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Abstract  The purpose of this article is firstly to present a
secure unpacker which is specifically designed for a security
analyst when studying viruses but also any anti-virus scan-
ner. Such a tool is in fact required when assessing security
requirements of an anti-virus scanner through a black box
approach. During testing of anti-virus software, a security
analyst needs to build virus populations required for several
penetration tests. Virus unpacking is a first mandatory step
before gaining the ability to apply obfuscation transforma-
tion or any information extraction algorithm on a viral set. A
secure unpacker is also useful when checking security robust-
ness against reverse engineering of any packed or protected
security product. Several static and dynamic analysis tools
already implement unpacking algorithms, but these often
require human intervention and are not well designed to auto-
matically unpack such a dangerous program as a virus. A new
algorithm for automatically unpacking encrypted viruses is
presented in this paper. Forensics techniques to reconstruct
an unpacked executable and advanced heuristics are also pre-
sented in order to decrypt more sophisticated self-protected
Malwares. We present several detection techniques which
are specifically designed to deceive virtual machine monitors
and discuss the security of our tool against these low-level
viral attacks. Our secure unpacker figures among a set of sev-
eral tools. We then present in this paper a proof-of-concept
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human analysis framework which implements most standard
components of an anti-virus scanner (real-time scanner, emu-
lator engine) and in addition proposes a reliable system for
automatically gaining information about a virus and its inter-
action with the OS executive (stealth native API hooking),
but focuses on human decision as a detection process without
the same resource limitation constraint as product oriented
anti-virus scanners. This framework is used as a basis/ref-
erence for the comparative analysis of security aspects of
anti-virus scanners and deals with the robustness of their
driver stack and the efficiency of their de-obfuscation and
unpacking algorithms.

Keywords Malware analysis - Anti-virus testing -
Forensics - Software protection - Fault injection - Human
driven analysis

1 Introduction

Anti-virus scanner designers have to face several difficulties:
firstly, viral detection is an undecidable problem [21]. Thus,
the only thing that can be done is to apply state-of-the-art heu-
ristics and expect to have as few errors as possible [32,33].
Secondly, an anti-virus scanner has to be user-friendly. Thus,
while analysing a program, it must use as few CPU and RAM
resources as possible. Thirdly, an anti-virus scanner is a pro-
gram, and so has to face the same constraints as a virus pro-
gram while executing on an operating system: it has to be
installed as deep as possible in the operating system, and its
installation has to be robust against low-level attacks.
Human analysts do not have the same constraints while
analyzing the behaviours of a program. They can run the pro-
gram in an emulated environment and gather the required
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information in order to check the security aspects of the
targeted program.

They can drive transformations on the targeted program,
such as unpacking, in order to obtain an unprotected version
of the program, which can then be analysed statically.

The static analysis of the targeted program can involve
powerful tools and algorithms, with no limitation on the
use of resources, in order to obtain a de-obfuscated variant/
version of a program.

Those two levels of freedom are far less real for an anti-
virus scanner: for performance reasons, emulation engines
are necessarily much poorer. Thus, viruses can implement
detection routines which forbid any efficient emulation
process.

Analysis is not driven by a human, and is thus faced with
difficulties that can be avoided during a human interactively
driven analysis process while disassembling and analyzing a
program.

The goal of this paper is to present the general specifica-
tions of a secure and advanced analysis framework for virus
analysis based on a virtual CPU.

We present the general software architecture of such a
tool. In our context, the main security requirement for virus
analysis tools is isolation. Security means virus propagation
containment.

Another requirement for such a tool is that searched infor-
mation can be obtained through analysis.

Advanced means stealth (if emulation is detected, the
target executable will no longer provide information ) and
accuracy.

Most security software analysis tools must have a mod-
ular architecture. Among the modules/functions that can be
implemented by such a tool, we focus on the specifications
of an unpacking function.

For self contained purpose, let us recall some definitions
and notations:

Packer: a packer is a program that takes an executable,
encrypts or compresses it, and forges a new executable made
up of an unpacking routine and one or several data blocks.
The unpacking routine implements part of a PE loader. At
runtime, the original executable is dynamically recovered in
memory and then executed.

Unpacker: An unpacker is a program that takes a packed
executable, suppresses the loading wrapper, and outputs the
embedded executable. The packing routine is specially
designed to be resilient to reverse engineering and thus to
make it difficult to forge an unpacking routine.

Virtual Machine: when an operating system is virtualized,

the ratio of software to hardware execution of CPU instruc-
tions can be used to determine if one is dealing with a
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Complete Software Interpreter Machine (CSIM), a Hybrid
VM (HVM), a Type I or II Virtual Machine Monitor (VMM)
or a real machine.

A CSIM or emulator uses only software interpretation.
All CPU instructions are emulated by a software program.
An HVM interprets every privileged CPU instruction via
software.

A Type II VMM runs as an application on the host OS. It
interprets only sensitive CPU instructions via software. Non-
sensitive privileged instructions are executed directly by the
CPU.

A type I VMM runs as an OS or kernel. It interprets only
sensitive CPU instructions via software. Non-sensitive privi-
leged instructions are executed directly by the CPU. VMware
ESX and Xen are type | VMM.

CPU requirements for HVM, Type I and Il VMM are ana-
lyzed in [37]. The more specific problem of implementing
secure VMM s on Intel Pentium architecture is also addressed
in [37].

The paper is organised as follow. The Sect. 2 of this paper
answers the questions : what is a secure unpacker and why is
it useful? The different existing implementations that can be
found for such a tool and the constraints related to Malwares
unpacking are discussed. Related works are presented in this
section. The contribution of this paper, in regard to existing
solutions, is also demonstrated in this section. Limitations
and usage conditions are given.

The Sect.3 of this paper presents the specifications of
a proof-of-concept human analysis framework, which inte-
grates the secure unpacker and provides reliable information
about a targeted program.

2 Secure and advanced unpacking
2.1 What is it?

This tool is designed for security analysts. It covers at least
the following range of use:

e Virus analysis: In-the-wild viruses are often packed. They
also implement software protection mechanisms, which
forbid the use of standard development tools such as inter-
active disassemblers or debuggers.

e Packed/protected software security assessment:. Other
applications implement software protection mechanisms
in order to ensure secrecy of critical data or algorithms.
Digital Right Management software and other security
products (Cloakware, e.g., [26]) need such security func-
tions. In order to check the robustness of their security
mechanisms and to recover information on their internals
working procedures, unpacking is often the first step in
analysis.
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e Anti-Virus product testing: While assessing the robust-
ness of security functions of an Anti-Virus product, a
security analyst often needs to forge a viral population
conforming to several criteria before being usable in tests.
Among these properties, the first one is that viruses must
be decrypted, whenever possible [31].

Indeed, obfuscation transformations and signature extrac-
tion algorithms require unpacking as a first step.

Use that can be made of a secure unpacking tool in bench
tests are described in our previous work [38].

o Fault injection systems: Black box testing as described
above requires the ability to work with an adequate data
set as an input to the target system.

Grey box testing does the same, but also dynamically
applies modifications to the running program itself, not
only to its input data.

With the ability to apply code patching transformations at
instruction or basic block level, the unpacking function-
ality of our analysis framework is a critical component of
any fault injection system.

2.2 Related works

Several static and dynamic analysis tools already implement
unpacking algorithms, but these often require human inter-
vention and are not well designed to automatically unpack
such a dangerous program as a virus.

IDA 4.9 comes with a new plug-in named uunp (universal
PE unpacker debugger plug-in module [28,29]) which auto-
mates the analysis and unpacking of packed binaries. This
plug-in uses the debugger to let the program unpack itself
in memory and as soon as the execution reaches the original
entry point, it suspends the program. The user may then take
a memory snapshot.

The algorithm of this plug-in is:

1. Start the process until the entry point of the packed pro-
gram is reached.

2. Add a breakpoint at kernel32.GetProcAddress, resume
execution and wait until the packer calls GetProcAd-
dress. If the function name passed to GetProcAddress
is not in the ignore-list, then switch to trace mode.

3. A call to GetProcAddress() most likely means that the
program has been unpacked in memory and is now set-
ting up its import table.

4. Trace the program in single step mode until we jump to
the area of the original entry point.

5. As soon as the current instruction pointer belongs to the
OEP! area, suspend the execution and inform the user.

! Original Entry Point.

So, in short, we allow the unpacker to do its job at full speed
until it starts to set up the import table. At this moment
we switch to single step mode and try to find the original
entry point. While this algorithm works with UPX, ASPack,
and several other packers, it might fail and execution of the
packed program might go out of control. Hence this plug-in
must be used with caution.

Ollydbg plug-ins [44,45] (FindCrypt, DeJunk, Ollybone,
OllyDump, OllySnake, Polymorphic Breakpoint Manager,
PE Dumper, Universal Hooker, Virtual2Physical and Olly-
Script) are very useful for manually unpacking a protected
PE executable.

The plug-in OllyScript allows a security analyst automate
Ollydbg by writing scripts in an assembly-like language. This
plug-in is particularly useful because when manually unpack-
ing a protected binary, many tasks involve a lot of repetitive
work just to get to the OEP within the debugged application.
Using this plug-in, this is possible in a single script.

For example, the following script automatically reaches
the OEP of an UPX-packed executable:

eob Break
findop eip, #61#
bphws $SRESULT, "x"
run
Break:
sto
sto
bphwc $SRESULT
ret

Many OSC? scripts have been already written in order to find
the OEP of a protected executable, fix the Import Address
Table (IAT), remove junk code and find the relocation table
and stolen code.

All these dynamic analysis tools must be used with cau-
tion, especially when dealing with hostile Malwares. Because
the target program is executed on the host system, it could
evade the user mode or kernel mode debugger and spread out
of control.

As a matter of fact, static disassemblers are easy to fool
and debuggers are easy to detect and possibly evade. Execu-
tion within a controlled environment like a virtual machine
could solve the problems of isolation and stealth. We now
go on to present in this section, several approaches based on
virtualisation or emulation in order to securely and reliably
unpack protected programs.

Several algorithms have already been proposed, based on
virtual memory analysis and assumptions made about under-
lying protection mechanisms. These approaches are close
to ours. We can cite many projects which focus on alterna-
tive and useful algorithms which make it possible to track
the memory of a targeted process and possibly to unpack a

2 QllyScript plugin’s script format.
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self-protected program. Among them, we will focus on three
interesting approaches:

Tainted based memory analysis algorithm: Argos project
[2,3,20] uses tainted based memory analysis [7] in order
to detect a hostile (and possibly self-protected) program
in memory. Argos is a system emulator designed for use in
Honeypots [48]. It uses a modified version of the QEMU
[8,51] emulator to track memory.

Argos’ author has extended the QEMU emulator to enable
it to detect remote attempts to compromise the emulated
guest operating system (such as a Worm shellcode). Using
dynamic taint analysis, Argos tracks network data
throughout the processor’s execution and detects any
attempts to use them in a malicious way. When an attack
is detected the memory footprint of the attack is logged
and the emulator exits.

Principle of Tainted based memory analysis : data orig-
inating from an unsafe source is tagged as tainted (for
example, data originating from the network is marked as
tainted). Tainted data are tracked during execution (when-
ever it is copied to memory or register, the new location
is also tainted ). In order to identify and prevent unsafe
usage of tainted data, an alarm is raised (whenever it is
used, say, as a jump target).

Normalisation algorithm: WiSA project uses a normali-
zation algorithm [24] in order to unpack viruses before
applying signature extraction algorithms and obfuscation
transformations. This project also uses a modified version
of the QEMU emulator in order to apply the normaliza-
tion algorithm.

Their approach is very interesting but is more intrusive/
complex than ours. The emulator is modified in order to
monitor memory and collect all the memory writes. If an
attempt to execute code from a memory area that was pre-
viously written to is made by the targeted program, the
trigger instruction is captured and the execution is termi-
nated. Using the captured data , an equivalent program is
reconstructed. This algorithm is iteratively applied until
all nested unpacking code has been removed.

We now propose in this paper another algorithm for auto-
matically unpacking protected programs. Our algorithm
is much easier to implement, in that we do not have to
drastically modify the emulator in order to be able to
track memory (and thus detect any attempt to execute
code from a memory area that was previously written
to). Our unpacking engine is, on the contrary, indepen-
dent of the emulator design. Another difference is that
we do not need to restart the process under analysis when
the unpacking process requires several steps (for example
when the protection implements several ciphering layers).
For anyone who wants to implement the WiSA project
normalization algorithm, this can be done from Argos’
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API Hook
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Fig. 1 Unpacking algorithm

modified version of the QEMU emulator which already

implements everything required to track memory.

The WiSA project paper does not explain how to recon-

struct the executable after unpacking. We now present in

this paper at least one method that can be applied in order

to reconstruct an unprotected executable after unpacking,

based on Win32 and native API hooking.

Forensics algorithms: the unpacking procedure often cov-

ers two problems:

e firstly, dumping memory

e secondly, starting from this memory snapshot, find-
ing the areas which belong to the target program and
rebuilding the executable.

When doing a blind memory dump, it is difficult to expect

to recover a fully runnable executable.

However, forensics heuristics can give good results and

can be applied to the problem of finding a process in a

memory snapshot and reconstructing a binary image of a

targeted process.

Among the most well-known forensics tools, you will find

the following interesting: MemParser [9], idetect, ProcE-

num, WMFT [14-18], Ramdump, Isproc, Ispm, Read-

PE [22,23], Dd, md5lib, md5sum, VolumeDump, Wipe,

Z1ibU, nc, GetOpt [35], Kntlist [36], Dd for Windows

[43], Minidumps [46,47], PERL script MemDump and

PTFinder [58-66], Mdump [70,71], etc.

2.3 Our approach
Protected executable unpacking

A new algorithm for automatically unpacking a protected
executable is described in this section. The underlying idea
is a simple integrity check of the executable code of the tar-
geted program (Fig. 1).
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FOR EACH TB // which is executed in ring3 and belongs to target process execution

// space, and before the VCPU executes this TB
DO
IF (vcpu.eip == _entry point) // Entry point of the protection
THEN
get_IAT (vcpu, PEB) // Initialisation of the sorted table
FI

_RHOOKS_RINGO

IF vcpu.eip IN [_image_base,

// A native API was called. We check NTSTATUS
_image_base + _sizeof_image]

THEN
_RHOOKS_RING3 // A Win32 API function was called. We check return value
raw_addr=get_raw_addr (vcpu.eip) // Get raw address corresponding to
// current Instruction Pointer
IF (read_TB(vcpu.eip) != read_File(raw_addr)) // Binary diff
THEN
IF ( NOT _done AND NOT _vbp ) OR
(NOT _done AND _vbp AND vcpu.eip == _vbp)
// No VBP is set or we are at VBP location
THEN
dump_memory (f) // Virtual or physical memory dump
fix_entry point(f) // Fix PE header
fix_section_header (f)
fix_IAT(f)
fix_Reloc (f)
_done=1
FT
FT
FI
update_IAT // (If initialised) the sorted table is updated
_HOOKS // Win32 or Native API Hook installation
DONE

The above algorithm describes the unpacking algorithm. The
program is executed in the emulated environment. For each
basic block (in fact, for each translation block), a comparison
between its value in virtual memory and its value on the host
file system is made. As long as the values are identical, noth-
ing is done. As soon as a difference is identified, the current
basic block is written into the raw file in place of the old basic
block.

The memory area that is monitored/handled is the whole
load-time image of the target program:

[image_base, image_base + virtual_sizeof_image]

The same monitoring process/algorithm is applied for each
translation block. The protection loader of the packed exe-
cutable can have several ciphering layers. As soon as the last
deciphered basic block has been reached, the only thing to
be done is to repair the target executable. The first step is
obviously to modify the entry point in the PE header of the
target binary.

When the packed executable includes self-generating
code, i.e. the original executable implements anti-reverse
protections at source level, there is no exact algorithm for
obtaining an unpacked version of the original executable,
i.e. without its protection wrapper.

In this case, the unpacking process has to be human driven,
or heuristics have to be applied by making assumptions about
the unpacking routine and the protected executable, in order
to be able to distinguish between their respective control-
flows.

Because we are not always interested in obtaining a func-
tional unpacked executable, but rather in obtaining a version
of the original executable without any ciphered part in order
to be able to statically disassemble part of its code or to get
information about its disassembled code, we can decide to
keep the protection wrapper.

Unprotected executable reconstruction

However, it may be useful after unpacking, to try to recover
some of information that has been suppressed or stripped or
altered during the protection process.

According to the PE formats specification [41], several
part of the PE header are of interest.

Many fields of the PE header can be modified in order to
disturb analysis tools [ 13]. With modifications of ImageBase,
LoaderFlags, NumberOfRvaAndSizes, etc., a debugger may
well regard the binary as not having a good image and will
maybe run the application without breaking at its entry point.
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This could be harmful if an analyst wanted to debug a Mal-
ware on his computer, because it would get infected.

Values in the PE header can be used as keys to decrypt
a few layers of the protection. In this case, modifying these
values will result in an unworkable binary.

As a matter of fact, repairing the PE header can prove to
be a delicate task.

In order to recover the PE structure of an unprotected exe-
cutable, several tasks have to be carried out:

set the original entry point
consistency check the section header
rebuild the import address table
rebuild the relocation table

The method used by our unpacking engine in order to
reconstruct the IAT and relocations is based on Win32 and
native API hooking.

During the unpacking process, all API calls are traced.
A sorted table of API calls is initialised at load-time, by
walking NT executive structures. Next, after process execu-
tion resumes, each API call is traced. This table is updated
regularly during the target process execution, and is used to
dynamically resolve the API functions’ names. Finally, after
a dump of the target process memory space has been done,
this table is used to fix the IAT in the PE executable.

At this stage of the unprotected executable reconstruction,
we also fix the relocations. This information is very useful,
before applying obfuscation transformations on binary code
(generally, the relocation rebuilding is not required. It con-
cerns more often DLL. We work on this problem only because
itis required for several obfuscation engine, such as Zombie’s
Mistfall engine [73]. The idea is to make a binary diff between
several rebased DLL or executable memory dumps).

We use heuristics that are very similar to those that are
implemented by MackT [40] and yOda [72] in their PE recon-
struction engines. The API import table is sorted in order to
bypass some protections which emulate first bytes of API
functions and therefore do not jump to the original entry
point of API functions. By maintaining a sorted table of API
functions, API functions are not indexed by their entry point
but by a memory range in memory. We are now able to trace
API calls even if their first bytes are stolen.

We trace instruction by instruction until we get an address
which may belong to the original IAT (see Fig. 2 page 226).

We can compute a provisional value of the first thunk
field of the image import descriptor for the User32 DLL. We
can observe that the thunks have been initialised by the NT
loader with the function virtual address in memory. These
values must be replaced with the relative virtual address of
the IMAGE_IMPORT_BY_NAME structure in IAT section.
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In order to forge and add a new entry within IAT, we need
the following information:

e the name of the function to import.
e Hint. An index into the export name pointer table.

We rebuild a new import directory table by adding a new
section to the target executable (see Fig. 3 page 226). The
import information begins with the import directory table,
which describes the remainder of the import information.
The import directory table contains address information that
is used to resolve fixup references to the entry points within
a DLL image. The import directory table consists of an array
of import directory entries, one entry for each DLL to which
the image refers. The last directory entry is empty (filled with
null values), which indicates the end of the directory table.
We can now complete the rebuilding of the IAT.
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After the second stage, we have got an unprotected version
of the target. Now, the binary can be loaded by the operating
system without triggering an error. The resulting binary is a
complete runnable executable.

Several heuristics can be applied in order to distinguish
the protection and original program control flows. The
corresponding problem is to determine where the original
entry point of the protected program is. This problem is prob-
ably undecidable. But the correlated uses of our integrity
check heuristic with several other classic heuristics (inter-
section jumps, hooks of load-time API functions like in IDA
uunp plug-in, etc.) give good results.

If the use of these heuristics fail, the last resort is a human-
driven unpacking process.

When driven by a human analyst, the unpacking procedure
is often a two step one:

e First, determine the original entry point, given the infor-
mation of a first controlled execution of the target exe-
cutable.

e Next, set a virtual break point to the expected original
entry point and run the unpacking engine another time.

2.4 What are the limitations?

Unpacking programs run up against several classic limita-
tions:

e Firstly, it is sometimes difficult to reconstruct an execut-
able even after a successful unpacking procedure has been
applied.

e Secondly, more sophisticated protection mechanisms can
forbid analysis of a binary and thereby ruin an unpacking
procedure [10,31]

Our method can be applied efficiently on simply packed
executables, but has to be adapted in order to target programs
which implement more sophisticated protection mechanisms,
like layered ciphering, environmental key/code generation,
advanced emulator-detection routines (Hardware Function-
ality Scan, for example), t-obfuscation [10].

These limitations apply to any analysis framework based
on PC emulation and will be discussed in the second section
of this paper (detection methods of an emulated environment
by the protected program will be discussed further in the sec-
tion entitled: How to increase the security of an emulator?).

3 Toward a reliable human analysis framework
In the first section of this paper, we answered the question :

how to automatically gain information about a packed Mal-
ware? Several algorithms and heuristics which allow us to

decrypt its code have been presented. The purpose of this
next section is to answer the following question : how to auto-
matically gain accurate information about a malware using
stealthy and secure techniques?

Among the information that can be extracted from an exe-
cutable, the most important is the nature of its interaction
with the operating system. Our approach leads us at the very
least to be able to trace both Win32 and native API calls.
Being stealthy requires going as deep as possible inside the
operating system.

How to stealthily hook Win32 and native API? In order
to hook Win32 API, several user mode methods apply. The
problem is that whichever the method chosen, user mode API
hooking is neither stealthy nor accurate.

In order to hook both Win32 and native API [42], better
methods rely on driver installation. Kernel mode API hook-
ing is accurate. It is not absolutely stealthy (cf. [19], last
chapter).

Using an emulator is a complementary approach to hook
API. It is both stealthy and accurate.

In this section wee will firstly present the methods to hook
Win32 and native API calls when the target executable is con-
fined inside a virtual machine. We will then discuss security
aspects of malware analysis and the techniques which could
apply to increasing the isolation of a test platform. Finally,
we present our analysis framework and discuss the advantage
of focusing on human decision as a detection process.

3.1 Three ways to inject code (stealthily) into a virtual
machine

In this section we present several methods that can be used
to instrument the execution space of a targeted process. The
use of emulation gives a powerful range of possibilities while
observing the execution flow of the process. Hooks can be
inserted stealthily and code can be injected by using at least
three mechanisms:

forensics shellcode injection

manually forged intermediate code injection

the old way (Kernel mode code patching inside the emu-
lator)

Forensics shellcode

A first method to inject code into a virtual machine consists of
writing code directly into virtual memory before redirecting
the virtual CPU instruction pointer to this memory area.
Argos [20] implements a forensics shellcode injector
[Argos-0.1.4/target-i386/argos-csi.c]. An extract of the
Argos shellcode injector’s source code is given below:
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#define WIN32SC_RID_OFF 257
#define WIN32SC_LENGTH 293

static char win32_shellcode[] = "...";

void argos_csi (CPUX86State *env, int type, argos_rtag_t *eiptag) {

int rid = rand();
argos_inject_sc(env, type, rid);

}

static void argos_inject_sc (CPUX86State *env, int type, int rid) {

sclen = WIN32SC_LENGTH;
scp = win32_shellcode;
scrid = WIN32SC_RID_OFF;

vaddr = env->eip & TARGET_ PAGE_MASK;

if ((paddr = cpu_get_phys_page_debug(env, vaddr)) == -1)

goto address_lookup;

while (!ARGOS_MAP_ISTAINTED (argos_memmap, paddr) &&

(paddr & TARGET_ PAGE_MASK) != -1)
paddr++;

for (tlen = 0; ARGOS_MAP_ISTAINTED (argos_memmap, paddr) ;

paddr++, tlen++)
if (tlen >= sclen)
goto code_inject;
address_lookup:
vaddr = 0;

paddr = find_page(env, &vaddr, max_vaddr, PG_USER_MASK | PG_RW_MASK,

PG_USER_MASK) ;
if (paddr == -1)
{

printf (" [ARGOS] Forensics shellcode will not be injected - "

"No available page found\n");
return;

}

code_inject:

cpu_physical_memory_ rw(paddr + (TARGET PAGE_SIZE - sclen), scp,

sclen, 1);

cpu_physical_memory_rw(paddr + (TARGET_PAGE_SIZE - sclen) + scrid,

(unsigned char *)&rid, 4, 1);

env->eip = vaddr + (TARGET_PAGE_SIZE - sclen);

Forensics shellcode is injected, replacing the malevolent
shellcode, to gather information about the attacked process.
When an attack is detected, OS-specific forensics shellcode
is injected. In other words, the code under attack is exploited
as the attack is happening to extract additional information
about the attack which is subsequently used in signature
generation.

After detecting an attack and logging state, forensics shell-
code is placed directly into the process’s virtual address
space. The location where the code is injected is the last text
segment page at the beginning of the address space. Placing
the code in the text segment is important to guarantee that it
will not be overwritten by the process, since it is read-only.
It also increases the probability that any critical process data
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will not be overwritten. Having the shellcode in place, the
EIP register is then pointed to its beginning to commence
execution.

As an example, shellcode that extracts the PID of the vic-
tim process, and transmits it over a TCP connection has been
implemented in the Argos project.

Manually forged intermediate code

Another way to inject code into a virtual machine is to inject
it at the level of the virtual CPU. We first present in this
section principles of virtual CPU design based on dynamic
binary translation [67], and then explain how to use it to inject
manually forged VCPU code.
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Dynamic binary translation allows sequences of code to be
translated into native-CPU code on-the-fly. Since the native
code is cached or even optimised, it can run significantly
faster.

The dynamic translator performs a runtime conversion of
the target CPU instructions into the host instruction set. The
resulting binary code is stored in a translation cache so that
it can be reused. The advantage of this compared to an inter-
preter is that the target instructions are fetched and decoded
only once.

Dynamic translators are usually difficult to port from one
host to another because the whole code generator must be
rewritten. This represents about the same amount of work
as adding a new target to a C compiler. QEMU [8] is much
simpler since it simply concatenates pieces of machine code
generated off-line by the GNU C Compiler.

The first step is to split each target CPU instruction into
fewer simpler instructions called micro operations. Each
micro operation is implemented by a small piece of C code.
This small C source code is compiled by the GCC to an object
file. The micro operations are chosen so that their number is
much smaller (typically a few hundred) than all the combi-
nations of instructions and operands of the target CPU. The
translation from target CPU instructions to micro operations
is done entirely with hand-coded code.

A compile time tool called dyngen uses the object file con-
taining the micro operations as input to generate a dynamic
code generator. This dynamic code generator is invoked at
runtime to generate a complete host function which concat-
enates several micro operations.

In order to inject code which triggers a page fault in
the guest operating system, the author of TTAnalyze [6]
describes a method that can be implemented in the following
way in QEMU:

uintl6_t opc_buf [OPC_BUF_SIZE];
uint32_t opparam_buf [OPPARAM_BUF_SIZE]; //
uint8_t code_buf[4096]; // host code

int code_size;
if (cpu_memory_rw_debug(env, addr, buf, len,

opc_buf [0]=INDEX_op_movl_A0_im;
opparam_buf [0]=addr;
opc_buf[1]=INDEX_ op_ldsb_user_TO0_AO;
opparam_buf[1]=0;
opc_buf[2]=INDEX_op_exit_tb;
opparam_buf[2]=0;

opc_buf [3]=INDEX_op_end;
opparam_buf[3]=0;

code_size=dyngen_code (code_buf, NULL, NULL,
opc_buf, opparam_buf, NULL);

Manually forged intermediate code injection is a very inter-
esting way to stealthily inject code into a virtual machine. But
unlike forensic shellcode injection, it is difficult to forge com-
plex functions or to re-use existing instrumentation
functions.

Finally, we present the old way to inject code reliability
into a process. This method applies equally to the context of
an analysis framework based on emulation. Even if it is eas-
ier for a program to detect the presence of kernel mode API
hooks into NT executive internals, the underlying methods
are more documented and easier to implement.

Kernel mode code patching inside the emulator

Kernel mode hooking is an interesting third way to inject
code into the targeted process. If it is less stealthy than the
previously described method, the method is already well
documented and has proved its effectiveness against
not-too-evolved Malwares, thus in fact most of them.

3.2 Toward a reliable disassembler engine
(a way to improve AV pattern search engine?)

The use of emulation is a reliable way of obtaining the dis-
assembled code of a protected program. Most anti-disassem-
bler protections are not accurate against such a dynamic code
analysis tool, because the disassembler process is made for
each basic block of code. Static analysis tools have to manage
the whole executable code as an analysis unit.

Obtaining exact disassembled code of the targeted pro-
gram execution flow is crucial in order to extract information
relative to internals of a virus. It is also important in order
to forge a viral set that can be used while black box testing the

// intermediate code

// generated host code size

is_write)!=0 && is_write == 0){

// intermediate code to host code translation

// TB Execution
gen_func=(void *)code_buf;
gen_func () ;
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resilience of an Anti-Virus against classic transformations
(packing, obfuscation).

Even if we do not always obtain a fully functional version
of a virus, after unpacking, we observe that the detection rate
of most Anti-Virus programs improves on a viral set when
unpacking transformation is applied.

This result is intuitive and confirms the fact that most
detection techniques currently implemented by Anti-Virus
products can be reduced to pattern matching and that the
unpacking process implemented by their emulation engines
suffer from limitations.

Using dynamic translation emulation mechanisms inside
an Anti-Virus has been studied in [57]. In this study, the
author puts forward an algorithm to scan for virus signatures
in each translation block during execution. He also defends
the possibility of using such an emulator in a real-life Anti-
Virus product.

3.3 Why use an emulator as a complementary hooking
method?

Using an emulator is a complementary method for under-
standing the protection mechanisms of a malware. For exam-
ple, if a user mode API hooker is detected by the targeted
process, the security analyst can get useful information from
the failure of the analysis : the target implements protection
mechanisms at any point in the execution flow, such as integ-
rity control for example.

If using an emulator to trace API call is a powerful method,
it suffers from specific limitations, like not being necessarily
immune to specific anti-emulation mechanisms. Therefore, a
security analyst must have other tools at his disposal in order
to bypass all the security mechanisms that a Malware may
implement.

3.4 How to increase the security of an emulator?

While analyzing Intel Pentium’s ability to support a Secure
VMM [37], the authors conclude that current VMM s for the
Intel architecture should not be used to enforce critical secu-
rity policies. Furthermore, it would be unwise to try to imple-
ment a high assurance VMM as a type II VMM or CSIM
hosted on a generic commercial operating system. Layering
ahighly secure VMM on top of an operating system that does
not meet reference monitor criteria would not provide a high
level of security.

Current VMM/CSIMs do not meet high assurance secu-
rity requirements although some vendors claim security as
a feature. For example, some potential problems exists if a
VMM is to be used to separate mandatory security levels or
networking zones.

In the context of Malware analysis, the objective is to sep-
arate and isolate two domains: the controlled guest domain,
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where the Malware program is executed and isolated and the
host system domain. Each of these two domains can involve
several VM and physical or virtual network components.

A problem results from resource sharing between virtual
machines or between host and guest operating systems. If
the host and guest systems have access to the same floppy,
USB or CD/DVDROM drive, information can flow from one
system to the other.

A similar problem results from support of networking or
file sharing. File transfer and information communication are
possible in this way between host and guest OS.

Tools that are embedded in the guest OS may cause prob-
lems. For example, after installing VMware tools in a guest
OS, one feature is the ability to cut and paste between host
and guest operating system Desktops.

Many security vulnerabilities emerge due to the lack of
assurance available in the underlying host OS. Flaws in host
OS design and implementation will render the guest OS vul-
nerable. To achieve any measure of assurance, a secure host
OS is required.

However, VMM vendors try to increase the security level
of their products, by creating and enforcing the security func-
tions that are required in order to cover the afore mentioned
vulnerabilities (for example, VMware ACE—Assured Com-
puting Environment [68]).

Starting from their security analysis, we have implemented
several additional security functions that are mandated in
order to increase the security of our analysis framework.

Virtual right management policies

In order to be isolated and secure, an emulator must imple-
ment robust device protection, filtering and network quaran-
tine mechanisms.

Network quarantine policy

In order to increase the security of an emulator, a Firewall
must be embedded in the virtual machine. A Firewall must be
installed on the host system in order to monitor the network
communication interfaces between host and guest operating
systems.

On-access monitor

An on-access blocker must be installed on the host system
in order to prevent an accidental execution and spread of a
Malware on the security analyst’s Workstation.

Detection of emulated environment by a virus

Because knowing that it is running on a virtual machine
is the first step in a viral evasion attack attempt, a secure
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emulator must simulate as precisely as possible the hardware
components and must be resilient against pattern matching
recognition algorithms and a hardware functionality scan.

It is very difficult to simulate perfectly the hardware com-
ponents of an emulated PC.

Other mechanisms can be implemented for a Malware to
recognize an emulated environment. Several detection meth-
ods are already documented for detecting commercial VMM
live VMware or VirtualPC [30,53,74].

Methods can be found to detect CSIM like QEMU, Bochs
[12] or Plex86 [50].

New methods have recently been discovered in order to
detect VMware, VirtualPC, Bochs, Hydra, Qemu and Xen
[34]. According to the author, only CSIM can approach com-
plete transparency. Bochs, Hydra, and QEMU, all suffer from
bugs and limitations that allow their detection, but these are
problems that are relatively easily fixed.

3.5 Human analysis framework architecture
and benchmarks

We describe in this section the design and implementation of
our analysis framework and give results obtained by using
the current version of this program.

Architecture and implementation

We are currently building a tool (using Lex & Yacc) which,
given a set of functions prototypes and structure declarations,
can forge the API calls’ diverting functions (starting from
NtOsKrnl PDB file). This tool can be also used to generate
automatically the Hooks code of Detours or any other API
Hooking program based on code patching (in user or kernel

mode).
For example, given the prototype of a function:

NTSTATUS ZwLoadDriver (
IN PUNICODE_STRING DriverServiceName
)

we want to automatically generate the hook code:

if (addrMatch ("zZwLoadDriver")) {
ulong _addr0;
wchar_t _arg0[255];
uint8_t buffer[255];
readVM (env,
_addr0=* (DWORD*)buffer;
readVM (env,
_addr0=* (DWORD* ) buffer;
readVM (env, _addr0,
fwprintf (logfile, L"[HOOK]
ZwLoadDriver_ WAS_CALLED=1;

We have adapted the QEMU emulator in order to implement
the core emulation engine of our framework. Other emula-
tors could have been used, such as Bochs, Plex86. We are
currently studying the possibility of using a type I VMM
like Xen as a core component of our analysis framework (for
performance reasons).

The virtual machine embeds a kernel service which com-
municates through a virtual network interface with the VMM.
This communication channel is used to upload the targets
binaries into the virtual machine, to start the execution of the
main target program and to get information from the kernel
which makes it possible to drive the execution of the guest
process from the host system.

This information is located in the guest NT executive’s
tables and structures. This information and the way to get it
from kernel mode is well documented in [54,55].

The host system must be protected by a Firewall and by
an on-access monitor, in order both to supervise the virtual
network communication channel and to prevent the security
analyst from making an irrevocable mistake.

The human analysis framework gets information about:

Win32 and native API calls of the target program
Sequentially disassembled code of the target program
Structure of the executable in guest memory (and dynamic
comparison with the raw file)

The log file could be given (in the future) in a standar-
dised IDMEF format, in order to facilitate its utilisation by
a third party correlation engine or by an Intrusion detection
and response system specialized component.

The main program can be used in two console modes:

e Default mode automatically uploads the target executable
into the VM, unpacking it and getting required informa-
tion about its interactions with the guest operating system;

e Interactive mode makes it possible for the security analyst
to dynamically drive the execution of the target execut-
able and interact with the VM, by controlling its states.

(uint8_t *)_arg0,
ZwLoadDriver [ IN]

(ulong) (vcpu->regs[R_ESP]+4), buffer, 4, 0);
(unsigned long int) (_addr0+2*sizeof (USHORT)), buffer, 4, 0);

255, 0);

ObjectName=%s\n", _{\ul arg}O0);
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The interactive mode is mainly used when the target execut-
able forks one of its components as a new process, in order
to trace its execution. While entering the interactive mode,
the following commands are usable:

C:\PARANO> make si
[INFO] System initialisation ...
[INFO] Connection to server (192.168.100.2)
P> help
[USAGE] command [args]
vbp <virtual break point>
upload <file>
setoep
execsuspend <file args>
setpdb <pid>
setpeb <pid>
geteprocess <pid>
summary
map <file>
resumeexec
unmap
disconnect
P>

The main program can also be used in graphics mode. This
mode is useful when the analysis process requires interac-
tions between the user and the target program through a
graphical interface.

The same options as in console mode (default or interac-
tive) are available when using the graphical mode.

Benchmarks
In this section we give:

e Several statistical results that encourage the use of an
unpacking engine ;

e Several examples of information that can be retrieved by
using our human analysis framework.

According to an analysis from AV-Test Team [4,11], over
92% of the Malwares of the WildList 03/2006 are packed.
About 30 different packers were used for their tests. They
observed that many different packers are used throughout
one Malware family to avoid detection. Consequently AV
product need to deal with a lot of packers and be prepared
to cope with new ones every day. According to their bench
tests , nearly all AV products use an unpacking engine, but
detection rates are not high enough. Many packers are not
detected at all by some AV products. For some AVs, false
positive rate is too high: many AV products wrongly flag
packed files as certain Malware. AV unpacking engines are
not generic enough and have many flaws. When assessing the
security of the AV product, this problem must be checked.

A quick analysis with PEiD [49] of the Malware files
downloaded from Vx Heavens’s virus collection [69],
01/2006 gives the following results:
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C:\PARANO> make stats
ARM Protector :
ASPack : 16
ASProtect

BJFNT

CodeCrypt
Crunch Bit-Arts
EXEStealth
EZIP :
FSG : 4
InstallAnywhere
InstallShield
Krypton

LCC Win32

MEW

Neolite

PE Crypt

PE Lock NT

PE Pack
PEBundle
PECompact
PEDiminisher
PEncrypt :
PENinja : 1
PESpin
PEtite :
PEX : 1
PKLITE32

Shrinker

SoftSentry

tElock :

UPX : 6
UPXSHiT

UPX-Scrambler

WwPack32

v0da’s cryptor

N

=

s e
ONORFRPR WWENMNONMOORPROPRRLRJINMUPRPNMNORPUUIRNDNDNDERERERDOOPRE

These results confirm those obtained by AV-Test Team.
Among information that can be retrieved by using our
human analysis framework, you can find information about:

load-time library functions (IAT)

e dynamically loaded library functions (LoadLibraryA,
LoadLibraryExA, LoadLibraryExW, GetProcAddress,
etc.)

e modifications made to the registry and interactions with
the service manager (ZwOpenKey, ZwSetValueKey, NT
Register and services AdvAPI functions, etc.)

e modifications made to the filesystem (ZwCreateFile,
NtCreateFile, etc.)

e installation of drivers and interaction between user-land
and driver stack (ZwLoadDriver, ZwSetSystemInforma-
tion, IFS Filter Drivers FltLib API functions, IOCTL
Kernel API functions, SetupAPI Filter drivers installa-
tion functions, etc.)

e interaction with the running objects bus through OLE32
API functions calls

e network connections through the Winsock2 API func-
tions, etc.
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For example, the use of Super Hidden Files can be easily
detected. The following extract of the logs illustrates the use

The five packers were used with the same target program,
a Win32 PE executable which displays a small pop-up: Hi!

of this method by a virus: The characteristics of the unpacking procedure are:

[HOOK] ZwOpenSection[IN] ObjectName=\NLS\NlsSectionCType

[HOOK] ZwOpenSection[OUT] NTSTATUS=0000007D

[HOOK] ZwCreateFile[IN] ObjectName=Hidden

[HOOK] ZwCreateFile[IN] FileAttributes=00000006 |FILE_ATTRIBUTE_SYSTEM

|FILE_ATTRIBUTE_HIDDEN |
[HOOK] ZwCreateFile [OUT] NTSTATUS=00000025

A Malware can be installed as a device driver and started
with ZwLoadDriver or can be loaded directly by ZwSetSys-
temInformation [42], p.434. The following extract of the logs
illustrates the use of this method by a well known rootkit:

e The name and version of the packer
e Tthe required mode for successfully unpacking the pro-
tected executable:

[HOOK] FindResourceA[IN] 1pType=MIGBOT

[HOOK] FindResourceA[IN] 1lpName=BINARY

[HOOK] FindResourceA[OUT] HRSRC=00407048

[HOOK] ZwCreateFile[IN] ObjectName=\??\C:\MIGBOT.SYS

[HOOK] ZwCreateFile[IN] FileAttributes=00000000 |

[HOOK] ZwCreateFile [OUT] NTSTATUS=00000025

[HOOK] GetProcAddress[IN] hModule=7C910000

[HOOK] GetProcAddress[IN] 1lpProcName=RtlInitUnicodeString

[HOOK] GetProcAddress [OUT] ProcAddress=7C9112D6

[HOOK] GetProcAddress[IN] hModule=7C910000

[HOOK] GetProcAddress [IN] lpProcName=ZwSetSystemInformation

[HOOK] GetProcAddress [OUT] ProcAddress=7C91E729

[HOOK] ZwSetSystemInformation [IN]
SystemInformationClass=SystemLoadAndCallImage (38)

[HOOK] ZwSetSystemInformation [OUT] NTSTATUS=000000F0

The following packers have been used in our tests: e (D)nteractive Mode is required for example when the

target is made of several binary components

o Armadillo e (G)raphical mode is often required when the protec-
. ASI"rotect tion interacts graphically with the user
e PEtite e The status information gives an idea of the difficulty or
e UPX ; .

c the completeness of the unpacking procedure:
Yy

e If VBP is checked-(R)equired, that means that it is
necessary to put a virtual break point, to indicate the
original entry point of the target executable

e IAT and Reloc fields indicate if information about
imported functions and relocations has been fully
recovered during the reconstruction process

e Time needed

The following table gives the characteristics of the unpack-
ing procedure:

Packer Version Mode VBP IAT Time

Armadillo 4.05 GI - - 300

ASPack 212 - R - 150 4 Conclusion and future works

ASProtect 1.23 RC4 GI R - 200

PECompact 1.56 I - - 70 4.1 What next?

PEtite 23 - R - 90

PolyCryptPE 2.1 I - - 80 Malwares can be difficult to detect by Anti-Virus products,
Shrinker 3.4 GI R - 100 especially when they operate in the Kernel. Many techniques
UPX 1.24w - - - 50 which are currently used by Anti-Virus or by Forensics tools
Vbox 43 I - - 80 to detect the presence of a Malware can be implemented
WWPack32 1.20 - - - 60 in our analysis framework and bring some useful additional
yC 1.2 I R . 70 information that could help a security analyst make a finer-

grained diagnosis:
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e File integrity checking: the principle of this approach is
to look for an image of the filesystem. A file integrity
checker should be run offline against a copy of the drive
image, because a Malware that is hiding files by hook-
ing system calls or by using a layered file filter driver
will evade this mode of detection. This classic detec-
tion method can be applied efficiently within our analysis
framework, without the same operational constraints.
Starting from one or several snapshots of the virtual file-
system, we can easily apply forensic file integrity con-
trols at different stages of a target Malware’s life
cycle.

e Memory watching: the previous approach will not work

if the Malware runs only from memory or if its body
is located in the BIOS, for example. The principle of
Memory watching is firstly to detect the Malware as it
loads into memory. A Malware can use several methods
to load itself into memory. By watching the underlying
API calls involved , an Anti-Virus can prevent a Mal-
ware execution. A lot of equivalent combinations of API
calls and critical resources names are possibly involved,
and thus matching automatically all the ways a Mal-
ware might be loaded in memory is an undecidable prob-
lem.
As it has been demonstrated in the benchmark section
of this paper, this detection method is currently imple-
mented by our analysis framework. It focuses on human
decision as a behavioural detection process. It can be
very useful in order to forge a new Viral signature or
to add a rule or a fact in a behavioural intrusion detection
system.

e Memory consistency checking: several detection algo-
rithms and heuristics can be implemented in order to iden-
tify a hook in memory. Even if there are many places
within the operating system and within the processes
where a hook can hide, you can define acceptable address
ranges of kernel modules in operating system handler
tables or check the integrity of the first several bytes of
API functions.

Several methods are described in [19] for identifying a
hook in memory.

These methods can be efficiently implemented in our
analysis framework to help the security analyst formu-
late his diagnosis.

The following tables and structures must be monitored:
e Process Import Address Table

e Driver I/O Request Packet handler

e System Service Dispatch Table

e The INT 2E handler in Interrupt Descriptor Table
The IAT is used when an application uses an API function
to import its address.
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IRPs are handled by NT executive and drivers to com-
municate buffered data or control code to a user-mode
program.

The SSDT is used by NT executive for handling system
calls.

The IDT is used to find interrupt handlers. INT 2E (and
SYSENTER) instructions are issued by NtDLL.dll to trap
to the Kernel.

All these tables and structures (and others) can be modi-
fied by a Malware to provide stealth or to capture data.
Memory scanning under Windows NT [56]

Analysis methods based on execution tracing: Given the
fact that hooks cause extra instructions to be executed
that would not be called by unhooked functions, the tool
PatchFinder [52] can detect API hooks by comparing the
number of instructions executed during invocation of sev-
eral API functions with a clean reference.

This analysis method could be easily implemented within
our framework in a stealthy way.

e Analysis methods based on analysis of hidden files and
detection of Registry keys: The tool RootkitRevealer [27]
can detect hidden registry entries and hidden files by pars-
ing the registry hives and filesystem at a very low level
and without the help of Win32 API, and comparing the
result with what is obtained through standard Win32 API
calls.

Such heuristics could be implemented as a plug-in in our
analysis framework.

e Analysis methods based on the detection of hidden pro-
cesses: How to detect DKOM [5]?

4.2 Benefits of a plug-in architecture

Several methods for gaining information about a suspect pro-
gram have been shown in the previous section. In order to
apply them on demand in a program, the best way is to
develop them as extensions of the current emulation engine
using an adapted API.

We are currently working on a plug-in API which facil-
itates the validation of binary code analysis methods, like
differential binary analysis, for example, that is currently
implemented in the IDA Pro framework as a set of static
binary analysis algorithms. By using emulation, our dynamic
(and interactive) analysis tool could complement the static
analysis provided by a tool like IDA Pro.

A plug-in architecture could also be very useful in order
to validate learning detection algorithms and the calculation
of similarity indices in several statistical detection models.

A lot of statistical models, such as Markov models, have
been used in DNA sequence analysis, and can be used in
metamorphic virus family analysis and recognition. The
implementation of such algorithms on viral sets is technically
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difficult using a static approach. A dynamic approach, such
as the one provided by emulation, is more adapted than a
static approach.

Lastly, it might be useful to use existing signature data-
bases, and thus a corresponding pattern matching algorithm
(for example, Aho-Corasik pattern matching algorithm [1]
implementation of ClamAV [25] and its signature database),
ata crucial step in memory, during the execution of a targeted
program.

Putting together all this potential use of emulation (oper-
ating system internals integrity check, dynamic binary code
analysis on a control flow graph level, statistical detection and
learning algorithms validation on an intra-procedural level),
it is easy to imagine the benefits that could be gained from
using plug-in architecture to help the security analyst do his
job.
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