J Comput Virol (2006) 2:187-210
DOI 10.1007/s11416-006-0020-2

ORIGINAL PAPER

In-depth analysis of the viral threats with OpenOffice.org documents

David de Drézigué - Jean-Paul Fizaine -
Nils Hansma

Received: 10 April 2006 / Revised: 20 June 2006 / Accepted: 4 July 2006 / Published online: 1 August 2006

© Springer-Verlag France 2006

Abstract This paper presents an in-depth analysis of
the OpenOffice suite (release 2.0.3) with respect to viral
threats, independently of any software flaw or vulner-
ability. First we will identify, then analyse the differ-
ent potential viral vectors of OpenOffice.org v2.0.3. Our
examination applies to win32 and Unix-like platforms.
For each identified vector, a detailed study will show
to which extend the infection is possible. From then on
we will define the solutions in order to maximize Open-
Office.org security in the production field as well as in
the office tools at the administration level.

Keywords Malware - Macro virus - Document
malware - Self-reproduction - Security Policy -
Antiviral Policy

1 Introduction

For many years, the software sector of the office suite
has been dominated by the supremacy of the Micro-
soft Office suite. This suite has succeeded in offering the
end-user a powerful and ergonomic environment. Nev-
ertheless, the security of the products making up this
suite (Word text processing, Excel spreadsheet, presen-
tation software such as PowerPoint ...) has long been

D. de Drézigué - J.-P. Fizaine (<) - N. Hansma

Ecole Supérieure et d’Application des Transmissions,
Laboratoire de virologie et de cryptologie,

BP 18, 35998 Rennes Armées, France

e-mail: labo.virologie@esat.terre.defense.gouv.fr

D. de Drézigué - N. Hansma

Ecole des Systemes de Combat et Armes Navals,
Centre d’Instruction Naval,

BP 500, 83800 Toulon Naval, France

a subject liable to concerns. On top of issues related
to information leaks [1], the risk linked to macro-virus
has been a concern to the end-users [3] since the Con-
cept macro-virus in 1995. The presence of macros in an
office document is henceforth identified by the risk —
at least potential — of macro-virus. Even though the
antiviral offer enable to fight efficiently against the well-
known macro-viruses or the identified techniques, it still
remains pretty easy to conceive an undetected macro-
virus by the current antivirus.

The development and the release of OpenOffice free
software suite [11] for a few years seemed to inspire new
hopes — and maybe hypes — as far as security linked to
office documents was concerned.

The adoption of this suite by several countries and
by foreign armies in particular (Singapore in 2006, the
French Gendarmerie in 2005), some institutions, some
universities... [12] led the media to see a sign of greater
security into it, furthermore it costs almost nothing. The
certainty of a greater security towards the viral risk has
become an overspread feeling in the freeware commu-
nity as much as in the mind of several end-users. The
consequence is that the latters forget the security behav-
iour and reaction — and more particularly the caution
against the presence of macros — when opening office
documents. What should one think about the security
of OpenOffice suite regarding macro-viruses? Myth or
reality?

The OpenOffice suite, just like its commercial equiv-
alent, contains an inserted development environment
around several programming languages. The language
OoBasic — the best known — has replaced the Visual
Basic for Applications for macros writing. But other
programming languages, more powerful than the plain
OoBasic allow more sophisticated developments than

@ Springer

188

D. de Drézigué et al.

the plain macro writing, no matter how complex they
may be. These different kinds of execution contexts
seem to argue in favour of the possible uses of macro-
viruses for OpenOffice. Such a possibility has been
previously evoked by Rautiainen [14] but this author
considered only a few security aspects. Moreover, Rau-
tiainen’s paper dealt with the OpenOffice version 1.0.x.
The OpenOffice release 2.0.x contains many more pow-
erful capabilities as far as infectious threats are con-
cerned.

This article introduces the real security analysis of
the OpenOffice suite with regards to viral threat is con-
cerned. Independently of any software vulnerability, the
results show that not only can this suite not be consid-
ered immune to macro-viruses but above all, considering
the current development condition of this suite, the later
shows a higher rate of hazard than for her commercial
competitor. In other words, any hazardous behaviour
from the end-users may lead to serious outcomes over
information security system. This security analysis has
been recognized by the design and the testing of several
operational! viral strains demonstrating that this risk is
truly real and is giving cause for concern. Therefore any
security policy should seriously consider the viral risk
linked to this suite.

This article is partly based on [2] and is organized as
follow. Sect. 2 will present the main identified vectors
of potential infections for this suite, through a step by
step analytic approach. Sect. 3 will deal with the operat-
ing of these infection vectors through malevolent codes.
Finally, Sect. 4 will, on the one hand, ponder over the
viral risk attached to the OpenOffice suite, and on the
second hand, will introduce the algorithmic of some few
viral stocks that have been developed and tested for
validation purposes.

Disclaimer: Developing proof-of-concepts is not a goal
in itself. It remains the only scientific way to prove if a
viral risk exists or not. Deficiency of antivirus may result
in human casualties or even deaths, lost of jobs... when
considering critical or very critical systems. Consequently
any serious protection cannot rely only on the deployment
of an antivirus, whatever may be its efficiency. No serious
security policy of such critical systems could accept secu-
rity enforcement without a proactive research including
proof-of-concept developments. This study has been per-
formed in the strict respect of the different existing laws.
The source codes which have been developed will neither
be disclosed nor published. Only reknowned and strictly
identified IT security professionals are eligible for freely —

I These strains have been developed for the Writer component
but are easily transposable to other software components of the
suite.

@ Springer

and without any compensation of any kind — accessing
these source code provided that they fill an application
form to the Virology and Cryptology Laboratory of the
Army Signals Academy.

2 Identification of the potential infectious vectors:
OpenOffice.org V2.0.x analysis

First we will analyze the file format in order to know
its structure as well as its organization; which enable us
to infer the way we will be able to manipulate it. Sec-
ondly, we will analyze the installation, the configuration
so as to identify the potential propagation vectors for all
the well known viral infection technologies [4]. We will
define a potential propagation vector as follows:

— an automatic, scheduled or event-related execution
point;

— use of a regular human task;

— execution transfer, or process creation;

— weak environment identification: configuration of
the suitable application for the malevolent code
execution.

2.1 The OpenDocument V1.0 file format

This file format is a standard introduced by Oasis-Open,?
in 2005. It has recently adopted by ISO/IEC in May
2006, and called ISO/IEC DIS 26300, on the demand
of the European Commission [8] with the agreement
of SunMicrosystems and Oasis-Open. This is a file for-
mat based on the XML technology. It can be used with
all kind of tools handling this technology. OpenDoc-
ument supports various other kind of document like
database, diagrams, drawings, slideshows and spread-
sheets. This file format is also supported by a num-
ber of various applications: AbiWord, Knomos, Koffice,
OpenOffice, Scribus StartOffice and recently by Ibm
Workspace but not with Office Microsoft. State of Mas-
sachusetts has first adopted this format, and recently
Europe as standard exchange document format. The
structure and organization of the file depend on the pat-
tern specified by Oasis Open® [9]. We are presenting its
main features that show specific relevance in the chosen
context.

2 http://www.oasis-open.org

3 A pattern is a document that describes the creation of an XML
file format.

In-depth analysis of the viral threats with OpenOffice.org documents

189

2.1.1 Analysis of a blank document

The “file” command on our blank reference file, points
out that the file is a ZIP format archive. We notice that
the archive is neither compressed nor protected by a
password. This will not prevent an archive infection. The
extraction of the archive is usually carried out with the
help of any utility compatible with the ZIP format. Thus
here follows the content of our blank reference file:

Itisregarding the XML files format that the official liter-
ature [9, Chap. 2] provides a very useful understanding
of an XML OpenOffice.org document structure.

2.1.2 Analysis of a user document

The reference test file is a simple document which con-
tains styles, a rather important number of pages and
its own text layout information. At this stage, neither

ZZR:~/research_projects/openoffice/openoffice-2.x/unzip_ref_file$

uufile reference_file.odt

reference_file.odt: Ziparchive data, at least v2.0 ,to extract
ZZR:"/research_projecy/openoffice/openoffice-2.x/unzip_ref_file$

uuunzipyreference_file.odt
Archive: reference_file.odt
pextracting: minetype

uuucreating: Configuration2/
uuucreating: Pictures/
uuinflating:,_file.xml
uuinflating: styles.xml
pextracting: meta.xml

uuinflating: setting.xml
uuinflating: META-INF/manifest.xml

Z7ZR:"~/research_projects/openoffice/openoffice-2.x/unzip_ref_file$ ls -1
total 72
drwxr-xr-xyuu20lrvyulrvoou68uFeb 16,15: 46 Configurations2
drwxr-xr-x_,3ulrvylrv,,102 Feb 16,16 : 51 META-INF

drwxr-xr-x 2 1rvy ey 68 Feb16,,15:46 Pictures

-rw-r--r-— 1 1rv lrv 2347 Feb 16 ,15:46 content .xml

-rw-r--r-— 1 lrv lrv 4427 Feb 16 ,16:46 reference_file.odt
-rw-r--r-— 1 lrv lrv, ;1047 Feb 16,15:46 meta.xml
—rw-r—-r-—uulolrvyglrvgguo 39 Feb 16,15 : 46 mimetype
-rw-r--r-—uulylrvy,lrvy 6607 Feb,16,,15:46 setting . xml
—rw-r—-r-—uulylrvy lrvy 7623 Feb16,,15:46 styles . xm1
ZZR:~/research_projects/openoffice/openoffice-2.x/unzip_ref_file$

The META-INF directory contains a manifest XML
format file [9, Chap. 17]. The latest classifies the paths
towards other XML files of the archive as well as infor-
mation describing the archive as the encoding algorithm
along with its parameters, the checksum passwords algo-
rithm as well as the checksum value. The directories
“Configuration2” and “Pictures” are empty. By lexico-
graphic order:

— content.xml: this file is common to all types of Open-
Office.org documents. It can contain the following
items: scripts, font settings, automatic style and doc-
ument body.

— meta.xml: this file contains the document meta-
information (author, date of the last action...),

— styles.xml: specifies the style used for the document,

— setting.xml: points to the configuration such as the
program application window size or to printing infor-
mation.

macros, nor other objects (OLE objects, links, sound
or video data...) or images are present yet. We consider
again the previous analysis protocol. Let us compare this
present user document with the blank reference one.
We find again the same files and directories. Only the
size of files content.xml and setting.xml have changed.
Whereas the reference file has a size of 147,332 bytes,
the user file has a size of 147,470 bytes. However the
corresponding archives differ from one another in size
of only five bytes. Moreover, the content of setting.xml
file has changed. To make things clear, the content of
the user document archive here follows:

ZZR:~/research_projects/openoffice/openoffice-2.x/experiment/ana_file_format$

1s -1 unzip_user_doc/
total 360

drwxr-xr-x 2 lrv 1lrv 68 Feb 22 18:47 Configurations2
drwxr-xr-x 3 lrv lrv 102 Mar 2 00:52 META-INF
drwxr-xr-x 2 lrv 1rv 68 Feb 22 18:47 Pictures
-rw-r--r-- 1 lrv 1lrv 147470 Feb 22 18:47 content.xml
“IW-r--r-- 1 1lrv 1lrv 80 Feb 22 18:47 layout-cache
-rw-r--r-- 1 lrv 1lrv 1067 Feb 22 18:47 meta.xml
“IW-r--r-- 1 1lrv 1lrv 39 Feb 22 18:47 mimetype
“rw-r--r--— 1 1rv 1lrv 7138 Feb 22 18:47 settings.xml
“IW-r--r-- 1 1rv 1rv 9118 Feb 22 18:47 styles.xml

ZZR:~/research_projects/openoffice/openoffice-2.x/experiment/ana_file_format$

Let us now compare both archive sizes:

ZZR:"/research_projects/openoffice/openoffice-2.x/experiment/ana_file_format$
1s -1

total 96

“rw-r--r-- 1 1rv 1rv 22327 Feb 16 16:27 empty_doc.odt
drwxr-xr-x 11 lrv 1lrv 374 Mar 2 00:50 unzip_empty_doc
drwxr_xr_x 11 lrv 1lrv 374 Mar 2 00:52 unzip_user_doc
“IW-r--r-- 1 1rv 1rv 22332 Feb 23 17:48 user_doc.odt

ZZR:"/research_projects/openoffice/openoffice-2.x/experiment/ana_file_format$

@ Springer

190

D. de Drézigué et al.

2.1.3 Comparison to a document with macros

Let us now insert a macro in the user document we have
just considered. The name of this macro is dicOOo and
belongs to the standard macros library (installation of
a dictionary). We notice that a new directory has been
created (output extract produced when unzipping an
archive):

./Basic:

total 8

drwxr-x-rx 4 1lrv 1lrv 138 Mar 2 01:47 Standard
-TW-r--r-- 1 1rv 1lrv 338 Mar 2 00:38 script-lc.xml
./Basic/Standard:

total 16

-rw-r--r-- 1 1lrv 1lrv 350 Mar 2 00:38 script-lb.xml
-rw-r—--r-- 1 lrv 1lrv 2049 Mar 2 00:38 une_macro.xml
./META-INF:

total 8

-rw-r--r—— 1 1lrv lrv 1465 Mar 2 00:38 manifest.xml

This new directory contains the whole organisation of
macros into directories. The new file in this file sub-tree
corresponds to the new macro itself. The manifest.xml
file has been modified in order to declare the presence
of any macro and to setup the document accordingly.
The set of all macro pathes have been added.

<manifest:file-entry manifest:media-type="text/xml"
manifest:full-path="Basic/Standard/une_macro.xml"/>
<manifest:file-entry manifest:media-type="text/xml"
manifest:full-path="Basic/Standard/script-1b.xml"/>
<manifest:file-entry manifest:media-type=""
manifest:full-path="Basic/Standard/"/>
<manifest:file-entry manifest:media-type="text/xml"
manifest:full-path="Basic/script-lc.xml"/>

The code of any macro is located between the two fol-
lowing XML tags.

<script:module xmlns:script="http://openoffice.org/2000/script"
script:name="a_macro" script:language="StarBasic">

</script:module>

Here are located all the informations required to per-
form an infection of any macro. Let us notice that it
is possible to change the macro language. An efficient
attack will usefully consider this characteristic.

The size of content.xml and manifest.xml have
increased whereas for the two relevant archives (with
and without macro), a significant increase of size has
been noticed (1,779 bytes). This corresponds to the addi-
tional meta-information which result from the macro
creation.

@ Springer

In a macro-virus context, the size of such a virus is lia-
ble to have arather large size ranging from a few bytes to
hundreds of kilobytes. Its final size will greatly depend
on its sophisticated level and of the script language that
has been used to implement it. Let us suppose that the
viral code has an average size of 10 Kb. Let us suppose
in addition that the resulting archive (that of an infected
file) has increased of only one Kb for every 500 added
bytes of virus. If we consider, in a first approach, that the
size linearly increases,* then we notice that consequently
the archive’s size has increased of 20 Kb. From an oper-
ational point of view, this size increase is rather limited,
not to say negligible. This feature enables the design of
very large-sized viral codes for OpenOffice.org whithout
making the final size of the archive explode. This fact
is worth considering as far as viral stealth features are
considered, especially when infecting large-sized docu-
ments.

2.1.4 Storage structure of macros in libraries

Libraries of macros are stored in the Basic directory. A
library is materialized by a sub-directory which has the
same name as the library itself. This sub-directory con-
tains the macros which are linked to this library. More-
over, a library entry is created in the “script-lc.xml file
and macros themselves are listed in the script-Ib.xml file.

During this in-depth study, we easily manage to add,
erase or modify one or more libraries by means of sim-
ple command lines. When infecting macros, any efficient
malware attack must modify the files script-lc.xml and
script-Ib.xml, in order to avoid error on document open-
ing. By considering this, we successfully manage to <<
play >> with the general structure of OpenOffice.org
documents, without prompting any alert. The probably
most surprising issue comes from the fact that any absent
macro (when deleted for instance) does not cause any er-
ror when opening the document. When editing macros,
the deleted macro is listed but cannot be executed since
it does not contain any code. OpenOffice considers only
the content of the files script-lc.xml and script-lb.xml and
does not make any consistency checking.

Here follows the corresponding dumps (normal li-
brary).

— Here is the Basic directory content of an Open-
Office.org document:

4 The experiments we have conducted have shown that this prop-
erty did hold most of the time.

In-depth analysis of the viral threats with OpenOffice.org documents

191

total 8

drwxr-xr-x 6 1lrv 1lrv 204 Jun 21 18:48 Standard
“IW-r--r-- lrv 1lrv 400 Jun 21 18:48 script-lc.xml
drwxr-xr-x 5 1rv 1lrv 170 Jun 21 18:23 toto

[y

./Standard:

total 24

-rW-r--r—-— 1 1rv 1lrv 335 Jun 21 15:52 Modulel.xml
“rw-r-—-r—- 1 1rv 1lrv 363 Jun 21 18:47 macros.xml
-rW-r--r-- 1 1rv 1lrv 348 Jun 21 15:52 script-1lb.xml
./toto:

total 16

-rw-r--r-- 1 1rv 1lrv 335 Jun 21 18:21 Modulel.xml
“IW-r—-r-- 1 1rv 1rv 344 Jun 21 18:22 script-lb.xml

— Here is listed below the script-lc.xml content (two
macro libraries):

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE library:libraries PUBLIC "-//OpenOffice.org//DTD

OfficeDocument 1.0//E N" "libraries.dtd">

<library:libraries xmlns:library="http://openoffice.org/2000/1library"

xmlns:xlin k="http://www.w3.org/1999/x1link">

<library:library library:name="Standard" library:link="false"/>

<library:library library:name="toto" library:link="false"/>

</library:libraries>

— Content of the script-Ib.xml file (information about
the content of the Standard library):

<?xml version="1.0" encoding="UTF-8"7>

<!DOCTYPE library:library PUBLIC "-//OpenOffice.org//DTD
OfficeDocument 1.0//EN" "library.dtd">

<library:library xmlns:library="http://openoffice.org/2000/1library"
library:name ="Standard" library:readonly="false"
library:passwordprotected="false">

<library:element library:name="Modulel"/>

</library:library>

Let us recall that we experiment the fact that it is
possible to add a macro or even a whole library into an
OpenOffice.org document without prompting any alert.
A very interesting attack scenario then consists in call-
ing or manipulating any newly added (by a malware)
macro directly from another infected macro. Moreover,
it is possible to load a library that OpenOffice cannot
access directly [10, p. 764].

2.1.5 Password protection

Let us now suppose that the user has protected his docu-
ment with a password (read and/or write mode). The rel-
evant OpenOffice.org component will deny any access
to the document unless the correct password is given
upon request.

Comparison of the content.xml files (for protected
and unprotected documents) shows an unquestionable
difference. However, the archive content is neither en-
crypted nor protected by the password that has been
used when saving the document. Only the content.xml
file is encrypted.

Let us analyse now a protected document with a
macro. In some frequent cases, we have noticed some
worrying algorithmic problems, as far as password pro-
tection is concerned.’ In these cases, the listing of the rel-
evant archive is the same before and after the protection.
Let us have a more particular look at the macro direc-
tory. We notice a very important fact: there is strictly no
difference at all between the corresponding macro files
(documents with and without macros). Consequently,
we can deduce that, in these cases, despite the pro-
tection through passwords, the code of macros remains
unprotected (unencrypted). This implies — and we will
later confirm it with the proof-of-concepts codes we
have developed — that infecting a password protected
document is as easy as for unprotected ones. The integ-
rity of some files in an archive is not taken into
account, even by password protection. We manage to
replace an encrypted macro with an unencrypted one.
For that purpose, we modify the following data: META-
INF/manifest.xml, Basic/Standard/<macro_name.xml>
and Basic/Standard/script-lb.xml. The password is still
required at document opening while the new macro is
executed without any security warning — by using trusted
macros (see Sect 4.2).

The analysis of the M ETA-INF/manifest.xml enables
to get some information about the OpenOffice encryp-
tion which is moreover described in full in [9].

— Only the following files have been encrypted: con-
tent.xml, style.xml and setting.xml.

— The encryption algorithm is Blowfish [17] in CFB
mode. The encryption uses a different seed and ini-
tialisation vector (IV) for every different file to pro-
tect. Files are compressed before encryption. The
initialisation vector is an arbitrary 8-bytes sequence
which is base-64 encoded.

— Encryption key is built directly from the password
which is provided by the user. The key setup algo-
rithm is the PBKDF?2 algorithm [16] (16-bytes salt,
base-64 encoded, 1024 iterations). Finally, the de-
rived key is prepended to the encrypted text.

— The document integrity is secured by means of the
SHA-1 hash function [7] but there is no integrity
checking for the macros which thus can be modified
without prompting an alert to the user.

5 We will not explicit these cases in order to limit their potential
exploitation by attackers. We have contacted OpenOffice devel-
opers in order to correct these security problems and a joint work
has been initiated. We have noticed a very great reactivity.

@ Springer

192

D. de Drézigué et al.

Here follows an extract of the M ETA-INF/manifest.xml
files which shows the main aspects of the encryption
protocol.

<manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="1CubudF22D2xpYcJI5iy6RvskTg=">

<manifest:algorithm manifest:algorithm-name="Blowfish CFB"
manifest:initialisation-vector="+820z7CRbCY="/>

<manifest:key-derivation manifest:key-derivation-name="PBKDF2"
manifest:iteration-count="1024"
manifest:salt="1IIqEW7jBUoOUFmOosK43Q=="/>
<manifest:file-entry manifest:media-type="text/xml"
manifest:full-path="styles.xml"
manifest:size="9118">
<manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="HUCIFCYfy6Po8rDUGgljPZuQoz0=">
<manifest:algorithm manifest:algorithm-name="Blowfish CFB"
manifest:initialisation-vector="d+BQMg92Ik0="/>
<manifest:key-derivation manifest:key-derivation-name="PBKDF2"
manifest:iteration-count="1024"
manifest:salt="zsxOImRNhsrhnAEBEDL/ug=="/>

<manifest:encryption-data manifest:checksum-type="SHA1/1K"
manifest:checksum="h0Qee6IQot1Q5BajsNPsSFKE4dQ=">
<manifest:algorithm manifest:algorithm-name="Blowfish CFB"
manifest:initialisation-vector="SPXn8aq79Wo="/>
<manifest:key-derivation manifest:key-derivation-name="PBKDF2"
manifest:iteration-count="1024"
manifest:salt="efpQcHnHAQBsTRDmxey3Cw=="/>
</manifest:encryption-data>

2.2 Analysis of the OpenOffice.org setup

In a first step, let us analyse in depth where and how
different possible OpenOffice.org setup may take place.
Then we will study the setup structures themselves for
every possible operating system. This issue is essential in
a malware context since any efficient malware aiming at
infecting OpenOffice documents or the application itself
will have to precisely locate critical files and resources.
This information proved to be very useful in order to
design our proof-of-concept codes (see Sect. 4.3). Two
kinds of setup are to be considered:

— single user setup,
— muti-user setup.

In every case, the file naming remains the same, with
a few exceptions. Only the name of the setup directo-
ries are different according to the kind of installation,
the operating system in use and its configuration. As
far as Unices systems are concerned, as an example,
the name of the default directory which contains the
users sub-directories may be changed. Such a change
would put a check on viruses specially designed for this
operating system. Consequently, such a virus has to in-
clude a search/identification routine to precisely locate
the users directories. A perfect knowledge of the setup

@ Springer

environment and configuration is definitively required.
This fact still holds for Windows systems since the de-
fault setup considers the C:\Program Files\Open-
Office.org 2.0 directory.

When analysing the OpenOffice.org setup under
Unices systems, we have noticed that some other devel-
opments or administration environments were present
as well: script shell, Java, Python, Perl. It is worth men-
tioning the presence of many (executable) programs.
Every such “software environments” represents a po-
tential danger that may be used as an execution entry
point or execution facility for malicious codes. Since all
these environments involve only the application layer,
they are totally independent from the processor and the
underlying operating system. This greatly contributes to
increase the scope and portability of the risk attached to
the OpenOffice.org suite. Let us now detail the different
execution points we have identified.

2.2.1 Script shell

Script shell is rather widely used within OpenOffice.org
as it is shown in the following listing:

ZZR:/Applications/Bureautique/OpenOffice.org 2.0.app/Contents/openoffice.org/ \
program$ file * | grep shell
cde-open-url:

configimport:

gnome-open-url:

kde-open-url:

open-url:

python.sh:

sbase:

scalc:

sdraw:

senddoc:

setofficelang:

simpress:

Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
Bourne shell script text executable
ZZR:/Applications/Bureautique/OpenOffice.org 2.0.app/Contents/openoffice.org/ \
program$

smath:
soffice:
swriter:
unopkg:
viewdoc:

Let us point out some important files:

— Soffice: here the script shell performs the following

tasks:

— OpenOffice.org absolute path resolution,

— retrieval of the main application name,

— verification of patches installation,

— Mozilla program path resolution,

— setting of the LD_LIBRARY_ PATH environment
variable according to the operating system in use,

— update of the LD_LIBRARY_ PATH environment
variable, of the Java directories paths (use of the
javadlx program),

— setsthe Mozilla path as the environment variable,

— definition of a variable during the pagein pro-
gram execution, which depends on the calling
argument (calc, writer, math, impress, draw),

In-depth analysis of the viral threats with OpenOffice.org documents

193

— launching the OpenOffice.org main program
soffice.bin, with the suitable calling arguments.

— Sbhase, Swriter, Scalc, Simpress, Sdraw, Smath: these
scripts launch the Soffice with the calling arguments.
This causes the common part of OpenOffice.org as
well as the relevant components (Swriter, Scalc, Sim-
press, Sdraw, Smath) to be launched.

— python.sh: this script is used to resolve the Python
interpreter’s path, in accordance with the operating
system in use. Moreover, it launches this interpreter
with the suitable arguments.

As far as the script shell is concerned, viruses written in
interpreted language can be used. There exist many such
malicious codes (see [4, Chap. 6] for more details). The
most dangerous case refers to a virus that is run whithin a
super-user session (particularly, in a Unix environment).
A possible approach consists in using appender viruses.
However, this infection technique increases the infected
host’s size. But in the OpenOffice.org context, infecting
the soffice program remain an ideal solution. Since this
latter program has a large size (6,485 bytes), a prepend-
ing infection will remain unnoticeable most of the time.
Moreover, the soffice executable is executing whenever
OpenOffice.org is launched.

2.2.2 VBscript

OpenOffice.org also uses this scripting language. This
constitutes an additional risk which cannot be neglected.
Consequently, VBScript malicious codes — this case is
limited to Windows environment up to now — may take
benefit of this.

2.2.3 Python

The Python environment in the OpenOffice.org setup
directory, can be used through the interpreter program/
python-core-2.3.4/bin, and the relevant source files and
Python libraries (program/python-core-2.3.4/lib). The
latter are dynamic ones®. Some Python scripts (python-
loader.py,pythonscript.py, uno.py, unohelper.py) as well
as script examples in the /share/Scripting/python (Capi-
talise.py, HelloWorld.py, pythonSample/TableSample.py)
have been identified.

OpenOffice.org uses Python by calling the python.sh
file, which is located in the OpenOffice.org setup file
tree, with the code name to execute as an argument.
Here follows the relevant part of the python.sh script:

6 With Mac OS X (respectively with Unix, Win32), the extension
in use is .dylib (resp. .so and .dll).

set search path for shared libraries
sd_platform= uname -s
case $sd_platform in
Sun0S)
LD_LIBRARY_PATH="$sd_progsub":"$sd_prog":/usr/openwin/lib:/usr/dt/1lib:
$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

B

AIX)
LIBPATH="$sd_progsub":"$sd_prog": $LIBPATH
export LIBPATH

I

HP-UX)
SHLIB_PATH="$sd_progsub": "$sd_prog": /usr/openwin/1lib:$SHLIB_PATH
export SHLIB_PATH

I

IRIX*)
LD_LIBRARYN32_PATH=:"$sd_progsub":"$sd_prog":$LD_LIBRARYN32_PATH
export LD_LIBRARYN32_PATH

]
Darwin*)

DYLD_LIBRARY_PATH="$sd_progsub":"$sd_prog":$DYLD_LIBRARY_PATH
export DYLD_LIBRARY_PATH

*)
LD_LIBRARY_PATH="$sd_progsub":"$sd_prog":$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

esac

PYTHONPATH="$sd_prog" : "$sd_prog/python-core/1ib": "$sd_prog/python-core/1ib/ \
lib-dynload":"$sd_prog/python-core/lib/lib-tk":"$PYTHONPATH"
export PYTHONPATH

PYTHONHOME="$sd_prog"/python-core
export PYTHONHOME

set path so that other apps can be started from soffice just by name
PATH="$sd_prog" : $PATH

export PATH

exec "$sd_prog/python-core/bin/python" "$@"

Here again, malicious codes that are implemented in
Python programming language’ may take benefit of the
Python environment and divert it. There is still a lot of
work to deeply and precisely understand how Python
execution really works. Nonetheless, it is obvious that it
can be used to make malicious code spread.

2.2.4 Perl

Perl scripts are located in the share/config/webcast direc-
tory as listed hereafter:
ZZR:/Applications/Bureautique/OpenOffice 2.0.app/Contents/Openoffice.org/share/\

config/webcast$ 1ls -la *.pl
~r--r--r—-— 1 1lrv 1lrv 1070 Dec 12 2002 common.pl

-r--r--r—-— 1 1rv 1lrv 554 Dec 12 2002 edit.pl
~r—-r-—-r—-— 1 1rv 1lrv 1151 Dec 12 2002 editpic.pl
-r--r--r—— 1 1rv 1lrv 342 Dec 12 2002 index.pl
—r--r--r—-— 1 1rv 1lrv 743 Dec 12 2002 poll.pl
-r--r--r—- 1 1rv 1lrv 876 Dec 12 2002 savepic.pl
-r--r--r—- 1 1rv 1lrv 1039 Dec 12 2002 show.pl

~r--r--r—-— 1 1rv 1lrv 600 Dec 12 2002 webcast.pl

ZZR:/Applications/Bureautique/OpenOffice 2.0.app/Contents/Openoffice.org/share/\
config/webcast$ file *.pl

common.pl: Perl5 module source text

edit.pl: HTML document text

editpic.pl: perl script text executable

index.pl: HTML document text

poll.pl: perl script text executable
savepic.pl: perl script text executable
show.pl: perl script text executable

webcast.pl: perl script text executable
ZZR:/Applications/Bureautique/OpenOffice 2.0.app/Contents/Openoffice.org/share/\
config/webcast lrv$

7 Some Python malicious codes are known, like the Biennale virus.

@ Springer

194

D. de Drézigué et al.

Perl scripts are used to export OpenOffice.org docu-
ments in HTML format (Help OpenOffice.org Webcast
Export). Here again, perl malicious codes are known
to exist (e.g. Intender, Nirvana, SSHWorm, Vich...) and
new malicious codes, intended to spread through Open-
Office.org can be designed very easily.

2.2.5 Asp

The Asp is the Microsoft scripting language. It is used
mostly to build dynamic Internet webpage. The script file
we have identified in the OpenOffice.org environment
play the same role as the Perl that we have previously
presented. The potential viral risk with regards to Asp
language is not negligible at all.

2.2.6 Java

The first known case of Java virus — StrangeBrew — has
been identified in August 1998 [18]. However, its infec-
tious power was actually limited. Indeed, it was only able
to infect Java applets and Java programs. More recently,
the viral threats attached to the Java language have been
extensively analysed and Java remains largely concerned
with the viral risk, even for the second release of this
programming language [15]. The Java environment, in
OpenOffice.org, is present in three different ways:

— use of .JAR files, to install .crLass files. A grand total
of 54 such files has been identified within the Open-
Office.org environment:

— nineare located in the program/help directory,

— forty two are located in the program/classes
directory,

— and three can be found in the share/Scripts
directory.

— through dynamic libraries which are used as an
interface between either the Java virtual machine
and the OpenOffice.org application (sunjavaplugin.
dylib) or the Java virtual machine and UNO
(javaloader.uno.dylib, javavm.uno.dylib, libjava_uno.
dylib and libjava_uno.jnilib). All these libraries are
located in the program sub-directory (in the Open-
Office.org setup directory).

— use of Java scripts.

2.2.7 Additional programs
Additional programs may also be successfully diverted

or perverted by malicious codes. Here follows the listing
of these programs:

@ Springer

ZZR.:/Applications/Bureautique/OpenOffice 2.0.app/Contents/Openoffice.org/program$
file * | grep "Mach-0 executable"

configimport.bin:

gnome-open-url.bin:

javaldx:

msfontextract:

nsplugin:

pagein:

pkgchk.bin:

pluginapp.bin:

setofficelang.bin:

soffice.bin:

Mach-0 executable ppc
Mach-0 executable ppc
Mach-0 executable ppc
Mach-0 executable ppc
Mach-0 executable ppc
Mach-0 executable ppc
Mach-0 executable ppc
Mach-0 executable ppc
Mach-0 executable ppc
Mach-0 executable ppc

spadmin.bin: Mach-0 executable ppc
testtool.bin: Mach-0 executable ppc
uno.bin: Mach-0 executable ppc
unopkg.bin: Mach-0 executable ppc

ZZR:/Applications/Bureautique/OpenOffice 2.0.app/Contents/Openoffice.org/program$

Although it is not OpenOffice.org-specific, it is worth
mentioning that an infection could occur through sophis-
ticated companion codes® [4,6]. This is particularly true
if the setup has been misconfigured (e.g. file permissions
under Unix, among many other cases). The most favour-
able target in this context is probably the soffice.bin exe-
cutable. Itis the main OpenOffice.org application, which
is primarily executed by the user.

2.2.8 Quick start function

The OpenOffice.org quick start procedure is the same
for MacOS X and Win32 platforms. The OpenOffice.org
execution script is launched itself through a program
which enables to quickly and directly use the suite.

The Mac OSX case Two cases are possible depend-
ing if the OpenOffice.org is active or not. Indeed, the
OpenOffice.org application relies on the X11 layer for
the interface management. The launch script runs the
Apple X11 server? and then the OpenOffice.org acti-
vation script itself. Thus there exist a potentially huge
number of attack scenarii, among which we can cite:

— use of companion infection techniques (non Open-
Office.org specific) which aims at infecting the start
script;

— dropplet usurpation; the droplet is the Mac Os X
application which is executed first by the user. Its role
is to activate the soffice.sh script. When the latter is
absent, the OpenOffice.org cannot be launched;

— XI11 usurpation.

Cas Win32 There is no noticeable difference with
Mac OSX.

2.2.9 Miscellanous interesting elements

The share sub-directory in the setup directory contains
two sub-directories. They contain or are liable to

8 We suppose that basic companion infectious techniques are still
efficiently managed by most of the antivirus programs.

9 This may be either X11 itself, XDarwin or OroborOSX.

In-depth analysis of the viral threats with OpenOffice.org documents

195

contain some resources that can be diverted or perverted
by malicious codes:

basic This directory contains standard macros for the
application. Let us mention that we also find the same
basic directory in the user ‘user_path’/.openoffice.org2/
user directory. It contains itself the OpenOffice.org stan-
dard macros for the user’s disposal.

psprint/driver It contains the Postscript files with re-
spect to the printers use and/or management.

uno_packages This directory is liable to contain some
useful information about the configuration as well as the
UNO packages that have been put in addition to Open-
Office.org.

2.3 Analysis of the OpenOffice.org functionalities

The study of the OpenOffice.org functionalities enables
to identify some execution transfer points, some task
schedulings or some event-related execution point
(which are similar to those identified for the vBa
programming language in the Microsoft office suite).
Moreover, both the open technical documents and the
OpenOffice.org help have proven to be very useful in
identifying all the execution points that we considered
to perform computer infections.

2.3.1 Packages

A new functionality has been added to OpenOffice.org:
packages. Packages are a powerful feature that enables
to add UNO components'?, a new configuration, OO-
oBasic or dialog'! libraries and packages archives in zip
format (they contain one or more packages). However
working with package requires to have super-user rights
in a multi-user setting.

A management utility (Package manager) is also avail-
able within the application itself. This Package manager
can be launched through the OpenOffice.org applica-
tion directly from the Tool menu. In single user setting
(My packages), the management directory is SHOME/
.openoffice.org2/user/uno_packages whereas in a multi-
user configuration (Openoffice.org Package), the man-
agement directory is share/uno_packages.

Packages are by nature liable to be a good entry point
for malicious codes (initial infection), since they are in
z1p format.

10 These are extra compiled modules. They can be of infectious
nature, in a context of viral attacks.

1 1t is a UNO library, which belongs to the [MODULES:com.

sun.star.awt] module and which enables the GUI manipula-
tion, according to the “Model-View-Controler” model.

2.3.2 Macros

Macros can be written in many languages as shown in
Fig. 1. OOoBasic, JavaScript and BeanShell are the only
ones which are supported internally. Higher level lan-
guages (like Python and Java) may be used through the
API Project [10]. It is possible — and easy — to link a
macro with an OpenOffice event (use the Tools/Custom-
ize menu). By default, there are at most 16 such events
as shown in Fig. 2. Moreover, these events may be saved
either at the document level only, or at the application
level. It is also possible to create a (keyboard) shortcut
key to directly launched an event-related macro (see
Fig. 2).

The execution of the DicOO macro enables to install
a dictionary in any available language, directly from the
Internet. This implies the existence of resources within
the macros themselves or within the OpenOffice appli-
cation, in order to use the network layer. As far as the
Internet is concerned, it is also possible to assign a macro
to a hypertext link or to e-mail reception (see Fig. 3). The
OpenOffice help also mentions the possibility to link a
macro to an image, to a form control or to a OOoBasic
dialog control. This is particularly interesting since an
event-activated macro is a very good execution point.
The existing possibilities, in terms of malicious execu-
tion are quite boundless. From this point of view, the
OpenOffice.org is far less secure than its commercial
counterpart (Microsoft Office).

2.3.3 Adding objects

Any OpenOffice document can include objects of var-
ious kinds: OLE objects, plug-ins, video, sound, Java
applets, forum, graphics... Among these documents, we
have to consider two different categories:

— passive or inactive documents; they are non exe-
cutable documents. Nonetheless they may include
executable data, which can be activated by k-ary
malicious codes [4, Chap. 4] and [6, Chap. 3].

— active documents; contrary to inactive documents,
they contain data that can be executed directly.

2.3.4 Modifying OpenOffice menus and message boxes

Another very worrying possibility for malware is the
capability to modify the different entries in OpenOffice
application menus or message boxes. This enables to
manipulate and fool any user very efficiently. The num-
ber of such modifications are quite infinite. As an exam-
ple, a virus could invert the button Enable Macros and
Disable Macros in the OpenOffice security warning

@ Springer

196

D. de Drézigué et al.

message box, while the respective functionalities remain
unchanged. When choosing the Disable Macros button,
the user in fact enables them.

To illustrate the menu modification with a more com-
plex example, let us consider the example presented
in Fig. 4. The relevant configuration file GenericCom-
mands.xcu is located in the share/registry/data/org/
openoffice/Office/UI directory. Here is the content cor-
responding to the left part of Fig. 4:
<node oor:name=".uno:MacroOrganizer?Tabld:short=1" oor:op="replace'">

<prop oor:name="Label" oor:type="xs:string">
<value xml:lang="en-US">Organize “Dialogs...</value>
</prop> </node>
<node oor:name=".uno:ScriptOrganizer" oor:op="replace">
<prop oor:name="Label" oor:type="xs:string">
<value xml:lang="en-US">Organize Macros</value>
</prop> </node>
<node oor:name=".uno:RunMacro" oor:op="replace">
<prop oor:name="Label" oor:type="xs:string">
<value xml:lang="en-US">Run Macro...</value>
</prop></node>
After modification (part right of Figure 4) we have:
<node oor:name=".uno:MacroOrganizer?TabId:short=1" oor:op="replace'">
<prop oor:name="Label" oor:type="xs:string">
<value xml:lang="en-US">Organize Macro</value>
</prop></node>
<node oor:name=".uno:ScriptOrganizer" oor:op="replace'">
<prop oor:name="Label" oor:type="xs:string">
<value xml:lang="en-US">Organize Dialog...</value>
</prop></node>
<node oor:name=".uno:RunMacro" oor:op="replace">
<prop oor:name="Label" oor:type="xs:string">
<value xml:lang="en-US">Run toto...</value>
</prop></node>

2.3.5 Miscellanous data

Some other data are to be considered since they are
implied in mechanisms that may be used by malicious
codes to spread. They are in fact particular directories,
which are worth considering:

— the modules/org/openoffice/office/Common direc-
tory; it contains the configuration file of the different
menus which are in any OpenOffice.org components;

— the config/soffice.cfg/global/accelerator directorys; it
contains the definition of shortcuts which are global
to the application, by default, according to the setup
language, a given event or action. It also defines lan-
guage specific shortcuts, this for every different com-
ponents (config/soffice.cfg/modules/);

— the modules/org/openoffice/Setup directory; it con-
tains the name of any UNo services, depending on the
component in use. For every such OpenOffice.org
component, UNO services enables OpenOffice.org to
extend its functionalities.

These three configuration files may be easily modified

by a malicious code in order to setup its own execution.
The main interest is to fool the user by changing menu or

@ Springer

shortcut names in order to directly activate the selected
event and thus make the malicious code activate.

Another point is worth mentioning. According to the
OpenOffice SDK, it is possible to modify the user inter-
face in order to add, for instance a new UNO component,
by means of the pkgchk utility [10, p. 230]. When doing
this, a malware must comply with the module archtitec-
ture (as defined in [10, p. 193]). Moreover, it is possible to
perform a “hot desactivation” of any OpenOffice com-
mand [10, p. 272]. Such a facility could inevitably be used
by efficient OpenOffice malware.

2.4 Configuration analysis

The deep and exact knowledge of a given environment
is essential. It enables a malicious code to optimally
adapt to the target environment or an attack to opti-
mally develop such a code. That is the reason why we
are now going to analyse the OpenOffice.org configura-
tion aspects.

Modifying the environnement will take place dur-
ing the infection’s initial step (primo infection). In the
OpenOffice.org context, we have to consider the two
possible main settings, whatever may be the underly-
ing operating system: single user or multi-user setting.
Using information presented in Sect. 2.3, the analysis
of the setup directory allows to consider the follow-
ing conjecture: the configuration is stored in the open-
office_install_path/share/registry directory. However,
since OpenOffice.org may be set up in two different
ways, this implies that in multi-user setup mode, the
configuration itself must be stored in the user’s direc-
tory.

2.4.1 Application configuration

As far as the OpenOffice application is concerned, the
Tools/Option and Tools/Customize toolbar menus are
involved. The main configuration points that are rele-
vant for our study are:

— Paths: We can manage the whole set of paths used
by the OpenOffice application. The Basic, My Docu-
ments and User Configuration are of particular inter-
est. The relevant information may be used by any
sophisticated malicious code which intends to use,
modify and control the target environment in order
to act or spread.

— Security: This point involves OpenOffice security
options: macro security levels, application security
levels and document sharing options. In particular,
there exist a “trusted source” option which enables
to define macros directories that can be trusted.

In-depth analysis of the viral threats with OpenOffice.org documents 197

[aXala)

python virus - Recherc 00g
% new-article-002.0 - OpenOffice.org Writer

Ele Edit View Insert Fgmt Table R window Heip x

':; ' Spellcheck... Ff H-v HoBEmya @§

Fom u;m.::-.u::ehp A-v-5-0

- | Le cas h Bibliography Database £ 00 16 lors de Tutlisalion dU compie super-
4 ufilisateur. Hﬂummw«-
ol En ce qul concema k Soft. présents car ce langage est un langage interpreda,
doté d'accés au sysh calculate prm als python est utilisé simplement dans la
u'.\dl!u

o 1011 121301415 - 16 - Jae]

aung lishe de

modifié, La mise on 1

L'analyse de Finsta
D'aprés analysa del kix, nous mmamums la présance d'autre
comme Eootnotes.. encofa de p

Tous ces points prés By leultéd.reulilsaladasﬂr\s malicieus. Méme s'il ne
souffre pas dune att: Qm -

Dans e cas d'un scrl ... Media Player
unbe_coco ou unix_b

rus . SH/Renepo, vbash, ou encore unix_owr,

_ & Recormaco

e s RIS oo

composanie UNO d'Opencffice. Le fsque est donc trés imié, car tnés p Mals son imp
monire un risque. Car Op falt appel & P python, contenu dans farborescence d'instaliation
d'Op ., pour lul le code & exdculer

Dans ces cas de possbilité viral, iis nous sont guére intéressant, carnous ninfectons pas de documant
Openoffica. Nous n'effectuions qu'une attaque sur Op avec une Mais tout de
méme cela représente une menace non Car tout utilisa Ia suite
Openofiice, ce qui assure Ia viabillié du vius.

Pour ce qui est de la technologle Java, le p
Symantec, est prancmmé Strange Brew [| T
fois sa virulence est imitée, ol n'infecte que o5 q:pms atles plcgmnms]m copanuanl cocl monlm bian
que ko risque est bien riel.

Analyse de la configuration :
Connaitre la dun est comme nous favons précédemment montrer.
Cefte connalssance nous permet de savolr comment adapier Menvironnement dans ke but de le rendre propice
au dun C'est pourquol nous analyserons la configuration. Cette
modification seralt effectuée au moment dela primo infection,
Dans le cas d'Openoffice nous avons deux cas:
Soit il s'agit d'un installation mono ulilisateur, dans ce cas les fichiers de configurations se rouvent dans le

El e diinfection est plus simple. Sait | s'agit d'un instalation
ult-uti s teur, ca qui dans ce cas les fichlers de configuration sont présents dans ke réperolre de futilisateur,
et dans le dperoire dinstaliation. De toute maniare l'app reste Certes le chemin
des réperoires varie en fonction du systéme d Mals aufinal I du
wirus, sl nous ainfacter le rép Tout
maniére dimplémenter le mécanisme d'infection. Mals en pnoﬂlé!a fichier utilisateur est plus Irrpulant car

il |

|Page 2/8 | Default

00% INsAT (51D e+ || 4 &

1 «-: Un systéme libre sur votre ‘Crdinatecr, sans virus | ... La version 2.0 de

Fig.1 Macro languages listing

— Java: Java execution environment may be modified
as well. The relevant information are the virtual ma-
chine path and the class files directories. They can be
used by any Java malicious codes [15].

— Internet: It is also possible to configure Internet con-
nections management. In this particular case, we
have to specify the parameters of: the proxy server,
the e-mail manager, the Internet browsing and the
Mozilla plug-in. These information may be modified
according to the infection scenarii that we present in
Sect. 4. They allow a free exchange towards or from
the Internet. Thus, we can imagine a proxy server
substitution. Data theft may then occur whenever
OpenOffice connects to the Internet.

The default configuration files are (for every user):

C:\Program Files\OpenOffice.org 2.0\share\registry\data\org\openoffice

C:\Program Files\OpenOffice.org 2.0\share\registry\data\org\openoffice\
0ffice\Common.xcu

C:\Program Files\OpenOffice.org 2.0\share\registry\data\org\openoffice\
Office\Writer.xcu

C:\Documents and Settings\<Utilisateur>\Application Data\
OpenOffice.org2\user

2.4.2 Single-user setting

Configuration files are located in the setup directory.
Consequently, modifying the environment is trivial. Po-
tential infection mechanisms are trivial as well.

2.4.3 Multi-user setting: looking for configuration files

Relevant information have been obtained by analysing
the difference between files. This approach enables to
identify all modifications. Here follow the main points
of interest:

— configuration mechanisms are XML-based. This im-
plies on one side that the OpenOffice.org is dealing
with text data according to specifications in a XML-
scheme file header (xcs extension; the XML file has
itself an xcu extension). In another side, the xmL
file must be valid with respect to a xmL scheme. The
default schemes (for validation purposes or as data

@ Springer

198 D. de Drézigué et al.

Fig. 2 OpenOffice.org events
(left) and linking a macro
with an event (right)

L'analyse oo Installation :

'hmummuﬁmmum,uu;am.

sources) are located in the <open_office_install_path - The application security level is defined in the
>/share/registry/scheme while the configuration data <openoffice_install_path>/share/registry/schema/
themselves are located in the <open_office_install org/openoffice/Office/Common.xcs file as far as the

_path>/share/registry/data directory.

Whenever the configuration is modified, changes are
saved in the user’s directory. This particularly in-
volves the macro security parameters (Common.xcu
file).

@ Springer

Common.xcu file is concerned. The different possi-
ble values of security level are summarized in Table 1.
We will explain in Sect. 4.1 what trust in Open-
Office.org really is. The use of an invalid security
level value makes the document unoperable. Security

In-depth analysis of the viral threats with OpenOffice.org documents

199

§ ' Capture Fichier Edltlm Fenétre Aide
[ii m x| Untitled1 - C:M‘(& org Writer

@ O H = «) = Rechargée) ven. 0841 L @

| Eile Edit View Insert Format Table Tools Window Help |
iB-sHaR B VEIX R -die-o-BE-vHeornmIA D} ey]
i &) [Defau =] [Times New Roman E |12 "l B/ U IEII =m ficEE A-P-8-0 fo.
= = OpenOffice.org Scripts entry.
O [—.-J'—é S VAR SS 0 SRS SRR SERL FRRN SNl REFCRRR VAR T R Y 14045 016 g a8 —{ in the share directory of your
= (scripts in the user directory). and the
== 000 Al Hyperlink } of them to see the supported scripting
- B ¥pediktye he avail, !
@ .-. % * web P ~ Telnet ry to see the available scripts, Select
'; 2 =t Target | _-] | ppear in the Existing macros in list
o 5 I
5 2 .
w N | o | click Assign.
@ - Mail & News |yperlink
=
: ~ C— herfink.
’& " Doc‘umént Further settings
"l 3 Frame | ~] Form [rext -] L;-EII e
»X -
- bl
3 B — ,_ﬁ.:‘.tﬁ | : jraphic
3 8 L Document AliAss i Macro hent,
o7 g Assi [| fre.
Assign oK f
Ve -] r | le.
: Trigger hyperiink gemove | cancel |
o ~ Mouse leaves object — orm control
= c;: LI t a button: Open the Form Controls
4 . ton, drag open a button en your
- lick Contrel on the Form Controls
- ros
L g j e Macros srties dialog.
= =} Open e.0rg Macro: "
i 3 @ [untitledl 2n a dialog where you can assign a
-
e lontrol in the
= alog
L= lalog editor. then create a dialog with a
= se Properties. =
| arties dialog. =
— n a dialog where you can assign a :l
[Page 1/1 [Default foo% iNsRT [sTD HvR | [| wed e “ 2]

Fig. 3 Assigning a macro to a hypertext link

management is done in the following way: Open-
Office.org considers a user’s directory to contain
the user-specific configuration. Then, it takes default
values contained in the setup directory and replace
them with the user’s one.

Macro security parameters are also stored in the
<openoffice_install_path>/share/schema/org/
openoffice/Office. Common.xcs file. Let us mention
the fact that modifying them is possible according to
the installation directory permissions in force, only.
Lastly, plug-in execution is activated by default (the
relevant value is set to “TRUE”).

xML schemes that have been identified as critical are
hereafter listed:

— Common.xcs : scheme file of the data Common.

— Office/Security.xcu,

— Office/WebWizard.xcu,

— Office/Writer.xcu,

— Office/UL/.

The study of all these files has shown that they are
organized in “themes”. Moreover, data files con-
tains only a minimal amount of information. This
can be explained by the fact that the <open_office_
install_path>/share/registry/schema/office directory
stores the application default parameters. An in-
depth analysis of the installation directory, the fol-
lowing directories appear to be essential:

— config/soffice.cfg/global,

— config/soffice.cfg/module,

— registery/data/org/openoffice.

xcu file, They indeed contain some other configuration para-
— Event.xcs: meters whose value are liable to be modified in order
— Java.xcs: to enable malicious code execution.
— Writer.xcs :
As for the data xML files, the critical ones are: Configuration files are located in the user’s home direc-
- Inetxcu, tory as well as in the OpenOffice installation directory.
- Setup.xcu, The latter is shared by any user as far as configuration

— Office/Common.xcu,
— Office/ProtocolHandler.xcu,
— Office/Scripting.xcu,

values are concerned. If some malicious code infects
and modifies the user’s setup, the spread and/or action
of this code will be limited to the user’s space. It is also

@ Springer

200 D. de Drézigué et al.

Fig. 4 Modification of
OpenOffice menus (before at
left; after at right)

O s B F 4 @ Rechagie ven. 1215 L @

G L L o T L I I

=

0Lk YEks il eddidr

A+ 1312+ AL 10 9 e

R
N
LA
-
Table 1 Macros security -
levels Value Security level Comments
0 LOW (minimum) Every macro is executed without
prompting
1 MEDIUM Prompt to execute macros that are not trusted
macros
2 HIGH Only trusted and “signed” macros are executed
3 HIGHEST (maximum) Only macros in trusted directories
are run

@ Springer

In-depth analysis of the viral threats with OpenOffice.org documents

201

possible to infect every other user’s space that is cur-
rently working on the system (logged-in). However, an
efficient rights management (e.g. Unices systems) should
prevent such a spread unless if the super-user is itself in-
fected. On the contrary, if default installation files would
be infected, every new user would be automatically in-
fected or at least his environment could be more easily
prone to infection.

In this section, we have presented the files which
are essential as far as configuration is concerned. These
files may be implied and manipulated during any infec-
tion process. Consequently, the viral risk attached to
the OpenOffice.org application is very critical. A good
solution could be to encrypt and sign any configuration
files (use of public key cryptography). Thus any unlegit-
imate modification would become very difficult not to
say impossible, provided that the key management and
the surronding computer security are efficient.

3 Validation through proof-of-concept malicous codes

In the previous sections, we have identified the main
files, mechanisms and events that could or must be in-
volved in an infectious process. The number of possibil-
ities that could be exploited by any attacker are infinite.
In order to simply illustrate and operationally validate
the previous in-depth study, we now are going to pres-
ent proof-of-concept codes by considering event-related
macros only, and how to exploit, pervert or divert them
to make a malicious code work. Due to lack of space,
other possibilities will not be exposed.

3.1 Use of macros for infection purposes

In the OpenOffice.org 2.0.x suite, a huge number of po-
tential malicious uses of macros does exist. Most of them
have no equivalent in the Microsoft suite. Scripting mod-
ules enable to consider new programming languages for
writing efficient and powerful macros. Let us recall that
OpenDocument features and document format allow to
store several macros written in different languages in
any document. Macros can be written in:

— Beanshell: Java light scripting language;

— JavaScript: object-oriented scripting language. Mostly
used in webpage;

— Java: high-level object-oriented programming lan-
guage which includes an integrated execution envi-
ronment. Its syntax is very close to the C syntax and
its most powerful feature lies in the fact that it can
be ported to any operating system;

— Python: interpreted, multi-paradigm programming
language. It enables an imperative structured
programmation and an object-oriented, event-ori-
ented approach.

— OOoBasic: denoted StarBasic as well. This program-
ming language is very close to the Microsoft VBA but
they are not compatible — up to now. Moreover, it is
possible to invoke the OpenOffice.org API, directly
from macro. This can be seen as an extension of the
resource environment.

For every possible language (Beanshell, Javascript, Java,
Python, OOobeasic), we have considered and identified
the resources that must be required to design a generic
infectious algorithm. Only the OOoBasic will be pre-
sented in Sect. 4 in order to validate and fine tune the
infection capabilities attached to OpenOffice.org. Of
course, these proof-of-concepts are fully transposable
to the other OpenOffice.org programming languages.

3.2 External programs

As we have previously pointed out in Sect. 2.2.7, the
presence of external programs within an application is
very interesting to consider. It represents a privileged
environment for companion viruses (at least for sophis-
ticated ones). As far as OpenOffice.org is concerned,
the external programs which are involved by Open-
Office.org’s use are listed hereafter:

— e-mail client,

— configimport.bin,

— gnome-open-url.bin,

— Perl and Python interpreters, as well as the Java
virtual machine,

— javaldx,

— msfontextract,

— nsplugin,

— pagein,

— pkgchk.bin,

— pluginapp.bin,

— setoffice.bin and soffice.bin,

— spadmin.bin,

— testtool.bin,

— uno.bin and unopkg.bin.

Companion infection techniques are not OpenOffice-
specificbutitis very important to recall the existence and
the feasability of such malicious codes even for Open-
Office. The most critical programs — in other words, the
programs which are very frequently run by OpenOffice —
are: soffice, pagein, the Java virtual machine and the Perl
and Python interpreters.

@ Springer

202

D. de Drézigué et al.

3.3 Scripts

As previously seen, the OpenOffice.org application is
launched from a script, which is itself run by an exe-
cutable file. This execution chaining mechanism is par-
ticularly favourable to viral or infectious actions. But
the most important aspect lies in the main component:
a sh (Unices systems) or VBScript (Win32 systems). In
this particular case, a prepending or appending infec-
tion technique is also possible, since OpenOffice.org
does not perform any internal, integrity checking. More-
over, overwriting malicious codes could randomly re-
place existing, legitimate internal or external programs
in order to fulfill their action. In this case again, the sof-
fice script integrity is hurt and only an integrity checking
tool (e.g. Tripwire) could prevent any such approach.

Let us now consider the infectious threats which are
OpenOffice.org-specific by looking at the macro-related
infectious capabilities.

4 In-depth analysis of the OpenOffice.org viral risk

As for the Microsoft Office suite, macros are supposed
to be a potential help to the user in his every-day use.
Now, languages of macro exhibit a major drawback due
to their power: attackers can put malicious macros in
any apparently innocent office document.

As far as the OpenOffice.org suite (release 2.0.x) is
concerned, new potentialities have been developed and
added for macros writing. As an example, the scripting
module enables to use new additional programming lan-
guages. Such as the different data contained in an Open-
Office.org document, macro source codes is located in
the zip structure of the document. Macros written in
different programming languages may be stored at the
same time in a document: BeanShell, Java, JavaScript,
Python and OOoBasic.

Without loss of generality, our study of the viral threats
with respect to the OpenOffice.org suite will consider
only the OOoBasic language. However our approach
and results can be fully transposed to other macro writ-
ing languages proposed in the OpenOffice.org suite.
OOoBasic is a very modular, powerful, enhanced pro-
gramming environment which enables to develop very
sophisticated applications and macros. We can read,
write, modify... any OpenOffice.org documents through
calls of its (unique) API [13]. In this respect, OOoBasic
is rather more efficient than Java language. Moreover,
OOobasic applications can act at the operating system
level and interact with it. To summarize, the OOoBasic
language is fully comparable with the Microsoft Office
Visual Basic for Applications, despite the fact that they

@ Springer

are not compatible. A Microsoft Office macro virus is
not functional with respect to OpenOffice.org and con-
versely — up to now.

4.1 How macros work

OpenOffice.org macros, as mentioned before, may be
written in different programming languages. Every such
language considers the same management structure. All
macros are stored in “Libraries”, each of which contain-
ing “modules” or macro scripts and if required “Dialog
boxes” refering to the macros themselves.

The general structure of a macro is illustrated by
pseudo-code which here follows:

Table 2 General structure of an OpenOffice Macro

REM Macro displaying a “Hello” message box
Sub DisplayHello

Info = ”Hello”
MsgBox info
End Sub

There exists three different locations for libraries (see
Fig. 5):

— libraries attached to the documents themselves;

— user’s libraries located in “My Macros”;

— OpenOffice.org standard libraries located in “Open-
Office.org Macros”.

As far as security is concerned, the macros may be acti-
vated:

— either automatically if they are stored in a trusted
location or if they come from a trusted source;
— ordirectly by the user according to the security level

in force (“low”, “medium”, “high” and “very high”).

OpenOffice.org Basic Macros
I Macro name

Macro from

B = My Macros
B Qpc_rp_o_ff_!ce.o«q Macros

@ [Dnkitiedl

Existing macros in:

= -

Fig. 5 Macros and libraries

In-depth analysis of the viral threats with OpenOffice.org documents

203

Recorded trusted sources are used only from the
“medium” security level. They apply only to macros cre-
ated or imported by the user itself. In release 2.0.0, trust
applies only to pointed directories, excluding the sub-
directories contrary to release 2.0.1 which extends trust
to sub-directories (as in releases 1.0 and 1.1). Moreover,
trusted sources does not apply to OpenOffice.org stan-
dard macros. Lastly, any OpenOffice.org document may
be numerically certified with one or more certificates.
During the certification process, OpenOffice.org com-
putes a digital signature for the document (document
signature). In a similar way, any macro may be numer-
ically signed as well. However, the document signature
does not depend on the macros’ signatures themselves,
if any.

The“C:\Program Files\OpenOffice.org2.0\
share\basic\...” directory contains the “My
Macros” and “OpenOffice.org Macros” libraries. They
are part of the above-mentioned trusted sources, by de-
fault. Once an OpenOffice.org application is opened,
the macros contained in these libraries are automati-
cally executed without alerting or prompting the user,
this whatever may be the security level in force. This
means that macros located in these directories — either
by the user or by any malicious code — are ipso facto
considered as trusted macros.

OpenOffice.org 2.0.x standard macros — which are
trusted macros as well by default — are written in OO-
oBasic. They are located in the <Office\-Path>
\share\basic\ ... directory. They are eleven in
number:

— Depot,

— Euro,

— FormWizard,

— Gimmicks,

— ImportWizard,

— Launcher (contains FontOOo and DicOOo; see
later),

— Schedule,

— ScriptBindingLibrary,

— Template,

— Tools,

— Tutorials.

Standard macros which are contained in these eleven
groups are loaded at OpenOffice.org execution. They
are fully comparable to the Microsoft Office suite Auto-
Exec macro [4, Chap. 4]. Whereas the Microsoft Office
considers a unique such macro, OpenOffice.org con-
siders many. On that particular point, OpenOffice.org
offers more opportunities to malware writer than Micro-
soft Office.

Without loss of generality, we will consider (see
Sect. 4.3) the particular DicOOo.xba and FontOQOo.xba
macros (located in the <Office\-Path>\share
\basic\Launcher\... directory) for our
proof-of-concept. These two macros (see Fig. 6) are writ-
ten in OOoBasic. Their role is to launch the installation
of either the dictionary or additional character fonts
respectively.

All previous facts being considered, a first, trivial
infection scenario obviously arises which consists in
replacing one or the other macro by a malicious one,
or simply insert malicious code in any of them. This
approach yet simple proved to be very efficient.

4.2 Event or service-activated macros

Any macro can be associated with one or more func-
tional events. As a non exhaustive list of such events, we
have:

— application start or closing,

— document creation, opening, activation/desactiva-
tion, saving (any kind) or closing,

— document printing,

— status modification,

— form letter printing,

— modification of the number of pages...

The case of event-activated macros is comparable to the
case of Microsoft Office auto-macros [4, Chap. 4].

In addition to events, OpenOffice.org macros can call
upon various services. Either of them can be diverted or
hooked by malicious codes in many — nearly infinite —
different ways (non exhaustive list):

— opening of an additional file,

— opening of a new empty OOoWriter document,
— opening of a new empty OOoCalc spreadsheet,
— call of macro by another macro,

_Dpenotﬁce.otg Basic Macros

[Macro name

Macro from
B = My Macros ~
B = OpenOffice.org Macros M
B [53] Depot
B [§] Euro
B [3] FormWizard
B (3] Gimrmicks
= ‘_,\ﬂ Import'Wizard
B (53] Launcher
5% DicOOo
 Fort000
B [53] Schedule
I3 SevinkRindinal s

Existing macros in:

|

Fig. 6 DicOOo.xba and FontOQOo.xba macros

@ Springer

204

D. de Drézigué et al.

— Dbutton-activation of a macro,

— shortcut-call of a macro (including directly from the
toolbar),

— call of a macro through a hypertext link,

— macro call from a spreadsheet,

— macro call from another library,

— macro call during data validation,

— API call from other languages,

— external program call through OLE...

According to the security level in force, a security
warning window may be displayed:

— The “low” security level enables any macro, what-
ever may be the document origin. It is the worst
level since it is very dangerous as far as security is
concerned. The user is absolutely not warned about
the presence or not of macros.

— The “medium” security level warns the user and en-
ables macros only if the current document is not
located in any trusted directory. It is the default secu-
rity level.

— The “high” security level authorizes the execution of
macros only if the current document is located in a
trusted directory. If not, macros are disactivated and
the user is warned by OpenOffice.org.

— The “highest” security level takes into account only
documents stored in trusted directories. Outside from
these directories, macros are systematically disacti-
vated, whether signed or not.

A very critical point in OpenOffice.org 2.0.x is the auto-
matic execution of the macros which are contained in the
“My Macros” and “OpenOffice.org Macros” directories
since no security warning is displayed in any security
level in force.

All these facts being considered, a number of proof-
of-concept viruses have been designed and tested in
order to practically and thoroughly evaluate the actual
level of risk, as far as viral or computer infection is con-
cerned. The source code of the proof-of-concept which
have been developed will not be disclosed for obvious
security and responsability issues!?. Only the most sig-
nificant algorithmic aspects of these codes will be de-
tailed.

4.3 OpenOffice.org viral risk made concrete

We have designed a number of operational viral strains
with respect to OpenOffice.org documents, for research

12 The source codes are freely available upon written request only
for strictly identified IT security professionals. The request must
be sent to the corresponding author.

@ Springer

and technical validation purposes. These strains have
been successfully tested and they allow to claim that
the viral hazard attached to OpenOffice.org is at least
as high as that for the Microsoft Office suite, and even
higher when considering some particular aspects. These
viral codes have been designed and tested independently
of the underlying operating system. This implies a to-
tal portability of these codes and hence a generalised
risk. Lastly, we did not intend to develop “true” viruses
with sophisticated and dangerous functionalities. Since
the goal was to prove, through a scientific approach,
that viral hazard actually exists for OpenOffice.org, only
basic yet efficient codes have been developed without
any payload. But the reader must be aware that writing
dangerous codes for OpenOffice.org components is pos-
sible.

From an algorithmic point of view, the different viral
strains include the general viral function hereafter listed
(see [4, Chap. 4]):

1. primo-infection function: it performs the initial infe-
ction step of the OpenOffice.org environment. Dur-
ing our tests, this has been realised through a simple
office document email attachment. Alternatively, a
simple exchange of office documents can be consid-
ered;

2. search for target to infect function;

3. overinfection control function. The code must infect
an already infected target;

4. infection function;

5. stealth and virulence control functions.

It is worth noticing that no other anti-antiviral func-
tions have been included (polymorphism or armouring
[5]) since these functionalities are not specific to Open-
Office. However, OOobasic or any other programming
language in OpenOffice.org are powerful enough to
implement very sophisticated polymorphic or armoured
functionalities. As far as stealth is concerned, we have
developed and tested such anti-antiviral capabilities but
only by considering characteristics that are specific to
the OpenOffice environment and/or capabilities.

4.3.1 Diverting or perverting events

For this first viral strain, denoted 0Ov_s1 — the “doc-
ument opening” and “document closing” have been di-
verted (or hooked) by means of macros associated to
these events. This approach is quite comparable to using
AutoOpen or AutoClose macros under Microsoft Office
[4, Chap. 4].

The main steps performed by the OOv_s1 virus here
follow:

In-depth analysis of the viral threats with OpenOffice.org documents

205

1. An e-mail with attachment (OpenOffice document
infected by 00Ov_s1) is sent to the victim.

2. The opening of the attached document activates the
malicious macro which is associated to the corre-
sponding event. The primo-infection step then oc-
curs in a first phase.

3. The malicious macro puts an additional malicious
code C on the hard disk.

4. The malicious code C is launched when the cur-
rent document is closed (the macro associated to
the “document closing” event is diverted).

4.3.2 The 00v_s1_£: a stealth variant of O0Ov_s1

This second proof-of-concept code considers some par-
ticular OpenOffice characteristics in order to hide its
presence and action. The stealth properties are achieved
by hiding the malicious code inside the DicOOo or
FontOQOo macros. Thus, the malicious code is launched
during the installation of DicOOo or FontOOo, by the
user. There exist many other possibilities.

The main steps performed by the OOv_sI_fvirus here
follow:

1. An e-mail with attachment (OpenOffice document
infected by 0Ov_s1_f) is sent to the victim.

2. The first time the document is opened, the macro
associated to this event is executed. The primo-
infection takes place in this initial step.

3. The malicious macro infects the DicOOo macro
with an additional malicious code C.

4. At the DicOOo setup, the malicious code C is
launched.

This technique is similar to that used by many exist-
ing Miscrosoft macro viruses which use macros with
legitimate Office components command names (usurp-
ing macros; see [4, Chap. 4] for details). The FontOOo
macro can be used instead.

4.3.3 Using malicous documents templates

A third viral proof-of-concept code, denoted OOv_s2
perform its action through an infected template. To
illustrate the algorithmic capabilities of the OOobasic
language, we consider two viral codes which act in coop-
eration one with another (this approach can be gener-
alized to k-ary codes; see [6, Chap. 3] for the concept of
k-ary codes). The purpose of this approach is to obtain
an increased efficiency as well as sophisticated stealth
properties. Indeed, each subcode contains only a part of
the whole virus.

The goal here was to enable the viral spread from
an already infected OpenOffice environment into any
other non infected OpenOffice document and thus to-
wards any non infected environments when considering
the exchange of office documents. The 0Ov_s2 per-
fectly corresponds to any existing Miscrosoft macro-
virus, since the 00Ov_s1 and OOv_s1_ f only considered
a non self-reproducing (epeian infection; for example a
logical bomb or a Trojan horse).

The very first step of this attack consists in first
modifying the current OpenOffice configuration. That
is the reason why it is required to use one or more
infected templates to efficiently perform the attack. By
modifying the configuration files — through a two-level
approach — it is thus possible to involve far more
sophisticated infectious macros that will be activated
whenever any document is opened. In particular, more
complex infection mechanisms may be considered
than simply diverting/perverting event-related macros
4.3.1.

The main working steps of OOv_s2 here follow (see
Fig. 7):

1. Two e-mail attachments P; and P, (sent together
or in two different successive e-mails)!3 are sent to
the victim, in such a way that P is always open
before P;.

2. The first infection step occurs (attachment Pq): a
template file which contains the malicious macros is
setup.

3. The second infection step occurs (attachment P5):
malicious event-activated macros are put in trusted
locations. Consequently, these macros will de facto
be considered as “trusted macros”. They will be thus
transparently executed (the user is not warned of
their presence). Many various actions can then be
performed. We have implemeted and tested the fol-
lowing ones:

— recording of a new module (new library) con-
taining macros, in the “My Macros” directory.
Whenever a user loads and opens a document,
this library is automatically loaded as well with-
out any security level checking;

— amacro M replaces the function attached to the
F5 key (any other function may be replaced in
such a way);

— a macro M; calls for the templates previously
installed. Any new document or any other doc-
ument handled by the user will be automatically

13 Of course, this scenario may be played with a single infected
document. The corresponding malicious code is simply slightly
more complex.

@ Springer

206

D. de Drézigué et al.

Fig. 7 Organisation Chart for
the OOv_s2 viral strain Send e-mail malicious
attachment #1.

Send e-mail malicious
attachment #2.

\4

v

INITIAL INFECTION

Installation of a template
document containing
malicious macros.

INITIAL INFECTION

Attachment is opened
Infectious macros are
executed.

A4
INFECTION

Creation of a new
library in "My Macros"
containing the malicious
macros which overwrite
the code attached to
the F5 key. (as an
example)

/

SELF-REPLICATION

Every new document or
every non-infected
document will be
automatically infected with
malicious macros.

PAYLOAD EXECUTION

Whenever the user hit strikes the F5 key,
the virus payload is run. (session log-out,
shutdown or hard disk formatting)

infected, thus making the virus spread. Itis worth
noticing that a OOo macro seemingly in Micro-
soft VBA may be used inside a worD document
to fool the user.
4. Each time the user presses the F5 key, the payload is
activated (session logout, computer shutdown, data
destruction, formatting...).

Stealth features have been implemented by means of
command lines hidden in legitimate pre-existing macros.

@ Springer

The critical point is to thoroughly manage the potential
function errors that may betray the presence of a virus
(test of exit codes).

4.3.4 A stealthier version of OOv_s2: the FinalTouch
OpenOffice virus

This last proof-of-concept is probably the most effi-
cient and powerful one that we have developed. It illus-
trates and summarizes many of the capabilities that are
likely to be used or diverted by any efficient OpenOffice

In-depth analysis of the viral threats with OpenOffice.org documents

207

Fig. 8 Organisation Chart for
the FinalTouchvirus
attachment #1.

Send e-mail malicious

Send e-mail malicious
attachment #2.

\4

INITIAL INFECTION

Document installation or
replacement by the user of a
macro (e.g. DicOOQo...) with one
containing one or more virus in its
OpenDocument structure.

A\

\d

STEALTH

The virus is completely hidden
waiting for his execution.

INFECTION

An event-related macro
(attachement opening)
extracts the virus and installs
it on the HD.

malware. The main working steps of the FinalTouch
virus are (see Fig. 8):

1. A first e-mail attachement is sent. The attachment
contains a hidden (stealth) executable (e.g.
virus.cmd). This executable is totally invisible and
undetectable unless we manually unzip the attac-
hement archive. This is performed by manipulating
the OpenDocument structure organization as previ-
ously exposed in this paper. In our experiment, the
e-mail tells the attachement is a new version of the
DicOOo utility. Many other scenarii (using or not
e-mail) are possible. The user has to replace the old
DicOOo file by the new one.

2. A second e-mail attachement is sent. It contains an
infectious macro. Whenever the document is open-
ed, the infectious macro extracts the virus.cmd exe-
cutable which is already present in the computer.
This executable is run. The infection has now spread.

Of course, this proof-of-concept scenario is operation-
ally rather simple. One may object that only a few users
will perform step 1 and that the level of threat of such

EXECUTION

A second event-related is launching the
virus, worm or Trojan.

a virus is strongly limited. It is far from being obvi-
ous. Many OpenOffice users are totally unaware of the
malware threats. Let us recall that this proof-of-concept
only aims at validating OpenOffice malware hazard, at
the technical level. At the operational level (real-life
attack), the use of social engineering or of some other
technical tricks are likely to greatly empower attackers
to spread virus like the FinalTouch virus.

Let us mention the essential characteristics of the
FinalTouch virus.

— Self-reproduction. The virus is hidden in a frequently
used macro (e.g. DicOOo or FontOQOo) which more-
over provides a lot of improvements compared to
standard macros (multilingual environment, more
available fonts...). This point greatly helps to make
the virus spread. But many other possibilities exist.

— Highlevel of stealth. The OpenDocument format en-
able to very efficiently hide executables of any kind
in a file. In particular, the size of the infected file
will always be far less important than the size of any
Microsoft Office document. Moreover, the size of the
virusitselfis very limited. Only 20 command lines are

@ Springer

208

D. de Drézigué et al.

required to both extract infectious macros and run
the executable. Those command lines may be writ-
ten in such a way that they may appear harmless or
innocuous even for a cautious or suspicious admin-
istrator who would decide to analyze every single
command lines in existing macros. It is also possi-
ble to make detection even far more difficult and
fool any analyst by considering alternate extension
(e.g. *.XBA).

— The execution of the virus.cmd file may be delayed,
for instance in order to make sure that many other
files have been first infected.

— High portability. An infected file can contains execu-
tables in different format (e.g. for different operating
systems).

4.3.5 Miscellanous sophisticated variants

Many other infection techniques have been identified
and some of them have been successfully tested. It would
be boring to describe them all. Consequently, we limit

ourselves in summarising the main significant techniques.

They are listed hereafter.

— The OfficeOpen.org configuration file can be mod-
ified in order to automatically activate malicious
macros each time a document is opened.

— The infection may concern either the operating sys-
tem level at the OpenOffice.org level only. This can
be performed by placing malicious macros in trusted
locations. A document level infection is possible as
well by using association or chaining of macros and
events. In this latter case, different documents may
be involved according to the more or less complex
scenarii we intend to play. A huge number of actions
can thus be performed (non exhaustive list):

— Save the viral code in either “OfficeOpen.org
Macros” or “My Macros”. Whenever a user load
and open a document, the “OfficeOpen.org
Macros” is automatically loaded and activated.

— A malicious macro may replace a legitimate stan-
dard macro (e.g. C:\Program_Files\OpenOffice.
org 2.0\share\basic\Euro). It corresponds to the
case of usurping Microsoft Office viral macros.

— We can use a OO0 macro that mimics a Word
VBA macro and embedded in a worD document.

— We can also use various events such as: additon-
al document opening, macro chaining, printing
functions, keyboard shortcuts, use of hypertext
links, cross-call between OpenOffice.org compo-
nents (OOoWriter <> OOoCalc), cross-call of
macros located in different libraries...

@ Springer

— The use of OLE links and external programs/
applications has been proven very powerful for
designing infectious processes.

Lastly, in order to improve stealth capabilities in addi-
tion to the internal, specific OfficeOpen.org resources,
we can use the function “Document as E-mail...” or
“Document as MS-Doc Attachement”. It has thus been
possible to imagine an E-mail worm. In this latter case,
the worm is able to collect E-mails on the hard disk by
means of the system access files functions or commands.

5 Conclusion and future work

In this paper, we have presented an in-depth analy-
sis of the OpenOffice.org security with respect to the
computer viral threats. We have identified the differ-
ent functionalities and components that could be used
and perverted in order to concretely express this risk.
Lastly, for validation purposes, several proof-of-concept
malicious codes have been developed and successfully
tested, in operational conditions. They allow us to claim
while proving at the same time, that the OpenOffice
suite may be affected by malicious codes as it commer-
cial challenger is. The portability of the OpenOffice suite
(Unices, MacOsX and Windows environments) greatly
increases the level of risk since we have observed a strik-
ing similarity between the different operating system
ports which is worth noticing. Any malicious code devel-
oped for OpenOffice will thus have a maximal impact. It
is important to keep in mind that the viral risk attached
to OpenOffice is independent of any implementation
vulnerabilities. From the implementation and develop-
ment point of view, OpenOffice is a remarkable soft-
ware. We only focused on its intrinsic viral algorithmic
capabilities.

This study has proved that up to now the viral threat
with respect to the OpenOffice.org suite is more impor-
tant than that with respect to Microsoft Office and thus
for many reasons:

— the zrp format for the archive represents a significant
risk since it enables the entry of malicious codes. The
control of such archives is likely to be difficult. The
management of archive integrity is quite impossi-
ble to perform with open Message Integrity Codes
(MIC). Any attacker can manipulate an archive and
recompute any MIC in place. Consequently, efficient
password protection or digital signature should be
considered;

— Self-integrity of OpenOffice components should be
used (see Sect 2.3.4);

In-depth analysis of the viral threats with OpenOffice.org documents

209

— there exist more execution points that can poten-
tially be used, diverted or hooked in OpenOffice
than in Microsoft Office. The desire for ergonomics
seems to have been prevalent over security during
the development;

— thesecurity has been insufficiently taken into account
except for very marginal aspects. The secure manage-
ment of macros is very difficult not to say complex
to perform. It is beyond a simple user’s awareness
and capabilities. Future developments of the Open-
Office.org project should make the security a pri-
ority. Moreover this security must be ergonomically
viable. In particular, the concept of trusted macros
is very exagerated at the present time and should be
completely removed. Digital signature is sufficient
in itself. Any macro should always cause a warning
security alert.

When considering the power of OpenOffice macros,
the OpenDocument format interoperability as well as
the zip format together, the conclusion is that the gen-
eral security of OpenOffice is insufficient. This suite is
up to now still vulnerable to many potential malware
attacks. It is now obvious to us that the OpenDocument
format is not secure with regards to the malware threat
unless efficient integrity checking is used. It is possible
with open tools like MICs? Digital signature seems to
be the best answer.

In order to anticipate forthcoming OpenOffice mal-
ware, the first generic and efficient approach is to update
antiviral engine in order they check the consistency of
the structure files with respect to the OpenDocument
format. This will greatly help to reduce the malware
risk.

The first consequence of this study is that any security
policy must take into account this new viral threat. Since
its management is far more complex, it has to be man-
aged directly at the administrator level. User must be
constantly sensitized to the viral threat attached to the
OpenOffice.org components. However, the main inter-
est of OpenOffice lies in the fact that the system is com-
pletely open. Such an in-depth study would not have
been possible with proprietary software. Moreover, the
high reactivity and professionalism of OpenOffice team
is the best hope to finally get a secure product very soon.
We already have contact with OpenOffice developers to
help them in correcting the weaknesses that have been
identified. It is worth mentioning that such a reactivity
and the opportunity to take part to the project is invalu-
able. Lastly, let us recall that document malware remains
a constant risk for any software, both free or proprietary.

The analysis which has been presented in this paper
has to be carried on in order to evaluate the threats

with respect to some OpenOffice.org components that
have not been extensively considered yet, due to the
lack of time: UNO and the API project. Moreover the
specific threat with respect to the Python programming
language must be deeply analysed. Initial results have
demonstrated the tremendous potential of this environ-
ment for OpenOffice malware design.

Acknowledgements We would like to express our gratitude to
the lieutenant-colonel Filiol, our advisor, for his constant support
and help during this study. We also would like to thank second
lieutenant Rachida H’midouche for her valuable help in translat-
ing this article and in correcting some of the typos. Lastly many
thanks to the anonymous referees who helped us very much in
improving this paper.

References

1. Chambet, P., Detoisien, E., Filiol, E.: La fuite d’informations
dans les documents propriétaires. Journal de la sécurité infor-
matique MISC, numéro 7 (2003)

2. De Drézigué, D., Hansma, N.: Etude de faisabilité de macro-
virus sous OpenOffice. Mémoire de stage mastere spécialisé
“Réseaux et Télécommunications Militaires”, Ecole Supéri-
eure et d’Application des Transmissions (2006)

3. Filiol, E.: Le virus Concept. Journal de la sécurité informa-
tique MISC, numéro 4 (2002)

4. Filiol, E.: Computer viruses: from theory to applications. IRIS
International series, Springer, Berlin Heidelberg Newyork
ISBN 2-287-23939-1 (2005)

5. Filiol, E.: Strong cryptography armoured computer viruses
forbidding code analysis: the BRADLEY virus. In: Proceedings
of the 14th EICAR Conference, pp. 201-217 (2005)

6. Filiol, E.: Techniques virales avancées. Collection IRIS,
Springer, Berlin Heidelberg New York (in press) (2006)

7. FIPS 180-1: Secure Hash Standard, Federal Information
Processing Standards Publication 180-1, U.S. Department of
Commerce/N.L.S.T., National Technical Information Service,
Springfield (1995)

8. ISO: ISO and IEC approve OpenDocument OASIS
standard for data interoperability of office applica-
tions, http://www.iso.org/iso/en/commcentre/pressreleases/
2006/Ref1004.html. See also http://ec.europa.eu/idabe/en/doc-
ument/3439/5585 and http://www.oasis-open.org/commit-
tees/tc_home.php?wg_abbrev=odf-adoption for more details
(2006)

9. Oasis Standards: Open document format for office appli-
cations, OpenDocument v1.0, http://www.oasis-open.org/
committees/download.php/12572/OpenDocument-v1.0-
os.pdf (2005)

10. The OpenOffice.org Software Development Kit, http://www.
openoffice.org/dev_docs/source/sdk

11. OpenOffice Suite Official Website, http://www.openoffice.org.

12. Major OpenOffice.org Deployments, http://wiki.services.
openoffice.org/wiki/Major_OpenOffice.org_Deployments
13. Marcelly, B., Godard, L.: Programmation OpenOffice.org:
Macros OOoBasic et API, Eyrolles, ISBN 2-212-11439-7

(2004)

@ Springer

210 D. de Drézigué et al.

14. Rautiainen, S.: OpenOffice security. In: Virus bulletin confer- 17. Schneier, B: Description of a new variable-length key, 64-
ence, september 2003 (2003) bit Block Cipher (Blowfish). In: Anderson, R. (ed.) Fast
15. Reynaud-Plantey, D.: New viral threats of Java viruses. J. Com- Software Encryption, Cambridge Security Workshop, LNCS
put. Virol. 1(1-2), pp. 32-43 (2005) 809, pp. 191-204, Springer, Berlin Heidelberg New York
16. Kasliski, B.: RFC 2898-PKCS#5: Password-Based Cryptog- (1994)
raphy Specification Version 2.0, Network Working Group, 18. http://smallbiz.symantec.com/press/1998/m980819.html
http://www.fags.org/rfcs/rfc2898.html (2000) 19. www.w3.org/XML/Schema

@ Springer

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

