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Abstract  Realistic models for worm propagation in the
Internet have become one of the major topics in the academic
literature concerning network security. In this paper, we pro-
pose an evolution equation for worm propagation in a very
small number of Internet hosts, hereinafter called a sub-
net and introduce a generalization of the classical epidemic
model by including a second order spatial term which models
subnet interactions. The corresponding gradient coefficient
is a measure of the characteristic scale of interactions and as a
result a novel scale approach for understanding the evolution
of worm population in different scales, is considered. Results
concerning random scan strategies and local preference scan
worms are presented. A comparison of the proposed model
with simulation results is also presented. Based on our model,
more efficient monitoring strategies could be deployed.

1 Introduction

Computer worms are autonomous programs that self-propa-
gate across computers and networks, by exploiting security
flaws in widely used services. Early worms such as Code
Red [10], Slammer (or Sapphire) [9], Blaster [2], Nimda
[12] and their variants have caused significant damage in
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the Internet infrastructure. While early worms aimed mostly
at denial of service (DOS) attacks and congesting network
lines, future worms are expected to bear catastrophic pay-
loads such as access to confidential information, data erasure
and corruption, hardware damage, etc [19]. Future worms
are also expected to employ fast spreading strategies, coop-
erative scanning, and distributed control techniques [17].
Such worms, exploiting a relatively homogenous software
base, high-bandwidth connectivity and poor security poli-
cies, may result in significant congestion within the Internet
core and may even bring down a large part of the information
infrastructure within a short time interval.

After being deployed, each worm instance applies a scan-
ning strategy in order to propagate. Three main scanning
strategies are considered in the literature [17,24]. Random
scanning worms (e.g. Code Red I) uniformly scan the entire
address space to find vulnerable targets. In local preference
scanning (e.g. Blaster, Code Red II, Nimda) the worm scans
preferably the IP addresses that are close to its address (e.g.
within the same /8, /16, or /24 network). In sequential scan-
ning, the infected host sequentially scans from a starting
IP address, selected by the worm, and then increments the
address by one.

Worm propagation models are mathematical models that
attempt to capture the propagation dynamics of scanning
worms in order to understand better the various worm types
and behaviors, as well as to design and evaluate strategies for
monitoring and early detection of the worm. While it seems
hard to create realistic models mainly due to the heterogeneity
of the Internet networks, recent research has come up with
analytical models and simulation results that approximate
well the behavior of real random scanning worms such as the
Code Red and Slammer worms, for which real measurements
are disposable on the Internet. Admittedly, the difficulty in
evaluating analytical models that describe scanning strategies
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other than random scanning, such as local preference scanning,
cannot be evaluated with real world data. In such a case, a
simulation model with realistic network characteristics has
to be designed [14].

Our contribution The classical epidemic model is able
to describe random scanning strategies assuming the Inter-
net as a uniform underlying infrastructure. Recent models
have extended the classical model to describe random scan-
ning strategies assuming a non-uniform network infrastruc-
ture (e.g. [15]). Others [24], have modeled a local preference
strategy, however assuming a uniform underlying infrastruc-
ture. As a result, most worm propagation models in the liter-
ature introduce their evolution equations by considering the
population of infected hosts in the whole Internet (classical
epidemic) or in large scale networks (e.g. [15,24]) in order to
describe the behavior of a worm. In this paper we extend the
classical model by introducing the notion of an elementary
network quantity, i.e. a very small number of Internet hosts,
hereinafter called a subnet, and propose an evolution equation
for worm propagation into an arbitrary subnet. The formal-
ism can take into account non-uniformities that are due either
to local interactions between neighboring subnets (e.g. as a
result of a local preference strategy) or to the heterogeneity
of the underlying infrastructure, (e.g. bandwidth variations,
different topologies, human countermeasures etc.). In partic-
ular, we present an application of the proposed formalism
for local preference worms. As a possible application, the
proposed approach could be used to construct monitoring
strategies, where the propagation of the worm in the whole
Internet may be predicted by examining worm propagation
within a representative neighborhood of local subnets.

This paper is organized as follows. In Sect. 2 we present
related work on worm propagation models and monitoring
strategies. In Sect. 5 we extend the classical epidemic model
by introducing a method for studying the behaviour of ran-
dom scanning and local preference worms. In Sect. 6 we val-
idate the presented model with simulation results. Section 7
concludes the paper.

2 Related work

Current worm propagation models follow the line of work
that begun from classical epidemiological models (e.g.
[1,7]). The first complete application of mathematical models
to computer virus propagation was proposed in [6]. Epide-
miological models are given names according to the initial
letters of the possible states an entity can be at. For example,
the Kermack—McKendrick model with the states {Suscepti-
ble, Infected and Recovered} is referred to as the SIR model,
where a node cannot be infected more than once. The model
in [6] was a SIS model, where a node is infected and cured
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repeatedly. In the simple SI epidemic model [5], a host is
infected by the virus and will stay infected forever.

2.1 Scanning strategies

The RCS model, described in [17] attempted to model ran-
dom scanning worms which peak before aremedy is deployed
(i.e. it follows the SI model). The authors used empirical data
from the Code Red v.2.0 worm and considered the Internet
topology as an undirected completed graph. Later, in [22]
the RCS model was extended to include host disinfection
(the “R” in the SIR model). In the model of [13] for random
scanning worms, the states of the SIR model are extended
to include susceptible nodes that are removed from the net-
work or simply quarantined. In [24], mathematical models
and simulations for current and future scanning strategies
are presented without considering human interaction (i.e. a SI
model) or network congestion. In [24] it is also said that local
preference strategy improves worm propagation when the
vulnerable hosts are more densely distributed within a given
network. They also model local preference worms following
the SI model and present simulation results.

3 Non-homogeneous aspects

Besides human intervention, analytical models attempt to
reflect how worm propagation can be influenced by other
factors, such as the underlying network topology [18], the
differences of bandwidth within and between networks,
the infection delay [20] or even the congestion caused by the
worm itself [22]. For example, in [15] the RCS model was
further extended to describe bandwidth limited (UDP scan-
ning) worms such as the Slammer worm. The model takes
into account the possible variations in the capacity of con-
nections between different autonomous systems. In another
proposal, the work in [8] for bandwidth-limited worms mod-
els the spread of random scanning worms given bandwidth
limitations within heterogeneous networks. In [21], model-
ling worms with varying scan rate was presented.

4 Monitoring strategies

Traditional techniques and strategies for protecting against
worm intrusions in a proactive and reactive manner are human
based [11]. Admittedly though, early detection and response
for fast spreading worms cannot involve human reaction as
the worm may infect the majority of vulnerable nodes before
human countermeasures can be taken. As a result, much
attention has been shed on automated real-time monitor-
ing. Anomaly detection techniques [21,23] with distributed
monitoring within the local network, may trigger automated
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response (e.g. automated alarms, worm signatures, quaran-
tine of nodes, automated patch dissemination [16] etc.). In
recent works, local host information is exploited for early
detection of worms within local networks [3,4,16].
Staniford et al. [17] proposed the establishment of a Cyber
Decease Center to collect global security-related informa-
tion for early worm detection. Similar proposals for global
strategies include the use of distributed network telescopes
[11], or the employment of a network of honeypots (i.e.,
hosts that pretend to own a number of IP addresses) to attract
and identify attackers [15]. Special filters that capture the
dynamics of worm propagation could also be inserted as
part of the filtering in network routers. For example, the
Kalman filter for random scanning worms is based on the
simple SI epidemic model [23]. All observation data col-
lected by the distributed monitors, are being sent in real time
to a central server which, in real time compares the results
with the figures expected by the propagation model and acts
accordingly.

5 A spatial stochastic propagation model

In this section we are interested to model the evolution of
the worm population in the whole internet by focusing in the
behavior of local subnets instead of considering large net-
works or Autonomous Systems. This point of view has the
advantage that interactions between subnets may be taken
into account for worm propagation. As a result the Internet
can be macroscopically thought of as the interconnection of
many interacting subnets. In each subnet an epidemic model
for worm propagation may be considered.

Following the line of work by Serazzi et al. [15], let N;
be the number of susceptible hosts in the ith subnet and I;
the infected hosts in the same subnet. Suppose that K is the
average propagation speed of the worm and in a first approx-
imation let us say that it is constant in every single subnet.
Assuming a random scanning strategy, there is a probability
Py that a host inside the subnet targets a host inside the
same subnet and a probability Poyr that instead it attacks
another subnet. Without lost of generality we assume that
all subnets have the same size N; = Ny. Under the assump-
tion that the worm randomly generates the target IP address,
the following evolution equation for the density of infected
hosts a; = 1{,—'s (I; is the number of infected hosts) in an arbi-
trary subnet holds (taking into account both the internal and
external worm infections attempts [15])

da; Ng - Ng
il KL IR S ol KU (1)
J=1j#

where 7 is the number of subnets in the Internet which has a
total of N susceptible hosts. Simplifying further,

da; Z Ny
- = ;ajK— (1 —a) )

In a continuum limit a single subnet may be viewed as a
volume element at arbitrary position x. Here the space coin-
cides with the space of susceptible IP addresses and the above
evolution equation may be written as

da(x,t) _

ks d 3
T W( —a(x,1)) /a(y,t) y 3)

n

where integration is performed over all subnets n = Nﬁ

In the more general case, assuming quite smooth varia-
tions of the number of infected hosts in neighborhood sites,
in a first approximation using a Taylor expansion around x
(y = x + r) we may write

d N 9 1 ,9°
ax :K—S(l—ax)/(ax —i—rﬂ—f—zrz aX)dr
n

dr N ox ax2
4

where we have used the abbreviation ay = a(x, 1).

Equation (4) is our final result. The result is a spatial gen-
eralization of the simple epidemic model in order to capture
non-uniformities between subnets. In this form the proposed
model is able to describe different patterns of infected hosts,
either because of non-uniform scanning strategies (e.g. local
preference), or because of the inherent heterogenoneity of
the Internet networks. As a result, a more realistic model of
worm propagation can be constructed.

5.1 Case studies

(A) Random scanning worm

In the simplest case (also followed by most analytical
models in the literature), we consider a uniform scanning
strategy and the Internet as homogeneous. In this case, the
number of infected hosts uniformly increases within the
Internet. As a result a uniform spatial distribution emerges
and the spatial partial derivatives in Equation (4) vanishes,

d N

% - KWS(I —ax)/axdr )
n

or, using that a = % fn Nsaxdr (in accordance with the

discrete definition a = % Zi N;a; where a is the total or
average density of infected hosts in the Internet),

d
% = Ka(l — ay) ©6)
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In this scenario our model coincides with the well known
epidemic model. As a result the above analysis shows that
the inherent weakness of the classical epidemic model lies
in the assumption of homogenous Internet structure. Since
uniform infrastructure was assumed, the behavior of an arbi-
trary subnet (theoretically of any size but in practice there
is a lower limit below of which the phenomenon is discrete
in nature) coincides with the behavior of the Internet as a
whole. Indeed, Equation (5) may be rewritten as follows,

d N,

=Kk —aX)aX/dr @)
n

and using that [ dr = n we end up with (recall also that

N = Ngn),

d
% = Kax(1 — ay). ®)

On the other hand using Equation (6) (recall that a = %
f Nsaxdr),

daX NS aN
—dr=—CaKn— <~ 9
” N/ : Ak = 5 ©)
or finally
® = Ka(l—a) (10)
_— = a —a).
dt

Comparing Equation (8) and (10) we confirm what was
intuitively expected (as stated before), that when no non-uni-
formities are present, the propagation of a worm in arbitrary
subnet proceeds independently and as a result the average
behavior of a worm population in the Internet coincides with
its propagation behavior within any single subnet.

(B) Local preference scanning

In this section we model a local preference scan worm with
auniform probability to scan addresses in its own “/m” prefix
network. As a result a non-uniform distribution of infected
hosts emerges and the spatial derivatives in Equation (4) are
no longer negligible. Following Zou et al. [24] we rewrite
Equation (4) as follows,

da ] 1,02
&x —ﬁNS(l—ax)/ ax+r£+—r2 9N ar
ox 2 9x?

Y

where § = % is called the pairwise rate of infection. In [24]
this is expressed as,

_n
ﬁ—Q (12)

where 7 is an average scan rate and 2 is the total number of
IP addresses, while for a local preference worm they intro-
duce the following B’ and B” pairwise rates of infection in
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local and remote scan respectively,

(1 —=pin
(Q — 1)232—m

pPn

B = 3m B’ = (13)

where Q is the number of *“/m” prefix networks in €2. For the
arbitrary subnet at x, the integration in Equation (11) must
be split into two domains, first into the same network and
a second one over the remaining networks. As a result we
write (using the corresponding rates 8’ and B8”),

d ] 1 ,9°
;;tx = Ng(1 —ay) /,3 (ax +r—ax + —rz—ax) dr
X

where Qy is the “/m” prefix network which contains the
arbitrary subnet. To proceed further we make the follow-
ing assumption: for quite smooth heterogeneities the second
order spatial derivative vanishes in the 2 — Q, domain. Per-
forming the integration and noting that the first spatial deriv-
ative vanishes because of symmetry we end up with,

X ’ ’ 82aX ”
——=Ns(l—ax) |:,3 ax+pc ox2 +(Q-Dg CZX} (15)

dt

or

dax ”

7=Ns(1—ax) {[ﬂ + (-1 ]ax+ﬂc } (16)
where

c= %/rzdr 17

Ox

This is the final evolution equation for local preference
scanning worms in an arbitrary subnet. The contribution of
the formalism is a specific law for the local evolution of worm
propagation taking into account the heterogeneities arising
from a local preference strategy. Equation (16) can be analyt-
ically solved in order to estimate the evolution of the worm
population in the whole Internet. The formalism introduces
as a crucial model parameter, the gradient coefficient ¢ in
Equation (17) which represents a critical scale of interac-
tions between subnets. This means that in a neighborhood
of this scale the worm population proceeds independently.
As a result, the evolution of the worm population within this
neighborhood of subnets coincides with the evolution of the
population in the Internet as a whole.
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6 Simulation results

In order to verify the analytical model outcomes, we have
built a simple discrete event simulator for a setup equivalent
to a /16 network. Under this setup, a total number of 256 net-
works (LANSs) has been simulated. Each LAN has 256 hosts,
all susceptible to worm infection. Initially, a single computer
node in an arbitrary LAN is in infected state.

The general characteristics of the simulated worm are:
1 infection probe per time unit (which in our scenario roughly
corresponds to 1 ms), UDP-like scanning with no connection
establishment delays, 10 time units for intra-LAN and 100
time units for inter-LAN infection propagation. The simu-
lation executions follow the evolution of worm infection in
two distinct cases:

— In the first case, the addresses generated for infection
scanning have a uniform (random) distribution, disregard-
ing any information about locality. Each infection probe
can target any other host in simulated setup with equal
probability.

— Inthe second case, the worm exhibits a local preference in
the probe addresses it generates. Under our scenario (and
following the characteristics of a Blaster-like worm) 40%
of the generated addresses target other hosts in the same
LAN, while the remaining 60% targets hosts in random
LANS.

In both cases, we study the density of infected hosts within
the total susceptible hosts, either in the whole setup (total
infection density), or in each subnet LAN (local infection
density). The goal of this study is to investigate and validate
the proposed model in relation to the predicted scale behavior
of worm propagation. To this end, the evolution of densities
of infected nodes in global (over total setup) and local (per
subnet LAN) ranges, are examined. Simulation results for
the random scanning case a redepicted in Fig. 1. Analysis of
the average error in estimating the global infection density,
by using values of local densities into subnets of 256, 128 or
64 hosts, was performed. The results show a negligible aver-
age error of the order of 1% in accordance with the proposed
model until a certain limit of analysis (~50 hosts) is applied.
Below this limit the phenomenon tends to be discrete. The
same analysis for local preference probing was performed.
Simulation results are depicted in Fig. 2. The departure of the
local evolution of the worm population from the global evolu-
tion is evident below a critical subnet size. Indeed in the case
of a subnet size of 64, 128, 256 there is an average error of
40% in the estimation of the global infection density. On the
other hand, when a critical size of 512 hosts is considered,
the corresponding estimation error is of the order of 15%.
This preliminary result shows in a clear way the significance
of accurately estimating the critical size of the subnet over
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which monitoring must be performed in order to predict the
global density of infection.

7 Discussion and future work

In this paper we presented an evolution equation for describ-
ing a worm’s propagation within a very small scale network
of hosts, i.e. the subnet. At this scale it is possible to cap-
ture more accurately non-uniformities that are due either to
local interactions between neighboring subnets or to the het-
erogeneity of the underlying infrastructure within a neigh-
borhood of subnets. This was done by including a second
order spatial term which models the aforementioned sub-
net interactions. The corresponding gradient coefficient is a
measure of the characteristic scale of interactions and as a
result a novel scale approach for understanding the evolu-
tion of worm population in different scales, was considered.
In particular, we presented an application of the proposed

@ Springer



92

M. Avlonitis et al.

formalism for random scanning and local preference wormes,
and presented simulation results.

A practical implication of the proposed approach could
be the construction of more effective monitoring strategies.
Indeed, global strategies for monitoring worm activity require
a large monitored network to become effective. In view of
fast spreading worms, it seems difficult to setup nation-wide
or global monitoring infrastructures for early warning [23].
On the other hand, local strategies can be more effective in
early detecting and setting up threshold alarms. Furthermore,
monitoring traffic within local networks could turn out to be
more effective against fast worms with non-uniform behav-
ior, such as local preference scanning. However, as it was
shown in Fig. 2 this can be misleading because of interac-
tions between subnets. Our analysis demonstrates that we
may maintain local monitoring strategies, by introducing a
neighborhood of subnets of appropriate size over which the
evolution of worm population follows correctly the evolution
of the population in the global Internet. In such a monitoring
architecture, special filters could be run either at the router
of each subnet or at distinct hosts among subnets, in order
to capture the evolution of the worm population. A centrally
controlled entity, similar to [23], would gather the distributed
log data and compare them in real time against the epidemic
model for counting the alarm threshold.

In a future work we intend to elaborate on the details of an
effective monitoring architecture for early detection of fast
spreading worms. Furthermore, observe that the generaliza-
tion of the classical epidemic model, proposed in Sect. 5,
considered local preference scanning worms and a homoge-
neous infrastructure. The model could be extended to take
into account other non-uniformities such as bandwidth vari-
ations, different topologies, varying scan rates etc. Finally,
the gradient coefficient c of Sect. 5, was introduced in a more
or less phenomenological way: although simulation results
confirmed its validity, we have not provided a rigorous esti-
mation of its value, derived from local preference scanning
features. This should also be addressed in a future work.
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