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Abstract Malware is code designed for a malicious
purpose, such as obtaining root privilege on a host. A mal-
ware detector identifies malware and thus prevents it from
adversely affecting a host. In order to evade detection, mal-
ware writers use various obfuscation techniques to transform
their malware. There is strong evidence that commercial mal-
ware detectors are susceptible to these evasion tactics. In this
paper, we describe the design and implementation of a mal-
ware transformer that reverses the obfuscations performed
by a malware writer. Our experimental evaluation demon-
strates that this malware transformer can drastically improve
the detection rates of commercial malware detectors.

1 Introduction

Malware is code that has malicious intent. Examples of this
kind of code include computer viruses, worms, Trojan horses,
and backdoors. Malware can infect a host using a variety
of techniques, such as exploiting software flaws, embedding
hidden functionality in regular programs, and social enginee-
ring. A classification of malware with respect to propagation
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methods and goals was given by McGraw and Morrisett in
2000 [1]. A malware detector identifies and contains mal-
ware before it can reach a system or network.

Current malware detectors are based on scan strings [2]
or signatures, i.e., suspicious byte sequences of instructions
and data. Malware analysts extract a scan string from a virus
sample in such a way that the scan string is typical of the virus
but not likely to be found in benign programs. Scanners can
very efficiently determine if a file shares a byte sequence
with a known malware instance. In this case, the file is either
infected by the malware or in fact a copy of the malware.
Thus, scanning for malware reduces to a search for particular
byte sequences in a suspicious file. Scan strings and slightly
more general regular expressions over bytes are widely used
in practice today, because detection is efficient and has a low
false positive rate, with individual scan strings tailored for
each known malware instance.

The high specificity of scan-string matching however
opens the door for malware obfuscation where malware wri-
ters transform malicious code to make it unrecognizable.
For example, polymorphic and metamorphic viruses and,
more recently, polymorphic shellcodes [3] are specifically
designed to bypass detection tools. Both polymorphic and
metamorphic viruses manipulate their code and data in such
a way that the malicious behavior is preserved but the current
scan-string signatures no longer match. There is strong evi-
dence that commercial malware detectors are susceptible to
common evasion techniques used by malware writers. Mal-
ware testing has shown that malware detectors cannot cope
with obfuscated versions of worms [4], and there are nume-
rous examples of obfuscation techniques designed to avoid
detection [5–10].

In this paper, we define a malware transformer as a sys-
tem that takes an obfuscated executable and transforms it
into an executable free of obfuscations. Therefore, a malware
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Fig. 1 Malware transformation reverses the effects of obfuscations. The malware instance M̂ (an obfuscated variant of M) is transformed into M ′
before detection

transformer can be used to enhance the detection capabili-
ties of existing malware detectors which use scan strings. In
the light of over 60,000 known viruses, reusability of virus
signatures becomes the sine qua non of advanced methods
for malware detection. Since the problem of transforming the
executable into an unobfuscated state is completely ortho-
gonal to the scan string detection, our method can be used
as a preprocessor or filter that improves the detection rate
of all existing virus scanners. Obfuscation [11,12] increases
the complexity [13–15] of a program to make reverse engi-
neering harder. Techniques presented in this paper can be
viewed as deobfuscation techniques designed to reduce the
complexity of malware with the goal of improving the detec-
tion rates of scan-strings based malware detectors. We want
to emphasize that our techniques are targeted towards three
common obfuscations frequently used by malware writers.
We describe the design and implementation of a malware
transformer that handles three of the most important practi-
cal obfuscations, namely packing, code reordering, and junk
insertion. Our malware transformer outputs another (deob-
fuscated) executable and is thus compatible with all commer-
cial malware detectors. Our experimental results demonstrate
that the detection rates of four commercial malware detec-
tors are dramatically improved by our method, in particular,
in those cases where the scan string describes instruction
sequences rather than data sequences. This is no surprise, as
the obfuscation methods considered—with the single excep-
tion of the packing obfuscation—affect the code, and not
the data of the malware. Summarizing, this paper makes the
following contributions:

1. We present the design and implementation of a malware
transformer that handles three important obfuscations
used by malware writers. In Sect. 2, we give an over-
view of our malware transformer; details of the algorithms
used by the malware transformer appear in Sect. 3. The
methods are presented in such a way as to decouple mal-
ware transformation and classical program analysis algo-
rithms, which our malware transformer uses as oracles.
We separately describe implementations for the analysis
algorithms in Sect. 4. Thus, our malware transformer can
be further improved by plugging in stronger program ana-
lysis capabilities.

2. We evaluate the detection rates of four commercial virus
scanners, Norton AntiVirus, McAfee VirusScan, Sophos

Anti-Virus, and ClamAV, against variants of ten known
viruses, listed in Sect. 5.2. Our experiments demonstrate
that the malware transformer improves the detection rate
of all four scanners. Most strikingly, in the case of Sophos
Anti-Virus, the detection rate jumps from 7.5% to 100%
after deobfuscating junk insertions. Details of our expe-
rimental evaluation appear in Sect. 5.

We finally note that we see other future applications for
our malware transformer, for example in forensics where the
deobfuscation transformations performed by our tool increase
the human readability of the code.

2 Threat model

We consider a threat model in which a known malware ins-
tance is obfuscated to obtain another, equally malicious ins-
tance. This obfuscation step can be manual, performed by a
malware writer, or automatic, executed during the replication
phase of a virus. By obfuscating an existing virus, one can
generate an enormous amount of new and undetected pieces
of malware. Obfuscation of a program can be achieved in
numerous ways; in most cases, however, the set of obfus-
cations that are actually used is rather limited. In particular,
most malware authors rely on the use of external tools that
allow them to obfuscate their programs after compilation.
We therefore focus on common obfuscations to demonstrate
the effect of a malware transformer on the detection rate of
commercial malware detectors.

We apply the malware transformations to an obfuscated
malware instance and attempt to recover the original, unob-
fuscated malware instance. Figure 1 illustrates the threat
model and the application of malware transformations. A
malware instance M (i.e., a malicious executable binary pro-
gram) is obfuscated to obtain a new malware instance M̂ ;
the malware transformer processes the obfuscated malware
M̂ to produce a deobfuscated executable program MD that
is then checked by the malware detector.

We observe that it is possible that the original malware
instance M and the transformed malware instance MD are
distinct. In other words, the obfuscations applied to the origi-
nal malware instance M cannot always be perfectly reversed.
For example, consider the example from Figure 2 where a
code fragment (left box) is obfuscated using junk insertion
(middle box). The malware transformation could yield one
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Fig. 2 Example of ambiguity
in the malware transformation
process. Original code (left) is
obfuscated using junk insertion
(center)

of two equivalent possibilities. We resolve this ambiguity by
having the transformation choose one of the outcomes in a
consistent manner. In our description of the malware trans-
formation algorithms (in Sect. 3), we outline the way these
choices are made. As a result, the original instance M and
all its obfuscated variants M̂ are transformed to the same
malware instance MD .

This approach to handling ambiguity during malware
transformation requires a change in the method for producing
scan-strings from malware samples. Since a malware trans-
formation does not guarantee us the recovery of the origi-
nal malware instance M , the scan-string signature cannot be
based on the M . Rather, the malware transformation consis-
tently outputs the transformed malware instance MD when
given any obfuscated variant M̂ or the original instance M . It
is thus necessary to base the scan-string signature on a trans-
formed malware instance MD , obtained from a sample M for
which we wish to generate a signature. Other than this pro-
cedural change, our technique places no other requirements
on scan-string malware detectors.

Our malware transformer is capable of handling three
practically relevant kinds of obfuscation:

− The code reordering obfuscation changes the location of
instructions in a program while maintaining the original

execution order through the insertion of jump instructions.
This permutation is randomized, resulting in a large pos-
sible number of obfuscated instances of the original pro-
gram. Sequences of the original binary code cannot be
found in the obfuscated instances, causing scan string-
based malware detectors to fail.

− The junk-insertion obfuscation randomly inserts conti-
guous code sequences that do not affect program behavior.
We call such code sequences semantic nops. Motivated
by real world obfuscation engines we consider sequences
that are self-contained, produce no output, and preserve
all program variables.

− The packing obfuscation replaces a binary (code and data)
sequence with a data block containing the binary sequence
in packed form (encrypted or compressed) and a decryp-
tion routine that, at runtime, recovers the original binary
sequence from the data block. The result of the packing
obfuscation is a program that dynamically generates code
in memory and then executes it. There are a large number
of tools available for this purpose, which are commonly
known as executable packers.

For illustration, consider the example in Listing 1. This
code fragment from a virus of the Netsky family prepares to
install a copy of the virus (under the name services.exe) into

1 lea eax , [ebp+Data]
2 push esi
3 push eax
4 call ds:GetWinDir
5 lea eax , [ebp+Data]
6 push eax
7 call _strlen
8 cmp [ebp+eax+v_1], 5Ch
9 pop ecx

10 jz short loc_40
11 lea eax , [ebp+Data]
12 push offset asc_408D80
13 push eax
14 call _strcat
15 pop ecx
16 pop ecx
17 loc_40:
18 lea eax , [ebp+Data]
19 push offset aSvcs_exe
20 push eax
21 call _strcat

26

Listing 1 Example of a malware
code fragment.

1 jmp lab
2 lan: add [esp], 1
3 jmp lay
4 lop: cld
5 jmp lah
6 lac: scasb
7 jmp lam
8 laz: mov al , 99
9 jmp lop

10 lav: loop lop
11 jmp law
12 las: dec edi
13 jmp lav
14 lab: mov edi , offset X
15 jmp laz
16 lam: push edi
17 jmp lan
18 lay: pop edi
19 jmp las
20 lah: xor byte ptr [edi],1
21 jmp lac
22 law: jmp short X
23 ...
24 X: db 8c 84 d9 ...
25 db ...
26 db 01 98

Listing 2 Obfuscated version of Listing 1.

1 lea eax , [ebp+data1]
2 push esi
3 push eax
4 call ds:GetWinDir
5 lea eax , [ebp+data1]
6 push eax
7 call _strlen
8 cmp [ebp+eax+dat2], 5Ch
9 pop ecx

10 jz short label1
11 lea eax , [ebp+data1]
12 push offset data3
13 push eax
14 call _strcat
15 pop ecx
16 pop ecx
17 label1:
18 lea eax , [ebp+data1]
19 push offset data4
20 push eax
21 call _strcat

26

Listing 3 Deobfuscated version of Lis-
ting 2.
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Table 1 The program analysis oracles and the corresponding query primitives used as building blocks for the malware transformation algorithms

Oracle Description of Return Value

Program Exposure OEX(P) The binary program P ′, which is derived from P by execution of a maximum of instructions, such that the relevant

behavior of P ′ and P is equivalent.

Control Flow OCF(P, x) The set of successors of the instruction at x during any execution of program P .

Semantic Nop OSN(P, x, y) True if the program locations x and y delimit a semantic nop for every execution of the program P .

the Windows system directory obtained through a call to Get-

WindowsDirectory. After applying the packing, junk insertion,
and reordering obfuscations (in this order), a malware writer
could obtain the obfuscated malware in Listing 2. Compa-
ring the two listings, we note the effect of obfuscation on
the malware instance: the packing transformation has hidden
the malicious code inside the data block starting at X and,
as a result, only the code of the unpacking routine is visible.
Any attempted matches against a signature that refers, for
example, to the call to GetWindowsDirectory will fail. Fur-
thermore, the unpacking routine was injected with junk code
(instructions on lines 16, 2, 18, and 12) and was subjected to
reordering. The result of these obfuscations is that signatures
identifying the unpacking loop will no longer match, and thus
the malware writer will successfully evade detection. Note
that in contrast to typical malicious code, the unpacking rou-
tines cannot be recognized by characteristic system calls.

Our malware transformation algorithm, when applied to
the code in Listing 2, identifies the obfuscations that were
applied to the malware instance and reverses them. In this
case, all three obfuscation types are present. The transformer
first undoes the reordering obfuscation by determining that
the jump instructions on lines 1, 3, 5, 7, 9, 11, 13, 15, 17,
19, and 21 are unnecessary. Therefore, these instructions are
removed from the program and the transformer reorganizes
the code into straight-line sequences in order to maintain the
original behavior. Next, the junk code on lines 16, 2, 18,
and 12 (identified using a semantic nop detector) is remo-
ved from the program. Finally, the packed code is extrac-
ted with the help of a dynamic analysis engine. The specific
algorithms applied during the malware transformation are
detailed in Sect. 3. The resulting code, shown in Listing 3,
is syntactically equivalent (modulo renaming) to the origi-
nal malware and can be passed to a malware detector for
analysis.

3 Malware transformation algorithms

We present algorithms to transform malware that is obfusca-
ted with the techniques most common in real-life malware-
generation libraries [16]. For each of the three obfuscation
techniques (packing, code reordering, and junk insertion),
we describe a corresponding transformation algorithm that
reverses the effects of that obfuscation.

In order to factor out, and thus understand, the program
analysis effort required for malware transformation, the algo-
rithms are designed relative to several program analysis pri-
mitives. Each primitive operation takes the form of a query to
a corresponding program analysis oracle. The program ana-
lysis oracles answer queries about various program struc-
tures (e.g., control flow graphs, data dependence graphs).
Note that the tasks of the oracles are undecidable, as usually
in program analysis, and therefore need good approximative
implementations, which are presented in Sect. 4. The oracles
and their primitives are listed in Table 1. For the remainder of
this section, the oracles are black boxes that provide a query
interface.

On top of the oracles, we build three algorithms that trans-
form malware such that three common obfuscations are rever-
sed. The first algorithm describes a malware transformation
for code ordering that ensures that instructions appear in the
program file in a natural order. The second algorithm imple-
ments a malware transformation for program exposure, such
that a formerly packed program appears with all encrypted
code and data exposed. The third algorithm addresses a mal-
ware transformation that identifies and eliminates all instruc-
tion sequences that form a semantic nop. As Fig. 3 illustrates,
each of these algorithms uses one or more of the oracles from
Table 1.

We use the following model of binary programs to des-
cribe the functionality of the oracles. A binary program is a

Fig. 3 Dependencies of
malware transformers on
program analysis oracles
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pair P = (M, c), where M is a binary string representing
program memory (code and data) and c is a pointer to a posi-
tion in M (the entry point). The binary program is executed
by reading and interpreting the instruction at the target loca-
tion of c. An instruction can read and modify any value in
M , including other instructions. Finally, it sets c to point to
the next instruction to be executed. After execution of one
instruction, the program reaches a new state, which itself
represents a new binary program P ′ = (M ′, c′) on the modi-
fied memory M ′ with the new entry point c′. Thus, we view
the execution of an instruction as transition from one pro-
gram to another. Since the interpretation of the instruction
at location c can depend on program input (including sys-
tem state), there may be multiple outgoing transitions from
one program state. All possible transitions define a relation

δ�−→⊆ P×P, where P is the set of all programs. We will use
δ∗�−→ and

δ+�−→ to denote 0 or more and 1 or more transitions,
respectively.

Output can be generated during the execution of instruc-
tions. By relevant outputs we will refer to outputs such as
user interaction, operations on files, or network communica-
tion, but not to side effects such as different cache contents,
page tables, etc. Accordingly, we define the relevant beha-
vior of a program as a mapping from inputs (including the
empty input) to relevant outputs. For two programs P and
P ′ with equivalent relevant behavior, we will write P � P ′.

3.1 Malware transformation for code ordering

A common technique for obfuscation is code reordering,
where the basic blocks of a program are split by the inser-
tion of additional jump instructions, and subsequently reor-
dered. Consider the code in Listing 2, where the first four
non-control flow instructions executed are:

mov edi, offset der mov al, 99 cld xor byte ptr [edi], 1

Their order in the program file is completely different, as
illustrated by their corresponding line numbers 14–8–4–20.
Obfuscation by code reordering can be achieved using uncon-
ditional control flow instructions (jumps) or conditional
control flow instructions (branches) with opaque predicates
[12]. Opaque predicates are calculations which have a deter-
ministic result, but are statically hard to analyze. A conditio-
nal jump depending on the result of an opaque predicate is
therefore in fact unconditional. The algorithm we are about
to describe uses the control flow oracle OCF that is able to
identify all jump targets actually reachable during execution
of the program:

Definition 1 [Control Flow Oracle OCF]
The oracle OCF(P, x) determines the set of program loca-
tions that are successors of the instruction at location x in a

binary program P during any possible execution of P:

OCF(P, x) =
{

y : ∃M, M ′. P
δ∗�−→ (M, x) ∧ (M, x)

δ�−→ (M ′, y)
}

By querying the oracle, we know for any control flow instruc-
tion x where |OCF(P, x)| = 1, that it has only one possible
target, and is thus semantically equivalent to an unconditio-
nal jump. In particular, by using the oracle, the algorithm is
able to treat conditional jumps whose control condition is
an opaque construct as unconditional. For the remainder of
this section, we use the term “jump” to refer to unconditional
control flow instructions as identified by the oracle OCF.

Any code sequence generated by the code reordering
obfuscation necessarily contains jump instructions that are
not needed. Intuitively, if all the predecessors of an instruc-
tion are jumps, then one of the jump instructions is not needed
and can be replaced with the target instruction itself. In the
context of a control flow graph (CFG), we can formalize the
concept of unneeded unconditional jumps as a CFG inva-
riant: in an ordered CFG, each CFG node with at least one
unconditional-jump immediate predecessor also has exactly
one incoming fall-through edge. A fall-through edge is a CFG
edge linking a non-control flow instruction with its unique
immediate CFG successor or a CFG edge representing the
false-path of a conditional control flow instruction.

We analyze the CFG for each procedure in the program.
For each instruction violating the CFG invariant above, we
mark its unconditional-jump predecessor as superfluous.
Once all the superfluous control flow instructions are iden-
tified, the code ordering transformation removes them and
reorganizes the program code such that the behavior is pre-
served. We edit the program code directly by removing each
superfluous unconditional jump instruction and replacing it
with the target basic block. The code ordering transformation
is described in Algorithm 1 and illustrated in Fig. 4. As CFG
nodes N2, N4, N6, and N8 violate the CFG invariant, we find
that nodes N1, N3, N5, and N7 are candidates for removal.

In case a violating instruction has more than one
unconditional-jump predecessor, we can freely choose which
predecessors to mark as superfluous; this choice is a poten-
tial source of ambiguity as described in Sect. 2. Although we
have not encountered it in our evaluation, we handle this case
with a simple strategy for consistently selecting instructions
to remove. Intuitively, we will order the set of unconditional
jumps by comparing them using their sequences of prede-
cessors. We will then select the first unconditional jump (in
the ordered set) and mark it as superfluous. Formally, let
J = { j1, . . . , jN } be a set of unconditional jumps that are all
predecessors of the same instruction. Define Preds(i) to be
the set of predecessors of an instruction i and extend it to sets
of instructions, Preds({i1, . . . , iK }) = ⋃

1≤k≤K Preds(ik).
Then compute A = {PredSeq( j1), . . . , PredsSeq( jN )},
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Input: A CFG G = (V, E) of a program P , with V a set of vertices
and E a set of edges.

Output: A CFG G ′ = (V ′, E ′), the reordered version of G
respecting the CFG invariant.

begin
V ′ ←− V ; E ′ ←− E ;

repeat
N ←− ∅
// Collect in N the instructions violating the invariant
foreach node v ∈ V do

if ∃u ∈ Predecessors(v) . |OCF(P, u)| = 1 and v has no
fall-through predecessors then N ←− N ∪ {v}

// Replace unconditional jumps with their targets
foreach violating node n ∈ N do

j ←− select jump node from Predecessors(n)

V ′ ←− V ′ \ { j}
E ′ ←− E ′ \ {e : e ∈ E ′ ∧ (e = ( j, k) ∨ e = (i, j))}
E ′ ←− E ′ ∪ (Predecessors( j)× {n})

until N = ∅
return G ′ = (V ′, E ′)

end
Algorithm 1: Code ordering transformation of malware.

Fig. 4 CFG graph fragment containing the first four non-control flow
instructions in execution order from Listing 2

where PredSeq is the sequence of predecessor instructions,
PredSeq(i) = 〈

Preds(i), Preds2(i), . . . ,
〉
. We can order the

set A using any complete ordering relation over sequences of
sets of instructions (e.g., lexicographic order over the set of
opcodes). The ordered set A induces a natural order on the set
J of unconditional jumps. The unconditional-jump instruc-
tion that is first in the ordered set J is marked as superfluous
and removed.

3.2 Malware transformation for program exposure

Packing describes the process of encrypting a program and
adding a runtime decryption routine to it, such that the beha-
vior of the original program is preserved. By randomly choo-
sing encryption keys, it is possible to create a multitude of
instances from one original program. The encryption comple-
tely changes the binary footprint of a program, and malware
authors commonly use packing to evade scan string-based

malware detectors. The malicious code resides in the execu-
table file in an encrypted form, and is not exposed until the
moment the executable is run. Thus, a scan string algorithm
will fail to detect the malware by reading the file, unless it is
updated with a new scan string tailored towards this specific
packed instance of the malware.

By analyzing programs obfuscated by packing, we found
that they consist of (1) a decryption routine (an instruction
sequence that generates code and data), (2) a trigger ins-
truction that transfers control to the generated code, (3) an
unpacked area (the memory area where the generated code
resides), and (4) a packed area (the memory area from where
the packed original binary is read). The program transfor-
mation technique we present here works independently of
the positioning of these four elements in the program. The
only restriction we place is for execution flow to reach the
decryption routine before it reaches the trigger instruction.
Packing does not change the relevant behavior of a program.
Hence, transformation of a packed program (called unpa-
cking) consists of recovering the original program that has
the same relevant behavior as the packed program.

According to our threat model described above, in a packed
program the decryption routine precedes the execution of the
original program. To ensure that the original program is cor-
rectly restored at runtime, the decryption routine generates
the same results every time the program is run, regardless of
any input to the program. Furthermore, the operations of the
decryption routine affect only program memory. As a conse-
quence, it is possible to create an equivalent program not
containing the decryption routine by setting all the values in
the unpacked area to the expected results of its computation
beforehand.

We now define the Oracle OEX:

Definition 2 [Program Exposure Oracle OEX]
Given a binary program P , the oracle OEX determines a
binary program P ′, which exhibits the same relevant behavior
as P , such that P ′ is reachable from P through transitions on
δ, and every binary program P ′′ reachable from P ′ exhibits
different relevant behavior. Formally, OEX(P) = P ′ such
that:

P
δ∗�−→ P ′ ∧ P � P ′ ∧

(
∀P ′′ . P ′ δ+�−→ P ′′ ⇒ P �� P ′′

)

Intuitively, OEX returns the binary program P in the latest
possible state where the relevant behavior is equivalent to
the original program. Given a packed file P , OEX(P) =
P ′ is the binary program which will be executed after the
trigger instruction. For a program P that has not been packed,
P ′ = P , assuming that P does not start with instructions not
affecting the relevant behavior.

Using the oracle OEX, we can now transform out the ini-
tial decryption in the program and produce a program file
that visibly contains the unpacked code, as illustrated in
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Algorithm 2. To remove the unwanted decryption routine,
we traverse the program control flow graph according to the
control flow oracle OCF. Starting with the instruction at the
entry point of P , we delete all instructions preceding the trig-
ger instruction in the control flow graph, as well as the trigger
instruction itself.

Input: A program file P .
Output: An unpacked program file P ′.
begin

D←− ∅
P ′ ←− OEX(P)

W ←− {ProgramCounter(P)} ; c←− ProgramCounter(P ′)
if W = {c} then return P
while W �= ∅ do

Let x ∈ W
W ←− W \ {x} ; D←− D ∪ {x}
foreach y ∈ OCF(P, x) do

if (y �= c) ∧ (y not already processed) then
W ←− W ∪ {y}

end

foreach d ∈ D do
Delete location d from P ′

return P ′
end
Algorithm 2: Malware transformation for program expo-
sure.

3.3 Malware transformation for semantic nops

A code sequence in a program is a semantic nop if its execu-
tion preserves all variable values in the program and it does
not generate any relevant output. In the control flow graph
of the program, semantic nops created by the junk insertion
obfuscation form hammocks1 [17]. Hammocks are subgraphs
of the control flow graph with single entry and exit nodes. The
transformation algorithm for semantic nop removal uses the
oracle OSN to determine whether a hammock is a semantic
nop:

Definition 3 [Semantic Nop Oracle OSN]
The oracle OSN determines whether a hammock given by its
entry and exit nodes x and y is a semantic nop; specifically,
it returns true iff (1) in all executions of P , memory contents
at the time the hammock is entered are identical to memory
contents at the time the hammock is left, and (2) execution of
the hammock does not change relevant behavior. Expressed

1 A hammock is a subgraph of a CFG G induced by a set of nodes
H ⊆ Nodes(G) such that there is a unique entry node e ∈ H where
(m ∈ Nodes(G) \ H) ∧ (n ∈ H) ∧ ((m, n) ∈ Edges(G)) ⇒ (n = e)
and such that there is a unique exit node t ∈ H where (m ∈ H)∧ (n ∈
Nodes(G)\H)∧ ((m, n) ∈ Edges(G))⇒ (m = t). Structured if, while,
and repeat statements are examples of hammocks.

in terms of transitions on binary programs, we have:

OSN(P, x, y) = ∀M, M ′.
(

P
δ∗�−→ (M, x)

δ∗�−→ (M ′, y)

⇒ M = M ′
)
∧

∀M.
(

P
δ∗�−→ (M, x)⇒ (M, x)� (M, y)

)

The transformation algorithm shown in Algorithm 3
analyzes each function in the program, enumerating all
hammocks as candidates for semantic nop checking. The
hammocks are derived from control flow dominators and
post-dominators. A hammock’s entry node dominates a
hammock’s exit node, and the exit node post-dominates the
entry node. To compute dominators in a control flow graph
we use standard algorithms from compiler literature [18],
which depend on the control flow oracle OCF.

Input: A program file P .
Output: A program file P ′ with no semantic nops.

begin
P ′ ←− P
foreach H ∈ Hammocks(P ′) do

if OSN(P ′, H) = true then
Remove H from P ′
Recompute Hammocks(P ′)

end
end
return P ′

end
Algorithm 3: Semantic nop transformation of malware.

We resolve any ambiguity arising from overlapping
semantic-nop hammocks (such as those in Fig. 2 of Sect. 2)
by selecting the largest hammock(s) and then choosing the
hammock with a non-overlapping entry node. This does not
guarantee the recovery of the code in the original malware
instance, but fixes one malware instance as a normal form
for all obfuscated variants of the original malware instance.

4 Implementation

Our implementation of the malware transformation algo-
rithms builds on top of publicly available tools for analysis
and manipulation of executable code. The program exposure
transformation operates on the binary code representation,
whereas the semantic nop and code ordering transforma-
tions rewrite ×86 assembly code. The suspicious program
is disassembled using IDAPro [19] and the resulting assem-
bly language program is transformed according to the ans-
wers provided by the program analysis oracles. The assembly
language program is rewritten and then reassembled into an
executable program. Currently, the reassembly step of this
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process requires manual intervention, as IDAPro sometimes
produces imprecise disassembly results. We plan to automate
this process as much as possible and we are exploring pos-
sible alternatives to IDAPro.

In the remainder of this section we present our implemen-
tations approximating the three program analysis oracles.
Each oracle implementation can make use of a static ana-
lysis engine built on top of IDAPro as well as a dynamic
analysis engine based on the open-source processor emulator
qemu [20] to which we added tracing and dynamic analysis
functionality.

4.1 An implementation of the program exposure oracle OEX

For the implementation of the program exposure oracle, we
introduce a technique based on dynamic analysis. Dynamic
analysis is limited to information gained in the observed exe-
cutions. However, since a packer has to ensure the integrity
of the generated binary in every execution of the packed pro-
gram, the result of the unpacking routine needs to be invariant
and deterministic. Thus, dynamic analysis of the unpacking
routine is guaranteed to yield results representative for every
execution of the packed program.

Oracle 1 describes, in pseudocode, the process of identi-
fying all the instructions of a self-generating program. We
emulate the program in a controlled environment until the
program counter reaches the generated-code area. During
emulation, we capture all data the program writes to memory.
Finally, we modify the original program using the captured
data to reflect its last emulated state.

In our current prototype we execute the program in a modi-
fied version of the qemu system emulator [20], collect all
the memory writes (retaining for each address only the most
recently written value), and monitor execution flow. If the
program attempts to execute code from a memory area that
was previously written, we capture the target address of the
control flow transfer (i.e., the trigger instruction) and termi-
nate execution.

Our current implementation does not have an automated
way to check whether a program is self-generating. We are
exploring various techniques that can identify the presence
of self-generating code. One promising approach is the use
of static analysis to locate the control flow instruction that
directs execution into dynamically generated code. Another
possible approach is based on the byte value entropy of the
executable file, as previous work has shown that compressed
files have statistically different byte distributions compared
to uncompressed files [21–23].

4.2 An implementation of the control flow oracle OCF

The goal of the control flow oracle OCF(P, x) is to determine
the program locations succeeding the instruction at program

Input: A program file P and a program location x .
Output: The program P in the state after decryption has finished.

begin
T ←− ∅ ; // history of program writes
r ←− EntryPoint(P) ; // current program counter

/* Termination condition: control flow reaches a previously
written location */

while ¬(∃v.〈r, v〉 ∈ T ) do
Ic ←− P[r ] ; // Instruction at location r in P.
Emulate(P, Ic)

if HasTerminated(P) then break
if IsMemoryWrite(Ic) then

Let v be the value written by Ic
Let a be the target memory location
if ∃v′.〈a, v′〉 ∈ T then T ←− T \ {〈a, v′〉} // Remove

earlier writes
T ←− T ∪ 〈a, v〉

r ←− ProgramCounter(P)

/* Construct the unpacked program */
P ′ ←− P
foreach location a in P do if ∃v.〈a, v〉 ∈ T then P ′[a] ←− v

ProgramCounter(P ′)←− r

return P ′
end

Oracle 1: Program exposure oracle OEX.

location x in actual executions of the program P . The set
of an instruction’s successors is fixed and can be determined
statically if the instruction is a non-control flow instruction,
a direct jump, or a call. In our current implementation, we
use the IDAPro disassembler [19] to identify these control
flow edges.

Indirect jumps and indirect calls significantly raise the
complexity of the oracle. Both indirect jumps and indirect
calls use a computed value (in register or a memory loca-
tion) to determine the target of the control flow transfer. The
computation of the target location can be arbitrarily complex
(e.g., using branch functions [24]). The current implemen-
tation of the control flow oracle handles a limited class of
indirect jumps. Based on heuristics of the IDAPro toolkit,
the control flow oracle can determine the target locations for
control flow transfers that use a jump table.

Finally, branches (i.e., conditional jumps) pose problems
as well when used in conjunction with opaque predicates.
Opaque predicates always evaluate to the same truth value,
with the additional property that determining this truth value
is statically hard to do. Opaque predicates have been discus-
sed in research literature [12,25], but have yet to make their
way into real-world obfuscation tools. We plan to explore
the handling of branches based on opaque predicates in the
future, for example through the use of dynamic analysis to
identify opaque predicate candidates.
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4.3 An implementation of the semantic nops oracle OSN

The semantic nop oracle has to determine whether a code
hammock preserves the state of the program. This condition
can be expressed, equivalently, in terms of program variables
before and after the code sequence, i.e., a semantic nop pre-
serves all program variable values (memory, registers). Our
implementation is inspired by the use of decision procedures
for semantics-aware malware detection [26]. We use a stack
of decision procedures with varying degrees of power and
cost. First, a simple pattern matcher identifies sequences of
instructions known to be semantic nops. Second, a random
execution engine can prove that the hammock is not a seman-
tic nop. If after one random execution the state is not identical
to the initial state, then the hammock is not a semantic nop.

The third decision procedure is a theorem prover, Sim-
plify [27], which determines whether the hammock,
expressed as a state transformer using variables in SSA form,
implies that the values of all the state variables are preser-
ved. If the negation of the formula is not satisfiable, then the
hammock is a semantic nop. The decision procedure using
the theorem prover does not handle hammocks that contain
loops.

Our fourth decision procedure is based on a bounded
model checker, UCLID [28]. The hammock is converted into
a sequence of state-transition rules. We use UCLID to unwind
the code up to a certain, heuristically determined depth, and
then query whether the resulting state is identical to the initial
state. If the model checker provides a counterexample, then
the hammock is no semantic nop.

4.4 Discussion of limitations

We now consider the limitations of our oracle implemen-
tations compared to the ideal oracles outlined in Sect. 3.
The control-flow oracle OCF has the largest impact on the
accuracy of our malware transformation system since all
three component transformers depend on it. If the program is
obfuscated such that the code cannot be disassembled or the
control flow cannot be recovered accurately, then the transfor-
mation process can fail to deobfuscate the malware instance.
The second limitation that could be exploited by a malware
writer is the incompleteness of the semantic-nop oracle OSN.
Because checking whether a code fragment is a semantic nop
is undecidable, our implementation errs on the side of sound-
ness. As a result, complex semantic nops that involve loop
constructs might not be identified or removed.

5 Evaluation

The key metric in our evaluation of malware transforma-
tions is the improvement in the detection rate (percentage of

variants detected) observed in commercial anti-virus tools.
For each obfuscation technique, we obfuscated a known mal-
ware instance to create a set of new variants. We then measu-
red the detection rate of four commercial anti-virus tools on
this set of variants—this established the baseline for compa-
rison. The four anti-virus tools are Norton AntiVirus version
10.0.2, McAfee VirusScan 4.40, Sophos Anti-Virus 3.96, and
ClamAV 0.87, each with up-to-date signatures. Each variant
in the obfuscation set passed through the malware transfor-
mation process to produce a set of transformed variants. The
detection rate of the same commercial anti-virus tools was
then measured on this set. By comparing the two detection
rates, we determined to what extent our malware transforma-
tions improved the detection ability.

We observe that the detection rate significantly improves
when malware transformations are applied. This result sup-
ports our intuition that malware transformations benefit the
detection process.

5.1 Evaluation of the transformation for program exposure

To evaluate the efficacy of malware transformations in the
context of self-generating programs, we made use of a set of
seven existing tools for code compression. These tools, com-
monly known as packers, obfuscate a program such that the
program body (the code and/or the data) is compressed, and
a new program is created to include the decompressor as well
as the compressed data. At execution time, the decompressor
extracts and transfers control to the original program body.
For evaluation, we used the packers Petite, UPX, ASPack,
Packman, UPack, PE Pack, and FSG. Each packer was run on
several versions of the Netsky and Beagle viruses, to obtain a
total of 90 different new variants. The self-generating variants
were then transformed to obtain the set of unpacked variants.
Both sets were scanned using the four anti-virus tools. The
results are summarized in Fig. 5.

The numbers show that the program exposure transfor-
mation improved detection rates significantly, but did not
achieve 100% detection. We discovered that some malware
detectors use signatures depending on the entry point value,
which in some cases differed between the initial and the unpa-
cked malware instance. If we manually set the entry point for
the unpacked executable to the correct value in the respective
cases, the malware detector was able to identify the viruses
reliably. The change in the entry point value is due to the fact
that some packers not only dynamically generate the origi-
nal program but also add additional fixup code. These code
portions are executed before the original program, changing
the entry point of the reconstructed program.

Furthermore, if a malware detector uses only signatures
tailored towards a specific obfuscated malware instance, it
will fail to detect the transformed instance. The majority of
malware detectors already come with signatures for unpacked
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Fig. 5 Detection rates for
packed malware variants. The
Transformed bars indicate
detection rates after the input
programs were preprocessed by
the malware transformer. The
Transformed + entry-point
recovery bars indicate the
detection rates if, in addition,
the entry-point of the unpacked
program was manually
recovered 0% 50% 100%
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Transformed

Transformed
+ entry-point recovery

ClamAV
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malware to support specialized unpacking engines for com-
mon executable packers. ClamAV, however, sometimes failed
to detect the unpacked instances due to a lack of signatures
for the unpacked malware variants.

5.2 Evaluation of the code ordering transformation

We generated a large number of variants from 10 viruses
(Beagle.Y, Triplix-C, Triplix-D, Firstborn, Integrator, Fiasko,
Halen, Terronia, Dammit, Idele). We created approximately
70 variants for each original virus, for a total of 712 variants.
Then, we measured the detection rate over the new variants
with and without code ordering.

Each variant was generated by applying code reordering
to a randomly chosen set of program fragments. In Table 2
we list the detection rate when the obfuscation is applied to
10%, 50%, and 90% of the program. A ratio of 10% means
that a tenth of the original virus code (measured in num-
ber of instructions) was randomly selected and obfuscated.
While the detection rate for these obfuscated variants drop-
ped significantly in many cases, it went back up to 100%
after we applied the code ordering transformation.

Note that, in Table 2, Norton AntiVirus and ClamAV are
outliers. For some of the viruses, both succeed in detecting
all variants generated using the reordering obfuscation for a
simple reason: their signatures match data areas, which are
unchanged by obfuscations that work on code. Because of
this, polymorphic viruses commonly employ code obfusca-
tion in combination with packing.

5.3 Evaluation of the semantic nops transformation

Similar to the evaluation of the code ordering malware trans-
formation, we generated a large number of variants of the
10 viruses and measured the detection rate before and after
applying the semantic nop transformation. Each variant was
generated by inserting junk code into a randomly chosen set
of program locations, for a total of 570 variants. We list in
Table 3 the detection rate when the obfuscation is applied to
10%, 50%, and 90% of the program. In addition to varying
the location of the junk code insertion, we also varied the

types of junk code generated, from simple nop instructions
to semantic nops that use stack and arithmetic operations. The
detection rate for these obfuscated variants again dropped
significantly in many cases; using the semantic nop trans-
formation the detection rate went back up to 100%. Since
junk-insertion is a code-only obfuscation, the detection rates
of Norton AntiVirus and ClamAV stand out again for the
same reason as before.

5.4 Malware transformation times

Figure 6 shows the average execution time for the various
transformation steps. Since this is an unoptimized research
prototype, we expect that significant speed gains can be
achieved through an optimized implementation. Both the
code ordering transformer and the program exposure trans-
former finish in about 10-20 seconds. The semantic nop
transformer is significantly slower as it must query a deci-
sion procedure for all possible hammocks in the program.
We believe that better strategies for semantic nop detection
are possible; one of our goals for future work is to improve
performance.

6 Related work

Obfuscations have been used for a long time to evade detec-
tion of malware. Polymorphic malware, which encrypts the
code under a different key at each replication, and meta-
morphic malware, which morphs itself at each replication,
are increasing threats to malware detectors [16]. Numerous
obfuscation toolkits are freely available, some with advanced
features. For example, Mistfall is a library for binary obfus-
cation specifically designed to blend malicious code into a
host program [29]. Other tools such as the executable packer
UPX [30] are available as open-source packages, making it
easy for malware writers to custom-develop their own ver-
sions. Free availability of obfuscation toolkits is spawning
new malware variants rapidly, whereas commercial malware
detectors are commonly incapable of handling the plethora
of obfuscations found in the wild [4]. While obfuscation
has found commercial application in protecting intellectual
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Table 2 Detection rates for malware variants obfuscated by code reordering

Obfuscation ratio (%) McAfee VirusScan Sophos Anti-Virus Norton AntiVirus ClamAV

Std. (%) Xfrm. (%) Std. (%) Xfrm. (%) Std. (%) Xfrm. (%) Std. (%) Xfrm. (%)

10 32.8 100 40 100 75 100 80 100

50 40.2 100 33 100 68.5 100 82 100

90 40.7 100 10 100 67 100 75.5 100

The Std. column indicates the detection rate of standalone virus scanners. The Xfrm. column indicates the detection rate of virus scanners after the
input program was first transformed

Table 3 Detection rates for malware variants obfuscated by junk insertion

Obfuscation ratio McAfee VirusScan Sophos Anti-Virus Norton AntiVirus ClamAV

Std. (%) Xfrm. (%) Std. (%) Xfrm. (%) Std. (%) Xfrm. (%) Std. (%) Xfrm. (%)

10 62.5 100 35 100 80 100 90 100

50 45 100 22 100 78.5 100 78 100

90 25 100 7.5 100 69 100 76.5 100

The Std. column indicates the detection rate of standalone virus scanners. The Xfrm. column indicates the detection rate after the input program
was first transformed

Fig. 6 Average running times
of the malware transformers for
different obfuscations. Times
are broken down into phases for
disassembly, analysis (static
analysis resp. emulation), and
rewriting of the executable

Self Generatio

10 20 30 180 190 s

n

Semantic Nops

Code Reordering Disassembly

Analysis

Rewriting

property in software [11,12,31], the goal of our work is to
address the particular obfuscations used by malware writers.
Recent work presented obfuscations that aim to thwart both
static and dynamic analysis by combining code encryption
with expensive decryption strategies [32]. We note a detector
need not identify malicious code before the program runs,
but only before the program harms the system. A possible
transformation strategy would monitor the program until the
payload is decrypted and then make use of the techniques
in our present work to transform the code before detection.
Achieving the low overhead required to make such a strategy
practical for broad deployment is the goal of future research.

Deobfuscation tools appeared in response to particular
attacks. Detection of polymorphic malware requires the use
of emulation and sandboxing technologies [33], which inte-
grated emulation into the malware detector. This approach is
open to resource-consumption attacks and is prone to false
negatives, since the execution time in the sandbox has to be
restricted for performance reasons [34,35]. In contrast, our
code-identification oracle terminates the program as soon as
it attempts to execute dynamically generated code. Another
approach to unpacking is PolyUnpack [36], which executes
the program inside a debugger until it reaches an instruction
sequence that does not appear in the static disassembly of
the program. PolyUnpack suffers from limitations inherent

in static disassembly, limitations that we avoid in our program
exposure transformer by using a purely dynamic technique.
Other work on deobfuscation has proposed heuristics to reco-
ver the import address tables from a packed binary [37]. We
will investigate the addition of such techniques to our imple-
mentation of the program exposure oracle.

Static analysis approaches for detecting and undoing
obfuscations have been proposed for particular obfuscations,
such as techniques for defeating the effect of control flow
flattening [38] or for handling a given metamorphic engine
through the use of term rewriting [39]. More general approa-
ches, similar in intent to ours, attempt to normalize C pro-
grams by ordering program statements and expressions [40]
and to apply compiler-optimization techniques to eliminate
obfuscated code [41,42]. These algorithms complement ours
as they perform local deobfuscation.

When we apply our malware transformations, we assume
that the code in the program file has been successfully disas-
sembled. While recent work showed that an attacker can
make disassembly hard [24], we note that other researchers
have already proposed solutions to counter such techniques
[43,44].

Several new research approaches propose semantics-based
malware detectors that can reliably handle malware variants
derived through obfuscation or program evolution [26,45].
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These methods are promising, but they face an uphill battle
in terms of deployment opportunities due to the fact that the
current commercial malware detectors have a large install
base. We believe that our malware transformer provides an
easier upgrade path to more advanced detection techniques,
as it works in conjunction with existing detectors.

7 Conclusion

This paper presented a set of malware transformations that
undoes the effects of three common obfuscations used by
malware writers. We demonstrated that the detection rates
of four commercial malware detectors can be improved by
first processing an executable by a malware transformer. An
additional benefit of malware transformations is the separa-
tion of concerns between the malware transformation stage
and the malware detection stage. This leads to more maintai-
nable software and allows for independent improvements in
malware transformation techniques and malware detection
algorithms. In the future, we will investigate improvements
to our oracle implementations. In particular, we will address
the handling of opaque predicates and the reconstruction of
import tables. We also plan to expand the set of obfuscations
handled by our malware transformer and to improve overall
performance.
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