Effective containment of rapidly evolving worms
and viruses requires real-time defense mechanisms that can
detect novel (i.e., previously unknown) attacks. The chal-
lenge of anomaly detection systems is the characterization of
benign behavior. Most of the contemporary anomaly detec-
tors are either (a) network-based systems that detect anoma-
lies by observing unusual network traffic patterns [2–26] or
(b) host-based systems that detect anomalies by monitoring
an endpoint’s operating system (OS) behavior, for instance
by tracking OS audit logs, processes, command-lines or key-
strokes [27–31].

Recent statistics show that increasingly network end-
points, comprising client machines at homes and offices,
are serving as extremely potent and viable launch pads and
carriers for worm and virus infections [36,37]. Thus it is
important that real-time defenses be deployed at the end-
points or at network points close to the endpoints. Recently,
there has been some interest in network- and host-based
malware detection at endpoints [27–31,19–22] or at servers
close to the endpoints [23–25]. Most of these studies lever-
age some characteristics of past malware for endpoint-based

1 Throughout this paper, the terms malware and self-propagating
malware are used synonymously.

123

160 S. A. Khayam et al.

malware detection. While these malware characteristics hold
true for some of the contemporary malware, their validity
and efficacy are currently being questioned [32–44]. Conse-
quently, there is a growing interest in identification of inher-
ent features and models of benign/legitimate behavior [2], so
that malicious activity can be detected using deviations from
benign behavior, rather than relying on prior experiences of
malicious activity.

In this paper, we propose novel features for malware detec-
tion at endpoints and show that the field of information the-
ory provides very effective tools for accurate quantification
of these features. To identify benign behavioral features of
end-users, we have spent up to 12 months collecting traffic
statistics of a diverse set of endpoints in home, office, and uni-
versity settings. An endpoint’s traffic profile contains infor-
mation about session-level network activity, such as one-way
hashed source and destination IP addresses, session direc-
tion (incoming or outgoing), source and destination ports,
keystrokes, etc. For malicious activity, we use real and sim-
ulated worms. These worms vary in their propagation rates
and scanning techniques. We evaluate the benign data profiles
for behavioral features that get perturbed when the endpoint
is compromised by a self-propagating malware. Based on
the identified features, we propose two malware detection
techniques.

The malware detection techniques proposed in this paper
are joint network-host anomaly detectors which exploit the
observation that when a user is actively using his/her
computer most of the benign traffic is triggered by a small
subset of keystrokes and mouse clicks. Based on this observa-
tion, we propose to correlate the last input from the keyboard
or mouse hardware buffer with every new network session.
We use marginal keystroke data to show that the session ini-
tiation keys are not necessarily used as frequently by an end-
user. To effectively exploit the session-keystroke correlation
in real-time and automated fashion, we propose two infor-
mation-theoretic measures, namely keystrokes’ entropy and
session-keystroke mutual information [45].

We compute the keystrokes’ entropy and mutual infor-
mation on a window-by-window basis. We observe that the
entropy is consistently low and mutual information is some-
what high in the time windows containing benign data.
However, once malicious traffic with a marginal keystroke
distribution is inserted into the benign profile, there is a sig-
nificant increase in the entropy and simultaneously there is
a decrease in the mutual information. These entropy and
mutual information perturbations are because of the fact that
many keys that are generally used very frequently by the
users are never used to initiate legitimate network activity.
For a user who is active on his/her endpoint, the malicious
network sessions that are not initiated by the user are logged
with unlikely and diverse keystrokes thereby changing the
keystrokes’ distribution. To create an automated detection

tool based on the keystroke distributions, we use a small sub-
set of the benign profiles to generate the joint and marginal
distributions of keystrokes and network sessions.

Based on the statistics of joint and marginal keystroke
distributions, we develop entropy/mutual information thresh-
olds above/below which an alarm is raised. For both entropy
and mutual information based detectors, we observe almost
100% detection accuracy and negligible low false-alarm
rates. Overall the mutual information detector has lower false
alarm rates than the entropy detector. We compare the
performance of our proposed malware detectors with three
existing anomaly detectors, namely the maximum-entropy
detector [14], the rate-limiting detector [19] and the credit-
based threshold random walk detector (TRW-CB) [20].
We show that the proposed joint network-host based detec-
tion techniques provide consistently and substantially better
performance than the techniques of [14,19] and [20].

The rest of this paper is structured as follows. Section 2
describes related work in this area. Section 3 details the
benign endpoint profiles and malware collected for this study.
Section 4 presents the proposed joint network-host based
detection techniques which respectively employ entropy and
mutual information of keystrokes and network sessions to
detect malware. Section 5 provides a comparative perfor-
mance evaluation of the proposed techniques with the ADSs
of [14,19] and [20]. Section 6 identifies possible attacks
on the proposed malware detectors and discusses defenses
against these attacks. Section 7 summarizes key conclusions
of this paper.

2 Related work

Most of the contemporary studies perform network-based
anomaly detection at the enterprise network perimeter or the
local network perimeter. Zou et al. [3] propose a malware
warning center (MWC) and distributed ingress and egress
sensors at a local network’s perimeter. Similarly, Wu et al. [4]
propose a network architecture and a distributed algorithm
to detect multi-vector worms. Schechter et al. [20] used a
combination of rate limiting and portscan detection on local
network worm detector. Jung et al. [5] develop a network-
level fast portscan detector that uses a threshold random walk
(TRW) on typical access patterns to infer whether a host is
malicious or benign. Weaver et al. [6] simplify the TRW algo-
rithm to make it more amenable to hardware and software
implementations. The simplified algorithm of [6] can accu-
rately detect very low rate worms. Soule et al. [11] apply a
Kalman filter to normal traffic and then use multiple anomaly
detection techniques to detect abnormal behavior. Kim et al.
[12] propose that gateway routers score each packet based
on its legitimacy. Similarly, anomaly detectors that monitor

123

Joint network-host based malware detection 161

blocks of unused IP addresses are also becoming increasingly
popular [15–18].

There has been some recent interest in detecting malware
at servers near the endpoints. Whyte et al. [23] detect worms
by monitoring (at the gateway router) connections that are
not preceded by a DNS address resolution request. Gupta and
Sekar [24] detect changes in traffic volume at a mail server
to detect mass mailing worms. Xiong [25] trace attachment
at mail servers to detect mass mailing worms. Barford et al.
[9] use time-frequency signal analysis to develop a change
detection algorithm. Krishnamurthy et al. [10] propose a
sketch-based change detection algorithm. Lakhina et al. [7,8]
propose a subspace method to detect and characterize net-
work-wide volumetric traffic anomalies. The authors then
extend their work in [13] and use entropy to detect anoma-
lies. Another recent study by Gu et al. [14] uses maximum-
entropy estimation to quantify a baseline distribution at a
network gateway or router, which is in turn used to classify
anomalous activity using the K-L divergence.

The most commonly used endpoint-based network-level
malware detection technique is rate limiting. This technique
proposed by Twycross and Williamson [19,21] limits the
rate of an endpoint’s network traffic to curb and detect mal-
ware propagation. Sellke et al. [22] extend rate limiting by
proposing a branching worm propagation model and in turn
using this model to develop a window-based rate limiting
mechanism.

Wong et al. [39,40] show that rate limiting is not very
effective on endpoints or local network perimeter, but can
provide effective malware throttling if deployed on backbone
routers. Panjwani et al. [44] evaluated whether portscans are
precursor to malicious attacks. It was concluded in [44] that
over 50% of attacks are not preceded by a portscan and,
therefore, “port scans should not be considered as precursors
to an attack.” Moreover, Li et al. [41] show that statistical
filtering-based defense mechanisms are effective when they
are adapted in accordance with an attack. In [41] it is also
shown that the performance of a statistical filter degrades
significantly if the attacker is more adaptive than the filter.

In the host-based anomaly detection context, most of the
existing detectors characterize benign user behavior by
modeling commands given by a user in a textual OS environ-
ment [28–31]. Due to the high market penetration of graph-
ical operating systems, it is important to model graphical
behavioral features of end-users. A recent technique called
BINDER [27] correlates keystrokes with OS processes and
raises an alarm whenever a process is initiated without an
end-user’s input. There are important differences between
BINDER and the detector proposed in this paper. First,
BINDER is purely host-based and does not employ any net-
work session information. Second, BINDER cannot detect
memory-resident malicious codes because its detector is
invoked only when a new process is created. (There have

been many well-known worms that were memory-resident;
two most famous examples are CodeRed II and Witty.)
Since our technique uses both network and host information,
it can detect memory-resident malware. Lastly, BINDER
requires a whitelist of legitimate applications before deploy-
ment. The detector proposed in this paper can be deployed
out-of-the-box after which all training is done online.

3 Data collection and simulation

In this section, we explain the two main datasets collected
for this study. The first dataset comprises benign traffic and
keystroke profiles collected from several hosts with regular
human users. The second dataset comprises real malware
traffic. Since university policy and user reservations prohib-
ited us from infecting operational endpoints with malware,
we first identify network- and host-based features perturbed
by the introduction of malicious code into each system and
then perform offline analysis by inserting malicious traffic at
random instances in the endpoints’ benign traffic profiles.

3.1 Benign traffic-keystroke profiles

Our first step towards the development of a network-based
worm detector was to collect pertinent network traffic data.
We started by investing up to 12 months in monitoring
network profiles of a diverse set of 13 endpoints. Users of
these endpoints included home users, research students, and
technical/administrative staff with Windows 2000/XP laptop
and desktop computers. The laptop endpoints were used by
their users both at home and at work. Some endpoints, in par-
ticular home computers, were shared among multiple users.
The endpoints used in this study were running different types
of applications, including peer-to-peer file sharing software,
online multimedia applications, network games, SQL/SAS
clients etc. (More data details to follow.)

Data were collected by a multi-threaded windows appli-
cation called logger , which runs as a background process
storing network activity in a log file. The log file is period-
ically and securely uploaded to a secure copy (SCP) server.
logger only logs session-level information, where a session
corresponds to bidirectional communication between two IP
addresses. Communication between the same IP address on
different ports is considered part of the same network ses-
sion. This session-level granularity reduces the complexity
of the worm detector, while providing complete information
about sessions originating from or terminating at an endpoint.
Each session is logged using the information contained in
the first packet of the session. A session expires if it does
not send/receive a packet for more than τ seconds. In the
collected data, τ is set to 10 minutes.

123

162 S. A. Khayam et al.

Table 1 Statistics of benign profile collected for this study

Endpoint Endpoint Total profile Total TCP UDP Mean Var in Cumulative Cumulative Cumulative
ID type collection sessions sessions sessions session session freq of ten freq of ten freq of ten

time (%) (%) rate rate most-used most-used most-used
(months) (/sec) (/sec) Src ports Dst ports session keys

1 Office 8 33,487 13.95 73.9 0.25 0.26 90.37 88.06 96.01

2 Office 10 21,066 50.45 42.29 0.22 0.43 47.8 87.53 92.32

3 Home 3 373,009 98.54 1.36 1.92 11.98 3.95 37.29 92.01

4 Home 2 444,345 57.37 41.91 5.28 25.93 5.86 10.82 94.86

5 Home/Univ 3 27,873 74.71 24.03 0.44 2.0 15.91 99.27 95.25

6 Univ 9 60,979 24.36 70.89 0.19 0.35 54.95 94.0 95.49

7 Univ 11 171,601 45.46 53.53 0.28 0.6 40.7 96.75 95.56

8 Univ 13 41,809 19.7 76.58 0.52 0.71 66.1 96.44 96.13

9 Univ 13 235,133 47.96 50.22 0.41 0.81 44.1 94.84 95.48

10 Univ 13 152,048 12.8 82.33 0.21 0.37 75.19 95.11 95.27

11 Univ 13 207,187 44.63 47.8 0.31 0.96 38.85 95.2 95.14

12 Home/Univ 13 100,702 65.94 32.24 0.33 0.73 24.78 95.0 95.13

13 Univ 3 11,996 47.66 52.0 0.23 0.66 44.56 95.98 95.95

For each logged session, argus also logs the last keystroke
or mouse click that was pressed before the first packet of the
session. We generically refer to keyboard and mouse inputs
as keystrokes or keys in this paper. The last keystroke is asso-
ciated with a session only if the key was pressed no more than
λ seconds before the session. If there was no key pressed in
the last λ seconds before a session then a void keystroke value
of zero is inserted. In the collected traces, λ is set to 10 s.
Throughout this paper, we only focus on sessions with non-
zero keys. We assume that the last pressed key has initiated
the associated session, that is, an inherent correlation rela-
tionship is assumed between the last key and the consequent
session. Clearly, this correlation will not be present when
a malicious code is trying to propagate from an oblivious
end-user’s computer, and hence perturbations in the session-
keystroke correlation can be leveraged at that point to detect
the malicious code.

Each entry of the log file has the following 6 fields:

<session id, direction, src port, dst
port, proto, timestamp, virtual key

code>,

whose explanation is given below:

– session id: 20-byte SHA-1 hash [46] of the concate-
nated hostname and remote IP address. Hashing preserves
privacy, since the collected data are going to be publicly
available;

– direction: one byte flag indicating outgoing unicast,
incoming unicast, outgoing broadcast, or incoming broad-
cast packets;

– proto: transport-layer protocol (i.e., TCP or UDP) of
the packet; all transport layer fields are set to zero for
network layer packets;

– src port: source port of the packet;
– dst port: destination port of the packet;
– timestamp: millisecond-resolution time of session ini-

tiation.
– virtual key code: one byte virtual key code, as

defined by Microsoft’s MSDN library [47], of the last
(keyboard or mouse) keystroke that was pressed before
the session. In view of our stringent privacy consider-
ations, we only log the very last keystroke that was pressed
right before the first packet of a new session. Throughout
this paper, we refer to this jointly collected session and
keystroke data as session-key or key-session data. More-
over, keystrokes observed in this joint profile are referred
to as the session initiation keys.

Some pertinent statistics of the collected benign data are
listed in Table 1.2,3 Diversity of the endpoints used in this
study is evident from Table 1, which shows that the endpoints
operate in different environments (and hence run different

2 It should be emphasized that the mean and variance of session rates
in Table 1 are computed using time-windows containing one or more
new sessions. Since time-windows without network activity are simply
ignored, the total profile logging time is not equal to the ratio between
the total sessions and the mean session rate. As can be inferred intui-
tively, time-windows without new network sessions are fairly common
on endpoints.
3 The total profile collection time in Table 1 was computed during result
generation for this paper, which was some months back. We now have
benign profiles that are up to 21 months long.

123

Joint network-host based malware detection 163

types of applications). Also, the total size of the dataset (i.e.,
total number of sessions) varies from 11, 996 for endpoint 13
to 444, 345 for endpoint 4. In general, we observed that home
computers generate significantly higher traffic volumes than
office and university computers because: (1) they are gener-
ally shared between multiple users, and (2) they run peer-to-
peer and multimedia applications. The high traffic volumes of
home computers are also evident from the high mean and var-
iance of the number of sessions per second [columns 7 and 8].
Also note that there is little correlation in the amount of TCP
and UDP traffic across endpoints; for instance, the amount
of UDP traffic [column 6] varies from 1.36% to 82.33% in
the benign profiles. This is again a function of the user(s) and
the consequent applications running on an endpoint.

Another interesting observation is that, with the exception
of home computers, the observed endpoints generally use
a small set of source and destination ports very frequently
[columns 9 and 10]. (The source and destination port fre-
quencies in Table 1 are computed for outgoing unicast pack-
ets.) This observation holds particularly true for destination
ports [column 10] because in most cases ten destination ports
are used approximately 90% of the times—endpoints 3 and
4 being the exceptions here. This is a preliminary indication
that port usage is a statistic that is somewhat consistent across
endpoints, and therefore can be leveraged to detect malicious
activity. Also, later in the paper it is shown that the differ-
ent benign behavior of home endpoints poses a considerable
challenge to worm detectors.

The last important observation is that without exception
all of the observed endpoints use a small set of session initia-
tion keys very frequently [column 11]. (The session initiation
key frequencies in Table 1 are computed for outgoing uni-
cast packets with non-zero keys.) In fact, on all hosts more
than 90% of the sessions are initiated using 10 keys. This is
a preliminary indication that the correlation of the session-
key data is consistent across endpoints and therefore can be
leveraged to detect malicious activity.

The joint session-key data described above provides us
correlated information of keystroke and sessions. In other
words, this data can be used to develop a joint session-key
probability distribution. In addition to the correlated/joint
data, the keystroke-based detectors proposed in this paper
also requires marginal distributions of keystrokes. That is,
we need a distribution of all the keystrokes that are pressed
on an endpoint. The following section describes this data.

3.2 All-keystrokes’ profiles

To develop a marginal distribution of keystrokes, we had
to log all the keys that are pressed on a host. Due to strict
privacy constraints imposed by the university, and due in
part to user reservations, it was not possible to collect such
data on all the participating hosts. We installed a custom-

developed keylogger on two computers [endpoints 5 and 12]
and collected keystroke data for more than a month. Each
entry of the keylogger contains two fields: <timestamp,
keystroke>, which are in the same format as described in
the last section.

This dataset is referred to as the all-keys data. For the
remaining endpoints, an average of the all-keys data of end-
points 5 and 12 is used for the keystrokes’ marginal dis-
tribution. This marginal keystroke distribution is simply a
normalized histogram of the frequency of usage of the key-
strokes.

In addition to benign data, we have also collected
malware data generated by real malicious codes. The follow-
ing section explains collection of the malicious traffic data.

3.3 Worm classification

To generate traffic patterns for each worm, we infected a
vulnerable machine with a worm and observed the traffic gen-
erated by the worm using the logger data utility described
in the previous section. (The vulnerable machines used here
are different from the operational endpoints used for benign
profile collection.) This section details the worms collected
and simulated in this study. Before we describe worm data
collection, explanation of some terminology is in order.

After compromising a vulnerable host, a worm tries to
infect other computers by sending out scan packets with
infectious payloads. A vulnerable machine gets infected if it
receives and processes a scan packet. Throughout this paper,
scan packets generated by a worm after compromising a vul-
nerable host are referred to as outgoing scan packets. Based
on the outgoing scan packets, we classify worms into two
broad categories:

– Destination-port worms: destination ports of scan packets
are fixed, but the source ports may be arbitrary;

– Source-port worms: source ports of scan packets are fixed,
but the destination ports may be arbitrary.

In the former case, we refer to the destination ports of a
worm as attack ports and the source ports as non-attack ports.
In the latter case, the roles are reversed and we refer to source
ports as attack ports and destination ports as non-attack ports.
All contemporary worms, used in this study, are destination-
port worms. Note that a source/destination port worm can
be a multi-vector worm [43] targeting multiple vulnerabili-
ties simultaneously. We now describe the worms used in this
study.

3.4 Real worms’ profiles

A critical aim of our study is to use real and diverse worm
data to test our detection technique. To this end, we installed

123

164 S. A. Khayam et al.

Table 2 Information of worms used in this study

Worm Release Avg. Scan Port(s)
date rate (sps) used

Blaster Aug 2003 10.5 TCP135,4444, UDP 69

Dloader-NY Jul 2005 46.84 TCP 135,139

Forbot-FU Sep 2005 32.53 TCP 445

MyDoom-A Jan 2006 0.14 TCP 3127–3198

RBOT.CCC Aug 2005 9.7 TCP 139,445

Rbot-AQJ Oct 2005 0.68 TCP 139,769

Sdbot-AFR Jan 2006 28.26 TCP 445

SoBig.E Jun 2003 21.57 TCP 135,UDP 53

Zotob.G Jun 2003 39.34 TCP 135,445,UDP 137

original and unpatched releases of Windows 2000 and
Windows XP on a computer using Microsoft Virtual PC
2004 [48]. The advantage of using virtual machines (VMs)
was that once a virtual host was infected, we could reinstall
it by overriding just a few key files. We assigned static IP
addresses to both virtual machines and connected them to the
Internet. These hosts were then compromised by the follow-
ing malware: Zotob.G, Forbot-FU, Sdbot-AFR, and
Dloader-NY. (Further details of worms used in this paper
can be found at [49,50], or [51].) We also requested network
administrators and research collaborators in our university to
share malware binaries and source codes with us. This way
we acquired SoBig.E@mm and the C source code of My-
Doom.A@mm, which are mass-mailing worms. Finally, we
downloaded binaries or source codes of the following worms
from the Internet: Blaster, Rbot-AQJ, and RBOT.CCC.

Table 2 shows the diversity of the worms used in this paper.
These worms have different (and sometimes multiple) attack
ports and transport protocols. Also, these worms include both
high- and low-rate worms; Dloader-NY has the highest
scan rate of 46.84 scans per second (sps), while MyDoom-A
and Rbot-AQJ have very low scan rates of 0.14 and 0.68
sps, respectively. We show later that the low-rate MyDoom-A
and Rbot-AQJ are more difficult to detect than high-rate
worms.

All real worms collected for this study fall into the widely
prevalent category of destination-port worms. The proposed
detection techniques, however, do not rely on source and des-
tination ports of the malware.

3.5 Inserting worm data in the benign traffic profile

We implemented the propagation modules of the simulated
worms. A vulnerable VM was then infected with each of
the 12 worms. We then used logger to log malicious traf-
fic traces from the VM in the same format as the benign
data. Armed with this information, we insert T minutes of

malicious traffic data of each worm in the benign profile of
each endpoint at a random time instance. Specifically, for a
given endpoint’s benign profile, we first generate a random
infection time tI (with millisecond accuracy) between the
endpoint’s first and last session times. Given n worm ses-
sions starting at times t1, . . . , tn , where tn ≤ T , we create
a special infected profile of each host with these sessions
appearing at times tI + t1, . . . , tI + tn . Thus in most cases
once a worm’s traffic is completely inserted into a benign
profile, the resultant profile contains interleaved benign and
worm sessions starting at tI and ending at tI + tn . For all
worms we use T = 15 minutes.

We are now ready to use the infected profiles to char-
acterize traffic perturbations observed when an endpoint is
compromised by a worm.

4 Malware detection using joint network-host features

Traditional anomaly detectors are either host- or network-
based. We argue that significant improvements can be
achieved if both network and host features are correlated
and then employed in a joint framework. To that end, in this
section we propose two endpoint-based joint network-host
anomaly detectors both of which exploit the observation that
when a user is actively using his/her computer most of the
benign traffic is triggered by a small subset of keystrokes
and mouse clicks. Based on this observation, we propose to
correlate the last input from the keyboard or mouse hardware
buffer with every new network session in a novel entropy-
based information-theoretic framework. Like prior endpoint-
based studies, we focus solely on outgoing unicast traffic
since incoming unicast packets can be easily blocked using
firewalls.

4.1 Correlation in the session-key data

As mentioned before, we focus solely on outgoing unicast
traffic. Also, we only focus on the scenario when the end-
user is actively using his/her computer, although he/she may
not be accessing the Internet. This is achieved by only pro-
cessing sessions with non-zero keystroke values; recall that
a zero keystroke value implies that no key was pressed right
before the session. Detection when a user is inactive cannot
employ keystroke data, thereby requiring purely network-
based approaches.

Figure 1 shows normalized plots for the most used ses-
sion initiation keys in the presence of malware. It can be
observed that most-commonly, a few session keys are used
to initiate network sessions. However, due to the presence
of malware initiated sessions, the histogram appears to be
spread out. However still, a few session keys occupy a major
percentage of the keys used for session initiation at the

123

Joint network-host based malware detection 165

Fig. 1 Normalized histograms of 20 most-used session initiation keystrokes in the presence of malware. Histograms are generated from the
session-key data. a Endpoint 5. b Endpoint 13

Fig. 2 Normalized histograms of 20 most-used session initiation keystrokes. Histograms are generated from the session-key data. Virtual keys
codes 1 and 13 correspond to the left mouse click and the Enter key, respectively [47]. a Endpoint 5. b Endpoint 13

Fig. 3 Normalized histograms of 20 most-used keystrokes. Histograms are generated from the all-keys data. Virtual keys codes 40, 38 and 17
correspond to the down arrow key, the up arrow key and the control key, respectively [47]. a Endpoint 5. b Endpoint 13

endpoint. Figure 2 shows the normalized frequencies of the
20 most-used session initiation keys for two endpoints. In
both cases more than 85% of the times network sessions are
initiated by the left mouse click or the Enter key.
(Similar results are observed for the remaining endpoints.)
Figure 3 shows the normalized histograms of all the key-
strokes that are pressed on a host. Note that the all-keys

distribution looks quite different from the session-key dis-
tribution of Fig. 2. For one thing, the all-keys distribution
of Fig. 3 is much more spread out than the session-key dis-
tribution of Fig. 2. Also, contrary to the session-key-based
keystroke histogram, less than 50% sessions are initiated by
the two most-commonly used keys. Lastly, left mouse
click or Enter are not in the two most-commonly used

123

166 S. A. Khayam et al.

keys in either Fig. 3(a) or (b). These results can be summa-
rized as follows: (i) users frequently employ only a few ses-
sion initiation keys to trigger network sessions, thus there is
strong correlation between these few session initiation keys
and network sessions; (ii) frequencies of session initiation
keys are very consistent across different users, consequently
making this a common benign feature that can be leveraged
to detect abnormal behavior; (iii) frequencies of keys that are
generally used on a host are quite different from frequencies
of session initiation keys.

Based on the above discussion, we deduce that session-key
correlation is a feature that is common across users and can be
used for malware detection. There are two information-theo-
retic measures that can formally leverage this observation for
real-time worm detection. The first measure is the entropy of
the keystroke histogram observed in a time window. Since
entropy quantifies the degree of dispersal or concentration of
a probability distribution, according to Fig. 2 the keystroke
entropy in a malware-infected window should be higher than
the benign windows where only a few keystrokes are being
used to initiate sessions. The second information-theoretic
measure that we use to quantify the keystroke perturbations
is mutual information. From Fig. 3 it can be deduced that in
a benign time window mutual information of sessions and
keystrokes that are used to initiate the sessions should be
very high. On the other hand, in a malware-infected window
this mutual information should decrease as the keystrokes
will be drawn from the marginal all-keys distributions. The
following sections formally describe the entropy and mutual
information based detectors.

4.2 Malware detection using keystroke entropy

4.2.1 Definition of keystroke entropy

We define Xn = {pn
i , i ∈ Kn} as the histogram of key-

strokes in a time-window n, where pn
i is the number of times

keystroke i was used in time-window n. Note that due to
MSDN’s virtual key code definition, Kn = {1, 2, . . . , 255}.
Let pn = ∑

i∈Kn
pn

i be the aggregate frequency of key-
strokes observed in window n. Then sample entropy of the
keystroke histogram for window n is

H (Xn) = −
∑

i∈Kn

pn
i

pn
log2

pn
i

pn
(1)

If there is no traffic in a window n (i.e., pn = 0) then mal-
ware detection is not performed. Based on previous results,
we know that for legitimate sessions, Xn has small vari-
ance and therefore the keystrokes’ entropy should be low. On
the other hand once a self-propagating malicious code starts
initiating sessions, the keystrokes will be drawn from the
marginal keystroke distribution of the all-keys data. Hence

the variance and consequently the entropy of Xn should
increase.

We compute keystroke entropy on a window-by-window
basis. The results reported in this section use a window size
of 60 s. In each window with one or more sessions, we
compute the keystroke histogram Xn which is used in equa-
tion (1) to compute the entropy. The marginal keystroke his-
togram is generated from the first 500 entries of the all-keys
data.

4.2.2 Entropy perturbations in the infected profiles

We use the infected profiles described in Sect. 3 to evaluate
the performance of the entropy-based detector throughout
this section. Since the present detector does not rely on source
and destination ports, there is no need to evaluate against
the simulated malware. Therefore, throughout this section
we only focus on detection using the real worms collected
for this study. When we used keystroke-entropy for detec-
tion of randomly inserted infections, we observed a number
of noisy spikes due to variations in benign user behavior.
We use a median filter to remove the spikes that arise due to
inherent changes in legitimate user behavior. Henceforth, all
results use an order-7 median filter.

The entropies of different endpoints randomly infected
with a single infection of a malicious code are outlined in
Fig. 4. It can be observed in Fig. 4 that keystrokes’ entropy
clearly highlights anomalous behavior in all cases. The
increase in entropy is revealed for both high- and low-rate
malware, and for endpoints with high and low session rates.
Thus we conclude that entropy of keystroke histograms is
a robust feature that can be leveraged for self-propagating
malware detection on network endpoints.

4.3 Malware detection using session-key mutual
information

In this section, in addition to the keystroke distribution, we
also characterize the session information in a probabilistic
framework. We show that the conditional mutual informa-
tion of the session and keystroke distributions can clearly
highlight anomalous behavior.

4.3.1 Mutual information of sessions and keys

Mutual information [45] is an information-theoretic mea-
sure of the similarity between two probability distributions.
Consider two random variables X and Y with marginal dis-
tributions p(x) and p(y), and a joint distribution p(x, y).
The mutual information of these random variables is defined

123

Joint network-host based malware detection 167

100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

10
K

ey
st

ro
ke

 E
nt

ro
py

time window
500 1000 1500 2000 2500 3000

0

1

2

3

4

5

6

7

8

9

10

K
ey

st
ro

ke
 E

nt
ro

py

time window
1000 2000 3000 4000 5000 6000 7000 8000 90001000011000

0

1

2

3

4

5

6

K
ey

st
ro

ke
 E

nt
ro

py

time window

500 1000 1500 2000 2500 3000 3500 4000 4500
0

1

2

3

4

5

6

7

8

9

K
ey

st
ro

ke
 E

nt
ro

py

time window
500 1000 1500 2000 2500 3000 3500

0

1

2

3

4

5

6

7

8

9

10
K

ey
st

ro
ke

 E
nt

ro
py

time window
200 400 600 800 1000 1200

0

1

2

3

4

5

6

7

8

9

10

K
ey

st
ro

ke
 E

nt
ro

py

time window

(a) (b) (c)

(f)(e)(d)

Fig. 4 Entropy of the keystroke histograms at infected endpoints. Each non-overlapping time-window is 60 s. a Endpoint 1, Blaster. b Endpoint
3, Forbot-FU. c Endpoint 6, MyDoom-A. d Endpoint 9, Rbot-AQJ. e Endpoint 11, SoBig.E. f Endpoint 13, Zotob.G

as

I (X; Y) =
∑

x

∑

y

p(x, y) log2
p(x, y)

p(x)p(y)
. (2)

Mutual information is a non-negative measure of the simi-
larity between X and Y , with I (X; Y) = 0 when X and Y
are independent. In general, I (X; Y) increases with respect
to the correlation between X and Y .

To leverage mutual information in the present context, we
define X as a binary random variable which characterizes the
probability of whether or not a session was initiated in the last
time window. That is, X ∈ {0 ⇒ no session inwindow, 1 ⇒
one or more sessions in window}. Moreover, we define Y as
a random variable characterizing the probability of a
keystroke, i.e., due to MSDN’s keystroke definition [47]
Y ∈ {1, 2, . . . , 254}. It can be observed that the marginal
p(Y) distribution is simply the normalized all-keys histo-
gram, such as the ones shown in Fig. 3. We derive the
marginal p(X) distribution using the first 500 entries of each
endpoint’s benign session-key profile. Basically, p(X) is
computed by counting the total number of windows n with
one or more sessions between the 1-st session and the 500-th
session. We also count the total number of windows N (with
and without sessions) in that time frame. Then, p(X = 1) =

N/n and p(X = 0) = 1 − p(X = 1). The joint distribu-
tion p(x = 1, y = j) then simply corresponds to the joint
probability that a network session was initiated using key-
stroke j .

The above characterization describes the correlation
between network sessions and keystrokes in a simple and
intuitive manner. Based on previous results, we know that
for legitimate activity X and Y are highly correlated. There-
fore, their mutual information should be high. Once a self-
propagating malicious code starts initiating sessions, the
keystrokes will be drawn from the marginal p(X) distribution
and therefore the correlation between X and Y should drop.

4.3.2 Mutual information perturbations in the infected
profiles

Similar to the entropy-based keystroke perturbations, we
observed some noisy mutual information spikes. Therefore,
like the entropy-based technique we use an order-7 median
filter to remove these spikes. The mutual information of dif-
ferent endpoints randomly infected with a single infection
of a malicious code is outlined in Fig. 5. Clearly, session-
keystroke mutual information clearly highlights anomalous
behavior for both high- and low-rate malware and endpoints.

123

168 S. A. Khayam et al.

100 200 300 400 500 600
12

14

16

18

20

22

24

26

28

30
S

es
si

on
−

K
ey

 M
ut

ua
l I

nf
or

m
at

io
n

time window

500 1000 1500 2000 2500 3000
14

16

18

20

22

24

26

28

30

32

S
es

si
on

−
K

ey
 M

ut
ua

l I
nf

or
m

at
io

n

time window

2000 4000 6000 8000 10000

10

15

20

25

30

35

S
es

si
on

−
K

ey
 M

ut
ua

l I
nf

or
m

at
io

n

time window

0.5 1 1.5 2 2.5

x 10
4

20

25

30

35

40

45

S
es

si
on

−
K

ey
 M

ut
ua

l I
nf

or
m

at
io

n

time window
500 1000 1500 2000 2500 3000 3500

8

10

12

14

16

18

20

22

24

26

S
es

si
on

−
K

ey
 M

ut
ua

l I
nf

or
m

at
io

n

time window
200 400 600 800 1000 1200

8

10

12

14

16

18

20

22

24

K
ey

−
S

es
si

on
 M

ut
ua

l I
nf

or
m

at
io

n

time window

(a) (b) (c)

(f)(e)(d)

Fig. 5 Mutual information of the session and keystroke random variables at infected endpoints. a Endpoint 1, Blaster. b Endpoint 3,
Forbot-FU. c Endpoint 6, MyDoom-A. d Endpoint 9, Rbot-AQJ. e Endpoint 11, SoBig.E. f Endpoint 13, Zotob.G

In the benign data, the mutual information is consistently
high because only a few keys are used to initiate most of the
sessions. Once compromised, the endpoint’s marginal key-
strokes get flagged as session initiation keys. The mutual
information drops in Fig. 5 are because the marginal all-keys
distribution has very little correlation with network sessions.

The keystroke-based measures proposed in this section
are fairly independent of the rate of session initiation. This
is a unique attribute of the present techniques because other
network-based anomaly detectors implicitly or explicitly use
this rate for detection. Consequently detection and false alarm
rates of such detectors are dependent on the scanning rate of
the malicious code. The techniques proposed in this section
jointly consider sessions and keystrokes and are therefore not
entirely dependent on the session rate.

In the following section, we develop an automated tool
that uses keystroke entropy and mutual information values
for real-time malware detection.

4.4 Automated detection using keystroke perturbations

As mentioned in previous sections, we use an order-7 median
filter to filter out the noise in the keystroke entropy and
mutual information values. To leverage the filtered entropy

values in a real-time and automated fashion, we train the
entropy detector using the first benign keystroke entropy val-
ues and the mutual information based detector is trained using
the first benign mutual information values of an endpoint.
We find the sample mean and sample standard deviation of
the entropy values of an endpoint. An alarm is raised when the
filtered entropy value observed in a window is more than the
mean plus three standard deviations. Similarly, we find sam-
ple mean and sample standard deviation of the mutual infor-
mation values. An alarm is raised when the filtered mutual
information value in a window is less than the mean plus one
standard deviation.

5 Performance evaluation and comparison with existing
techniques

In this section, we evaluate the performance of the proposed
worm detection techniques with three existing techniques
proposed in [14,21,20]. Following is a brief description of
these techniques. We majorly focus on the algorithm adap-
tation and parameter tuning for the datasets under consider-
ation. Readers are referred to [14,20,21] for details of the
algorithms.

123

Joint network-host based malware detection 169

5.1 Rate limiting

Rate limiting [19,21] detects anomalous connection behav-
ior by relying on the premise that an infected host will try to
connect to many different machines in a short period of time.
Rate limiting detects portscans by putting new connections
exceeding a certain threshold in a queue. An alarm is raised
when the queue length, ηq , exceeds a threshold. Threshold
values for each endpoint were generated as ηq = μ + kσ ,
where μ and σ represent the sample mean and sample stan-
dard deviation of the connection rates in the training set, and
k = 0, 1, 2, . . . is a positive integer. Large values of k will
provide low false alarm and detection rates, while small val-
ues will render high false alarm and detection rates.

5.2 TRW with credit-based rate limiting (TRW-CB)

The original TRW algorithm [5] detects incoming ports-
cans by noting that the probability of a connection attempt
being a success should be much higher for a benign host
than for a scanner. To leverage this observation, TRW uses
sequential hypothesis testing (i.e., a likelihood ratio test)
to classify whether or not a remote host is a scanner. A
hybrid solution to leverage the complementary strengths of
Rate Limiting and TRW was proposed by Schechter et al.
[20]. Reverse TRW is an anomaly detector that limits the
rate at which new connections are initiated by applying the
sequential hypothesis testing in a reverse chronological order.
A credit increase/decrease algorithm is used to slow down
hosts that are experiencing unsuccessful connections. The
right threshold value for each endpoint is selected by vary-
ing η0 and η1.

5.3 Maximum entropy method

This detector estimates the benign traffic distribution using
maximum entropy estimation [14]. Training traffic is divided
into 2,348 packet classes and maximum entropy estimation
is then used to develop a baseline benign distribution for each
packet class. Packet class distributions observed in real-time
windows are then compared with the baseline distribution
using the Kullback-Leibler (K-L) divergence measure. An
alarm is raised if a packet class’ K-L divergence exceeds a
threshold, ηk , more than h times in the last W windows of t
seconds each. Thus the Maximum Entropy method incurs a
detection delay of at least h × t seconds.

Hence the rate-limiting detector is the only other technique
that is designed specifically for endpoints, the maximum-
entropy detector is one of the only two information-theoretic
anomaly detection techniques and the credit-based threshold
random walk detector is a hybrid solution to leverage the
complementary strengths of the rate limiting detector and
the soundness of the likelihood ratio test in original TRW

detector. We use the same parameters values and learning/
detection algorithms that were employed in [14,21] and [20].
We also tried to compare the performance of the proposed
detector with the entropy-based technique by Lakhina et al.
[13]. However, we observed that it was impractical to migrate
the detector of [13] to endpoints because the detector required
projection of high-dimensional feature metrics into benign
and anomalous subspaces at a border router. On an endpoint,
the same technique will result in only 3 possible subspaces,
and in most cases it is not possible to classify them as benign
and anomalous using the thresholding technique of [13].

We use the infected profiles for performance evaluation of
the present malware detectors. Thus there are non-overlap-
ping random infections of each malicious code in every end-
point’s benign profile. As discussed earlier, each infection is
approximately T = 15 minutes. Hence, all results provided
in this section are averaged over one hundred experiments
per endpoint per malicious code. We compute detection and
false alarm rates for each experiment as follows. For infec-
tions of a particular malicious code on an endpoint, the per-
centage detection rate for that malicious code is computed by
simply counting the number of infections that are detected
by the malware detector. The false alarm rate is computed
by taking the ratio of the total number of false alarms with
the total evaluated time-windows (i.e., windows with one or
more sessions).

The average detection and false alarm rates of the
keystroke-entropy and mutual information based detectors
are shown in Fig. 6. Figure 6(a) shows that the detection rate
of the keystroke-entropy based technique is 100% for all end-
points and all malware. Detection rate of the mutual infor-
mation detector is 100% for all endpoints except endpoint
which has an average detection rate of 99.66%. Thus both
the proposed detectors provide very high detection accuracy.
Figure 6(b) shows that the mutual information detector has
negligible false alarm rates. The keystroke-entropy detector
has slightly higher false alarm rates than the mutual infor-
mation detector; the highest false alarm rate of 2.39% was
observed at endpoint 12. Hence, overall the both malware
detector proposed in this section provide very high accuracy
for the diverse set of endpoints and malware considered in
this study.

Let us now compare the proposed detector and the
maximum-entropy detector of [14]. From Fig. 6(a) it can be
seen that the proposed keystroke-entropy as well as mutual
information based techniques provide much higher detection
rates than the maximum-entropy detector. Also, for the max-
imum-entropy detector, the false alarm rates for the home
endpoints [endpoints 3 and 4] are extremely high. We believe
that the high false alarm rates are due to peer-to-peer applica-
tions running on the home endpoints of this study. Moreover,
maximum-entropy detector was designed for deployment at
the perimeter, where even in a short period of time most of the

123

170 S. A. Khayam et al.

Fig. 6 Comparison of detection
and false-alarm rates of the
mutual information based and
keystroke-entropy based
malware detectors with
maximum-entropy, rate-limiting
and TRW-CB detectors. Each
point is averaged over 9
malicious codes with 100
random infections per malicious
code per endpoint. a Detection
rate. b False-alarm rate

1 2 3 4 5 6 7 8 9 10 11 12 13
75

80

85

90

95

100

endpoint ID

av
er

ag
e

de
te

ct
io

n
ra

te
 %

Mutual Info Detector
Key−Entropy Detector
MaxEnt Detector
Rate−Limiting Detector
TRW−CB Detector

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

10

15

20

25

30

35

endpoint ID

av
er

ag
e

fa
ls

e
al

ar
m

 r
at

e
%

Mutual Info Detector

Key−Entropy Detector

MaxEnt Detector

Rate−Limiting Detector

TRW−CB Detector

(a) (b)

2,348 packet classes of [14] were observed. On an endpoint,
many of these classes are not present in the benign training
data. We observed that even if the maximum-entropy train-
ing is performed using a lot of benign data, the performance
still does not improve. (The maximum-entropy model was
trained using 100 and 1000 benign sessions, but the perfor-
mance in both cases was identical.) Also note that due to
the use of a sliding window, the maximum-entropy detector
has higher training complexity and incurs an inherent detec-
tion delay that is not present in our detectors. The run-time
complexities of the two techniques are comparable as the
maximum-entropy technique requires frequent computation
of K-L divergence over a large sample space of 2,348 out-
comes, whereas our techniques train on small sample spaces.

For the rate-limiting detector, the detection rates of all
endpoints except endpoint 2 are much lower than the pro-
posed detection techniques. Also, much like the maximum-
entropy detector, the false-alarm rates for home endpoints
are quite high. (A false alarm is raised when the rate-limiter
reports an anomaly, but the session queue of the rate lim-
iter has no malicious sessions.) Thus the performance of the
rate-limiting detector, although better than the maximum-
entropy detector, is still much worse than the entropy as well
as the mutual information based detection techniques pro-
posed in this paper. The inferior performance of the rate-lim-
iting detector shows that simply monitoring traffic volume at
an endpoint is not sufficient. In addition to session volume,
the actual characteristics of the traffic must also be taken into
account for accurate detection.

The credit-based TRW approach (TRW-CB) achieves
nearly 90% detection rate for all endpoints except for a uni-
versity endpoint [endpoint 9]. This is considerably higher
than the detection rates of both the maximum entropy detec-
tor as well as the rate limiting detector. A probable rea-
son for this can be that the endpoint attack traffic contains
mostly outgoing scan packets and the credit-based variant of

TRW leverages outgoing scans for portscan detection. This
is unlike the TRW detector, which makes use of incoming
scans for portscan detection. Thus, TRW-CB combines the
complementary strengths of rate limiting and TRW to pro-
vide a more accurate portscan detector for endpoints as com-
pared to maximum entropy and the rate limiting detectors.
This result agrees with earlier results in [59]. The false alarm
rate pattern of TRW-CB matches those of maximum entropy
and the rate limiting detectors. On the two home endpoints
[endpoints 3 and 4] TRW-CB, however, performs worse than
the rate limiting detector. However, the detection rates of
the TRW-CB detector though being much better than the
maximum entropy and the rate limiting detectors, are still
less than the proposed techniques.

Based on the results of this section, we conclude that
the worm detection techniques proposed in this paper pro-
vides significantly better performance than the techniques of
[14,20,21].

6 Attacks and countermeasures

In this section, we discuss attacks that can circumvent the
proposed worm detection techniques, and possible counter-
measures to mitigate these attacks.

6.1 Mimicry attack

In a mimicry attack [53], a worm tries to hide its traffic inside
benign traffic to avoid detection.

A mimicry attack can be launched against the keystroke-
based detectors by a malware which always initiates its scan-
ning sessions after a certain predefined time has elapsed since
the last keystroke. Such a malicious session will not be eval-
uated by the proposed keystroke- based detectors. To miti-
gate this attack, the time threshold for logging the session

123

Joint network-host based malware detection 171

initiation keystroke can be made adaptive. Also, we are cur-
rently investigating the efficacy of the keystroke-based detec-
tors in a scenario when the last keystroke is always logged
irrespective of the time elapsed since that keystroke.

6.2 Attack by acquiring system-level privileges

On an endpoint where security policies and user privileges
are not appropriately defined, a worm after compromising
the endpoint can gain system-level privileges and can in
then disable the worm detector [38]. This vulnerability is
a consequence of the design of contemporary operating sys-
tems and the lack of appropriate user rights management. All
endpoint-based worm detectors suffer from this vulnerability.
This attack can be mitigated by appropriate security polic-
ing and user management. To completely defeat this attack,
a trusted computing platform [54] or a virtual machine [48]
must be employed. Design of such operating systems is pres-
ently an area of active research [55–58].

7 Conclusion

In this paper, we proposed two information-theoretic
malware detection techniques for network endpoints. These
techniques made use of entropy and mutual information of
keystrokes that are used to initiate network sessions to detect
malware propagation. The proposed techniques were also
compared with a few prominent anomaly detectors, namely
the maximum entropy detector, the rate limiting detector and
the TRW-CB based detector. Both the proposed techniques
were highly accurate and provided significant improvements
over existing methods.

References

1. Khayam, S.A., Radha, H.: Using session-keystroke mutual infor-
mation to detect self-propagating malicious codes. In: IEEE ICC,
June 2007

2. Ellis, D., Aiken, J.G., Attwood, K.S., Tenaglia, S.D.: A behavioral
approach to worm detection. In: ACM Workshop on Rapid Mal-
code (WORM), October 2004

3. Zou, C.C., Gao, L., Gong, W., Towsley, D.: Monitoring and early
warning of Internet worms. In: ACM Conference on Computer and
Communications Security (CCS), October 2003

4. Wu, J., Vangala, S., Gao, L.: An effective architecture and algorithm
for detecting worms with various scan techniques. In: Network and
Distributed System Security Symposium (NDSS), February 2004

5. Jung, J., Paxson, V., Berger, A.W., Balakrishnan, H.: Fast portscan
detection using sequential hypothesis testing. In: IEEE Oakland
Symposium on Security and Privacy, May 2004

6. Weaver, N., Staniford, S., Paxson, V.: Very fast containment of
scanning worms. In: Usenix Security Symposium, August 2004

7. Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traf-
fic anomalies. In: ACM SIGCOMM, August/September 2004

8. Lakhina, A., Crovella, M., Diot, C.: Characterization of network-
wide traffic anomalies in traffic flows. In: ACM Internet Measure-
ment Conference (IMC), October 2004

9. Barford, P., Kline, J., Plonka, D., Ron, A.: A signal analysis of
network traffic anomalies. In: ACM Internet Measurement Con-
ference (IMC), November 2002

10. Krishnamurthy, B., Sen, S., Zhang, Y., Chen, Y.: Sketch-based
change detection: methods, evaluation, and applications. ACM
Internet Measurement Conference (IMC), October 2003

11. Soule, A., Salamatian, K., Taft, N.: Combining filtering and sta-
tistical methods for anomaly detection. In: ACM/Usenix Internet
Measurement Conference (IMC), October 2005

12. Kim, Y., Lau, W.C., Chuah, M.C., Chao, H.J.: PacketScore:
statistics-based overload control against distributed denial-of-ser-
vice attacks. In: IEEE INFOCOM, March 2004

13. Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic
feature distributions. In: ACM SIGCOMM, August 2005

14. Gu, Y., McCullum, A., Towsley, D.: Detecting anomalies in net-
work traffic using maximum entropy estimation. In: ACM/Usenix
Internet Measurement Conference (IMC), October 2005

15. Moore, D., Shannon, C., Voelker, G.M., Savage, S.: Network tele-
scopes. CAIDA technical report. http://www.caida.org/outreach/
papers/2004/tr-2004-04/

16. Cooke, E., Bailey, M., Mao, Z.M., Watson, D., Jahanian, F.,
McPherson, D.: Toward understanding distributed blackhole place-
ment. In: ACM Workshop on Rapid Malcode (WORM), October
2004

17. Bailey, M., Cooke, E., Jahanian, F., Nazario, J., Watson, D.:
The Internet motion sensor: a distributed blackhole monitoring
system. In: Network and Distributed System Security Symposium
(NDSS), February 2005

18. Dagon, D., Qin, X., Gu, G., Lee, W.: HoneyStat: local worm
detection using honeypots. In: International Symposium on Recent
Advances in Intrusion Detection (RAID), September 2004

19. Twycross, J., Williamson, M.M.: Implementing and testing a virus
throttle. In: Usenix Security Symposium, August 2003

20. Schechter, S.E., Jung, J., Berger, A.W.: Fast detection of scanning
worm infections. In: RAID (2004)

21. Williamson, M.M.: Throttling viruses: restricting propagation to
defeat malicious mobile code. In: Annual Computer Security
Applications Conference (ACSAC), December 2002

22. Sellke, S., Shroff, N.B., Bagchi, S.: Modeling and automated con-
tainment of worms. In: International Conference on Dependable
Systems and Networks (DSN), June/July 2005

23. Whyte, D., Kranakis, E., van Oorschot, P.C.: DNS-based detec-
tion of scanning worms in an enterprise network. In: Network and
Distributed System Security Symposium (NDSS), February 2005

24. Gupta, A., Sekar, R.: An approach for detecting self-propagating
email using anomaly detection. In: International Symposium on
Recent Advances in Intrusion Detection (RAID), September 2003

25. Xiong, J.: ACT: attachment chain tracing scheme for email virus
detection and control. In: ACM Workshop on Rapid Malcode
(WORM), October 2004

26. Me, L., Michel, C.: Intrusion detection: a bibliography. Tech. Rep.
SSIR-2001-01, September 2001

27. Cui, W., Katz, R.H., Tan, W.-T.: BINDER: an extrusion-based
break-in detector for personal computers. In: Usenix Security Sym-
posium, April 2005

28. Ilgun, K., Kemmerer, R.A., Porras, P.A.: State transition analy-
sis: a rule-based intrusion detection approach. IEEE Trans. Softw.
Eng. 21(3), 181–199 (1995)

29. Jha, S., Tan, K., Maxion, R.A.: Markov Chains, classifiers, and
intrusion detection. In: IEEE CSFW, June 2001

30. Ye, N.: A Markov Chain model of temporal behavior for anom-
aly detection. In: IEEE Workshop on Information Assurance and
Security, June 2000

123

http://www.caida.org/outreach/papers/2004/tr-2004-04/
http://www.caida.org/outreach/papers/2004/tr-2004-04/

172 S. A. Khayam et al.

31. DuMouchel, W.: Computer intrusion detection based on bayes fac-
tors for comparing command transition probabilities. Tech. Rep.
91, National Institute of Statistical Sciences (1999)

32. Lazarevic, A., Ozgur, A., Ertoz, L., Srivastava, J., Kumar, V.:
A comparative study of anomaly detection schemes in network
intrusion detection. In: SIAM Conference on Data Mining,
May 2003

33. Lippmann, R.P., et al.: The 1998 DARPA/AFRL off-line intrusion
detection evaluation. In: RAID, September 1998

34. Lippmann, R.P., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The
1999 DARPA off-line intrusion detection evaluation. ACM Com-
put Netw 34(4), 579–595 (2000)

35. Endpoint Security Homepage. http://www.endpointsecurity.org/
36. Symantec Internet Security Threat Report XI. Trends for July–

December 07. March 2007
37. Raschke, T.: The new security challenge: endpoints. IDC/F-Secure,

August 2005
38. Weaver, N., Ellis, D., Staniford, S., Paxson, V.: Worms vs. perim-

eters: the case for hard-LANs. In: IEEE Symposium on High Per-
formance Interconnects (Hot Interconnects), August 2004

39. Wong, C., Wang, C., Song, D., Bielski, S., Ganger, G.R.: Dynamic
quarantine of Internet worms. In: International Conference on
Dependable Systems and Networks (DSN), July 2004

40. Wong, C., Bielski, S., Studer, A., Wang, C.: Empirical analysis of
rate limiting mechanisms. In: International Symposium on Recent
Advances in Intrusion Detection (RAID), September 2005

41. Li, Q., Chang, E.-C., Chan, M.C.: On effectiveness of DDOS
attacks on statistical filtering. IEEE Infocom, March 2005

42. Kuzmanovic, A., Knightly, E.W.: Low-rate TCP-targeted denial of
service attacks. In: ACM SIGCOMM, August 2003

43. Staniford, S., Paxson, V., Weaver, N.: How to own the Internet in
your spare time. In: Usenix Security Symposium, August 2002

44. Panjwani, S., Tan, S., Jarrin, K.M., Cukier, M.: An experimen-
tal evaluation to determine if port scans are precursor to an attack.
In: International Conference on Dependable Systems and Networks
(DSN), June/July 2005

45. Cover, T.M., Thomas, J.A.: Elements of Information Theory.
Wiley-Interscience, New York (1991)

46. SHA-1. The Secure Hash Algorithm. FIPS PUB 180-1, April 1995
47. MSDN Library. http://msdn.microsft.com
48. Microsoft Virtual PC 2004. http://www.microsoft.com/Windows/

virtualpc
49. Sophos Virus Info. http://www.sophos.com/virusinfo/
50. Symantec Security Response. http://securityresponse.symantec.

com/avcenter
51. TrendMicro Virus Encyclopedia. http://au.trendmicro-europe.

com/smb/vinfo
52. Kumar, A., Paxson, V., Weaver, N.: Exploiting underlying struc-

ture for detailed reconstruction of an Internet-scale event. In: ACM/
Usenix Internet Measurement Conference (IMC), October 2005

53. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion
detection systems. In: ACM CCS, November 2002

54. Trusted Computing Alliance. https://www.trustedcomputinggroup.
org

55. Dunlap, G., King, S., Cinar, S., Basrai, M., Chen, P.: ReVirt:
enabling intrusion analysis through virtual-machine logging and
replay. Usenix OSDI, December 2002

56. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra:
a virtual machine-based platform for trusted computing. ACM
SOSP, October 2003

57. Lampson, B.W.: Computer security in the real world. IEEE Com-
put. 37(6), 37–46 (2004)

58. Rosenblum, M., Garfinkel, T.: Virtual machine monitors: current
technology and future trends. IEEE Comput. 38(5), 39–47 (2005)

59. Wong, C., Bielski, S., Studer, A., Wang, C.: Empirical analysis of
rate limiting mechanisms. In: RAID (2005)

123

http://www.endpointsecurity.org/
http://msdn.microsft.com
http://www.microsoft.com/Windows/virtualpc
http://www.microsoft.com/Windows/virtualpc
http://www.sophos.com/virusinfo/
http://securityresponse.symantec.com/avcenter
http://securityresponse.symantec.com/avcenter
http://au.trendmicro-europe.com/smb/vinfo
http://au.trendmicro-europe.com/smb/vinfo
https://www.trustedcomputinggroup.org
https://www.trustedcomputinggroup.org

	Joint network-host based malware detection using information-theoretic tools
	Abstract
	1 Introduction
	2 Related work
	3 Data collection and simulation
	3.1 Benign traffic-keystroke profiles
	3.2 All-keystrokes' profiles
	3.3 Worm classification
	3.4 Real worms' profiles
	3.5 Inserting worm data in the benign traffic profile

	4 Malware detection using joint network-host features
	4.1 Correlation in the session-key data
	4.2 Malware detection using keystroke entropy
	4.2.1 Definition of keystroke entropy
	4.2.2 Entropy perturbations in the infected profiles

	4.3 Malware detection using session-key mutual information
	4.3.1 Mutual information of sessions and keys
	4.3.2 Mutual information perturbations in the infected profiles

	4.4 Automated detection using keystroke perturbations

	5 Performance evaluation and comparison with existing techniques
	5.1 Rate limiting
	5.2 TRW with credit-based rate limiting (TRW-CB)
	5.3 Maximum entropy method

	6 Attacks and countermeasures
	6.1 Mimicry attack
	6.2 Attack by acquiring system-level privileges

	7 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

