
J Comput Virol (2011) 7:279–295
DOI 10.1007/s11416-011-0156-6

ORIGINAL PAPER

Classification of packet contents for malware detection

Irfan Ahmed · Kyung-suk Lhee

Received: 15 November 2010 / Accepted: 5 October 2011 / Published online: 22 October 2011
© Springer-Verlag France 2011

Abstract Many existing schemes for malware detection are
signature-based. Although they can effectively detect known
malwares, they cannot detect variants of known malwares or
new ones. Most network servers do not expect executable
code in their in-bound network traffic, such as on-line
shopping malls, Picasa, Youtube, Blogger, etc. Therefore,
such network applications can be protected from malware
infection by monitoring their ports to see if incoming pack-
ets contain any executable contents. This paper proposes a
content-classification scheme that identifies executable con-
tent in incoming packets. The proposed scheme analyzes
the packet payload in two steps. It first analyzes the packet
payload to see if it contains multimedia-type data (such as
avi, wmv, jpg). If not, then it classifies the payload
either as text-type (such as txt, jsp, asp) or execut-
able. Although in our experiments the proposed scheme
shows a low rate of false negatives and positives (4.69%
and 2.53%, respectively), the presence of inaccuracies still
requires further inspection to efficiently detect the occurrence
of malware. In this paper, we also propose simple statistical
and combinatorial analysis to deal with false positives and
negatives.

1 Introduction

Malware (such as worm, virus, rootkit) is a malicious
executable code that infiltrates computer system without

I. Ahmed
Information Security Institute, Queensland University
of Technology, Brisbane, Australia
e-mail: irfan.ahmed@qut.edu.au

K. Lhee (B)
Seoul, South-Korea
e-mail: kyungsuk.lhee@gmail.com

authorization. Many existing schemes for malware detection
are signature-based [1,3,20,28]. Although they can effec-
tively detect known malwares, they cannot detect variants of
known malwares or new ones. In order to detect an unknown
malware it must first be analyzed to derive a signature. When
the signature is finally made public, the malware would
have already infiltrated many hosts. Therefore, to detect
0-day exploits effectively and efficiently, we need a differ-
ent approach that looks for common characteristics among
malwares regardless of whether they are known or not. One
such characteristic is that many malwares are executable
codes.

This motivates us to distinguish between executable and
non-executable content in general. Such approach is effec-
tive to protect many network applications (from binary mal-
wares) that do not expect to receive any executable code.
For instance, malwares particularly target network servers
for mass-spreading because they stay on-line and are open to
unknown users. However, most servers are data providers in
nature and do not expect executable code in their in-bound
network traffic. Some of their examples are as under:

– Web servers such as on-line shopping malls only accept
http requests, which are simply text.

– Many applications that accept user uploads do not expect
to receive executable code. For instance, Picasa (a photo
sharing website) only allows sharing of image files. You-
tube (a video sharing website) only allows sharing and
uploading of videos. In Blogger (a blog website), users
maintain their commentaries or descriptions of events
and share images and videos.

– There are grid applications and distributed computing
environments which exchange a few well-defined types
of data such as multimedia or numeric, but do not
exchange executable binaries.

123

280 I. Ahmed, K. Lhee

– Many FTP servers that allow users to download multime-
dia contents such as movies are not supposed to transfer
executable content. Therefore, such network applica-
tions can be protected from malware infection by moni-
toring their ports to see if incoming packets contain any
executable contents.

Many server machines are sandboxed and/or simplified to
contain a minimal set of services and programs. For exam-
ple, if compilers or interpreters (such as Java, Perl, etc.) are
unavailable in the server machine, then the attacker has no
choice but to rely on binary malware. Therefore, the approach
of identifying executable content in packet payload can be
applicable to many network applications.

A universal solution for all kinds of malware is extremely
difficult to realize and thus may not be feasible in near future.
Rather, a few solutions that are (ideally) collectively exhaus-
tive in the attack space would be more achievable. There-
fore the proposed approach is intended to complement other
approaches such as signature-based approach.

This paper proposes a content-classification scheme that
identifies executable contents in incoming packets. The pro-
posed scheme has the aforementioned advantages over sig-
nature-based approach. It is also easier to deploy than similar
existing solutions, since most of them require port-specific
learning phases [10,13,24,25]. In their approaches, statisti-
cal parameters of packet contents on a particular port may
change over time and therefore also require ongoing anal-
ysis. The proposed scheme relies on statistical parameters
of executable files rather than port-specific information and
therefore can be readily used in any port, as long as the pro-
tected network application and the port it is bound to do not
expect executable content.

For accurate detection, the proposed scheme analyzes the
packet payload in two steps. It first analyzes the packet pay-
load to see if it contains multimedia-type data (i.e., binary
contents except executables such as avi, wmv, jpg,
etc.). If not, then in the second step it classifies the payload
either as text-type (txt, jsp, asp, etc.) or executable-
type data (see Fig. 1). We propose a two-step scheme because
we found that the statistical parameters of multimedia-type
are different enough from text and executable-type, but the
difference between text and executable-type is smaller, and
therefore different techniques are required to distinguish
them.

The two algorithms in the proposed scheme are based on
the n-gram, which is a sequence of n adjacent bytes in a
packet payload. To identify multimedia content, we use a
distance-based algorithm. We first obtain a threshold value
(that represents the multimedia-type) from the n-gram fre-
quencies of numerous executable contents (which are the
model of the executable-type). From each packet we then
calculate a distance value from the n-gram frequencies of
the packet payload and the model (which shows how differ-
ent the packet is from the model), and compare it with the
threshold. If the distance value exceeds the threshold, it is
considered as multimedia-type. Otherwise we apply the sec-
ond algorithm to identify whether or not it contains execut-
able content. To identify executable content, we propose our
pattern counting algorithm. We first obtain a set S of unique
n-gram patterns that are present only in executable contents.
From each packet payload we then count the occurrence of
n-gram patterns in S. If the count exceeds a certain threshold
then it is considered as executable-type, otherwise as text-
type. Our pattern counting algorithm is particularly effective
for distinguishing text-type, because text contents have con-
siderably fewer n-gram patterns than other content types.

Multimedia type

If α > threshold
distance

Text Type
Incoming

Packet

Phase 1 Phase 2

Representative
model of

executable files

α = Compute
distance between
packet payload

and model

Code Type

If β > threshold
count

β = Count n-
grams of {S} in
packet payload

S = Extract n-
grams present

only in
executable files

Pattern counting algorithmDistance-based algorithm

Yes

No

Yes

No

Fig. 1 Outline of the proposed content classification scheme. Phase 1 detects multimedia-type contents, and Phase 2 identifies executable contents

123

Classification of packet contents for malware detection 281

We conducted experiments simulating real-time situations
in order to measure the false positive and negative ratio, using
a broad range of contents such as documents, videos, images,
executables and binary malwares. Although the proposed
scheme shows a very low rate of false negatives and posi-
tives (4.69% and 2.53%, respectively), the presence of inac-
curacies requires further inspection to efficiently detect the
occurrence of malware. In this paper, we also propose sim-
ple statistical and combinatorial analysis to deal with false
positives and negatives.

Contributions and important points

– The proposed solution specifically focuses on distin-
guishing the (malignant or benign) executable code from
non-executable contents. This is highly applicable to the
in-bound network traffic of the network applications that
do not expect to receive any executable code and thus,
enables them to detect binary malwares in their in-bound
traffic.

– The part of the proposed solution that uses Mahalan-
obis distance to identify multimedia contents is similar
to the Wang et al. [25] and Lee et al.s’ [10] solutions.
However, they use it for anomaly and botnet detection
respectively. They also use port-specific network pack-
ets to build models, on contrary to ours where we use
arbitrary executable files.

– The pattern counting scheme is novel to exploit the sig-
nificant difference in the number of n-grams between
text and executable contents.

– We conduct the experiments with unbiased data set that
contains the files of diverse as well as similar types.
For instance, we use text file types such as txt,
xml and html; Microsoft office compound files such
as xls and doc that contain embedded objects and
multimedia files such as wmv, mp3, and rm. All
the groups are quite different in contents from each
other.

– The solution is currently effective for distinguishing
the unaltered contents. The contents after encoding,
encryption or zipped for instance, are not in the scope
of this paper (and will be considered in the future
work).

The rest of the paper is organized as follows. Sec-
tion 2 describes the related work. Section 3 describes the
distance-based algorithm to identify multimedia packets.
Section 4 describes the pattern counting scheme to iden-
tify executable and text packets. Sections 5 and 6 show the
experiment results. Section 7 presents simple statistical and
combinatorial analysis to deal with false positives and neg-
atives. Section 8 discusses memory overhead, and Sect. 9
concludes the paper and discusses our future work.

2 Related work

In this section we discuss existing content classification
schemes for malware detection and file type identification. To
maintain the focus, we only discuss the work that classifies
the contents using statistical or machine learning techniques.

2.1 Anomaly and malware detection

Wang and Stolfo proposed PAYL [25], which examines the
packet payload and computes its 1-gram frequency distri-
bution. It builds many models of normal network traffic,
depending on the packet size and monitoring port, by cal-
culating the average and standard deviation of the feature
vector of normal traffic. It uses the Mahalanobis distance to
compare the normal traffic model with a 1-gram (byte) fre-
quency distribution of test packets, to detect worms in packet
payloads. They used 1999-DARPA-IDS dataset and (at best)
achieved 100% accuracy with 0.1% false positive rate for
port 80. They also proposed Anagram [24] which works in
a similar manner but uses a higher n-gram (using the bloom
filter) to detect mimicry attacks. In some cases, they reported
100% accuracy with 0.006% false positive rate for Anagram.

Bolzoni et al. [7] extended PAYL [25] (which they named
as POSEIDON) to obtain better anomaly detection rate. They
proposed two tier architecture where the first tier used Self-
Organizing-Maps to classify payload data in an unsupervised
manner. The second tier is a modified PAYL that builds the
representative models of normal traffic with respect to the
classified data (instead of the payload length as used by tra-
ditional PAYL), destination address and service port. They
compared POSEIDON with traditional PAYL and reported
the detection rate of 73.2 and 58.8%, respectively.

Wenke Lee et al. [10] proposed SLADE that is similar
to PAYL [25] except that it does not use all features of
an n-gram, e.g. a 1- and 2-gram has 256 and 2,562 fea-
tures, respectively. It uses a lossy structure, i.e. a fixed vector
counter to store a lossy n-gram distribution of payloads. They
use a lossy structure because they conjecture that not all the
n-grams represent normal traffic behavior. Some n-grams are
considered as noise. They compare SLADE with PAYL and
reported 0.3601 and 4.02% false positives, respectively, with
100% accuracy.

Zanero [27] proposed ULISSEwhich is a network anom-
aly detector. It is a two-tier architecture where the first-tier
used Self-Organizing-Maps with Euclidean distance to group
the packets in such a way that intra-group similarity is max-
imized and inter-group similarity is minimized. The second
tier used a multivariate time series outlier detector for anom-
aly detection. They reported the best detection rate of 88.9%
while protecting an Apache web server against the attacks
that he generated from metasploit. He used source port,
destination port, TCP flags, source and destination address

123

282 I. Ahmed, K. Lhee

and the classified payload (from the first tier) as features to
the outlier detector.

Criscione et al. [9] proposed Masibty, an anomaly-
based intrusion prevention system for web applications. The
system is based on Entry points which they define as an
augmented URI (identifier of the requested resource from
web server) by parameters and session context. Masibty has
several Anomaly Engines (each of which detects anomaly
of a single aspect of an event). Anomaly Reasoner obtains
anomaly scores from Anomaly Engines, aggregates them and
compares the aggregated score from user-specific threshold
in order to flag the events as anomalies. They also have other
modules (such as Normality Vault and Reaction Manager)
to improve the performance. They used Artmedic Weblog,
SineCMS, PHP-Nuke and JAF web applications to test Mas-
ibty and reported overall detection rate of 93% and false
positive rate of 0.16%.

Stolfo et al. [21] use their previous work of file type iden-
tification [15] to detect malwares that are only embedded in
pdf and doc files. They also classify normal executables
and viruses in a similar fashion. They use 1- and 2-gram fre-
quency distributions and build the model by using 1,000, 500
and 200 bytes that are truncated from the header and trailer
of benign executable and virus files. They reported the detec-
tion accuracy of 87.5, 90.5, and 94.5% for truncated bytes
from header and 75, 80.1, and 72.1% for truncated bytes from
trailer, respectively.

Li et al. [14] proposed two techniques to detect malwares
embedded in Microsoft Word document files (.doc), i.e. static
content analysis and run-time dynamic testing. In static con-
tent analysis, they model sample documents and malwares by
storing all their n-grams in two different models. They used
5-gram that is found to be detecting attacks accurately while
consuming a reasonable amount of memory. They reported
7.68% false negatives and 0.02% false positives. They fur-
ther extend their approach by parsing the training document,
dividing it into different sections and generating one model
for each section. They reported 1.31% false negatives and
and 0.15% false positives for this approach.

Shafiq et al. [19] observe that, unlike malwares, the byte
sequences in benign files have first-order dependence. That
is, when byte i appears, it is more likely that it will be followed
by another i at the next byte location. They use a discrete-
time Markov chain that characterizes a process in terms of
the conditional distribution of its state. The transition proba-
bilities are computed by counting the number of times byte i
is followed by byte j for all i and j. They use the entropy rate
to quantify the changes in the transition probability matrix.
The entropy highlights the perturbations in the location where
malware is embedded in a file. They used DOC, EXE, JPG
MP3, PDF and ZIP file types in their experiments and cre-
ated two data sets: first by embedding malwares in random
locations of files and second by encrypting malwares prior

embedding them in random locations of files. They reported
the improvement from Stolfo et al. [21] in detection of the
non-encrypted and encrypted malwares (in terms of true pos-
itives) by 0.7 and 10.1% for DOC, 30.8 and 28.4% for EXE,
19.1 and 25.7% for JPG, 31.2 and 37.5% for MP3, 9.1 and
21.6% for PDF, and 30.4 and 35.1% for ZIP, respectively.
However, their scheme was ineffective for compound file
types such as DOC. Moreover, they also reported that their
scheme couldn’t detect malwares smaller than 343 bytes
when a block size of 1,000 bytes was used for tracing the
malware in a benign file.

SigFree [26] proposed two schemes that distinguish
between a sequence of random instructions and a fragment
of a program in machine language. Scheme 1 uses the operat-
ing system characteristics such as calls to operating systems
and kernel library. Scheme 2 on the other hand exploits the
data flow characteristics of a program. They disassemble and
extract the instruction sequences in packet payloads up to a
certain threshold, in order to find executable codes. They
find the appropriate thresholds by testing both the schemes
against 50 encrypted attack requests generated by metas-
ploit framework, worm Slammer, CodeRed and 1500 binary
HTTP replies (containing encrypted data, audio,JPEG,GIF,
and PNG). They reported that by setting a threshold num-
ber of push-calls to two, scheme 1 detected all the buffer
flow attacks (used in the experiments). Moreover, by setting
the threshold of the sequence of instructions for scheme 2
between 15 and 17 detected all the attacks (in the experi-
ments).

Kruegel et al. [13] proposed an anomaly based intrusion
detection system. They built application-specific models by
using only application data in packet payload. Rather than
using a byte frequency distribution of all byte patterns, they
used six ranges (0, 1–3, 4–6, 7–11, 12–15, and 16–255) of
byte frequency distributions in packet payloads. They com-
puted a single distribution model of these six segments and
used a Chi-square test on this model to detect anomalies.
Their tests included five DNS exploits and showed that the
distribution of malicious DNS requests had anomaly scores
quite different (or greater) than normal DNS requests and
thus, by setting an appropriate threshold, all the malicious
requests were accurately detected.

Table 1 presents the comparison of our solution with the
other packet-payload based intrusion detection systems in
order to highlight the significant differences between them.

2.2 File type identification

McDaniel and Heydari [18] introduced three algorithms to
analyze file content and identify file types. Firstly, the Byte-
Frequency Analysis Algorithm (BFA) computes the byte
frequency distributions of different files and generates a “fin-
gerprint” of each file type by averaging the byte-frequency

123

Classification of packet contents for malware detection 283

Table 1 Comparison of existing packet-payload based approaches and our proposed approach

Online
learning

Packet
header

Learning
type

Learning
source

Attack-free
traffic

Port information
for learning

Detecting attacks

PAYL Required Required Unsupervised Packets Required Required Payload-based attacks

POSEIDON Required Required Unsupervised Packets Required Required Payload-based attacks

ULISSE Required Required Unsupervised Packets Required Required Web server attacks

Masibty Required Not-required Unsupervised – Not-Required Not-required Web application attacks

Our approach Not-required Not-required Supervised Files Not-required Not-required Executable contents
(and/or binary
malwares)

distribution of their respective files. They also calculate
correlation strength as another characterizing factor by taking
the difference of the same byte in different files. Secondly,
the byte-frequency cross-correlation (BFC) algorithm finds
the correlation between all byte pairs. It calculates the aver-
age frequencies of all byte pairs and the correlation strength
in a similar manner to the BFA algorithm. Thirdly, the file
header/trailer (FHT) algorithm uses the byte-patterns of file
headers and trailers that appear in a fixed location at the
beginning and end of a file, respectively. In these algorithms,
they compare the file with all the generated fingerprints to
identify its file type. They reported the accuracy of 27.50,
45.83, and 95.83% for BFA, BFC and FHT algorithms,
respectively.

Karresand and Shahmehri [16,17] proposed the “Oscar”
method to identify a file fragment type. They use the sin-
gle centroid model [15] of Li et al. and use quadratic dis-
tance metric and 1-norm as a distance metric to compare the
centroid with the byte-frequency distribution of a given file.
Although their method identifies any file type but they have
specifically optimized it forjpgfiles. They reported a 99.2%
detection rate with no false positives.

Veenman [23] uses linear discriminant analysis to iden-
tify file types. Three features are obtained from file con-
tent, i.e. the byte frequency distribution, the entropy derived
from the byte-frequency distribution of files, and the algo-
rithmic or Kolmogorov complexity that exploits the substring
order [12]. Calhoun and Coles [8] extended Veenman’s work
by building classification models based on the ASCII fre-
quency, entropy and other statistics, and applied linear dis-
criminant analysis to identify file types. Veenman reported
45% overall accuracy.

Ryan [11] uses a neural network to identify file types.
He divides the files into blocks of 512 bytes, and uses only
the first 10 blocks for file-type identification. Two features
are obtained from each block, i.e. raw filtering and character
code frequency. Raw filtering takes each byte as an input to
one neuron of the neural network. On the other hand, char-
acter code frequency counts how many times each character
code occurs in the block and takes the frequency of charac-
ters as input to the neurons. He used only image files (such

as jpg, png, tiff, gif, and bmp) as a sample set
and reported a detection rate ranging from 1% (gif) to 50%
(tiff) when using raw filtering and from 0% (gif) to 60%
(tiff) when using character code frequency.

Mehdi et al. [6] use the hierarchical feature-extraction
method to better exploit the byte-frequency distribution of
files in file-type identification. They utilize principal com-
ponent analysis and an auto-associative neural network to
reduce the 256 features of byte patterns to a certain small
number for which the detection error is negligible. After fea-
ture extraction, they use the three layers MLP (multi-layer
perceptron) for detecting the file types. They used doc,
pdf, exe, jpg, html and gif file types for exper-
iments and reported an accuracy of 98.33%.

3 Identification of multimedia packets

This section describes the distance-based algorithm to iden-
tify multimedia content in the packet payload, which requires
a learning phase to build a normal behavior model and an
identification phase. We also discuss the order of n-gram that
yields sufficient accuracy in identifying multimedia contents
(we found that a 3-gram is sufficient). Figure 2 illustrates the
algorithm.

3.1 Learning phase

In the learning phase, we build an n-gram model of the exe-
cutable contents based on the observation that the executable
contents have similar byte patterns (as shown in Fig. 3). To
build the model, we first obtain the n-gram frequency vec-
tors from numerous executable files. Each file is processed
to compute the number of occurrences (frequency) of each
n-gram, which is then normalized by dividing the frequency
by the file size (relative frequency). Since it is hard to find the
real instructions from executable file (as they are often con-
fused with the normal data [26]), we consider the whole file to
obtain the n-gram frequencies of executable files. However,
we conjecture that only considering n-grams correspond-
ing to real instructions could obtain a better representative

123

284 I. Ahmed, K. Lhee

D
et

ec
tio

n
Ph

as
e

Pr
e-

D
et

ec
tio

n
Ph

as
e

Multimedia
type packetIncoming

packets

If α > βα = Calculate MD Code type or text
type packet

Calculate n-gram
frequency vector
of packet payload

Calculate Mean and
Standard Deviation

(Executable File model)

Calculate n-gram
frequency vector

of file 1

Calculate n-gram
frequency vector

of file 2

Executable file 1 Executable file 2 . . . Executable file m
Code type packets

(1 .. M)
Multimedia type packets

(1 .. M)

Calculate n-gram frequency
vector of each packet payload

Calculate MD for each packet
payload

Calculate false positives and
false negatives on each MD

value as threshold

β = set the MD value as threshold
value having lowest false positive

and false negative rate

Calculate n-gram
frequency vector

of file m
. . .

Building a representative model Finding an optimum threshold value

Yes

No

Fig. 2 Distance-based algorithm to identify multimedia contents

 0

 0.005

 0.01

 0.015

 0.02

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

Byte patterns

Acrobat.exe

 0

 0.005

 0.01

 0.015

 0.02

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

Byte patterns

ALFTP.exe

 0

 0.005

 0.01

 0.015

 0.02

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

Byte patterns

Excel.exe

 0

 0.005

 0.01

 0.015

 0.02

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

Byte patterns

GoogleDesktop.exe

 0

 0.005

 0.01

 0.015

 0.02

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

Byte patterns

AVI

 0

 0.005

 0.01

 0.015

 0.02

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

Byte patterns

MP3

 0

 0.005

 0.01

 0.015

 0.02

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

Byte patterns

WMV

 0

 0.005

 0.01

 0.015

 0.02

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

Byte patterns

PDF

Fig. 3 1-gram (byte) frequency vector of executable and multimedia-type (i.e. avi, mp3, wmv, pdf) files

frequency distribution of executable files. (Therefore, the
accuracy level measured in this paper serves as a lower
bound.) After normalization, considering each n-gram’s rel-
ative frequency as a variable, we compute its mean and stan-
dard deviation. We refer to the set of mean and standard
deviation of all n-grams as the executable model.

The executable model is compared with the n-gram fre-
quency vector of incoming packets by using the Mahalanobis
distance. The Mahalanobis distance between two vectors −→x

and −→y is defined as

d(
−→x ,

−→y) =
√

(
−→x − −→y)P−1(

−→x − −→y)T (1)

where P−1 is the inverse of the covariance matrix of the
data [22]. The Mahalanobis distance is widely used for
detecting outliers, thus it is useful for anomaly detection.
However computing the Mahalanobis distance is expensive,
so we use the simplified Mahalanobis distance (denoted as

123

Classification of packet contents for malware detection 285

MD henceforth) formula in PAYL [25] which considers both
the average and standard deviation of the variables measured.
The MD equation is as follows.

d(x, ȳ) =
N∑

i=1

|xi − ȳi |
δ̄i

(2)

where ȳ is the mean value, δ̄ is the standard deviation (from
the executable model), x is the n-gram frequency of the
incoming packet and N is the total number of unique pat-
terns of the n-gram.

Since the byte-frequency distributions of executable con-
tents are quite distinct from multimedia contents (see Fig. 3),
we can obtain a significant difference between the Maha-
lanobis distance of executable and multimedia contents by
making a comparison with the executable model. Therefore,
the learning phase also involves setting an optimum thresh-
old value between the Mahalanobis distance values of two
content types. To compute the threshold value, we compute
the n-gram frequency vector of a packet payload of known
type (code and multimedia) and use the Mahalanobis dis-
tance to compare it with the executable model. After cal-
culating the MD of the code and multimedia-type packets,
we compute the false negative and false positive rate for all
possible MD thresholds, and set the optimum threshold that
yields the minimum rate of false negatives and false posi-
tives.

3.2 Identification phase

During the identification phase, for each incoming packet we
compute the n-gram frequency vector of the payload by divid-
ing the count of each n-gram by the packet size. This vector is
then compared with the executable model by using the MD,
which shows how consistent the packet payload is with the
executable model. If the MD value is higher than the pre-
defined threshold, the packet is considered as a multimedia-
type. If the MD value is lower, the packet may be either code
type or text type. That is, there is still ambiguity between
the text and code type, which requires further processing to
resolve.

3.3 Determining the n-gram order

An instruction consists of multiple bytes (even an opcode
alone may consist of multiple bytes), so byte sequence infor-
mation is significant in identifying the codes in a packet.
Therefore, a higher order n-gram is desirable. We increase
the order of the n-gram until we can reasonably distinguish
the code and other types of packets. Therefore, for each
order of n-gram, we process different types of packets,
including packets containing executable code, to calculate
the threshold. We build the executable model using 134 pro-
gram files with sizes ranging from 330 bytes to 17,471 KB,
and compare it with the different types of packets. Figure 4
shows the MD of different types of packet, for 1-, 2-
and 3-grams. The MD of code packets must be below the

1-gram

2-gram

3-gram

Fig. 4 MD vectors of code and multimedia packets, using 1-, 2-, and
3-grams (the x-axis shows the number of packets processed; the y-axis
shows the MD calculated for each packet; the horizontal lines in the

graph show the thresholds for the best overall accuracy (i.e. the least
sum of false positives and negatives)). The circles and dotted box rep-
resent false negatives and positives, respectively

123

286 I. Ahmed, K. Lhee

1-gram

2-gram

3-gram

Fig. 5 MD vectors of code and text packets, using 1-, 2-, and 3-grams
(the x-axis shows the number of packets processed; the y-axis shows
the MD calculated for each packet; the horizontal lines in the graph

show the thresholds). Note that it is not possible to draw a meaningful
threshold line

threshold of multimedia-type packets. Figure 4 shows that a
3-gram can better distinguish between code and multimedia
packets.

3.4 Limitation of the distance-based algorithm

We found that the distance-based algorithm using the exe-
cutable model can identify multimedia types, but cannot
distinguish text from codes because we obtain similar
MD values from both code and text packets. Thus, it
is difficult to find a threshold that clearly distinguishes
code from text packets. We also tried different orders of
n-gram, but were unable to obtain the significant difference
in MDs, needed to distinguish them (see Fig. 5). Therefore,
we conclude that MD is an insufficient quantification mea-
sure for differentiating between code and text packets, and
instead propose an additional scheme to resolve this ambi-
guity, which is discussed in the following section.

4 Identification of executable and text packets

In this section, we present two algorithms that can resolve the
type of non-multimedia packets. The first is a distance-based
algorithm (although it uses text files in the learning phase
instead of executable files), and the second is a novel algo-
rithm that we call the pattern counting scheme. While the
second algorithm has superior performance, we also discuss
the first one for the purpose of comparison.

4.1 Distance-based algorithm for text contents

Our first attempt uses the same distance-based algorithm pre-
sented for identifying multimedia packets, except that the
model is built using text files instead of executables as fol-
lows.

1. In the learning phase, we first compute the n-gram fre-
quency vectors of text files, from which we then calculate
two vectors (mean and standard deviation). This called
the text model.

2. In the identification phase, from each incoming packet we
compute a MD value using the n-gram frequency vector
of the packet payload and the text model. If the MD is
lower than a certain threshold, the packet is considered
as text, otherwise as code.

However, as shown in Sect. 5.2, we cannot achieve suffi-
cient classification accuracy with this scheme.

4.2 Pattern counting scheme

This scheme is based on the observation that there are a num-
ber of n-gram patterns that normally occur in executable con-
tents but rarely occur in text contents. It is because unlike
executable contents, text-type contents use limited range of
byte patterns which are ASCII or printable characters (such
as [1–9], [a–z] and [A–Z]). This exponentially amplifies the
difference of normally-occurred n-grams between executable
and text contents.

123

Classification of packet contents for malware detection 287

Table 2 Number of unique 3-grams in various types of files

Files classification File type Number
of 3-gram
permutations
in files (A)

B (%) = (A/total
number of
3-gram
permutations
100)

Text files xml 13,926 0.08

html 33,845 0.20

asp 47,270 0.28

jsp 47,867 0.28

php 53,469 0.32

txt 54, 427 0.32

xls 692,463 4.13

doc 6,696,694 39.92

AVG 954,995.1 5.69

Executable file Program 16,654,060 99.26

AVG is the average of each file classification

This scheme computes the frequency of such patterns in
a packet payload.

4.2.1 Learning phase

In this phase, we distinguish n-gram patterns that are only
expected to appear in executable contents but not in text
contents, and calculate the optimal threshold for clearly dis-
tinguishing between executable and text packets. The learn-
ing phase consists of the following three steps.

1. Identification of distinct n-gram patterns in executable
and text files:
We identify the distinct n-grams of executable and text
files. Table 2 shows the total number of unique 3-grams
in executable and text files (from the dataset described in
the next section).

2. Identification of n -gram patterns that normally appear
in executable files but not in text files:
We deduct n-gram patterns of text files from those of
executable files obtained in step 1. We call the set of
such patterns the Deduction model. It is clear from the
Table 2 that text contents have far fewer unique n-grams
than executable files. Thus, there are a large number of
unique n-gram patterns that we can normally only find in
executable content.

3. Setting a threshold:
We count the number of occurrences of n-grams in the
deduction model from each executable packet, and nor-
malize the count by dividing it by the packet size. We call
this the relative count. We similarly compute the relative
count from each text packet. We compute such relative
counts from a large pool of executable and text packets.

Suppose E is a set of relative counts from executables,
and T is a set of relative counts from text. Then we find
the optimal threshold value th such that th is lower than
most of E and is higher than most of T (i.e., th minimizes
the false negatives and positives).

4.2.2 Identification phase

Figure 6 shows the identification process for a non-
multimedia packet. If the packet is identified as non-
multimedia type (by the distance-based algorithm in Sect. 3),
the packet payload is further processed to identify whether
it is text or code-type. We compute the relative count of
n-grams of the deduction model from the payload. If the rela-
tive count is greater than the threshold, the packet is classified
as code, otherwise as text.

5 Analyzing the classification accuracy using file
segments as packet payload

In this section we analyze the classification accuracy of the
algorithms using file contents as packets. Specifically, we
divided the sample files into 1,500-byte blocks (since the
usual MTU is 1,500 bytes in Ethernet), and we assumed each
block was a packet payload. We used 3-grams in building the
models, and measured the classification accuracy (the false
positive and false negative rate) of the three algorithms.

5.1 Distance-based algorithm for multimedia contents

To build the executable model, we first collected 450 execut-
able files (which are mostly from the bin and system32
folders in Linux and Windows XP).

Our goal is to find the representative 3-gram frequencies
of executable files and to avoid oversampling as it may intro-
duce noise (i.e. n-gram frequency that is non-representative).
For this, we created 10 incremental datasets of executable
files to be used in building executable models (see Table 3),
and performed 10 incremental analysis as follows.

1. In the learning phase, we picked the next dataset and built
the executable model.

2. In the identification phase, we compared the execut-
able model with a set of code and multimedia pack-
ets, and computed the accuracy (we used six common
multimedia-types, i.e. jpg, rm, avi, wmv, mp3 and pdf
and evaluated 10,000 packets for each of the six file types
and the code type).

123

288 I. Ahmed, K. Lhee

D
et

ec
tio

n
Ph

as
e

Pr
e-

D
et

ec
tio

n
Ph

as
e

Yes

No

Code-type packet

Non-Multimedia
packets

If > th Text-type packet
= Calculate relative n-gram

count (present in the
deduction model)

= extract unique n-grams from executable files

Executable
file 1

Executable
file 2

. . . Executable
file m

Text file 2 . . . Text file m

= extract unique n-grams from text files

Deduction model = -

Text file 1

Text type packets
(1 .. M)

Calculate false positives and false negatives
on each relative count value as threshold

Count n-grams (present in the deduction
model) in each packet payload

Code type packets
(1 .. M)

th = set the relative count value as threshold
value having lowest false positive and false

negative rate

Calculate relative count by dividing total
count from packet size

Finding an optimum threshold valueBuilding a deduction model

Fig. 6 Pattern counting scheme

Table 3 Dataset used in building the executable models

Dataset
no.

Number of
program files

Total dataset
size (KB)

1st 10 13,625

2nd 50 39,472

3rd 100 109,249

4th 150 167,364

5th 200 240,458

6th 250 353,573

7th 300 384,207

8th 350 391,958

9th 400 407,876

10th 450 424,427

In each analysis we calculated the accuracy as follows.

accuracy(%) = (true positives + truenegatives)

total number of packets
× 100

(3)

Figure 7 shows the classification accuracies from the 10
analysis. We achieved the highest accuracy when the dataset
containing 150 files (or about 111,000 packets) was used in
building the executable model.

0 50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

80

90

100

Number of Sample program files

A
cc

ur
ac

y
(%

)

Fig. 7 Classification accuracy between code and multimedia packets,
for executable models sampled by using different numbers of program
files

Table 4 shows the false negative and false positive rate of
each data type, when the dataset of 150 files is used (false
negatives are code packets for which the MD values are above
the threshold, and false positives are multimedia packets for
which the MD values are below the threshold). Most types
show low false positives/negatives except for pdf. It is per-
haps because, unlike other multimedia types, pdf is a com-
pound type (that is, it contains many types of objects such as
text and images).

123

Classification of packet contents for malware detection 289

Table 4 False positives and negatives compared with the executable
model of 150 program files

File type Rate (%)

False positives
jpg 0.36

rm 0.54

mp3 0.37

avi 1.16

wmv 0.2

pdf 15.03

Average 2.95

False negatives

Program files 1.44

5.2 Distance-based algorithm for text contents

As we stated earlier, the distance-based algorithm for text
is similar to that for multimedia contents, except that we
build the model using text contents. Thus, we performed
the same incremental analysis to find the optimal text
model.

We randomly collected a total of 400 text files of five
types (i.e. doc, txt, xls, xml and html) and built
10 incremental datasets of these files (see Table 5) to be
used in building the text models. We also collected other
types of text files (i.e. log, rtf and asp) which were
not used in building the text model but were used in the
identification phase. The purpose is to find out whether or
not other text types (that are not considered when build-
ing the model) can still be (correctly) identified as text
type.

In the identification phase, we compared 10,000 packets
(obtained from files of the eight text types and the code type)
with each of the eight models and computed their accuracies.
Figure 8 shows the classification accuracies from the eight
incremental analysis. We achieved the highest accuracy when
the dataset containing 250 files (50 files for each type txt,

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Number of sampled text type files

A
cc

ur
ac

y
(%

)

Fig. 8 Classification accuracy between code and text packets for text
models sampled by using different numbers of text files

Table 6 False positives and negatives compared with the text model
of 250 text type files

File type Rate (%)

False positives
asp 2.35

doc 25.67

html 0.19

log 0.78

rtf 9.72

txt 6.98

xls 20.33

xml 4.29

Average 8.79

False negatives
Program files 22.40

doc, xml, xls, and xml, or about 36,000 packets total) is
used in building the text model.

Table 6 shows the details about the rate of false pos-
itives and negatives for the text model (derived from 250
sampled text files), indicating that this scheme is not accu-
rate enough. Since different types of text files have differ-
ent n-gram frequency distributions (as shown in Fig. 9),

Table 5 Dataset (total size of
each file type in kilobytes, KB)
used in building the text model

Each file type is sampled equally

Qty TXT DOC XML XLS HTML

1st 50 328.7 4,618.6 257.9 7,670.1 116.7

2nd 100 630 6,764.8 725.8 9,375.2 309.6

3rd 150 1,540.8 11,520 1,119.6 11,516.7 341.4

4th 200 7,000.4 14,510.8 1,406.4 23,469.6 396

5th 250 7,350.2 17,972 1,728.5 26,690 430

6th 300 7,684.8 19,321.8 1,978.8 27,313.2 463.2

7th 350 13,218.8 20,351.8 2,489.9 28,703.5 546

8th 400 15,649.6 24,129.6 2,848.8 31,173.6 612

123

290 I. Ahmed, K. Lhee

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

Byte patterns

XML

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

Byte patterns

TXT

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

Byte patterns

HTML

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50 100 150 200 250

R
el

at
iv

e
fr

eq
ue

nc
y

Byte patterns

DOC

Fig. 9 1-gram (byte) frequency vectors of text files. They are too different to make one representative centroid model for all text file types

averaging their frequency vectors does not produce an accu-
rate, representative text model for many types of texts; the
threshold value calculated from this text model tends to be
high, therefore causing a lot of false negatives (false neg-
atives are the code packets for which the MDs are below
the threshold). Moreover, the false positive rates of doc
and xls are very high because, just as for pdf, they
are of compound type (note that false positives are text
packets for which the MD values are above the thresh-
old).

5.3 Pattern counting scheme

In this experiment we used 10,000 packets from 10 text types
(the same eight types as before and jsp and php in addi-
tion) and 10,000 packets from executable files. As described
in Sect. 4.2, the deduction model contains distinct n-gram
patterns that are only present in the executable files. Since
executable contents have a much higher number of distinct
n-gram patterns than text contents, code packets have a higher
relative count than text packets. Thus, setting an optimum
threshold enables us to distinguish between code and text
packets.

Table 7 shows the number of false negatives and posi-
tives after calibrating the optimum threshold. Although it still
shows a relatively high rate of false positives in classifying
compound types such as doc and xls packets, it shows that the
pattern counting scheme is far better than the distance-based
algorithm in classifying text and code packets.

6 Evaluating with real-world network applications
and malwares

This section presents the results of experiments on real-world
scenarios. Instead of using file segments as (artificial) pack-
ets and trying to classify them, we monitored real packets
flowing into an ftp server and a Web browser. We also tried
classifying real malwares of sizes less than 2 KB (as packets
containing malwares).

Table 7 False positives and negatives of pattern counting scheme

File type Rate (%)

False positives
asp 0.00

doc 3.10

html 0.70

jsp 0.60

log 0.00

php 0.70

rtf 0.90

txt 0.20

xls 2.40

xml 0.00

Average 0.86

False negatives
Program files 0.38

Table 8 False positive/negative rates while protecting an FTP server

False False
positives (%) negatives (%)

Distance-based algorithm
for multimedia-type (MT)

1.65 4.00

Pattern counting scheme (PC) 0.88 0.69

Distance-based algorithm
for text-type (TT)

1.99 21.89

MT + TT 3.64 26.58

MT + PC 2.53 4.69

6.1 Protecting an FTP server

We setup an FTP server and collected a set of text, multi-
media, and code-type files to be used for this experiment.
We transferred the files to the FTP server and captured the
packets using Tcpdump [4]. The captured packets (70,000 in
total) in the dump file were then processed using Tcptrace
[5]. We used the same executable model, text model, deduc-
tion model, and threshold values we used in the previous
sections.

Table 8 gives the accuracy of the distance-based algorithm
for multimedia-type, the pattern counting scheme, and the
distance-based algorithm for text-type. As the result shows,

123

Classification of packet contents for malware detection 291

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate (1−Specificity)

T
ru

e
P

os
iti

ve
 R

at
e

(S
en

si
tiv

ity
)

Pattern Counting
Distance−based algorithm for text−type
Distance−based algorithm for multimedia−type

Fig. 10 ROC curve while protecting an FTP server

Table 9 False positive rate while protecting a Web client

Schemes Total number No. of false False positive
of packets positives rate (%)

MT + PC 35,181 1,561 4.43

the pattern counting scheme is much more accurate than
the distance-based algorithm for text-type (for distinguish-
ing text from code packets): the pattern counting scheme
reduced false positives and false negatives by 56% and 97%,
respectively.

Figure 10 shows the Receiver Operating Characteristic
(ROC) curve for the three schemes. The result shows that the
pattern counting scheme and the distance-based algorithm
for multimedia-type can better classify packets.

6.2 Protecting a Web client

We captured incoming packets to a Web browser (running in
Windows XP) for an hour using tcpdump, and processed
them using tcptrace. The browser was used only for
browsing and chatting, and we did not intentionally down-
load activeX controls or software while capturing the packets.
Thus, we were not expecting incoming executable packets.

Table 9 shows the false positive rate (there are no false
negatives because there was no transmission of executable
contents). The result is comparable to the previous experi-
ment with an ftp server (2.53%). In this experiment we did
not test the distance-based algorithm for text-type, which is
clearly inferior to the pattern counting scheme.

6.3 Applying the content classification scheme on malwares

We tested our schemes on different types of malwares such
as worms, viruses, backdoors and trojans (obtained from a
publicly available Web site [2]). The sizes of malwares that

Table 10 False negative rate while capturing the malwares

Malware size Total Number No. of false False negatives
(MS) of malwares negatives rate (%)

MS ≤ 1 KB 25 3 12.00

1 KB < MS ≤ 2 KB 18 3 16.66

Summary 43 6 13.95

we experimented on range from 64 bytes to 2Kbytes (i.e., the
malwares that can more or less fit in a packet).

Table 10 shows the false negative rate (using the distance-
based algorithm for multimedia-type and the pattern count-
ing scheme), which is higher (13.95%) than that of the ftp
server (4.69%). However, in the next section we will discuss
how to detect malwares in the face of a moderately high false
negative rate.

7 Dealing with false positives and negatives

Although the proposed scheme is highly accurate, the amount
of packets flowing in the network is enormous, and so is the
number of false positives and negatives. In this section we
discuss two ways to further enhance the proposed scheme
in order to efficiently detect malwares. We present simple
statistical and combinatorial analysis to identify false posi-
tives (from true positives), and to detect malwares consisting
of multiple packets (in the presence of false negatives). The
analysis in this section is by no means comprehensive, but
we intend to argue that it is possible to devise an effective
and practical detection system using our approach.

7.1 Detecting malwares in the presence of false positives

Consider a local area network based on Ethernet with a speed
of 100 Mbps. The MTU size allowed by Ethernet is 1,500
bytes. Hence, the number of packets arriving per second is
(100 × 220)/(1,500 × 8) = 8,738.13 packets. As shown
in Table 8, the overall false positive rate is 2.53 (using the
distance based algorithm for multimedia-type and the pat-
tern counting scheme). Therefore we receive approximately
8,738.13 × 2.53/100 = 221.07 false positives per second,
or we can expect one false positive out of 40 packets on
average. Those false positives should be further inspected to
identify true positives (if any). For example, we can simply
input the alarming packets to a signature detector to detect
known malware.

However, we can better analyze the false positives as fol-
lows. Suppose that we have received n packets from a TCP
session during a predefined time interval (n can be a multiple
of 40 for convenience). Let us also assume that the occur-
rences of false positives are uniformly distributed over the

123

292 I. Ahmed, K. Lhee

Table 11 Probability of identifying at least m packets of an executable file that requires n packets for its complete transfer

m = 1 3 6 9 12 15 18 21

n = 1 0.9531000

2 0.9978004

3 0.9998968 0.9573961

4 0.9999952 0.9980019

5 0.9999998 0.9999063

6 1 0.9999956 0.9631137

7 1 0.9999998 0.9982700

8 1 1 0.9999189

9 1 1 0.9999962 0.9680640

10 1 1 0.9999998 0.9985022

11 1 1 1 0.9999298

12 1 1 1 0.9999967 0.9723499

13 1 1 1 0.9999998 0.9987032

14 1 1 1 1 0.9999392

15 1 1 1 1 0.9999971 0.9760607

16 1 1 1 1 0.9999999 0.9988772

17 1 1 1 1 1 0.9999473

18 1 1 1 1 1 0.9999975 0.9792735

19 1 1 1 1 1 0.9999999 0.9990279

20 1 1 1 1 1 1 0.9999544

21 1 1 1 1 1 1 0.9999979 0.9820551

22 1 1 1 1 1 1 0.9999999 0.9991584

23 1 1 1 1 1 1 1 0.9999605

24 1 1 1 1 1 1 1 0.9999981

25 1 1 1 1 1 1 1 0.9999999

26 1 1 1 1 1 1 1 1

interval, and the number of false positives per interval is nor-
mally distributed. If the number of alarms raised during an
interval exceeds a certain threshold t , we can suspect that one
or more true positives occurred in the interval, and the con-
tents of the packets obtained during the interval are subject
to further analysis that is possibly more extensive and time
consuming (an example of such analysis is given in the next
section). The threshold t can for example be μ + 2σ (where
μ and σ are pre-computed mean and standard deviation),
considering the empirical rule (about 95% of the values are
within ±2σ).

This proposal enables us to systematically detect a trans-
mission of unknown malware in the presence of false
positives. The limitation of this proposal is that we do not
know exactly which packets contain malware.

7.2 Detecting malwares in the presence of false negatives

This section analyzes the probability of not detecting the
occurrence of a malware due to false negatives.

In Table 8, the overall false negative rate of our scheme
is 4.69 (from the distance-based algorithm for multimedia-
type and the pattern counting scheme). Consider a malware
comprising n packets. The probability of “missing” each
packet (i.e., it is not identified as a code packet) is 0.0469.
Since detecting each packet is an independent event, the
overall probability of missing all packets is (0.0469)n . For
instance, if a malware needs five packets, the probability
of missing all packets is (0.0469)5 = 0.000022, which is
negligible.

Let P(X = m) be the probability of identifying at least m
packets among n packets of a malware. This can be expressed
by Eq. 4.

P(X = m) = 1 −
m∑

i=0

(1 − 0.0469)i (0.0469)n−1 (4)

Table 11 shows the results of Eq, 4 for different values of
m and n. The result shows that it is highly unlikely to miss
more than two packets. Therefore, if a malware consists of

123

Classification of packet contents for malware detection 293

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Number of packets required for complete malware transfer (n)

C
um

ul
at

iv
e

m
al

w
ar

e
Pe

rc
en

ta
ge

 (
%

)

Backdoor
Trojan
Virus
Worm

Fig. 11 Cumulative percentage of malwares that require n number of
packets for their complete transfer

n packets, then at least n − 2 packets will be detected with
more than 99.98968% probability.

Since our scheme produces about one false positive out
of a stream of 40 packets (Sect. 7.1), we can detect a mal-
ware with near certainty if the malware is big enough. For
example, by monitoring every stream of 40 packets of a TCP
session and setting a threshold of five, we can detect mal-
wares consisting of seven packets or more.

Since the effectiveness of our scheme depends on the size
of the malware, we collected actual, publicly available mal-
wares from VXHeaven [2] and examined their sizes. The
types of malwares examined were backdoor, worm, virus and
trojan. We assumed that a malware comprises s/1500 pack-
ets, where s is the size of the malware in bytes. Figure 11
shows the cumulative percentage of malwares. Only 8% of
backdoors consist of less than seven packets. 26% and 23% of
trojans and worms consist of less than seven packets, respec-
tively. However, 70% of viruses consist of less than seven
packets.

In case of a packed malware, it contains instructions that
reconstruct the original code in order to execute it. When it
is transmitted over network, it becomes a sequence of one or
more executable packets followed by many non-executable
packets. If the unpacking routine (i.e.exe part) is sufficiently
big then our solution can directly detect it. If the unpacking
routine is too small (e.g., consisting of less than 5 packets)
then our solution may not detect it. However, our solution is
most likely to be disturbed by the rest of the packed malware
and would produce many alarms1, which would be picked
up by the statistical analysis presented in Sect. 7.1.

Further analysis of such suspected packets is out of the
scope of this paper, but below we give a heuristic algorithm
as an example.

1 They are technically misclassified but in this case semantically true
positives.

asp doc exe html jpg mp3 pdf txt xls xml
10

0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

File Type

M
od

el
 S

iz
e

(K
B

)

1gram (hash)
1gram (array)
2gram (hash)
2−gram (array)
3gram (hash)
3gram (array)
4gram (hash)
4gram (array)
5gram (hash)
5gram (array)

Fig. 12 Comparison between model size and file type for different
orders of n-gram, using hashing and an array

– Reassemble all the packets of the interval and try match-
ing the signatures for known archiving or packing algo-
rithm.

– If it is found as a known archive then unzip the transmit-
ted file and try reclassifying the unzipped files.

– If it is a known packer then we have detected a malware.
– Otherwise the alarms of the interval are indeterminable.

8 Memory requirements

Our schemes generate n-gram frequency vectors of different
files and packets, which need to be stored so that frequency
data can be located quickly. In this paper, we use an array
and hashing and discuss their memory requirements.

In the case of an array, as the order of the n-gram
increases the model size increases exponentially (O(256n)).
For instance, 1-gram has 256 unique patterns so the array
must have 256 entries. If eight bytes (e.g. double type) are
required to store each frequency then our model size would
be 2 KB. Although an array is easy to use, it wastes mem-
ory space when used for higher n-grams, which have many
patterns that might never occur in the file or packet payload
(which is the case in text types).

This problem can be overcome via hashing. In hashing,
instead of allocating memory for all possible n-gram patterns
at the start of the process, we allocate memory when a new
n-gram pattern is found. As we discussed earlier (see Table 2),
different file types have different numbers of unique n-gram
patterns, hence the model size can vary with respect to the file
type. Figure 12 shows the model size required by hashing
and array for different orders of n-gram. The following con-
clusions can be drawn from the graphs.

123

294 I. Ahmed, K. Lhee

– In an array, the model size remains the same for all file
types with a given order of n-gram. This is because we
allocated memory for all possible unique n-gram patterns.

– It is better to use an array for 1-gram, because almost
all possible patterns occur in all types of file and there-
fore nothing can be gained by using hashing. In addition,
hashing needs additional data due to collision handling.

– In 2-gram, both techniques require a similar model size
for multimedia or binary file types (such as doc, exe,
jpg, mp3, and pdf). However, hashing is more suitable
for text files, because they have fewer unique 2-gram pat-
terns than multimedia ones.

– For 3- and higher grams, hashing is more efficient.

9 Conclusions and future work

To detect malware, we proposed a content classification
scheme that analyzes packet payload to identify executable
codes. The proposed scheme consists of two steps (a dis-
tance-based classification algorithm and the pattern counting
scheme), which is highly effective in detecting executable
contents in packets.

We found that the Mahalanobis distance-based algorithm
is highly accurate in identifying multimedia-type contents,
but not text or executables. To identify text and executable
contents effectively and efficiently, we proposed the pattern
counting scheme.

In both the distance-based algorithm and the pattern count-
ing scheme, we observed that the accuracy increases as the
order of the n-gram increases. We found that using the pro-
posed scheme with 3-gram is accurate enough to identify
executable contents.

In general, anomaly detection schemes produce false neg-
atives and false positives. Our content classification scheme
is no exception, and showed 4.69% of false negatives and
2.53% of false positives, thus requires further inspection to
effectively detect the occurrence of malware. However, we
showed that with further statistical analysis it is possible
to enhance the accuracy. An example of analyzing alarmed
packets that can reduce false positives is also presented,
which uses domain knowledge of known file types.

Currently, our scheme cannot achieve high accuracy in
detecting compound files such as doc, pdf and xls
because such a file contains multiple types of contents. As our
future work, we will find a technique to effectively identify
such compound files. For example, the heuristic algorithm
given in Sect. 7.2 may be extended to reduce false positives of
our solution such that known encoding and archiving formats
such as zip, tar, or MS Office documents2 are preprocessed
to expose the contents before classification.

2 MS Office 2007 documents are simply zipped XML files.

Acknowledgments The authors are grateful to the anonymous
reviewers for their valuable feedback which has significantly improved
the quality and the presentation of the paper.

References

1. Bro. http://www.bro-ids.org. Accessed 14 Nov 2010
2. Publicly available library of malwares (VX Heavens). http://vx.

netlux.org/. Accessed 14 Nov 2010
3. Snort. http://www.snort.org/. Accessed 14 Nov 2010
4. Tcpdump. http://www.tcpdump.org. Accessed 14 Nov 2010
5. Tcptrace. http://www.tcptrace.org. Accessed 14 Nov 2010
6. Amirani, M.C., Toorani, M., Shirazi, A.A.B.: A new approach to

content-based file type detection. In: IEEE Symposium on Com-
puters and Communications (ISCC ’08), pp. 1103–1108 (2008)

7. Bolzoni, D., Etalle, S., Hartel, P.: Poseidon: a 2-tier anomaly-
based network intrusion detection system. In: Fourth IEEE Inter-
national Workshop on Information Assurance (IWIA’06). London,
UK (2006)

8. Calhoun, W.C., Coles, D.: Predicting the types of file frag-
ments. Digit. Investig. 5(1), 14–20 (2008)

9. Criscione, C., Zanero, S.: Masibty: an anomaly based intrusion
prevention system for web applications. In: Black Hat Europe.
Moevenpick City Center, Amsterdam, Netherlands (2009)

10. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: Bothun-
ter: Detecting malware infection through ids-driven dialog correla-
tion. In: 16th USENIX Security Symposium, Boston, pp. 167–182
(2007)

11. Harris, R.M.: Using artificial neural networks for forensic file type
identification. Technical report, Purdue University (2007)

12. Kolmogorov, A.: Three approaches to the quantitative definition
of information. Problems Inf Transmission 1(1), 1–7 (1965)

13. Kruegel, C., Toth, T., Kirda, E.: Service specific anomaly detection
for network intrusion detection. In: ACM Symposium on Applied
Computing, Madrid, pp. 201–208 (2010)

14. Li, W.J., Stolfo, S., Stavrou, A., Androulaki, E., Keromytis, A.D.:
A study of malcode-bearing documents. In: Proceedings of the 4th
international conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, Lucerne, pp. 231–250 (2007)

15. Li, W.J., Wang, K., Stolfo, S.J., Herzog, B.: Fileprints: identifying
file types by n-gram analysis. In: Workshop on Information Assur-
ance and Security (IAW’05), pp. 64–71. United States Military
Academy, West Point, New York (2005)

16. Martin, K., Nahid, S.: File type identification of data fragments
by their binary structure. In: Proceedings of the 7th Annual IEEE
Information Assurance Workshop, pp. 140–147. United States Mil-
itary Academy, West Point, New York (2006)

17. Martin, K., Nahid, S.: Oscar: file type identification of binary data
in disk clusters and ram pages. In: Proceedings of IFIP Interna-
tional Information Security Conference: Security and Privacy in
Dynamic Environments (SEC2006), pp. 413–424 (2006)

18. McDaniel, M., Heydari, M.H.: Content based file type detection
algorithms. In: Proceedings of the 36th Annual Hawaii Interna-
tional Conference on System Sciences, vol. 9, p. 332a (2003)

19. Shafiq, M.Z., Khayam, S.A., Farooq, M.: Embedded malware
detection using markov n-grams. In: International Conference on
Detection of Intrusions, Malware and Vulnerability Assessment
(DIMVA’08), Paris, pp. 88–107 (2008)

20. Sommer, R., Paxson, V.: Enhancing byte-level network intru-
sion detection signatures with context. In: 10th ACM Confer-
ence on Computer and Communications Security, Washington, DC,
pp. 262–271 (2003)

21. Stolfo, S.J., Wang, K., Li, W.J.: Towards stealthy malware detec-
tion. Adv. Inf. Secur. 27, 231–249 (2007)

123

http://www.bro-ids.org
http://vx.netlux.org/
http://vx.netlux.org/
http://www.snort.org/
http://www.tcpdump.org
http://www.tcptrace.org

Classification of packet contents for malware detection 295

22. Tan, P.N., Steinbach, M., Kumar, V.: Classification: alternative
techniques. In: Introduction to Data Mining. AddisonWesley, USA
(2005)

23. Veenman, C.J.: Statistical disk cluster classification for file carving.
In: IEEE Third International Symposium on Information Assur-
ance and Security, pp. 393–398 (2007)

24. Wang, K., Parekh, J.J., Stolfo, S.J.: Anagram: a content anomaly
detector resistant to mimicry attack. In: 9th International Sym-
posium on Recent Advances in Intrusion Detection (RAID’06),
Hamburg, pp. 226–248 (2006)

25. Wang, K., Stolfo, S.J.: Anomalous payload-based network intru-
sion detection. In: Seventh International Symposium on Recent
Advances in Intrusion Detection (RAID’04), France, pp. 203–222
(2004)

26. Wang, X., Pan, C.C., Liu, P., Zhu, S.: Sigfree: a signature-free buffer
overflow attack blocker. In: 15th USENIX Security Symposium,
Boston, pp. 225–240 (2006)

27. Zanero, S.: Ulisse, a network intrusion detection system. In: 4th
annual workshop on cyber security and information intelligence
research (CSIIRW’08). Oak Ridge, TN, USA (2008)

28. Zhang, Y., Paxson, V.: Detecting backdoors. In: 9th USENIX
Security Symposium, Colorado (2000)

123

	Classification of packet contents for malware detection
	Abstract
	1 Introduction
	2 Related work
	2.1 Anomaly and malware detection
	2.2 File type identification

	3 Identification of multimedia packets
	3.1 Learning phase
	3.2 Identification phase
	3.3 Determining the n-gram order
	3.4 Limitation of the distance-based algorithm

	4 Identification of executable and text packets
	4.1 Distance-based algorithm for text contents
	4.2 Pattern counting scheme
	4.2.1 Learning phase
	4.2.2 Identification phase

	5 Analyzing the classification accuracy using file segments as packet payload
	5.1 Distance-based algorithm for multimedia contents
	5.2 Distance-based algorithm for text contents
	5.3 Pattern counting scheme

	6 Evaluating with real-world network applications and malwares
	6.1 Protecting an FTP server
	6.2 Protecting a Web client
	6.3 Applying the content classification scheme on malwares

	7 Dealing with false positives and negatives
	7.1 Detecting malwares in the presence of false positives
	7.2 Detecting malwares in the presence of false negatives

	8 Memory requirements
	9 Conclusions and future work
	Acknowledgments
	References

