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Abstract Computer viruses sometimes employ coding
techniques intended to make analysis difficult for anti-
virus researchers; techniques to obscure code to impair
static code analysis are called anti-disassembly tech-
niques. We present a new method of anti-disassembly
based on cryptographic hash functions which is portable,
hard to analyze, and can be used to target particular
computers or users. Furthermore, the obscured code is
not available in any analyzable form, even an encrypted
form, until it successfully runs. The method’s viability
has been empirically confirmed. We look at possible
countermeasures for the basic anti-disassembly scheme,
as well as variants scaled to use massive computational
power.
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1 Introduction

Computer viruses whose code is designed to impede
analysis by anti-virus researchers are referred to as
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armored viruses.1 Armoring can take different forms,
depending on the type of analysis being evaded: dynamic
analysis as the viral code runs, or static analysis of the
viral code. In this paper, we focus on static analysis.

Static analysis involves the tried-and-true method of
studying the code’s disassembled listing. Anti-disassem-
bly techniques are ones that try to prevent disassembled
code from being useful. Code using these techniques will
be referred to as disassembly-resistant code or simply
resistant code. Although we are only considering anti-
disassembly in the context of computer viruses, some of
these techniques have been in use as early as the 1980s
to combat software piracy [8].

Ideally, resistant code will not be present in its final
form until run time – what cannot be seen cannot be
analyzed. This could involve self-modifying code, which
presents problems for static analysis [9]. It could also in-
volve dynamic code generation, such as that performed
by a just-in-time compiler [2].

In this paper, we present a new method of anti-dis-
assembly based on dynamic code generation, which has
the following properties:

• It can be targeted, so that the resistant code will only
run under specific circumstances. We use the current
username as a key for our running example, but any
value available to the resistant code (or combina-
tions thereof) with a large domain is suitable, like a
machine’s domain name. Because this key is derived
from the target environment, and is not stored in the

1 The techniques we describe can be used by any malicious soft-
ware, or malware, so we use the term “computer virus” in this
paper without loss of generality.
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virus, our method may be thought of as environmen-
tal key generation [11].

• The dynamically generated code is not available in
any form, even an encrypted one, where it can be
subjected to analysis until the resistant code runs on
the targeted machine. Other encryption-based anti-
disassembly methods require that the resistant code
be available in encrypted form (e.g., [5]), in which
case it may be subject to analysis.

• Even if the dynamically generated code were some-
how known or guessed, the exact key used by the
resistant code is not revealed.

• It does not rely on architecture-specific trickery and
is portable to any platform.

Below, we begin by explaining our anti-disassembly
technique and presenting some empirical results. We
then look at how the technique might be countered,
along with some more entrepreneurial means of deploy-
ment.

2 The idea

A cryptographic hash function is one that maps each
input to a fixed-length output value, such that it is not
computationally feasible to reverse the process, nor is it
easy to locate two inputs with the same output [13]. Like
regular hash functions, a cryptographic hash function is
many-to-one.

Our idea for anti-disassembly is to combine a key
– here, we use the current username for concreteness
– with a “salt” value, and feed the result as input into
a cryptographic hash function. The hash function pro-
duces a sequence of bytes, from which we extract a sub-
sequence between bytes lb and ub, and interpret that
subsequence as machine code. We will refer to this sub-
sequence as a run. The salt value, for this application, is
a sequence of bytes chosen by the virus writer to ensure
that the desired run appears in the hash function’s output
when the correct key is used.

Our anti-disassembly scheme is illustrated in Figure 1,
and its application to code armoring is shown in Fig-
ure 2. The latter diagram shows how a virus writer can
choose arbitrary instructions, and replace them with the
machinery to reproduce those instructions using a cryp-
tographic hash function.

A pseudocode example of this idea is shown in Fig-
ure 3; from a high-level point of view, this is what an
analyst would be confronted with. The code for a cryp-
tographic hash function is assumed to be available, likely
in a system library, andrun is the code sequence that the
virus writer is trying to hide. The task of the analyst is to
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Fig. 1 Conceptual overview of anti-disassembly, using MD5

determine precisely what this code does when executed
(the value of run) and what the target is (the correct
value of key).

This pseudocode uses the username as a key, and
MD5 as the cryptographic hash function [12]; + is the
concatenation operator. MD5 is now known to be vul-
nerable to collisions [15], i.e., finding two inputs with
the same MD5 hash value, but this is irrelevant to our
technique. Why? Even if run is known by the analyst,
the ability to find collisions does not help the analyst
identify the exact key that produces a particular hash
value containing run. If run is not known, being able
to find two keys that yield the same hash value does not
identify either a key that triggers a malicious value of
run nor the value of run itself. In any case, our anti-dis-
assembly technique can be used with any cryptographic
hash function, so a different/stronger one can be chosen
if necessary.

There are three issues to consider:

1. Having the wrong key. Obviously, if the wrong key
value is used, then the run is unlikely to consist of
useful code. The resistant code could simply try to
run it anyway, and possibly crash; this behavior is not
out of the question for viruses. Another approach
would be to catch all of the exceptions that might
be raised by a bad run, so that an obvious crash is
averted. A more sophisticated scheme could check
the run’s validity using a checksum (or re-using the
cryptographic hash function), but this would give
extra information to a code analyst.

2. Choosing the salt. This is the most critical aspect; we
suggest a straightforward brute-force search through
possible salt values. Normally, conducting a brute-
force attack against a cryptographic hash function to
find an input that has a particular hash value would
be out of the question, because the hash functions
are designed to make this computationally prohib-
itive. However, we are only interested in finding a
subsequence of bytes in the hash value, so our task
is easier. An analysis of the expected computational
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Fig. 2 Using cryptographic
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Fig. 4 Salt search using MD5

effort required to find the required salt is presented
in the next section.

3. Choosing lb and ub. These values are derived directly
from the hash value, once the desired salt is found.

The salt search (Figure 4) is by far the most time-con-
suming operation, but this need only be done once, prior
to the release of the resistant code. The search time can
be further reduced in three ways. First, faster machines
can be used. Second, the search can be easily distrib-
uted across multiple machines, each machine checking
a separate part of the search space. Third, the search
can be extended to equivalent code sequences, which
can either be supplied manually or generated automati-
cally [7,10]; since multiple patterns can be searched for
in linear time [1], this does not add to the overall time
complexity of the salt search.

3 Analysis

In order to find a salt value, we simply compute the
cryptographic hash of

key+ salt

for all possible salt values until the hash output contains
the required byte sequence (run). The pseudocode for
this using MD5 is shown in Figure 5. In order to speed
up the search, we allow the run to begin in any position
in the hash output.

Approximately half of the output bits of a crypto-
graphic hash function change with each bit changed in
the input [13]; effectively, we may consider the hash
function’s output to change randomly as the salt is changed.
Given that, the probability of finding a particular b-bit
run in a fixed position of an n-bit output is the ratio of the
bits not in the run to the total number of bits: 2n−b/2n,
or 1/2b. The expected number of attempts would then
be 2b−1. Furthermore, because only the salt is being
changed in the brute-force search, this implies that we
would need b − 1 bits of salt for a b-bit run.

Fig. 5 Salt search pseudocode
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If we allow lb, the starting position of the run, to vary,
the expected number of attempts will be reduced by a
factor equal to the number of possible values of lb. If
we index the starting position at the byte level, then
there are m = (n − b)/8 possible starting positions. The
probability of finding the b-bit run increases to m/2b,
and the expected number of attempts becomes 2b−1/m.
Similarly, if we index at the bit level, there are n − b
starting positions and the expected number of attempts
reduces further to 2b−1/(n − b).

Notice that the computational effort depends primar-
ily on the length of the run, not the length of the hash
function output. The length of the hash function only
comes into play in reducing the expected number of
attempts because the number of possible values for lb,
the starting point of the run, depends on it.

We only discuss the case of single runs here, but this
technique trivially extends to multiple runs, each with
their own salt value. Because the salt computation for
each run is independent of the others, the total effort
required for multiple-run computation scales linearly. If
the computational effort to compute the salt for one run
is X, then the effort for one hundred runs is 100X.

As an example of salt computation, suppose we want
our run to consist of a single Intel x86 relative jump
instruction. This instruction can be encoded in 5 bytes,
so we need to find a salt that, when concatenated to the
key, yields a hash value containing this 5-byte run start-
ing in any position. The MD5 hash function has 128-bit
outputs, so if we index the run at the byte level, there
are 11 possible values for lb. The expected number of
attempts to find the run is therefore

239/11 < 236.

If instead we index at the bit level, there are 88 possible
values for lb and the expected number of attempts is

239/88 < 233.

Using a 160-bit hash function such as SHA-1 yields
239/15 and 239/120 when indexing lb at the byte and
bit levels, respectively. In all cases, the computation can
be done in only a few hours on a single modern desktop
computer.

It is feasible to use this method to find runs slightly
longer than 5 bytes, but the computational effort adds
up very quickly. For example, to find an 8-byte run us-
ing SHA-1 and indexing lb at the bit level would require
roughly 263/120 > 256 attempts. A special-purpose, mas-
sively parallel machine would likely be required to find
the run in this case, as the computational effort in-
volved is roughly equivalent to that required to break
the DES block cipher, for which such hardware was also
required [6].

4 Empirical results

To demonstrate the feasibility of this anti-disassembly
technique, we searched for the run (in base 16)

e9 74 56 34 12.

These 5 bytes correspond on the Intel x86 to a rela-
tive jump to the address 1234567816, assuming the jump
instruction starts at address zero.

The search was run on an AMD AthlonXP 2600+
with 1 GB RAM, running Fedora Core 4 Linux. We
tested five different keys with 1- to 5-byte salts, sequen-
tially searching through the possible salt values. 2 Ta-
ble 1 shows the results for three cryptographic hash
functions: MD5, SHA-1, and SHA-256. For example,
the salt “07e9717a09,” when concatenated onto the key
“aycock,” yields the SHA-1 hash value

ef 6d f4 ed 3b a1 ba 66 27 fe
e9 74 56 34 12 a2 d0 4f 48 91.

Numbering the hash value’s bytes starting at zero, our
target run is present with lb = 10 and ub = 14. The run
is highlighted in gray above.

For our purposes, it is sufficient to demonstrate that
it is possible to find salt values that produce a given run.
To put the search times in Table 1 into context, however,

Table 1 Brute-force salt search for a specific 5-byte run

Algorithm Key Salt # Salts tested Search
Time (s)

aycock 55b7d9ea16 96915712675 80262
MD5 degraaf a1ddfc1910 68082987191 58356
(128 bits) foo e6500e0214 84599106230 73206

jacobs 9ac1848109 40201885669 34557
ucalgary.ca 4d21abe205 24899771642 23059
Average 62939892681 53888

aycock 07e9717a09 40084590622 38795
SHA-1 degraaf 0d928a260e 59834611693 57907
(160 bits) foo 2bc680de1e 130536957733 125537

jacobs ca638d5e06 26937346972 26314
ucalgary.ca 585cc614 344525998 339
Average 51547606603 49778

aycock 7cad4d4807 30796664539 46360
SHA-256 degraaf dd72e2380a 43225788191 64625
(256 bits) foo c17a8c3629 174262804678 260641

jacobs effa7fc07 33787185089 51744
ucalgary.ca 48343fa40f 66147214782 101823
Average 69643931455 105039

2 For implementation reasons, we iterated over salt values with
their bytes reversed, and did not permit 0 bytes in the salts.
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Table 2 gives benchmark results for the three crypto-
graphic hash functions we used. The times shown are
the total user and system time for 10, 000, 000 hash com-
putations, using different input lengths to the hash func-
tion. At these input lengths, the input size has little effect
on the results. SHA-1 hashes took about 28% longer to
compute than MD5 hashes, and SHA-256 hashes took
about 125% longer.

Another question is whether or not every possible
run can be produced. Using the key “aycock,” we were
able to produce all possible 3-byte runs with 3 bytes of
salt, but could only produce 6% of 4-byte runs with a
3-byte salt. With a 4-byte salt, we were able to generate
4-byte runs which covered between 99.999 and 100% of
the possible combinations – this was checked with five
different keys and three different cryptographic hash
functions. (Our test system did not have sufficient mem-
ory to record coverage data for 5-byte runs in a reason-
able amount of time.) The 4-byte run data are shown in
Table 3.

These results tend to confirm our probability esti-
mate from section 3: b-bit runs need b − 1 bits of salt.

Table 2 Cryptographic hash function benchmark results (times
are in seconds)

Input length (bytes)

Algorithm 8 12 16

MD5 5.22 5.05 5.08
SHA-1 6.66 6.49 6.50
SHA-256 11.72 11.54 11.39

Table 3 Generation of possible four-byte runs using a four-byte
salt

Algorithm Key Runs found Runs not found

aycock 4294936915 30381
MD5 degraaf 4294937044 30252
(128 bits) foo 4294936921 30375

jacobs 4294937188 30108
ucalgary.ca 4294936946 30350
Average 4294937003 30293

aycock 4294966707 589
SHA-1 degraaf 4294966733 563
(160 bits) foo 4294966660 636

jacobs 4294966726 570
ucalgary.ca 4294966769 527
Average 4294966719 577

aycock 4294967296 0
SHA-256 degraaf 4294967296 0
(256 bits) foo 4294967296 0

jacobs 4294967296 0
ucalgary.ca 4294967296 0
Average 4294967296 0

Four-byte runs are of particular interest for portabil-
ity reasons, because RISC instruction sets typically use
instructions that are 4 bytes long; this means that at least
one RISC instruction can be generated using our tech-
nique. One instruction may not seem significant, but it
is sufficient to perform a jump anywhere in the address
space, perform an arithmetic or logical operation, or
load a constant value – potentially critical information
that could be denied to an analyst.

5 Countermeasures

An analyst who finds some resistant code has several
pieces of information immediately available. The salt,
the values of lb and ub, and the key’s domain (although
not its value) are not hidden. The exact cryptographic
hash function used can be assumed to be known to the
analyst, too – in fact, resistant code could easily use
cryptographic hash functions already present on most
machines.

There are two pieces of information denied to an ana-
lyst:

1. The key’s value. Unless the key has been chosen
from a small domain of values, then this information
may not be deducible. The result is that an analyst
may know that a computer virus using this anti-dis-
assembly technique targets someone or something,
but would not be able to uncover specifics.

2. The run. If the run is simply being used to obscure
the control flow of the resistant code, then an analyst
may be able to hazard an educated guess about the
run’s content. Other cases would be much more diffi-
cult to guess: the run may initialize a decryption key
to decrypt a larger block of code; the entire run may
be a “red herring” and only contain various NOP
instructions.

Note that even if the run is somehow known to an ana-
lyst, the cryptographic hash function cannot be reversed
to get the original key. At best, the analyst could per-
form their own brute-force search to determine a set
of possible keys (recall that the hash function is many-
to-one). However, the analyst also knows the salt and
the domain of the key, so given the run, the analyst can
find the key by exhaustively testing every possible value.
This underscores the point that the key domain must be
sufficiently large to preclude such a brute-force analysis
– our example in section 4 of using usernames as keys
would likely not prevent this.

Whether or not every last detail of the resistant code
can be found out is a separate issue from whether or not
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a computer virus using resistant code can be detected.
In fact, malware already exists that can automatically
update itself via the Internet, such as Hybris [4], so com-
plete analysis of all malware is already impossible.

Fortunately for anti-virus software, computer viruses
using the technique we describe would present a rela-
tively large profile which could be detected with tradi-
tional defenses, including signature-based methods and
heuristics [14]. Precise detection does not require full
understanding.

6 Enter the botnet

What if the computing power available for a brute-
force salt search were increased by five orders of mag-
nitude over the computer we used for our experiments?
Few organizations have that much computing power at
their fingertips, but a few individuals do. A botnet is
a network of malware-controlled, “zombie” machines
that executes commands issued via Internet Relay Chat
(IRC) channels [3]. These have been used for sending
spam and distributed denial-of-service attacks [3], but
they may also be viewed as very large-scale distributed
computing frameworks which can be used for malicious
purposes.

If a virus writer wants to armor a virus using the
anti-disassembly technique described here, especially
for long runs with many instructions, a botnet may be
used for salt computation. A naïve salt computation on
a botnet would involve partitioning the salt search space
between machines, and the key and desired run would
be available to each machine. Using the earlier Intel x86
relative jump example, for instance, four zombie ma-
chines in a botnet could each be given the desired key
(e.g., “aycock”) and run (e974563412) and a 4-byte salt
search could be divided like so:

Zombie 1 00000000 . . . 3fffffff
Zombie 2 40000000 . . . 7fffffff
Zombie 3 80000000 . . . bfffffff
Zombie 4 c0000000 . . . ffffffff

Having the virus writer’s desired key and run on each
zombie machine would not be a bad thing from an ana-
lyst’s point of view, because locating any machine in
the botnet would reveal all the information needed for
analysis.

A more sophisticated botnet search would do three
things:

1. Obscure the key. A new key, key′, could be used,
where key′ is the cryptographic hash of the original

key. The deployed resistant code would obviously
need to use key′ too.

2. Supply disinformation. The virus writer may choose
lb and ub to be larger than necessary, to mislead an
analyst. Unneeded bytes in the run could be NOP
instructions, or random bytes if the code is unreach-
able. (In general, ub need not be revealed by the
virus writer at all, if the run is executed by jumping
directly to the address of hashlb.)

3. Hide the discovery of the desired run. Instead of
looking for the exact run, the botnet could simply be
used to narrow the search space. A weak checksum
could be computed for all sequences of the desired
length in the hash function’s output, and the associ-
ated salts forwarded to the virus writer for verifica-
tion if some criterion is met. For example, the discov-
ery of our 5-byte run in section 4 could be obliquely
noted by watching for 5-byte sequences whose sum
is 505.

This leaves open two countermeasures to an analyst.
First, record the key′ value in an observed botnet in
case the salt is collected later, after the virus writer com-
putes and deploys it – this would reveal the run, but not
the original key. Second, the analyst could subvert the
botnet, and flood the virus writer with false matches to
verify. The latter countermeasure could itself be coun-
tered quickly by the virus writer, however, by verifying
the weak checksum or filtering out duplicate submis-
sions; in any case, verification is a cheap operation for
the virus writer.

7 Related work and conclusion

There are few examples of strong cryptographic meth-
ods being used for computer viruses – this is probably
a good thing. Young and Yung discuss cryptoviruses,
which use strong cryptography in a virus’ payload for
extortion purposes [16]. Riordan and Schneier mention
the possibility of targeting computer viruses [11], as does
Filiol [5].

Filiol’s work is most related to ours: it uses envi-
ronmental key generation to decrypt viral code which
is strongly-encrypted. Neither his technique nor ours
stores a decryption key in the virus, finding instead the
key on the infected machine. A virus like the one Filiol
proposes hides its code with strong encryption, carry-
ing the encrypted code around with the virus. In our
case, however, the code run never exists in an encrypted
form; it is simply an interpretation of a cryptographic
hash function’s output. Our technique is different in the
sense that the ciphertext is not available for analysis.
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The dearth of strong cryptography in computer viruses
is unlikely to last forever, and preparing for such threats
is a prudent precaution. In this particular case of anti-
disassembly, traditional defenses will still hold in terms
of detection, but full analysis of a computer virus may be
a luxury of the past. For more sophisticated virus writ-
ers employing botnets to find salt values and longer runs,
proactive intelligence gathering is the recommended de-
fense strategy.
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