
J Comput Virol (2011) 7:259–265
DOI 10.1007/s11416-011-0153-9

ORIGINAL PAPER

Comparing files using structural entropy

Ivan Sorokin

Received: 1 March 2011 / Accepted: 26 May 2011 / Published online: 8 June 2011
© Springer-Verlag France 2011

Abstract One of the main trends in the modern anti-virus
industry is the development of algorithms that help estimate
the similarity of files. Since malware writers tend to use
increasingly complex techniques to protect their code such as
obfuscation and polymorphism, anti-virus software vendors
face problems of the increasing difficulty of file scanning, the
considerable growth of anti-virus databases, and file storages
overgrowth. For solving such problems, a static analysis of
files appears to be of some interest. Its use helps determine
those file characteristics that are necessary for their compar-
ison without executing malware samples within a protected
environment. The solution provided in this article is based on
the assumption that different samples of the same malicious
program have a similar order of code and data areas. Each
such file area may be characterized not only by its length,
but also by its homogeneity. In other words, the file may
be characterized by the complexity of its data order. Our
approach consists of using wavelet analysis for the segmen-
tation of files into segments of different entropy levels and
using edit distance between sequence segments to determine
the similarity of the files. The proposed solution has a num-
ber of advantages that help detect malicious programs effi-
ciently on personal computers. First, this comparison does
not take into account the functionality of analysed files and
is based solely on determining the similarity in code and data
area positions which makes the algorithm effective against
many ways of protecting executable code. On the other hand,
such a comparison may result in false alarms. Therefore, our
solution is useful as a preliminary test that triggers the run-
ning of additional checks. Second, the method is relatively
easy to implement and does not require code disassembly or

I. Sorokin (B)
Doctor Web’s Virus Lab, Ltd., 2 Malaya Monetnaya st.,
197101 Saint-Petersburg, Russia
e-mail: i.sorokin@drweb.com; igz@drweb.com

emulation. And, third, the method makes the malicious file
record compact which is significant when compiling anti-
virus databases.

1 Introduction

One of the main trends in the modern anti-virus industry is the
development of algorithms that help estimate the similarity
of files. Since malware writers tend to use increasingly com-
plex techniques to protect their code, e.g., obfuscation and
polymorphism [14], anti-virus software vendors face several
problems. First, there is the issue of the increasing difficulty
of file scanning (e.g., due to additional emulation). Second,
the use of outdated signature detection methods results in
the considerable growth of anti-virus databases. Third, there
is also a problem of filling file storages used by anti-virus
software vendors with loads of sample files [15]. For solv-
ing such problems, a static analysis of files appears to be of
some interest. Its use helps determine those file characteris-
tics that are necessary for their comparison without executing
malware samples within a protected environment.

Aside from the presence of similar byte sequences or head-
ers in executable files undergoing comparison, a decision
on their similarity may be drawn from more complex fea-
tures such as file code patterns and data structures, e.g., a
unique sequence of function calls or processor instructions.
The solution provided in this article is based on the assump-
tion that different samples (i.e., files) of the same malicious
program have a similar order of code and data areas. Each
such file area may be characterized not only by its length
(i.e., the number of bytes), but also by its homogeneity (i.e.,
distinction of bytes). In other words, the file may be char-
acterized by the complexity of its data order. To indicate
this characteristic of a file, we use the concept of structural

123

260 I. Sorokin

entropy [17]. Our approach consists of two main parts. The
first stage includes using wavelet analysis [2] for the seg-
mentation of files into segments of different entropy levels.
In the second stage, we use edit distance between sequence
segments to determine the similarity of the files [16]. In sum-
mary, the main contribution of this article is the following:

A description of an algorithm for the segmentation of files
into segments that are characterized by length and average
entropy.
A review of the sequence alignment technique to compare
files represented by sequences of segments.

2 Related work

As was mentioned above, our solution is based on two basic
techniques: entropy analysis and sequence alignment. Both
of these approaches have ever-widening application in infor-
mation security.

Entropy analysis allows for the estimation of the package
and encryption level of data. Such estimations may serve as
a step in detecting packed data. Lyda and Hamrock [8] calcu-
late the average and maximum entropy of a whole segmented
file to identify packed and encrypted data. Perdisci et al. [10]
calculate the entropy of individual segments of executable
files. Together with other characteristics, this method allows
for the effective use of pattern recognition techniques to clas-
sify files into “packed” and “unpacked” categories. Ebringer
et al. [3] and then later Sun et al. [11], use Huffman codes to
estimate entropy. By calculating a code for each byte, they
use a sliding window method to build an entropy map of the
whole file. This allows for a more detailed comparison of files
and classifying them by packer type. Breitenbacher [1] uses
his own algorithm for estimating the randomness of 16-byte
blocks. Unfortunately his research is limited to reviewing an
entropy map of the whole file.

In most cases, malicious code or activity can be repre-
sented as a sequence of elements or events. This allows for the
use of comparison algorithms based on sequence alignment.
For instance, the Smith–Waterman local alignment algorithm
for sequences is convenient to use for the detection of mali-
cious network traffic [9]. In their subsequent research of net-
work traffic analysis, Kreibich and Crowcroft [6] propose
an improved version of the Jacobson–Vo local alignment
algorithm that is based on the identification of the longest
increasing subsequence. Another approach [4] utilizes mul-
tiple sequence alignment (MSA) methods. The analysis of
executable files is another field of use for sequence compari-
son algorithms. For example, in several articles [5,7,12,13],
alignment algorithms are used for a behaviour comparison
of malicious programs.

3 Methodology

The proposed solution lies in the static analysis of files. We
do not take into account file types; that is, we ignore PE
header attributes of Windows executables. The only thing
of importance for us is file structure, that is, the order of
its distinctive code and data areas. To determine such areas,
we build an entropy map of the whole file first and then use
wavelet analysis to segment it (see Sect. 3.1). When we have
a representation of a file as a sequence of segments, we com-
pare the file with other files using edit distance (see Sect. 3.2).
Therefore, the algorithm as a whole includes the following
stages: file segmentation and sequence comparison.

3.1 File segmentation

Any file can be characterized by properties of data it con-
tains. For instance, one may consider how well-ordered the
data are or how much space the data occupy. Among other
things, if we take a look at executable files, we may notice
that they contain data of various kinds: executable code, text,
and packed data. All of these file areas differ not only in
size, but also in the level of informational entropy. When
an executable file may be considered as a system of such
elements, then we can use the term structural entropy [17]
for its characterization. Therefore, the main purpose of the
suggested segmentation algorithm is splitting the file into
segments that are characterised by size and entropy.

3.1.1 Entropy analysis

Initially the sliding window method is used to represent the
source file as a time series Y = {yi : i = 1, . . . , N }, where
N is the total number of windows.

To calculate entropy within each window, we use the Shan-
non’s formula:

yi = −
m∑

j=1

p(j) log2 p(j), (1)

where p(j) is the frequency of occurrence of the j th byte
within the i th window, and m is a number of different bytes
in the window. Please note that we consider the frequency of
a byte’s occurrence in an individual window and not within
the whole file. This helps keep the window entropy level
from depending on other bytes in the file. For instance, some
researchers [3,11] calculate Huffman codes across the whole
file. This results in different entropy diagrams for files of
similar structure but differing length.

123

Comparing files using structural entropy 261

3.1.2 Wavelet analysis

The main task when segmenting a file is to determine those
places within it where average entropy changes. We sug-
gest using wavelet analysis [2] to extract this information
from our resulting time series Y . The essence of the analysis
follows. First, we choose a mother wavelet whose proper-
ties determine our ability to identify changes in analyzed
data. Second, we calculate the wavelet transform of various
scales. The obtained wavelet coefficients will contain infor-
mation on the correlation between the used wavelet and the
analyzed time series. As a result, we will be able to determine
segments by analysing significant wavelet coefficients.

For the mother wavelet, we choose the Haar wavelet which
has an asymmetrical form and whose zero moment equals
zero:

ψH AAR(t) =
⎧
⎨

⎩

1, 0 ≤ t < 1/2,
−1, 1/2 ≤ t < 1,
0, t < 0, t ≥ 1.

(2)

Since continuous wavelet transform (CWT) is redundant due
to the continuous change of scale coefficient and shift param-
eter, it is more cumbersome than discrete wavelet transform
(DWT). Therefore, we use the following estimate to calculate
DWT:

W (a, b) = 1

|a|1/2
N∑

i=1

yiψH AAR

(
ti − b

a

)
, (3)

where a is a scale parameter, b is a mother wavelet shift
parameter, yi is an informational entropy level within the i th
window, and N is the total number of windows in the file.

The main peculiarity of DWT is that the scale parame-
ter a changes according to a power of 2. This means, first,
that we can use multi-resolution analysis which allows us to
use the values determined on the previous scale on each next
scale of transformation. This results in a reduced number of
reduced number of mathematical operations involving addi-
tion. Second, this placed a restriction on the source data. The
number of counts of the time series should be divisible by a
power of 2: an = 2n where n is the maximum scale. There-
fore, we need to increase the time series on each side with
averaged values.

From the received coefficients, we need to identify signif-
icant ones, i.e., the local extremums that have the maximum
or minimum by the a and b variables. If all of the points of the
local extremums in the time-scale plane are connected, then
the resulting lines will build a skeleton. These lines represent
the structure of the analysed data in full. Therefore, the seg-
mentation algorithm’s main task lies in building the skeleton
of input data that is used afterwards to identify segments. The
total number of segments is determined by significant wave-
let coefficients on the maximum scale, while their limits are

determined by significant wavelet coefficients on the mini-
mal scale of transformation.

3.2 Sequence comparison

In most cases, similar malicious files are alike in terms of size;
therefore, we will use global alignment to compare them.
This method allows us to compare whole sequences while
taking into account all of their elements. In turn, algorithms
based on local alignment are applied mostly to sequences
that differ in size and have just a few similar fragments.

For global alignment of sequences, we will use the
Wagner–Fischer dynamic programming method based on the
Levenshtein distance. Using this method, insertion, deletion
and substitution operations will receive penalties depend-
ing on the characteristics of the compared elements (see
Sect. 3.2.1).

The comparison will be carried out in two steps. First,
we will align the sequences (see Sect. 3.2.2), i.e., we will
look for the correspondence between similar elements. Then
we will estimate the total degree of similarity between two
sequences (see Sect. 3.2.3).

3.2.1 Edit cost function

Since each element of a sequence is identified by two charac-
teristics (size and entropy), we need to select a general cost
function that will determine a normalized penalty value for
the mismatching of two elements depending on the differ-
ence in their sizes and averaged entropy values. We set the
range for this function between zero and a certain constant
which will indicate the absolute similarity and absolute dif-
ference of two sequences accordingly. So, by selecting such
a function, we will be able to align two sequences.

Denoting the sizes of two elements by si ze1 and si ze2

while denoting their averaged entropy by ent1 and ent2, we
may set the size penalty according to the following function:

costs = |si ze1 − si ze2|
si ze1 + si ze2

(4)

Here at least the size of one of the compared elements should
be non-zero. For this formula, the maximum penalty for the
difference in sizes equals 1. If the sizes are equal, then there
is no penalty.

Now, let us set a penalty for the difference in entropy:

coste = 1

1 + exp (−4 · |ent1 − ent2| + 6.5)
− 0.001501

(5)

In this formula, we use a sigmoid (see Fig. 1). Through its
form we can regulate the normalized penalty value differ-
ently. In this case, two elements with a difference in entropy
starting from 2 bits are considered different.

123

262 I. Sorokin

Fig. 1 Sigmoid for normalizing the difference in entropy between two
segments

The total penalty for two segments is calculated as a sum
of penalties for difference in size (4) and entropy (5):

cost = costs · P ART _SI Z E + coste · P ART _E N T (6)

The use of coefficients in formula (6) allows the fraction of
penalty for size or entropy to be set differently when com-
paring two segments.

3.2.2 Sequence alignment

After we decide on the general cost function, we can deter-
mine an alignment algorithm for two sequences. Like any
algorithm based on the Levenshtein distance, our algorithm
utilizes dynamic programming. We set an edit matrix d, i.e.,
a two-dimensional array in which each element determines
the comparison of corresponding subsequences. The essence
of the algorithms lies in filling in this array and determining
the last element that represents the resulting penalty for com-
paring two sequences.

Regardless of the fact that the general cost function takes
into account differences in both size and the averaged entropy
values of two elements, we will also additionally account for
the logarithmic sizes of the corresponding elements when fill-
ing in array d. In addition, to allow for more flexible adjust-
ment of total penalty value, we will use the constant T AX
which represents the average share of the penalty for all ele-
ments.

So, when filling in the first column, which represents dele-
tion of corresponding elements from the first sequence s1, we
will use the following formula:

d[i][0] = d[i − 1][0] + T AX · log10(s1[i − 1].si ze),

i = 1 . . . length(s1).

Likewise, to fill in the first row, which represents insertion
of corresponding elements from the second sequence s2, we
use a similar formula:

d[0][j] = d[0][j − 1] + T AX · log10(s2[j − 1].si ze),

j = 1 . . . length(s2).

All other elements of array d are set according to the
following formula:

d[i + 1][j + 1]

= min

⎧
⎪⎪⎨

⎪⎪⎩

d[i][j] + cost(s1[i], s2[j])
· log10((s1[i].si ze + s2[j].si ze)/2)

d[i][j + 1] + T AX · log10(s1[i].si ze)
d[i + 1][j] + T AX · log10(s2[j].si ze)

(7)

In each step, we select one of the three minimal values. If the
first summand is minimal, then it indicates that two elements
are replaced. In this case, the edit operation receives a penalty
not only from the cost function (6), but also from the aver-
age size of the two elements in logarithmic dependence. If
the second summand is minimal, then it indicates that the
element from the first sequence s1 is deleted. In this case,
the operation receives a penalty depending on the size of the
area. Finally, if the third summand is minimal, then it indi-
cates that the element from the second sequence s2 is inserted.
The penalty in this case also depends on the size of the area.

So, the resulting array d contains information on penalties
received when comparing corresponding subsequences, and,
therefore, its last element represents how large the penalty is
when comparing the whole sequences s1 and s2. If we follow
the array from its end while taking into account minimal
values, then we obtain the full alignment of two sequences
(Wagner & Fisher).

3.2.3 Estimating the degree of similarity

To estimate the degree of similarity between two sequences,
we need to determine the maximum penalty that their com-
parison could have received. The maximum penalty means
that all elements from the first sequence are deleted, and all
elements from the second sequence are inserted with the cor-
responding penalties. The value is already calculated when
filling in array d. Namely, it equals the sum of the last ele-
ment in the first row and the last element in the first column.
A good rule of thumb is to increase the estimate of the max-
imum penalty and thus bring together two sequences. For
this, we need to recalculate the maximum penalty while tak-
ing into account the performed alignment:

cost_max+ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2 · T AX · (log10(s1[i].si ze)
+ log10(s2[j].si ze)),

s1[i] substi tution s2[j]
T AX · log10(s1[i].si ze), delete s1[i]
T AX · log10(s2[j].si ze), insert s2[j]

(8)

In other words, calculating value cost_max is similar to fill-
ing in the first column and the first row of array d, with the
only difference being that we artificially increase the penalty
by doubling it when replacing two elements.

123

Comparing files using structural entropy 263

Fig. 2 Wavelet coefficients
built using DWT on the first
160 counts of the first file

Fig. 3 Entropy diagram of the
first file

Given that the last element of array d represent the true dif-
ference between two sequences while the maximal penalty
cost_max represents how different the subsequences could
have been in the worst case scenario, the resulting degree of
similarity may be calculated as follows:

similari t y = 100 − d[length(s1)][length(s2)]
cost_max

× 100 (9)

4 Experiment

To demonstrate the capabilities of the described method, let
us examine the comparison of two files that differ in structure
but belong to the same family of malicious programs. The
structural differences are explained by the peculiarities of the
polymorphic packer used to protect malicious functionality.
To detect these malware, Dr. Web Anti-virus uses a special
procedure that analyses the functionality of an executable
file. If particular evidence is found, the anti-virus reports the
detection of BackDoor.Tdss.based.7. Use of the suggested
method allows for the similarity of such files to be detected
on the basis of their structural entropy only.

Figures 3 and 4 display entropy diagrams of the first and
second file accordingly. The diagrams are built using the slid-
ing window method. For illustration purposes, intervals with
packed data are shortened. As a window size, we selected 256
bytes. Therefore, the maximum entropy level in one window
can reach up to 8 bit (1). For a window shift, we use 128

byte. Such a selection means that our algorithm is effective
on files of 2 and more megabytes.

First, let us examine the segmentation algorithm in respect
to the first file (see Fig. 3). To understand the capability of
wavelet analysis used for segmentation, see Fig. 2 which dis-
plays wavelet coefficients surface W (a, b) built using DWT.
For this transform, we used the Haar wavelet as a mother
wavelet. Each point on the surface represents the compliance
of the source data with the selected mother wavelet. In this
figure, you can see that at larger transformation scales, insig-
nificant changes in source data are ignored and vice versa; on
the lower scales, there is more detail. Therefore, the maximal
transformation scale determines the resulting number of seg-
ments, while the minimal scale is responsible for accuracy
within the limits of obtained segments.

To compare two files, we need to apply the following
parameters to our segmentation algorithm. Let us set the max-
imum transformation scale to 16, which would mean that the
number of wavelet translators is 4, i.e., formula (3) will be
computed four times. The threshold limit for determining sig-
nificant wavelet coefficients will be set to 0.5, which means
that we will ignore peaks of wavelet coefficients less than 0.5
in height (as in Fig. 2) when segmenting the file. As a result,
when using this algorithm, we will receive segments whose
borders are displayed at the top of the diagrams in Figs. 3
and 4.

In these diagrams, you may see differences in the struc-
ture of the selected files. In the first file, the 5th segment is
located to the right of the 3th segment of the second file.

123

264 I. Sorokin

Fig. 4 Entropy diagram of the
second file

Table 1 Cost array for
comparing the segment
sequences of two files

No. 0 1 2 3 4 5 6 7

0 0.254 0.662 1.179 1.570 1.946 2.816 3.224

1 0.254 0.000 0.409 0.926 1.317 1.693 2.562 2.971

2 0.637 0.384 0.083 0.600 0.991 1.367 2.237 2.645

3 1.027 0.774 0.473 0.991 0.605 0.982 1.851 2.260

4 1.237 0.984 0.683 1.200 0.815 1.192 2.061 2.470

5 1.759 1.506 1.205 0.704 1.094 1.470 2.340 2.748

6 2.193 1.940 1.639 1.138 1.528 1.501 2.370 2.423

7 3.066 2.813 2.512 2.010 2.401 2.374 1.523 1.931

8 3.469 3.216 2.915 2.413 2.803 2.706 1.926 1.541

This is explained by the fact that the polymorphic packer
placed the compressed data in a different order: in the first
file, these data are placed after the import section (3th seg-
ment), while in the second file, they are placed before the
import section (4th segment). We should also note that in the
first file, the segmentation algorithm singled out the area with
zero entropy (4th segment). A similar area is also present in
the second file (windows from 103 to 106), but it is shorter
on one window and is placed to the left of the low entropy
area. Therefore, the segmentation algorithm has not split the
5th segment of the second file. Other areas of the files have
similar characteristics and equal positions.

After representing files as sequences of segments each
of which is characterized by its size and averaged entropy,
we apply our alignment algorithm. But first, we need
to determine setting parameters. Let us set the coeffi-
cients from formula (6) as follows: P ART _E N T =
0.6, P ART _SI Z E = 1.4. This will increase the effect
of the difference in the size of the compared elements when
calculating penalties. The parameter T AX will be set to 0.3.
This means that the cost function for two mismatching ele-
ments will return 0.3 on average. After that, let us fill in array
d (see Table 1). Note that column 0 in this table represents the
cost of deleting all elements from the first sequence, while
row 0 represents the cost of inserting all elements from the
second sequence. In other words, in order to turn the first
sequence into the second sequence, we need to delete all ele-
ments from the first sequence and then insert all elements
from the second sequence.

Once we have filled in array d, let us examine the
alignment procedure for two sequences (see Table 2). The
procedure involves progressing through Table 1 from its
lower right corner. Shifting to an element with the lowest
cost, we determine one of the three edit operations. If the
element with the lowest cost is located to the left of the cur-
rent element, then it means that the current element from the
second sequence is inserted. An example is the 4th segment of
the second file. If we shift vertically, then it indicates that the
element from the first sequence is deleted. Other examples
are the 3- and 4th segments of the first file. If we shift diago-
nally, then it indicates the substitution of the corresponding
elements.

As a result, to determine the degree of similarity between
two sequences, we need to compare the real penalty to
the maximum one. By real penalty, we understand this to
be the resulting penalty received after filling in array d
(Table 1). The maximum penalty represents how different
the sequences could have been. The maximum penalty is
calculated after alignment is completed in order to increase
the penalty when comparing similar elements. For instance,
if we look at the first segments of the files in our example,
we will see in Table 1 that the deletion or insertion of each
of them receives a penalty of 0.254. That means that the
maximum penalty after an artificial increase will be 0.508.
Such penalty will push away the compared sequences, though
we can see that both segments are very alike. Therefore, we
increase the maximal penalty and, taking into account for-
mula (8), obtain the value of 1.014. So, when we determine

123

Comparing files using structural entropy 265

Table 2 Alignment of the
segment sequences of two files # Number Entropy (bit) # Number Entropy Real Max.

of windows of windows (bit) penalty penalty

1 7 2.2121 1 7 2.1520 0.000 1.014

2 19 5.7247 2 23 5.4067 0.083 2.598

3 20 4.1126 0.473 2.989

4 5 0 0.683 3.198

5 55 7.0767 3 53 7.1456 0.704 5.277

4 20 4.3738 1.094 5.667

6 28 2.8067 5 18 1.6753 1.501 7.289

7 810 7.1768 6 790 7.1740 1.523 10.773

8 22 2.8163 7 23 2.8536 1.541 12.395

the share of the real penalty in the maximum one (9), we
determine the degree of similarity between two sequences.
In our example it equals 87.565%.

5 Conclusion

The proposed solution has a number of advantages that help
detect malicious programs efficiently on personal computers.
First, this comparison does not take into account the func-
tionality of analysed files and is based solely on determining
the similarity in code and data area positions. Therefore, the
algorithm is effective against many ways of protecting exe-
cutable code. On the other hand, such a comparison may
result in false alarms. Therefore, our solution is useful as a
preliminary test that triggers the running of additional checks.
Second, the method is relatively easy to implement and does
not require code disassembly or emulation. And, third, the
malicious file record is compact which is significant when
compiling anti-virus databases.

References

1. Breitenbacher, Z.: Entropy based detection of polymorphic mal-
ware. In: Proceedings of the 19th Annual EICAR Conference
“ICT Security: Quo Vadis?”, pp. 117–128. Presses Techniques de
l’ESIEA, Paris (2010)

2. Daubechies, I.: Desjat’ lektsij po vejvletam. [Ten lectures on wave-
lets]. Izhevsk: NIC Regular and Chaotic Dynamics (2001)

3. Ebringer, R., Sun, L., Boztas, S.: A fast randomness test that pre-
serves local detail. In: Proceedings of the Virus Bulletin (VB) Con-
ference, pp. 34–42. Virus Bulletin, Abingdon (2008)

4. Fabjanski K., Kruk T. (2008) Network traffic classification by
common subsequence finding. In: Bubak M., van Albada G.,
Sloot P. (eds.) Computational Science—ICCS 2008, vol. 5101,
pp. 499–508. Springer, Berlin

5. Gheorghescu, M.: An automated virus classification system. In:
Proceedings of the Virus Bulletin (VB) Conference, pp. 294–300.
Virus Bulletin, Abingdon (2005)

6. Kreibich, C., Crowcroft, J.: Efficient sequence alignment of net-
work traffic. In: Proceedings of Internet Measurement Conference,
pp. 307–312. IMC, Melbourne (2006)

7. Li, J., Xu, J., Xu, M., Zhao, H., Zheng, N.: Malware obfuscation
measuring via evolutionary similarity. In: Proceedings of the Inter-
national Conference on Future Information Networks, pp. 197–
200. IEEE Computer Society, Los Alamitos (2009)

8. Lyda, R., Hamrock, J.: Using entropy analysis to find encrypted
and packed malware. IEEE Security Priv. 5(2), 40–45 (2007)

9. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically gen-
erating signatures for polymorphic worms. In: Proceedings of the
2005 IEEE Symposium on Security and Privacy, pp. 226–241.
IEEE Computer Society, Los Alamitos (2005)

10. Perdisci, R., Lanzi, A., Lee, W.: Classification of packed exec-
utables for accurate computer virus detection. Pattern Recognit.
Lett. 29(14), 1941–1946 (2008)

11. Sun, L., Versteeg, S., Boztas, S., Yann, T.: Pattern recognition tech-
niques for the classification of malware packers. In: Proceedings
of the 15th Australian Conference on Information Security and
Privacy (pp. 370–390). Springer, Berlin (2010)

12. Sung, A.H., Xu, J., Chavez, P., Mukkamala, S.: Static analyzer of
vicious executables (SAVE). In: Proceedings of the 20th Annual
Computer Security Applications Conference, pp. 326–334. IEEE
Computer Society, Washington (2004)

13. Wagener, G., State, R., Dulaunoy, A.: Malware behaviour analysis,
extended version. J. Comput. Virol. 4(4), 279–287 (2007)

14. Christodorescu, M., Jha, S.: Testing malware detectors. In: Pro-
ceedings of the ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pp. 34–44. ACM, New York (2004)

15. Jacob, G., Neugschwandtner, M., Comparetti, P.M., Kruegel, C.,
Vigna, G.: A static, packer-agnostic filter to detect similar malware
samples. Department of Computer Science University of California
Santa Barbara Technical Report, 2010–26. Retrieved 29 November
2010 from http://www.cs.ucsb.edu/research/tech_reports/ (2010)

16. Wagner, R.A., Fischer, M.J.: The string-to-string correction prob-
lem. J. ACM 21(1), 168–173 (1974)

17. Prangišvili, I.V.: Èntropijnye i drugie sistemnye zakonomernosti.
Voprosy upravlenija složnymi sistemami (Entropy and other sys-
tem laws. Issues of managing complex systems). p. 432. Nauka,
Moscow (2003)

123

http://www.cs.ucsb.edu/research/tech_reports/

	Comparing files using structural entropy
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 File segmentation
	3.1.1 Entropy analysis
	3.1.2 Wavelet analysis

	3.2 Sequence comparison
	3.2.1 Edit cost function
	3.2.2 Sequence alignment
	3.2.3 Estimating the degree of similarity

	4 Experiment
	5 Conclusion
	References

