
J Comput Virol (2007) 2:243–256
DOI 10.1007/s11416-006-0030-0

ORIGINAL PAPER

Language models for detection of unknown attacks in network traffic

Konrad Rieck · Pavel Laskov

Received: 24 July 2006 / Accepted: 1 November 2006 / Published online: 19 December 2006
© Springer-Verlag France 2006

Abstract In this paper, we propose a method for net-
work intrusion detection based on language models.
Our method proceeds by extracting language features
such as n-grams and words from connection payloads
and applying unsupervised anomaly detection—without
prior learning phase or presence of labeled data. The
essential part of this procedure is linear-time computa-
tion of similarity measures between language models of
connection payloads. Particular patterns in these models
decisive for differentiation of attacks and normal data
can be traced back to attack semantics and utilized for
automatic generation of attack signatures.

Results of experiments conducted on two datasets
of network traffic demonstrate the importance of high-
order n-grams and variable-length language models for
detection of unknown network attacks. An implemen-
tation of our system achieved detection accuracy of
over 80% with no false positives on instances of recent
remote-to-local attacks in HTTP, FTP and SMTP traffic.

1 Introduction

Detection of unknown attacks in network traffic is a
long-standing issue on the wish-list of security practi-
tioners. There exist numerous examples of previously
unknown attacks, notably Internet worms [e.g. 1–3] and
zero-day exploits [e.g. 4,5], that defeated common

K. Rieck (B) · P. Laskov
Intelligent Data Analysis, Fraunhofer FIRST.IDA,
Kekuléstr. 7, 12489 Berlin, Germany
e-mail: konrad.rieck@first.fraunhofer.de

P. Laskov
e-mail: pavel.laskov@first.fraunhofer.de

signature-based defenses, even though current applica-
tions and infrastructures for tracking vulnerabilities and
their exploits claim to provide adequate protection by
means of attack signatures. Furthermore, it often does
not suffice for a signature to be available—deployed
signatures must be managed, distributed and kept
up-to-date by security administrators.

A large amount of previous work focused on anom-
aly detection in network traffic [e.g. 6–13]. The main
hurdles on the way to its acceptance in practice are
high false-positive rates and a lack of explainability and
transparency in the detection process. The majority of
previous approaches do not deliver sufficient accuracy
in an acceptable range of false-positive rates and, fur-
thermore, do not provide diagnostic information to help
forensic analysis.

Apart from algorithmic differences, the main issue
underlying anomaly detection approaches is the features
they operate on. Some early approaches consider only
packet header information or statistical properties of
sets of packets and connections [6,14]. This informa-
tion has proven to be useful for detection of malicious
activity such as probes and port scans, yet it does not
suffice to detect more dangerous attacks that exploit
vulnerabilities of application-layer protocols and their
implementations.

Recently, techniques of anomaly-based network
intrusion detection have been proposed that analyze
payloads of packets and connections [8,11–13,15–18].
These techniques proceed by defining features over pay-
loads and deriving models of normality based on these
features. Packets and connections that do not fit into
such models are considered anomalous and trigger
alarms. All of these methods make use of relatively sim-
ple features computed over payload bytes.

244 K. Rieck, P. Laskov

The main thesis of this contribution is that further
improvement of detection accuracy can be achieved by
more advanced features defined over byte sequences.
The reason why byte sequences may be more success-
ful in the description of features indicative of malicious
content can be seen by comparing network protocols
and natural languages. The content of both is charac-
terized by rich syntax and semantics, and discrimination
between different categories is only possible in terms
of syntactic and semantic constructs. For both network
protocols and natural languages, extensive effort has
been made to describe important concepts in terms of
rules—only to find out that rules can hardly encompass
the full generality of underlying content. Similar to nat-
ural language, most network protocols are manifested
in a variety of “dialects” induced by implementation-
specific interpretations and extensions of the protocol
specification. Thus, protocols and natural languages
possess grammatical structure and yet recovery of
this structure is stymied by uncertainty and
ambiguity.

In view of this linguistic analogy, one can see that
detection of misuse and anomalous patterns amounts to
learning syntactic and semantic fragments of an under-
lying protocol language. In contrast to individual char-
acters, byte sequences reflect specific patterns of normal
and attack data and can be used to interpret and evalu-
ate alarms obtained using anomaly detection. Hence it
is promising to apply the machinery of natural language
processing to network intrusion detection.

Byte sequences can be represented by fixed-length
and variable-length language models such as n-grams
(sequences of n consecutive symbols) and words
(sequences tokenized using a set of delimiter symbols).
N-grams have been extensively used in host-based intru-
sion detection for modeling traces of system calls [e.g.
19–24], but until recently have not been applied in the
context of network intrusion detection for n > 1. Toke-
nized words have been used for anomaly detection using
rule-based learning [e.g. 10,11]. The recently proposed
method [25] builds on the ideas from host-based intru-
sion detection and uses a Bloom filter to represent high-
order n-grams of normal and malicious packet payloads.
The approach pursued in this paper differs from previ-
ous work in that we use a geometric representation of
high-order n-grams, which allows us to perform anomaly
detection without building a global profile for normal
events. The main technical difficulty that needs to be
addressed for geometric analysis of byte sequences is:

How can language models of packet and connec-
tion payloads, such as n-grams and words, be effi-
ciently extracted and compared?

Language models extracted from connection
payloads enable the computation of pairwise similarity
between connections—an essential procedure for appli-
cation of unsupervised anomaly detection algorithms.
Hence, we focus our attention on methods for efficient
computation of similarity measures between n-grams
and words. To address this problem we propose (a) a
representation of n-grams and words using tries and (b)
a linear-time method for comparison of tries.

The rest of this paper is organized as follows: in Sect. 2
language models, similarity measures and efficient meth-
ods for their computation are introduced. Section 3 cov-
ers unsupervised anomaly detection algorithms suitable
for language models. Experiments on two datasets of
network traffic and an evaluation of different language
models are given in Sect. 4. Section 5 illustrates inter-
pretation of network anomalies using language models
and automatic generation of attack signatures. In Sect. 6
we review related work and conclude this contribution.

2 Language models

In order to encapsulate and access semantic and syn-
tactic constructs of network connections using language
models, one needs to cast connection payloads to a for-
mal representation. Similarly to sentences from natu-
ral languages, connection payloads can be characterized
by simple language models such as n-grams and words,
which have proven to unveil discriminative information
for text categorization and classification in natural lan-
guage processing [26–29].

2.1 N-gram and word models

An incoming connection payload x corresponds to con-
secutive sequence of symbols from an alphabet Σ . The
content of x can be modeled as a set of possibly over-
lapping subsequences w taken from a language L ⊆ Σ∗.
The length of w is denoted by n.

– The model of n-grams can be derived by defining
L = Σn, the language containing all sequences of
fixed length n.

– Provided a set of delimiter symbols D ⊂ Σ , the
model of words is defined as L = (Σ \ D)∗ where
every w ∈ L subsequence of x is delimited by sym-
bols from D.

The chosen language L constitutes the basis for cal-
culating similarity between network connections. Given
a connection payload x and a language L, a geomet-
ric embedding into a feature space is performed by

Language models for detection of unknown attacks in network traffic 245

Table 1 Kernel and distance functions for language models

Kernel and distance functions

Linear kernel
∑

w∈L

φw(x)φw(y)

Canberra distance
∑

w∈L

|φw(x) − φw(y)|
φw(x) + φw(y)

Geodesic distance arccos

(
∑

w∈L

φw(x)φw(y)

)

Jensen distance
∑

w∈L

(H(φw(x), φw(y)) + H(φw(y), φw(x)))

calculating φw(x) for every w ∈ L appearing in x. Usu-
ally the function φw(x) returns the frequency of w in x,
however, other definitions returning a count or a binary
flag for w are possible. The vector of all φw(x) embeds
the connection payload x in a high-dimensional feature
space, whose dimensions correspond to all w ∈ L. A de-
tailed discussion of language models and their geometric
embedding for natural language processing is available
in [27,30,31].

2.2 Similarity measures for language models

By utilizing the geometric representation induced
through φ, one can adapt classical, vectorial similarity
measures, such as kernel and distance functions, to oper-
ate on language models of connection payloads. Table 1
lists common distance and kernel functions some of
which have been applied in the domain of network intru-
sion detection [9,32,33]. The Jensen distance in Table 1
is defined using an entropy-like function H(a, b) =
a log (2a/(a + b)).

Another way for measuring similarity in vector spaces
are so called similarity coefficients [e.g. 34,35]. These
coefficients are non-metric and have been primarily used
on sparse binary data, which makes them suitable for
high-order n-gram and word models. Similarity coeffi-
cients are constructed using three summation variables
a, b and c. The variable a contains the number of positive
matches (1–1), b the number of left mismatches (0–1)
and c the number of right mismatches (1–0). The most
common similarity coefficients are given in Table 2.

Similarity coefficients can be extended to non-binary
data by modification of the summation variables. The
degree of match for a sequence w ∈ L can be defined
as min(φw(x), φw(y)) and the respective mismatches are
defined as deviations thereof

a =
∑

w∈L

min(φw(x), φw(y))

Table 2 Similarity coefficients for language models

Similarity coefficients

Jaccard
a

a + b + c

Czekanowski
2a

2a + b + c

Sokal–Sneath
a

a + 2(b + c)

Kulszynski
1
2

(
a

a + b
+ a

a + c

)

b =
∑

w∈L

[
φw(x) − min(φw(x), φw(y))

]

c =
∑

w∈L

[
φw(y) − min(φw(x), φw(y))

]

Due to the high dimensionality of the induced vec-
tor space special algorithms are required for efficient
computation of the proposed similarity measures. A lin-
ear-time algorithm based on trie data structures is intro-
duced in the following section.

2.3 Efficient computation of similarity measures

The classical scheme for comparing language models
utilizes indexed tables or in the more general case hash
tables [e.g. 27]. Subsequences w of length n extracted
from a connection payload x and the corresponding val-
ues φw(x) are stored in the bins of a table. Assuming
the size of the table is fixed at M, it takes on aver-
age �(nM) to compare two tables: one needs to loop
over all M bins, checking for matching and mismatching
sequences. For small n indexed tables are efficient for
comparison of language models, e.g. as used for n = 1
in [8,13,18]. For larger n an indexed representation
becomes infeasible and hash tables or Bloom filters need
to be utilized due to the exponentially growing number
of possible sequences. However, to avoid hash collisions,
a high value of M must be chosen in advance, which con-
stitutes the main computational drawback of any hash
table approach.

A better alternative for comparing language mod-
els are trie data structures [36–38]. A trie is an N-ary
tree, whose nodes are N-place vectors with components
corresponding to the characters of an alphabet Σ with
N = |Σ |. Fig. 1a shows two tries X and Y containing the
4-grams {“barn”, “card”} and {“bank”, “band”, “card”}.
The nodes of a trie are augmented to carry attributes
reflecting φw(x) for each sequence w extracted from the
connection payload x. For example the left trie X in
Fig. 1a holds φ“barn”(x) = 4 and φ“card”(x) = 3.

246 K. Rieck, P. Laskov

(a) (b)

Fig. 1 Trie data structures a and their comparison b

Comparison of two tries can be carried out by
enumerating matching and mismatching sequences.
Starting at the root nodes, one traverses both tries in
parallel, processing matching and mismatching nodes.
As an invariant, the nodes under consideration in both
tries remain at the same depth. Since only a linear num-
ber of n-grams or words can be extracted from a con-
nection payload x, the worst-case run time is O(n|x|).
An advantage of the trie data structure comes into play
if the provided alphabet is large and a lot of mismatches
occur. The traversal discovers mismatching words after
passing the first few symbols and omits further unneces-
sary comparisons.

Computation of similarity measures using tries is
straight forward: during parallel traversal the values
of φw(x) and φw(y) stored in the nodes are aggregated
according to the definition of a chosen similarity mea-
sure. Figure 1b shows a snapshot of a traversal calcu-
lating the Manhattan distance. A mismatch m− at the
nodes corresponding to the words {“barn”} and {“band”,
“bank”} corresponds to |φ“barn”(x) − 0| + |0 − φ“ban”(y)|
and results in the calculation |4|+ |8|. A detailed discus-
sion on computation of various similarity measures for
sequential data is given in [39,40].

3 Unsupervised anomaly detection

Unsupervised anomaly detection is particularly suitable
to the practical needs of intrusion detection, as it spares
an administrator from the task of collecting data repre-
sentative of normal activity. An unsupervised learning
algorithm can be directly applied to a stream of data
and is supposed to effectively discriminate between nor-
mal and anomalous patterns “on-the-fly” without exten-
sive training or manually labeled data. Because of these
favorable properties, unsupervised anomaly detection
has gained significant interest in recent work on intru-
sion detection [e.g. 9,32,41–43].

Algorithms for unsupervised anomaly detection
exploit differences in geometric representations of
anomalies and normal data. They differ in the concrete

notion of normality and abnormality.1 Some explore lo-
cal properties of the provided data for determining out-
liers, e.g. single-linkage clustering [32] and our k-nearest
neighbor method Zeta [44], others analyze global prop-
erties, e.g. the simplified Mahalanobis distance [13] and
quarter-sphere SVM [42], to identify instances deviating
from the mass of data.

The language models and similarity measures intro-
duced in Sect. 2 enable one to define geometric distances
between connection payloads, which indirectly reflect
semantic differences between attacks and normal data.
Since many of the unsupervised anomaly detection algo-
rithms are defined in terms of distances, one can thus
apply them for network intrusion detection. Following
is a brief description of four algorithms applied on con-
nection payloads in this paper.

The simplified Mahalanobis distance [13] is a global
anomaly detection method that determines the center
of mass of data µ and the variance of each dimension
σi in input space. The anomaly score is defined as the
variance-scaled distance d from point x to µ

mµ,σ (x) =
n∑

i=1

d(xi, µi)

σi

The quarter-sphere SVM [42] is a kernel-based learn-
ing method that determines the center of mass of input
data µϕ in a feature space using a non-linear mapping
function ϕ. Herein, the non-linear function ϕ does not
necessary correspond to the embedding function φw(x),
e.g. in case of the RBF kernel function. The anomaly
score is defined as the distance d from ϕ(x) to µϕ in the
non-linear feature space

qϕ,µ(x) = d(ϕ(x), µϕ)

Simplified single-linkage clustering [32] is a common
distance-based clustering algorithm. Given a cluster
assignment, the anomaly score is defined to be inversely
proportional to the size of the cluster C the point x is
assigned to, so that small clusters yield high anomaly
scores

sC(x) = 1
|C| for x ∈ C

Our method Zeta [44] is an anomaly score based on
the concept of k-nearest neighbors; it extends the out-
lier detection methods proposed in [45,46]. The score
is calculated as the mean distance of x to its k-nearest

1 We denote the property of deviating from normal as abnormal-
ity and refer to a data instance deviating from normal as anomaly.

Language models for detection of unknown attacks in network traffic 247

neighbors normalized by the mean inner-clique distance.

ζk(x) = 1
k

k∑

i=1

d(x, nni(x))

− 1
k(k − 1)

k∑

i=1

k∑

j=1

d(nni(x), nnj(x))

The first term emphasizes the points that lie far away
from its neighbors, whereas the second term discounts
abnormality of points with wide neighborhood cliques.

4 Experimental results

In order to evaluate the proposed representation of net-
work connection payloads using language models with
respect to detection of unknown attacks and to gain
insights into the nature of recovered syntactic and seman-
tic information, we conducted experiments on two data-
sets of network traffic. Specifically, we are interested to
clarify the following open questions:

(1) How does the length of fixed-length models such as
n-grams affect detection performance with respect
to network protocols and attack types?

(2) At what false-positive rate does one detect all in-
stances of an unknown attack present in network
traffic?

(3) How does detection accuracy of fixed-length mod-
els compare to variable-length models such as
words?

We limit our experiments to the popular text-based
application-layer protocols HTTP, FTP and SMTP and
remote attacks against the corresponding services.

4.1 Network traffic datasets

DARPA 1999 dataset. This well-known dataset from an
IDS evaluation conducted by the DARPA in 1999 [47]
has been used in numerous publications and can be con-
sidered a standard benchmark for evaluation of IDS.
Even though the DARPA 1999 dataset is known to suf-
fer from several flaws and artifacts [10,48,49], especially
the selection of attacks can be considered antiquated in
comparison to modern security threats, it remains the
only major dataset on which results can be reproduced.

As a preprocessing step, we randomly extracted sam-
ples, each comprising 1,000 TCP connections for each
protocol from the first and third weeks of the data
corpus representing normal data. We then selected all

Table 3 Remote-to-local attacks from DARPA 1999 dataset

HTTP attacks FTP attacks SMTP attacks

HTTP tunnel .rhost upload Sendmail exploit
PHF CGI attack NcFTP exploit Mail: Spoofed frame

Password guessing Mail: PowerPoint macro
Mail: SSH trojan horse

remote-to-local attacks present in the fourth and fifth
weeks of the dataset. Table 3 lists these remote-to-local
attacks.

PESIM 2005 dataset. In order to overcome the prob-
lems of the DARPA 1999 dataset, we generated a second
evaluation dataset named PESIM 2005. We deployed a
combination of five servers using a virtual machine envi-
ronment. The systems ran two Windows, two Linux and
one Solaris operating systems and offered HTTP, FTP
and SMTP services.

Normal network traffic for these systems was gener-
ated by members of our laboratory. To achieve realistic
traffic characteristics we transparently mirrored news
sites on the HTTP servers and offered file sharing facil-
ity on the FTP servers. SMTP traffic was artificially
injected containing 70% mails from personal commu-
nication and mailing lists, and 30% spam mails received
by five individuals. The normal data was preprocessed
similarly to the DARPA 1999 dataset by random selec-
tion of samples each comprising 1,000 TCP connections
for each protocol from the data corpus. Attachments
were removed from the SMTP traffic.

Attacks against the simulated services were gener-
ated by a penetration testing expert using modern
penetration testing tools. Multiple instances of 27 differ-
ent attacks were launched against the HTTP, FTP and
SMTP services. The attacks are listed in Table 4. The
majority of these attacks is part of the comprehensive
collection of recent exploits in the Metasploit frame-
work [50]. Additional attacks were obtained from com-
mon security mailing lists and archives, such as Bugtraq
and Packetstorm Security. The “PHP script attack” was
introduced by the penetration testing expert and ex-
ploits insecure input processing in a PHP script.

4.2 Experimental setup

The basic building block of our experiments are the
incoming byte sequences of TCP connections. Each con-
nection, normal or malicious, is transformed into a trie
representing a respective language model. Our dataset
thus consists of a set of tries computed over connection
payloads.

248 K. Rieck, P. Laskov

Table 4 Remote-to-local attacks from PESIM 2005 dataset

HTTP attacks FTP attacks SMTP attacks

HTTP tunnel 3COM 3C exploit CMAIL Server 2.3 exp.
IIS 4.0 HTR exploit GlobalScape 3.x exploit dSMTP 3.1b exploit
IIS 5.0 printer exp. Nessus FTP scan MS Exchange 2000 exp.
IIS unicode attack ProFTPd 1.2.7. exploit MailCarrier 2.51 exploit
IIS 5.0 WebDAV exp. Serv-U FTP exploit Mail-Max SMTP exploit
IIS w3who exploit SlimFTPd 3.16 exploit Nessus SMTP scan
Nessus HTTP scan WarFTPd 1.65 exp. 1 NetcPlus Server exploit
PHP script attack WarFTPd 1.65 exp. 2 Personal Mail 3.x exploit

WsFTPd 5.03 exploit Sendmail 8.11.6 exploit
WU-FTPd 2.6.1 exploit

Since our goal is the detection of unknown attacks,
our algorithms are evaluated on randomly sampled mix-
tures of unseen normal and attack data containing 2 to
14% malicious connections. No explicit learning involv-
ing labeled attacks is performed.

On the other hand, the algorithms at our disposal re-
quire certain parameters to be set that affect their detec-
tion performance. Manual setting of such parameters
usually results in tedious tuning of algorithms. There-
fore, we precede the evaluation of algorithms with a
validation stage, at which the best parameters are auto-
matically selected based on independent samples of our
datasets. The crucial requirement in our setup is that
no data used at the validation stage is employed during
evaluation.

The evaluation criterion for all of the following exper-
iments is the so-called area under curve (AUC0.01) which
integrates true-positive rates over a certain interval of
false-positive rate, in our case [0, 0.01]. For the sake
of statistical significance, the results for experiments
are averaged over 30 validation/evaluation runs on ran-
domly drawn samples comprising 1,000 connections
each.

Experiment 1: Best measure/detector configuration

As it was previously mentioned, similarity measures in-
duce various geometric properties which, in turn, are
explored in different ways by unsupervised anomaly
detection methods. Hence, as a first step, we need to
roughly establish what combinations of similarity mea-
sures and anomaly detectors perform best on language
models of connection payloads. We restrict this evalua-
tion to the class of fixed-length models of n-grams and
average the AUC0.01 values for each measure/detector
configuration over values of n from 1 to 7.

Table 5 lists the best measure/detector configurations
averaged over all protocols on both datasets. One can

see that the Zeta algorithm prevails among the best
overall configurations, using various similarity measures.
The best configuration is achieved with the Kulczynski
coefficient calculated using a binary embedding function
φw. The quarter-sphere SVM yields an overall second
best configuration, yet it was bounded to a linear ker-
nel. The same configurations scored among the six best
(in a slightly different order) on the individual datasets,
although the attacks are almost completely different.

In contrast to the other applied anomaly detection
methods, the Zeta anomaly score builds on the concept
of k-nearest neighbors, which is known for its ability
to cope with sparse and heterogeneous data distribu-
tions occuring in the embedding space of high-order
n-grams [45]. Furthermore, the Kulczynski coefficient
has been specifically designed for comparison of sparse
and binary data [35].

In the remaining experiments we fix the measure/
detector configuration to the Kulczynski coefficient as
similarity measure and the Zeta anomaly score as unsu-
pervised anomaly detection algorithm.

Experiment 2: Varying n-gram length

Previous results in natural language processing and
host-based IDS indicate that the optimal n-gram length
may vary for different applications and datasets
[19,24,51,52]. We now investigate if the same obser-
vation holds for n-gram models of TCP connection pay-
loads.

We follow the same setup as in the previous selection
of the optimal measure/detector configuration, except
that results of individual values of n are reported using
a fixed configuration. The results are shown in Fig. 2
for the DARPA 1999 dataset and Fig. 3 for the PESIM
2005 dataset, which display the ROC graphs for selected
values of n.

Language models for detection of unknown attacks in network traffic 249

Table 5 Best overall measure/detector configuration

Similarity measure φw type Anomaly detector AUC0.01

Kulczynski coefficient Binary Zeta anomaly score 0.772
Linear kernel Freq. Quarter-sphere SVM 0.756
Kulczynski coefficient Freq. Zeta anomaly score 0.737
Czekanowski coefficient Freq. Zeta anomaly score 0.737
Jensen distance Freq. Zeta anomaly score 0.727
Geodesic distance Freq. Zeta anomaly score 0.712

The detection performance varies significantly among
the values of n for different protocols. In fact, it turns
out that each of the three values for n considered in this
experiment is optimal for some protocol. The overall
accuracy of our approach is very encouraging, especially
on the more recent PESIM 2005 dataset. For the best
value of n, a detection rate above 80% was observed
with no false-positives for the HTTP, FTP and SMTP
protocols.

Experiment 3: Analysis of specific attacks

In order to investigate why no optimal n could be estab-
lished in the previous experiment we extend our analy-
sis to the detection performance on individual network
attacks. As criterion for this experiment we consider
the minimum false-positive rate at which all instances
of an unknown attack can be identified. In addition, we
record the optimal value of n that yields the minimum
false-positive rate. The results are shown in Table 6.

One can clearly see that 18 from 27 attack types (66%)
are perfectly recognized with no false positives. This
demonstrates not only the high accuracy of fixed-length
models for anomaly detection but also its wide coverage
within the attack spectrum.

Some interesting insights can be gained from the anal-
ysis of the optimal n for specific attacks. For several at-
tacks, which are particularly easy to detect, the n-gram
length is irrelevant. For the attacks that are more diffi-
cult to detect, longer n-grams lengths seem to be preva-
lent. An extreme example is the ProFTPd exploit. This
exploit uploads a malicious file to an FTP server. Since
the file content is transferred over a data channel not
monitored by our system, this attack can only be detected
by chance in our setup.

In practice, a security administrator will not have
an opportunity to experiment with an optimal n-gram
length in order to tune a system in various ways for
different kinds of attacks. Furthermore, optimal
values of n obtained using a dataset only reflect proper-
ties of specific data and might be insufficient for

Table 6 False-positive rates for detection of individual attacks
(PESIM 2005)

Attack name # n False-positive
rate

HTTP protocol
HTTP tunnel 6 1 0.0000
IIS 4.0 HTR exploit 3 1–2, 7 0.0000
IIS 5.0 printer exploit 5 1–7 0.0000
IIS unicode attack 4 4 0.0016
IIS 5.0 WebDAV exploit 6 1–2 0.0000
IIS w3who exploit 3 3–5, 7 0.0000
Nessus HTTP scan 6 3 0.0571
PHP script attack 5 4 0.0184

FTP protocol
3COM 3C exploit 4 2–5 0.0000
GlobalScape 3.x exploit 4 1 0.0000
Nessus FTP scan 5 1–3 0.0000
ProFTPD 1.2.7 exploit 4 7 0.6798
Serv-U FTP exploit 4 2–5 0.0000
SlimFTPd exploit 4 2–6 0.0000
WarFTPd pass exploit 3 1–6 0.0000
WarFTPd user exploit 2 1–5 0.0000
WsFTPd exploit 4 2–6 0.0000
WU-FTPd exploit 4 7 0.0273

SMTP protocol
CMAIL Server 2.3 exploit 4 1–3, 5 0.0000
dSMTP 3.1b exploit 3 1 0.0002
MS Exchange 2000 exploit 2 2–6 0.0000
MailCarrier 2.51 exploit 4 1, 3 0.0000
Mail-Max SMTP exploit 2 1 0.0003
Nessus SMTP scan 6 1–6 0.0000
NetcPlus SmartServer3 exploit 3 1–3, 5 0.0000
Personal Mail 3.072 exploit 3 1–3, 5–6 0.0000
Sendmail 8.11.6 exploit 4 5 0.0040

detection of novel attacks [52]. Therefore, techniques
that avoid pre-setting of a fixed n-gram length should be
investigated.

Experiment 4: Combined and variable-length models

One possibility to avoid a pre-defined n-gram length
is to run n anomaly detectors in parallel and combine
their scores. A natural criteria for combination of anom-
aly scores of multiple identical detectors operating on
similar features is the maximum value of the different

250 K. Rieck, P. Laskov

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

HTTP traffic

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

FTP traffic

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

SMTP traffic

1–grams
3–grams
5–grams

1–grams
3–grams
5–grams

1–grams
3–grams
5–grams

Fig. 2 ROC graphs for 1-, 3- and 5-grams (DARPA 1999)

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

HTTP traffic

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

FTP traffic

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

SMTP traffic

1–grams
3–grams
5–grams

1–grams
3–grams
5–grams

1–grams
3–grams
5–grams

Fig. 3 ROC graphs for 1-, 3- and 5-grams (PESIM 2005)

anomaly scores. The main disadvantage of the combined
scores approach is that one has to run as many detectors
as the maximal n-gram length.

A less computationally intensive alternative is to use
the variable-length model of words instead. The seman-
tics of text-based protocols such as HTTP, FTP and
SMTP is characterized by the presence of boundary
symbols [11,15] which can be used as delimiters for
definition of words. For our experiments we define the
following global set of separator bytes that is used to
tokenize connection payloads of HTTP, FTP and SMTP
connections

CR LF TAB SPC , . : / & ? = () []

In order to avoid over-long sequences resulting from
binary attack patterns such as shell-codes for buffer or
heap overflows, we restrict the total length of words to
16 bytes and automatically split sequences.

We repeat the experiments under the same setup as
the experiments on varying n-gram length using com-
bined scores from multiple detectors and words

extracted from connection payloads. To emphasize the
practical focus of this experiment, we compare the re-
sults of our models with the performance of the open-
source signature-based IDS Snort [53] (Snort version
2.4.2, released on 28.09.2005 and configured with the
default set of rules). The results are shown in Fig. 4 for
the DARPA 1999 dataset and Fig. 5 for the PESIM 2005
dataset.

It can be seen that although the word-based detector
is somewhat less accurate than the detector combining
multiple n-gram lengths, the marginal decrease in accu-
racy can be considered acceptable in comparison to n
times smaller computational load.

To our surprise, both variable-length models signifi-
cantly outperformed Snort on the DARPA 1999 and
PESIM 2005 dataset even though all included attacks
except for the “PHP script attack” were known months
before the release date of the Snort distribution. This re-
sult confirms a misgiving that signature-based IDS may
fail to discover “fresh” attacks despite a major effort in
the security community to maintain up-to-date signature
repositories.

Language models for detection of unknown attacks in network traffic 251

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

HTTP traffic

Combined
Words
Snort

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

FTP traffic

Combined
Words
Snort

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

SMTP traffic

Combined
Words
Snort

Fig. 4 ROC graphs for variable-length models versus Snort (DARPA 1999)

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

HTTP traffic

Combined
Words
Snort

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

FTP traffic

Combined
Words
Snort

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

SMTP traffic

Combined
Words
Snort

Fig. 5 ROC graphs for variable-length models versus Snort (PESIM 2005)

Noteworthy is the fact that Snort failed in our experi-
ments due to two reasons. Some attacks were not
detected because no appropriate signature was pres-
ent, which is manifested by flat ROC graphs that never
reach the 100% level. Other failures occurred due to
minor variations in attack syntax. For example, one of
the SMTP attacks was not discovered when an attacker
replaced the initial “HELO” command with “EHLO”,
which conforms to the protocol specification and is fre-
quently used in practice.

5 Interpretation of language models

The four experiments from the previous section demon-
strate the detection performance of unsupervised anom-
aly detection using language models of connection
payloads. Especially the high detection accuracy
achieved at low false-positive rates and the absence of a
prior training phase makes the presented method a rea-
sonable alternative to classical signature-based intrusion
detection.

In practice, however, intrusion detection systems must
not only flag malicious events, but also equip alarms with
information necessary for categorization and assessment
of security incidents. One reason for the lack of mature
anomaly detection systems in the current security mar-
ket is their inability to support interpretation and expla-
nation of reported anomalies.

We address this problem using language models and
illustrate that their advantages for detection of unknown
attacks are indeed rooted in the ability of longer byte
sequences to capture important attack semantics. We
extend our intrusion detection method by (a) a diag-
nostic visualization of anomalous patterns and (b) a
technique for automatic generation of signatures from
detected anomalies.

5.1 Visualization of anomalous patterns

An anomalous connection payload identified using lan-
guage models is represented by a set of extracted
sequences, such as n-grams or words. By computing the
differences in frequencies between the sequences in such

252 K. Rieck, P. Laskov

0.000

0.003

0.005

0.008

0.011

0.013
’%35’’..%’’5c.’ ’35c’ ’/..’’c..’

IIS unicode attack
po

si
tiv

e
fr

eq
ue

nc
y

di
ffe

re
nc

es

3–grams in attack instance

Fig. 6 Three-gram frequency differences for the IIS unicode at-
tack

a connection and normal network traffic, one obtains a
frequency difference plot. The positive peaks in the trun-
cated difference plot (the negative differences are of no
particular value) are sequences or patterns that con-
tribute the most to dissimilarity of the connection from
normal traffic.

Figure 6 shows a 3-gram frequency difference plot for
an instance of the IIS unicode attack. The attack exploits
a vulnerability in the Microsoft IIS server, whose path-
parsing logic fails to detect directory traversals hidden
in multiple unicode encodings [54]. An example of the
attack is given below:

GET /scripts/..%%35c../..%%35c../..%%35c..
/..%%35c../..%%35c..

/winnt/system/cmd.exe?/c+dir+c: HTTP/1.0

Strong positive peaks in the plot correspond to the
3-grams “35c”, “/..” and “%35”. These 3-grams manifest
the essential pattern of the unicode attack “%%35c”
which is converted by a vulnerable IIS server to “%5c”
(ASCII code 0x35 corresponds to “5”) and finally inter-
preted as backslash (ASCII code 0x5c).

A second example of this visualization is given in
Fig. 7, which shows 6-gram frequency differences of
an anomalous connection containing a WU-FTPd 2.6.1
exploit. The attack is manifested in two patterns:
0xffffffff and 0x9090eb18. The first pattern
0xffffffff stems from an exploitation technique used
to manipulate the control flow in the heap of the GNU
C library [55]. The second pattern 0x9090eb18 is part
of a so called “NOP sled” which corresponds to non-
functional instructions at the prefix of a shell-code. The
pattern contains, beside the common byte 0x90 (x86
assembler for no-operation), the instruction 0xeb18
(x86 assembler for jumping 24 bytes) which skips bytes
corrupted by the heap memory management.

Both examples illustrate that frequency differences
of language models between anomalous connections
and normal network traffic constitute a diagnostic tool

0.000

0.010

0.019

0.029

0.038

0.048

’\xff\xff\xff\xff\xff\xff’
’\x90\x90\xeb\x18\x90\x90’’\x18\x90\x90\x90\x90\xeb’

WU–FTPd heap overflow

po
si

tiv
e

fr
eq

ue
nc

y
di

ffe
re

nc
es

6–grams in attack instance

Fig. 7 Six-gram frequency differences for the WU-FTPd 2.6.1
exploit

which emphasizes patterns decisive for reported anom-
alies and improves the assessment of security incidents
by a security practitioner.

5.2 Language models for signature generation

A crucial step towards integration of anomaly detec-
tion methods into practice is interlinkage with existing
signature-based systems. Once an unknown attack has
been identified by anomaly detection, a further step is
to generate a corresponding attack signature. Usually
these signatures are manually crafted during a time-con-
suming inspection of multiple attack instances. Recently
several approaches for automatic generation of signa-
tures have been proposed to overcome this problem
[e.g. 56–59]. In the following section, we demonstrate
that language models can be applied in a similar man-
ner for automatic generation of signatures.

In our approach an attack is represented by a trie
containing sequences of a connection payload extracted
with respect to a language model. By merging the tries
of multiple instances of the same attack and pruning
subtrees that reflect patterns occurring only in single
connections, we construct a general model for a
particular attack. We refer to this merged trie as an
A-signature. Similarly, we can merge and prune tries
containing sequences of normal connection payloads
and construct a merged trie comprising characteristic
patterns of normal network traffic. By assigning +1 to at-
tack and −1 to normal sequences and adding the merged
tries of attacks and normal connections, we can build
AN-signatures that cover patterns occurring in either
malicious or normal connection payloads—but not in
both.

To evaluate the concept of A-signatures and
AN-signatures, we conducted experiments on the PE-
SIM 2005 dataset with the language model of words
that proved effective for unsupervised anomaly detec-
tion in Sect. 4.2. We split the PESIM 2005 dataset into

Language models for detection of unknown attacks in network traffic 253

Fig. 8 AN-signature for the IIS unicode attack

Fig. 9 AN-signature for the MS Exchange 2000 exploit

two distinct partitions and use the first one for construc-
tion of merged trie signatures. Figures 8 and 9 illustrate
the automatically generated AN-signatures for the IIS
unicode attack and the MS Exchange 2000 exploit.

The AN-signature in Fig. 8 constructed using words as
language model contains exactly the patterns essential
for the semantics of the IIS unicode attack [54], such as
cmd, c+dir+c and %%35c. Words present in the exploit
such as GET or HTTP have been automatically removed
from the AN-signature as they also occur in almost any
normal HTTP connection payload. Normal patterns of
the signature reflect common keywords of the HTTP
protocol such as Accept and User-Agent. Some of
the normal words, however, result from the specific net-
work environment used during generation of the data-
set. A high percentage of Apple and Linux systems is
manifested in the words Safari, Macintosh, Debian
and Linux.

Figure 9 shows an AN-signature generated for the
MS Exchange 2000 exploit [60]. Beside sequences for
provoking a buffer overflow such as multiple A’s, B’s and
C’s the attack patterns contain the keywords
X-LINK2STATE and CHUNK which exactly correspond
to the heap overflow vulnerability of the MS Exchange
2000 server. The normal patterns automatically
extracted cover several common keywords of the SMTP
protocol, but also reflect words specific to the network
environment of the dataset, such as the hostnames zeb-
ster, solaris8 and wonderland.

The detection performance of the automatically gen-
erated A-signatures and AN-signatures was evaluated
on the second partition of the PESIM 2005 dataset. As
detection score we defined the number of matching at-
tack patterns minus the number of contained normal
patterns in connection payloads. Figure 10 shows ROC
graphs for the protocols HTTP, FTP and SMTP. The
A-signatures detected only 30–60% of attacks since only
some semantic patterns could be encapsulated in the
corresponding language models, while the AN-signa-
tures covered 80–100% of attacks with no false-posi-
tives. By modeling normal and attack characteristics in
AN-signatures detection accuracy can be greatly
improved in a specific network environment, however,
in practice signature generation using language mod-
els should be applied in a semi-automatic manner, e.g.
by supervision of a security expert, in order to avoid
the common problem of over or under fitting signatures
and to minimize success of mimicry attacks [61]. Thus,
the proposed method for signature generation using lan-
guage models is intended as a tool to support and fasten
the process of classical signature generation.

6 Related work and conclusion

Although advanced language models and tries have not
been previously used in the context of network intrusion
detection, they are well known in several other fields
of computer science. Quite naturally, language models
have been first developed by researchers in the fields
of information retrieval and natural language process-
ing—several decades before their relevance for intru-
sion detection was discovered. As early as mid-1960s,
character n-grams were used for error correction in opti-
cal character recognition [29]. Application of n-grams to
text categorization was pioneered by Suen [31] and was
followed by a large body of subsequent research [e.g. 26,
27,62]. Various similarity measures were used to com-
pare n-gram frequencies, e.g. the inner product between
frequency vectors [27] or Manhattan and Canberra dis-
tances [26]. Recent approaches to text categorization
advocate the use of kernel functions as similarity mea-
sures, which allows one to incorporate contextual infor-
mation [51,63,64].

Re-discovery of n-gram models in the realm of host-
based IDS began in the mid-1990s with the seemingly
ad-hoc “sliding window” approach of Forrest et al. [19].
Their main idea was to create a database of all pos-
sible n-grams in system call traces resulting from nor-
mal operation of a program. System call traces with a
large degree of binary mismatch to the database were
flagged as anomalous. In the ensuing work these ideas

254 K. Rieck, P. Laskov

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

HTTP traffic

A–signatures
AN–signatures

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

FTP traffic

A–signatures
AN–signatures

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

SMTP traffic

A–signatures
AN–signatures

Fig. 10 ROC graphs for A- and AN-signatures (PESIM 2005)

were extended through application of Hidden Markov
Models [21], feed-forward and recursive neural net-
works [23], rule induction algorithms [65] and Support
Vector Machines [9]. As part of this evolution, trie and
suffix tree data structures were introduced for storage
and analysis of system call n-grams [22,24,66]. Beside
system call analysis, n-gram models have recently been
applied as part of host-based intrusion detection for
identification of malicious code in program binaries and
documents [e.g. 67–69].

Application of n-gram models for network-based IDS
originated in the idea of using byte (1-gram) histograms
of packet payloads for statistical tests of abnormality
[8,13,18]. A more advanced model was proposed by
Wang et al., in which a Bloom filter is applied for storage
of high-order n-grams of normal and malicious packet
payloads [25]. Depending on the ratio of matching
normal and anomalous n-grams in the filter incoming
packets are flagged as either benign or malicious. The ap-
proach proposed in this paper differs from these meth-
ods as (a) high-order n-grams and words of payloads
are used to geometrically represent individual connec-
tions and (b) unsupervised anomaly detection methods
successfully operate without any prior training phase.

Evasion of anomaly detection methods as proposed
in [61] is more difficult for high-order n-grams and espe-
cially variable-length models, since blending and adap-
tation of attacks requires matching malicious patterns,
e.g. assembler instructions in shell-codes, to consecutive
byte sequences of normal traffic.

Results of experiments conducted on the DARPA
1999 and PESIM 2005 datasets demonstrate the impor-
tance of higher-order n-grams for detection of recent
network attacks. It is nonetheless difficult to determine
an optimal length of n-gram models for particular at-
tacks and protocols. This problem can be alleviated by
combined n-gram detectors or language models based
on words, using separators appropriate for protocol

syntax. The accuracy of unsupervised anomaly detec-
tors based on word models, as investigated in our exper-
iments, is comparable to the accuracy of the best n-gram
models. Furthermore, the system based on our language
model significantly outperformed a recent version of the
open-source IDS Snort equipped with the full standard
set of signatures—even though all attack instances were
unknown to our system and no prior training was per-
formed.

Beside high detection accuracy, language models
support interpretation and explanation of reported
anomalies. The presented techniques emphasize signifi-
cant patterns in anomalies and further accelerate the in-
terlinkage with signature-based security defenses. Thus,
unsupervised anomaly detection using language mod-
els can be seen as a vital supplement to current secu-
rity mechanisms by enabling detection and processing
of unknown network attacks.

References

1. Staniford, S., Paxson, V., Weaver, N.: How to own the inter-
net in your spare time. In: Proceedings of USENIX Security
Symposium (2002)

2. Shannon, C., Moore, D.: The spread of the Witty worm. IEEE
Sec. Priv. 2(4), 46–50 (2004)

3. Moore, D., Paxson, V., Savage, S., Shannon, C., Stani-
ford, S., Weaver, N.: Inside the Slammer worm. IEEE
Sec. Priv. 1(4), 33–39 (2003)

4. CERT: Advisory CA-2001–21: Buffer overflow in telnetd.
CERT Coordination Center (2001)

5. CERT: Advisory CA-2002–28: Openssh vulnerabilities in
challenge response handling. CERT Coordination Center
(2002)

6. Mahoney, M., Chan, P.: PHAD: packet header anomaly
detection for identifying hostile network traffic. Technical
Report CS-2001–2, Florida Institute of Technology (2001)

7. Mahoney, V., Chan, K.P.: Learning rules for anomaly detec-
tion of hostile network traffic. In: Proceedings of Interna-
tional Conference on Data Mining (ICDM) (2003)

Language models for detection of unknown attacks in network traffic 255

8. Kruegel, C., Toth, T., Kirda, E.: Service specific anomaly
detection for network intrusion detection. In: Proceedings
of ACM Symposium on Applied Computing, 201–208 (2002)

9. Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.:
A geometric framework for unsupervised anomaly detec-
tion: detecting intrusions in unlabeled data. In: Applications
of Data Mining in Computer Security. Kluwer, Dordrecht
(2002)

10. Mahoney, M., Chan, P.: An analysis of the 1999 DARPA/Lin-
coln Laboratory evaluation data for network anomaly detec-
tion. In: Recent Adances in Intrusion Detection (RAID),
220–237 (2004)

11. Vargiya, R., Chan, P.: Boundary detection in tokenizing
netwok application payload for anomaly detection. In: Pro-
ceedings of ICDM Workshop on Data Mining for Computer
Security, 50–59 (2003)

12. Kruegel, C., Vigna, G.: Anomaly detection of web-based at-
tacks. In: Proceedings of 10th ACM Conference on Com-
puter and Communications Security, 251–261 (2003)

13. Wang, K., Stolfo, S.: Anomalous payload-based network
intrusion detection. In: Recent Adances in Intrusion Detec-
tion (RAID), 203–222 (2004)

14. Lee, W., Stolfo, S.J.: A framework for constructing features
and models for intrusion detection systems. ACM Trans. In-
form. Syst. Sec. 3, 227–261 (2001)

15. Mahoney, M., Chan, P.: Learning models of network traf-
fic for detecting novel attacks. Technical Report CS-2002–8,
Florida Institute of Technology (2002)

16. Mahoney, M.: Network traffic anomaly detection based
on packet bytes. In: Proceedings of ACM Symposium on
Applied Computing, 346–350 (2003)

17. Zanero, S., Savaresi, S.M.: Unsupervised learning techniques
for an intrusion detection system. In: Proceedings of ACM
Symposium on Applied Computing (2004)

18. Wang, K., Cretu, G., Stolfo, S.: Anomalous payload-
based worm detection and signature generation. In: Recent
Adances in Intrusion Detection (RAID) (2005)

19. Forrest, S., Hofmeyr, S., Somayaji, A., Longstaff, T.: A sense
of self for unix processes. In: Proceedings of IEEE Sympo-
sium on Security and Privacy, Oakland, 120–128 (1996)

20. Hofmeyr, S., Forrest, S., Somayaji, A.: Intrusion detec-
tion using sequences of system calls. J. Comput. Sec. 6(3),
151–180 (1998)

21. Warrender, C., Forrest, S., Perlmutter, B.: Detecting intru-
sions using system calls: alternative data models. In: Proceed-
ings of IEEE Symposium on Security and Privacy 133–145
(1999)

22. Marceau, C.: Characterizing the behavior of a program using
multiple-length n-grams. In: Proceedings of New Security
Paradigms Workshop (NSPW) 101–110 (2000)

23. Ghosh, A., Schwartzbard, A., Schatz, M.: Learning program
behavior profiles for intrusion detection. In: Proceedings of
USENIX Workshop on Intrusion Detection and Network
Monitoring, Santa Clara, 51–62 (1999)

24. Eskin, E., Lee, W., Stolfo, S.: Modeling system calls for intru-
sion detection with dynamic window sizes. In: Proceedings of
DARPA Information Survivability Conference and Exposi-
tion (DISCEX) (2001)

25. Wang, K., Parekh, J., Stolfo, S.: Anagram: a content anomaly
detector resistant to mimicry attack. In: Recent Adances in
Intrusion Detection (RAID) 226–248 (2006)

26. Cavnar, W.B., Trenkle, J.M.: N-gram-based text categoriza-
tion. In: Proceedings SDAIR, Las Vegas 161–175 (1994)

27. Damashek, M.: Gauging similarity with n-grams: language-
independent categorization of text. Science 267(5199),
843–848 (1995)

28. Joachims, T.: Text categorization with support vector
machines: Learning with many relevant features. Technical
Report 23, LS VIII, University of Dortmund (1997)

29. Nagy, G.: Twenty years of document image analysis in PAMI.
IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 36–62 (2000)

30. Salton, G.: Mathematics and information retrieval. J.
Doc. 35(1), 1–29 (1979)

31. Suen, C.Y.: N-gram statistics for natural language under-
standing and text processing. IEEE Trans. Pattern Anal.
Mach. Intell. 1(2), 164–172 (1979)

32. Portnoy, L., Eskin, E., Stolfo, S.: Intrusion detection with
unlabeled data using clustering. In: Proceedings of ACM CSS
Workshop on Data Mining Applied to Security (2001)

33. Emran, S., Ye, N.: Robustness of canberra metric in com-
puter intrusion detection. In: Proceedings of IEEE Work-
shop on Information Assurance and Security, West Point
(2001)

34. Jaccard, P.: Contribution au problème de l’immigration post-
glaciaire de la flore alpine. Bulletin de la Société Vaudoise
Des Sciences Naturelles 36, 87–130 (1900)

35. Anderberg, M.: Cluster Analysis for Applications. Aca-
demic, New York (1973)

36. de la Briandais, R.: File searching using variable length keys.
In: Proceedings AFIPS Western Joint Computer Conference
295–298 (1959)

37. Fredkin, E.: Trie memory. Commun. 3(9):490–499: ACM,
(1960)

38. Knuth, D.: The art of computer programming, vol. 3.
Addison-Wesley, New York (1973)

39. Rieck, K., Laskov, P., Müller, K.R.: Efficient algorithms for
similarity measures over sequential data: a look beyond ker-
nels. In: Pattern Recognition, Proceedings of 28th DAGM
Symposium. LNCS 374–383 (2006)

40. Rieck, K., Laskov, P., Sonnenburg, S.: Computation of sim-
ilarity measures for sequential data using generalized suffix
trees. In: Advances in Neural Information Processing Sys-
tems 19, MIT, Cambridge (2006)

41. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.:
A comparative study of anomaly detection schemes in net-
work intrusion detection,. In: Proceedings of SIAM Interna-
tional Conference on Data Mining (2003)

42. Laskov, P., Schäfer, C., Kotenko, I.: Intrusion detection in
unlabeled data with quarter–sphere support vector machines.
In: Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment, Proceedings of DIMVA Conference, 71–82
(2004)

43. Laskov, P., Düssel, P., Schäfer, C., Rieck, K.: Learning intru-
sion detection: supervised or unsupervised? In: Image Anal-
ysis and Processing, Proceedings of 13th ICIAP Conference,
50–57 (2005)

44. Rieck, K., Laskov, P.: Detecting unknown network attacks
using language models. In: Detection of Intrusions and Mal-
ware, and Vulnerability Assessment, Proceedings of 3rd
DIMVA Conference. LNCS, 74–90 (2006)

45. Knorr, E., Ng, R., Tucakov, V.: Distance-based outliers:
algorithms and applications. Int. J. Very Large Data Bases
8(3–4), 237–253 (2000)

46. Harmeling, S., Dornhege, G., Tax, D., Meinecke, F.C., Müller,
K.R.: From outliers to prototypes: ordering data. Neurocom-
puting 69(13–15), 1608–1618 (2006)

47. Lippmann, R., Haines, J., Fried, D., Korba, J., Das, K.: The
1999 DARPA off-line intrusion detection evaluation. Com-
put. Netw. 34(4), 579–595 (2000)

48. McHugh, J.: The 1998 Lincoln Laboratory IDS evaluation.
In: Recent Adances in Intrusion Detection (RAID) 145–161
(2000)

256 K. Rieck, P. Laskov

49. McHugh, J.: Testing intrusion detection systems: a critique of
the 1998 and 1999 DARPA intrusion detection system evalu-
ations as performed by Lincoln Laboratory. ACM Trans. In-
form. Syst. Sec. 3(4), 262–294 (2000)

50. Moore, H.D.: The metasploit project—open-source plat-
form for developing, testing, and using exploit code.
http://www.metasploit.com (2005)

51. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N.,
Watkins, C.: Text classification using string kernels. J. Mach.
Learn. Res. 2, 419–444 (2002)

52. Tan, K., Maxion, R.: “Why 6?” Defining the operational lim-
its of stide, an anomaly-based intrusion detector. In: Proceed-
ings of IEEE Symposium on Security and Privacy, 188–201
(2002)

53. Roesch, M.: Snort: Lightweight intrusion detection for net-
works. In: Proceedings of USENIX Large Installation Sys-
tem Administration Conference LISA, 229–238 (1999)

54. Microsoft: MS00-078—web server folder traversal vulnera-
bility. Microsoft Sec. Bull. (2000)

55. Anonymous: Once upon a free() ... Phrack Magazine
0xb(0x39) (2001) 57–0x09

56. Kreibich, C., Crowcroft, J.: Honeycomb—creating intrusion
detection signatures using honeypots. In: Proceedings of
Workshop on Hot Topics in Networks (2003)

57. Kim, H.A., Karp, B.: Autograph: toward automated, distrib-
uted worm signature detection. In: Proceedings of USENIX
Security Symposium (2004)

58. Singh, S., Estan, G., Varghese, G., Savage, S.: Automated
worm fingerprinting. In: Proceedings of USENIX OSDI
(2004)

59. Newsome, J., Karp, B., Song, D.: Polygraph: automatically
generating signatures for polymorphic worms. In: Proceed-
ings of IEEE Symposium on Security and Privacy 120–132
(2005)

60. Microsoft: MS05-021—vulnerability in exchange server
could allow remote code execution: Microsoft Sec Bull.
(2005)

61. Kolesnik, O., Dagon, D., Lee, W.: Advanced polymorphic
worms: evading IDS by blending with normal traffic. In: Pro-
ceedings of USENIX Security Symposium (2004)

62. Robertson, A.M., Willett, P.: Applications of n-grams in tex-
tual information systems. J. Doc. 58(1), 48–69 (1998)

63. Watkins, C.: Dynamic alignment kernels. In: Smola, A.,
Bartlett, P., Schölkopf, B., Schuurmans, D., (eds) Advances
in large Margin Classifiers, MIT, Cambridge 39–50 (2000)

64. Leslie, C., Eskin, E., Noble, W.: The spectrum kernel: a string
kernel for SVM protein classification. In: Proceedings Pacific
Symposium Biocomputing. 564–575 (2002)

65. Lee, W., Stolfo, S., Chan, P.: Learning patterns from unix pro-
cess execution traces for intrusion detection. In: Proceedings
of AAAI Workshop on Fraud Detection and Risk Manage-
ment, Providence 50–56 (1997)

66. Michael, C.: Finding the vocabulary of program behav-
ior data for anomaly detection. In: Proceedings of DAR-
PA Information Survivability Conference and Exposition
(DISCEX) 152–163 (2003)

67. Abou-Assaleh, T., Cercone, N., Keselj, V., Sweidanm, R.:
Detection of new malicious code using n-grams signatures.
In: Proceedings Second Annual Conference on Privacy,
Security and Trust, 193–196 (2004)

68. Karim, M., Walenstein, A., Lakhotia, A., Laxmi, P.: Malware
phylogeny generation using permutations of code. J. Com-
put. Virol. 1(1–2), 13–23 (2005)

69. Kolter, J., Maloof, M.: Learning to detect and classify mali-
cious executables in the wild. J. Mach. Learn. Res. (2006)
(to appear)

	Language models for detection of unknown attacks in network traffic
	Abstract
	Introduction
	Language models
	N-gram and word models
	Similarity measures for language models
	Efficient computation of similarity measures
	Unsupervised anomaly detection
	Experimental results
	Network traffic datasets
	Experimental setup
	Interpretation of language models
	Visualization of anomalous patterns
	Language models for signature generation
	Related work and conclusion

