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Abstract In anti-virus and anti-spyware applications,
due to multiplicative increase in processing times with
increasing complexity of detection logic and fast growing
number of signatures, there is a necessity for data struc-
tures for quick retrieval and efficient storage of large
collection of signatures. This paper presents a variant of
B-tree data structure, where the minimum degree con-
straint is relaxed while maintaining the order of worst
case performance bounds for primitive search, insert
and delete operations of the B-tree. It presents a detailed
case study of the impact of key (signature) size on stor-
age utilization, given fixed sized nodes and also derives
a maximum optimal key size with respect to node size.
This variant of B-tree is found to be specifically very
useful for storage of large number of keys where size
of keys exhibit a wide variation and node size remains
fixed.

Keywords Byte · B+-tree · Prefix B-tree · String
B-tree

1 Introduction

A B-tree is a data structure for efficient external search-
ing and sorting. As per Cormen et al. [1], a B-tree is
characterized by its fixed minimum degree t, which is an
integer, such that t ≥ 2, and:
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1. Every node other than the root must have at least
t − 1 keys. Every internal node other than the root
thus has at least t children. If the tree is non-empty,
the root must have at least one key.

2. Every node can contain at most 2t−1 keys. Therefore,
an internal node can have at most 2t children.

With these constraints, it is very inefficient to store a
large number of keys which exhibit a wide variation in
size, given that the node size is fixed. For example, con-
sider a B-tree implementation where node size is fixed to
2,048 bytes. The key size can vary from 1 to 1,500 bytes.
If the minimum degree t is chosen as 100, consider a sce-
nario where all keys have size of 1 byte. In this scenario,
if we go by the traditional B-tree and apply constraint 2,
1,849 [2, 048 − (2 × 100 − 1)] bytes in every node will
be wasted. On the other extreme if all keys are of size
1, 500 bytes constraint 1 will be violated.

The issues pointed out with the traditional B-tree can
be circumvented by choosing a variable sized node. But,
having a variable sized node has its own limitations. A
variable sized node lends itself to issues of fragmenta-
tion and compaction as new keys are added or old keys
are removed. For example, consider a scenario of new
keys being added in a variable sized node B-tree. One
of the new keys being added belongs to node n1, next
to which lies node n2. To make room for the new key,
node n2 and all subsequent node that follow n2 need to
be moved up. If all the nodes are persisted in one file,
the cost of making room for a new key is inversely pro-
portional to its destination offset from the beginning of
the file. On the other hand, deleting keys leads to holes
between adjacent nodes which are expensive to fill.

In contrast to prefix B-trees by Bayer and Unterauer
[2] and string B-trees by Ferragina and Grossi [3], which



212 C. Prakash

are variations of B+-tree (where some or part of the keys
are stored in the internal nodes [4,5]), this implementa-
tion has more kinship to the basic B-tree (Cormen et. al.
[1]) with all keys stored in the internal nodes and worst
cast performance same as the basic B-tree. Also unlike
the string B-tree, which allows keys of arbitrary length,
key sizes in this implementation are bounded by node
size. One would ask: What are the advantages of this
implementation with this size restriction? The answer
is: this implementation presents a detailed case study
of impact of key size on the basic B-tree and presents
an algorithm that addresses issues presented earlier in
this section. Further, this implementation enunciates an
upper bound on the optimal key size (with respect to
node size) that circumvents creating empty nodes.

2 Definition of B-tree with no minimum degree

Due to the issues discussed in previous section with a
B-tree where minimum degree is based on the number
of keys, a new variant of B-tree, abbreviated as B−MD-
tree (B-tree minus minimum degree), is proposed where
node size is fixed. A B−MD-tree is a rooted tree (with
root root [T]) having following properties:

1. Every node x has the following fields:
(a) n[x], the number of keys currently stored in

node x,
(b) the n[x] keys themselves, stored in non-decreas-

ing order:
key1[x] ≤ key2[x] ≤ · · · keyn[x][x],
and,

(c) leaf[x], a Boolean value that is TRUE if x is a leaf
and FALSE if x is an internal node.

(d) sizeof (a), is the length of space occupied in bytes
by the parameter a. The parameter a is either a
node or a key.

2. If x is an internal node, it also contains n[x]+1 point-
ers c1[x], c2[x], . . . , cn[x]+1[x] to its children. Leaf
nodes have no children, hence their ci fields are NIL.

3. The keys keysi[x] separate the ranges of keys stored
in each subtree: if ki is any key stored in the subtree
with root ci[x], then

k1 ≤ key1[x] ≤ k2 ≤ key2[x]
≤ · · · keyn[x][x] ≤ kn[x]+1.

4. Every leaf has the same level, which is the tree’s
height h.

5. Every node size is fixed to B, even though it can
contain variable sized keys. Each node must have at

least one key. There is no upper bound on the num-
ber of keys contained in a node as long it has space
available to accommodate new keys. But, there is a
limitation on the maximum size of a key. The sum
of size of a key and the size of two child pointers
surrounding it cannot exceed the size of the node.

Adding keys whose sizes are greater than a certain
threshold (see Sect. 4) can create empty internal or leaf
nodes in a B−MD-tree. In practical implementations the
size of child pointer fields must also be taken into con-
sideration as they are intrinsic part of the node. But, for
simplicity sake from now on child pointer sizes will be
ignored with respect to key and node size.

Although algorithms presented in this paper assume
key sizes to be less than or equal to optimal maximum
key size (see Sect. 4), to prevent creating empty nodes,
yet it is practicable to hypothesize that these algorithms
can be made amenable to key sizes up to B and hence to
existence of empty nodes. For the purpose of discussion
now, assume the key size to be less than node size and
let’s defer the significance of key size, until we reach
Sect. 4.

3 Basic operations in B−MD-tree

The basic operation set includes search, insertion and
deletion. It is assumed that B−MD-tree is created at least
once, which is simply having an empty root node with
zero keys and no children.

3.1 Search

A non-recursive search algorithm for a B−MD-tree is
described in Algorithm A.1 given in Table 1. This ver-
sion of search algorithm is very similar to B-tree search
described in Cormen et al. [1].

Table 1 Algorithm A.1—Non-recursive B−MD-TREE-SEARCH
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Table 2 Algorithm A.2—non-recursive B−MD-TREE-INSERT

3.2 Insertion

Insertion algorithm in a B−MD-tree is described in
Algorithm A.2 given in Table 2. It is assumed that the
key to be inserted in the B−MD-tree, is new. This algo-
rithm does not always finish in one downward pass and
can back up. This is one of the main differences between
this algorithm and the insertion algorithm for a B-tree
described in Cormen et al. [1] The backing up manifests
due to absence of internal node splits during down-
ward pass. The pre-emptive node splits during down-
ward pass are untenable because of variable sized keys,
specifically the median key in the child node may not
fit in the parent node. In the B− MD-TREE-INSERT
algorithm, between lines 3 and 15, the leaf node where
the new key k belongs is located. During this lookup,
the address of node traversed at each level is stored
in an array a indexed by the level l. After leaf node is
reached, B−MD-TREE-INSERT-AT-LEVEL is called
(see Algorithm A.3 in Table 3 in the Appendix), which
inserts the new key at a specified level.

At line 5 of routine B−MD-TREE-INSERT-AT-
LEVEL, a check is made to see if the destination node
has enough space for the new key. At line 18, rou-
tine B−MD-TREE-SPLIT-NODE (see Algorithm A.4
in Table 4 in the Appendix) is called to split the desti-
nation node into two nodes, if it does not have enough
room for the new key. In routine B−MD-TREE-SPLIT-
NODE, a median key (see Sect. 4) is found in the node
being split. In lines 13–26, new key is inserted in one
of the appropriate node among the two split nodes.
At line 25 the address of child node c to the right of
new key, is set. The median key k′ at line 40 is set to
be moved up in the parent, which starts another cycle
of inserting a node at specified level at line 4 in rou-
tine B−MD-TREE-INSERT-AT-LEVEL, after B−MD-
TREE-SPLIT-NODE returns. Lines 31–36 in routine

B−MD-TREE-SPLIT-NODE account for increase in
height of the tree, when the root node gets split (see
Fig. 1).

3.3 Deletion

Deletion algorithm in a B−MD-tree is described in
Algorithm A.5 given in Table 5 in the Appendix. Con-
trary to B-tree deletion algorithm in Cormen et al. [1],
in B−MD-tree deletion, there can be two passes, one
definite downward pass and two likely upward passes.
The B-tree deletion algorithm in Cormen et al. [1],
safeguards the condition that every node traversed in
the downward pass has at least t keys. The B−MD-
TREE-DELETE algorithm has no such provisions
whatsoever.

The deletion cases generally fall under the same broad
categories as described in Cormen et al. [1], but with sev-
eral alterations that take into account the sizes of nodes
and keys involved. It is assumed that the key k to be
deleted is already present in B−MD-tree.

1. If key k is present in a leaf node, delete it from the
node.

2. If key k is present in an internal node, then

(a) If the sum of node sizes of the left child wLC and
right child wRC surrounding the key k, combined
with size of the key is less than or equal to B, com-
bine the left and right child, splicing the key in
between the left and right child in that order. The
parent node looses address to right child and the
key. Recursively delete key k from the combined
node.

(b) If the size of left child node wLC is larger than the
size of the right child node wRC, find the prede-
cessor k′ of the key k in the tree rooted at the left
child wLC. Replace k with k′ in the current node
and recursively delete k′ from the tree rooted at
the left child wLC. Symmetrically, if the size of
right child node wRC is larger than the size of the
left child node wLC, find the successor k′ of the
key k in the tree rooted at the right child wRC.
Replace k with k′ in the current node and recur-
sively delete k′ from the tree rooted at the right
child wRC.

3. If k is not present in the internal node w but is pres-
ent in the subtree rooted at one of its child node
called the destination node wDS, then

(a) In the current node w, if there exist both left
sibling node wLS and the right sibling node wRS
surrounding the destination node wDS, pick the
smallest of the two, and call it just the sibling



214 C. Prakash

Figs. 1–6 Examples of insertion and deletion cases

node wSB. If sum of the size of the destination
node wDS, and its sibling node, wSB, combined
with the size of key k′ that sits in parent node
w, between destination and sibling node, is less
than or equal to B, combine wDS, wSB, and k′,
into wDS, freeing wSB. Recursively delete k from
subtree rooted at wDS.

(b) In the current node w, if there exist both left
sibling node wLS and the right sibling node wRS,
surrounding the destination node wDS, pick the
largest of the two, and call it just the sibling node
wSB. If the wDS node size is smaller than wSB or
if wDS is a leaf node with a single key, then shuf-
fle condition is TRUE. If the shuffle condition is

TRUE, see if keys can be shuffled between wDS,
wSB and w. Shuffling involves moving a key down
from parent node w into wDS and a key up from
wSB to w. If the shuffle condition is TRUE and
shuffling is not possible due to size constraints
and wDS is a leaf node with a single key, do a
forced shuffle, causing a split of node w.

In cases 3a and 3b, there can be a possible scenario where
destination node w has only one sibling. This happens
when the destination node is one of the two extreme
child nodes, i.e., the leftmost or the rightmost one.

The check for shuffle in case 3b guarantees that space
exists in the node where the key is moved. For exam-
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ple, when a key is moved down from the parent node
w to child node wDS, the child node must have space to
accommodate the parent key.

The forced shuffle in case 3b prevents creating empty
leaf nodes. If forced shuffle is not applied, leaf nodes
can become empty during deletion, even if key sizes are
bounded (see Sect. 4). Forced shuffle is not applied to
internal nodes, because leaf nodes stay non-empty dur-
ing deletion, provided the key sizes are bounded. This is
a corollary of prompt replacement of a deleted internal
node key by its successor or predecessor from leaf node
(case 2b).

Lines 20 and 21 in routine B−MD-TREE-DELETE
implement case 1. Lines 27–30 implement case 2a.
Routine B-TREE-COMBINE-NODES takes one of the
input parameters as level l of parent node w. Depending
on whether the tree height is reduced or not, it returns
the level of next node where deletion will progress.
In addition, routine B-TREE-COMBINE-NODES
returns the combined node. Lines 32–42 implement
case 2b. Notice calls to B−MD-TREE-INSERT-
AT-LEVEL at lines 35 and 39 where the deletion
algorithm can ensue an upward pass. Lines 65–67, and
78–90 implement cases 3a and 3b, respectively. Routine
B−MD-TREE-FORCE-SHUFFLE-KEYS at line 86 is
assumed to call B−MD-TREE-INSERT-AT-LEVEL.
This causes split of the parent node to accommodate
shuffled key from child node and prevents creating
empty leaf nodes. The routine FREE-NODE releases
all the resources for a node and delinks it from the
B−MD-tree node set. In one possible implementation
of FREE-NODE, the freed up node can be added to a
linked list pool, which can later be reused in inserts.

Figure 2 through Fig. 7 show various cases of B−MD-
tree deletion. Figure 7 shows the forced shuffle scenario
of case 3b.

4 Optimal maximum key size and locating median key

Even though a B−MD-tree key size can be up to B,
it is seen that having a preset maximum value of key
size improves the storage utilization of a persisted
B−MD-tree. Storage utilization is efficient, if all nodes
are at least half full, i.e., occupied size in each node is at
least B

2 .
Better storage utilization results when key sizes are

smaller. For certain large key sizes (>B
3 ), there can be

scenarios where some of the nodes end up being empty
with no keys. This is shown in Fig. 8, as a new key is
inserted in B−MD-tree. Location of median key in node
split during insertion can affect the storage utilization.
The median key can be based on the size or the num-

ber of items currently occupied. For example, a median
key based on size would be such that it is divides the
occupied length of the node in two approximately equal
sized partitions.

There should be at least three keys in a node so that
the two nodes resulting from the split have at least one
key when the median key is moved out. This sets the
optimal value of maximum key size, Kmax to B

3 . But,
even after having Kmax preset to the optimal value,
choosing a median key merely based on size can still
create empty nodes during inserts and may not always
result in the best storage utilization. This can be noted
in scenarios presented in Fig. 9 and Fig. 11, where some
internal and leaf nodes are left empty after insertion.
Therefore, having preset Kmax to its optimal value, we
first pick the median key based on size. If that results
in first or last key being chosen as the median key,
then we pick the median key based on the
number of items occupied. This mixed technique of
choosing the median key is exemplified in Fig. 10, pre-
vents creating empty nodes and results in better
storage utilization.

5 B−MD-tree performance

The O and � complexity metrics for search, insertion
and deletion are same as for a B-tree.

5.1 Maximum height h

Assume all keys have the same size. Let’s say B is the
fixed node size, K be the key size and N be the total
number of keys. Then, root node at level 0 has B

K keys.
Level 1 has ( B

K )( B
K + 1) keys. Level 2 has ( B

K )( B
K + 1)2

keys and so on. Hence,

N = B
K

+ B
K

h∑

i=1

(
B
K

+ 1
)i

N =
(

B
K

+ 1
)h+1

− 1, h ≥ 0,

h = log B
K +1(N + 1) − 1.

If node size B is very large as compared to key size
K, we have h as O(log B

K
N). In practical scenarios keys

have varying sizes and K can be deemed as size of the
largest key.

For a given N and B, the maximum height h will be
achieved when all nodes have least possible keys, i.e.,
key sizes are equal to optimal maximum key size B

3 .
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Figs. 7–10 Examples of
insertion and deletion cases
(continued)

Fig. 11 Examples of
insertion and deletion cases
(end)

Therefore,

h ≤ log3+1(N + 1) − 1,

h ≤ 1
2

log2(N + 1) − 1,

where, h ≥ 0, B ≥ 3 and 1 ≤ K ≤ S
3 .

Note that when K = B
3 , maximum height h varies as

O(logN) and is independent of B and K.

5.2 Search performance

DISK-READ requires O(1) time and there cannot be no
more h disk reads in search. Hence, there cannot be no
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more than O(h) disk reads. The CPU usage depends on
the number of key comparisons in the while loop at line
5 in B−MD-TREE-SEARCH. The number of compar-
isons are bounded by number of keys, which cannot be
more than B, assuming 1 byte of storage for the small-
est key. Hence, the CPU performance is, O(B × h) or
O(B × log B

K
N).

5.3 Insert performance

The insert routine can back up from leaf to the root in the
worst case. Therefore, number of disk reads and CPU
time of key comparisons in a B−MD-tree can be twice
as compared to a B-tree. Overall, there are O(h) DISK-
READs and O(h) DISK-WRITEs. The CPU time in key
comparisons is O(B × log B

K
N).

5.4 Delete performance

The delete routine can back up from an internal node to
the root two times in the worst case. One back up sce-
nario is possible in case 2b and the other in case 3b (see
Sect. 3.3). Therefore, number of disk reads, writes and
CPU time in key comparisons in a B−MD-tree can be
three times more as compared to a B-tree. Overall, there
are O(h) DISK-READs, O(h) DISK-WRITEs and CPU
time in key comparisons is O(B × log B

K
N).

6 Conclusion

B−MD-tree has been found to be very useful in per-
sistent storage of keys, which exhibit a wide variation
in size. For example, consider an implementation of
B−MD-tree, where B is set to 4,000 bytes and optimal
Kmax is set to 1,300 bytes ( B

3 ) allowing key sizes from
1 to 1,300 bytes. Applications that need to query on a
large collection of persistent data items whose sizes are
in such a range, find B−MD-tree very useful. For exam-
ple, anti-spyware and anti-virus application have large
variation of signature sizes and would be a perfect fit for
this implementation.

Despite feasible maintenance and better storage uti-
lization, it is to be noted that it is very likely to have
some fragmentation in every node because the sum of
occupied key sizes may not be exactly same as the fixed
node size B.

The backing up in inserts and deletes in the worst
case can be addressed by using caching techniques that
prevent frequent disk I/O. Also, the CPU usage in key
comparisons within a node can be improved by replacing
linear search with the binary search.

Appendix

A B−MD-tree additional algorithms

Table 3 Algorithm A.3—non-recursive B−MD-TREE-INSERT-
AT-LEVEL

Table 4 Algorithm A.4—B−MD-TREE-SPLIT-NODE
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Table 5 Algorithm A.5—non-recursive B−MD-TREE-DELETE(end)
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Table 5 continued
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