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Abstract 802.11 Wireless local area networks are unfortu-
nately notoriously infamous due to their many, critical
security flaws. Last year, world-first 802.11 wireless driver
vulnerabilities were publicly disclosed, making them a criti-
cal and recent threat. In this paper, we expose our research
results on 802.11 driver vulnerabilities by focusing on the
design and implementation of a fully featured 802.11 fuzzer
that enabled us to find several critical implementation bugs
that are potentially exploitable by attackers. Lastly, we will
detail the successful exploitation of the first 802.11 remote
kernel stack overflow under Linux (madwifi driver).

1 Introduction

A 2006 landmark has been the presentation “Device Drivers”
[2] by Johnny Cache and David Maynor at Black Hat USA
[3]. They detailed the current vulnerability research that
focuses more and more on device driver vulnerabilities as
the source code of main kernels, operating systems and soft-
ware is much more secure than years ago: it is much harder to
find and exploit a system vulnerability1 than before. Efforts
on secure programming and code auditing besides overflow
prevention mechanisms in most kernels are helpful in the pre-
vention of finding and exploit a security vulnerability. That
is the reason why finding vulnerabilities in third-party device
drivers may be of interest for vulnerability researchers.

During their presentation, Cache and Maynor played a
video [4] showing a successful exploitation of a MacBook
computer thanks to a wireless vulnerability. This video was
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impressive for the audience as it was the first time people
made the disclosure of a potential exploitable security vulne-
rability in a wireless driver. But, the vulnerability disclosure
thanks to a video was quite disappointing as no further preci-
sions were disclosed by the researchers. Moreover, the video
had some incoherence that issued a lot of discussions [5,6].
At the present, it is still hard to understand what really hap-
pened even if some public explanations are available [7–9].

The main interest of this presentation was to make the
people aware of wireless driver vulnerabilities that are inhe-
rently critical as any exploitable security bug will be by
the “air”. An attacker would be able to perform remotely
arbitrary code execution with kernel privileges—also cal-
led ring0 [10]. Given that most laptops are today shipped
with 802.11 devices and that most people now communi-
cates more with 802.11 technology than ever, consequently
the risk is quite high. Of course, classic security mechanisms
like personal firewalls, anti-virus and host intrusion preven-
tion systems are completely inefficient as the attacker is able
to run code with kernel privileges. Would it be possible to
compromise your operating system thanks to wireless driver
vulnerabilities?

2 Context

A driver is usually coded in C/C++ languages and classic
implementation bugs are possible even in these extremely
critical parts of the operating system. One could imagine
that drivers should be much more code audited since they are
running with kernel privileges; but with third-party drivers,
it is far from being than mandatory. Classic programming

1 In this sentence, we do not refer to web-based vulnerabilities such as
PHP, SQL injection and XSS that are so numerous…
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errors at the user-land level may be also present in kernel-land
applications like wireless drivers.

So, the first step is discovering these implementation bugs
that could be exploitable in some particular cases. As a mat-
ter of fact, successful (and reliable) exploitation is not sure
for any vulnerability, and this must be carefully evaluated
(limited stack overflow, hard to exploit off-by-one, address
space layer randomization…).

Regarding security, most of the time the inherent com-
plexity of protocols and applications makes security analy-
sis very difficult not to say very hard—due to the fact that
implementation of a complex application is error-prone. In
the present paper, we focus on the 802.11 standard and its
extensions [1] (802.11i for enhanced security, 802.11e for
quality of service, and the next ones…) that are quite com-
plex and thus error-prone, when implementing the firmware
and drivers in both wireless client and access points. Most of
the time, finding vulnerabilities by direct source code audi-
ting and/or reverse engineering can be quite time consuming
and requires some advanced skills and tools. In other words: it
is extremely costly! That is the reason why using other tech-
niques to find implementation bugs must be evaluated in
order to have a better price/earning trade-off.

3 Fuzzing

3.1 Definitions

A number of definitions are available on the Internet, so we
decided to extract these two ones hereafter below that seem
to be quite relevant to us:

• “Fuzz testing or fuzzing is a software testing technique
that provides random data (“fuzz”) to the inputs of a pro-
gram. If the program fails (for example, by crashing, or by
failing built-in code assertions), the defects can be noted”
(source: Wikipedia, the free encyclopedia).

• “Fuzz testing or Fuzzing is a Black Box software tes-
ting technique, which basically consists in finding imple-
mentation bugs using malformed/semi-malformed data
injection in an automated fashion” (source: Open Web
Application Security Project).

Thus we can define fuzzing as a software testing technique
aiming at finding implementation bugs in an automated way.
We consider that fuzzing relying only on malformed/
semi-malformed data can be quite misleading, i.e. in some
situations a valid frame according to a protocol standard
(RFC, IEEE) may be invalid with respect to the software
(crashing the application). So in this particular case, the
malformed/semi-malformed frame is only bad for the appli-
cation that contains an implementation bug.

Even if a great fuss is made about it since 2 years, fuzzing is
not a recent technique. According to Wikipedia, “fuzz testing
was developed at the University of Wisconsin-Madison
in 1989 by Professor Barton Miller and the students in his
graduate Advanced Operating Systems class. Their work can
be found at [11].”

An open question is: “what are the differences between
classic software testing techniques and fuzzing?” as noted
in [12].

It is really hard to answer: the final goals are probably dif-
ferent. Today fuzzing is mainly focused at finding implemen-
tation bugs that will result in security flaws, whereas classic
software testing techniques are focused on interoperability,
good operation of implemented features, memory leaks and
so on…

In this paper, we will consider that fuzzing is a software
testing technique aiming at finding implementation bugs
without imposing any particular testing strategy (random,
valid, malformed/semi-malformed…).

3.2 Fuzzing: a good choice?

The main interest of fuzzing is its price-earning trade-off.
A basic fuzzer should be easy to implement—e.g. just feeding
the fuzzed application with random data—and would quickly
find the most obvious implementation bugs. Of course, it is
not feasible to test every code path with a fuzzer as testing
space is virtually infinite (and testing time is unfortunately
finite). Fuzzing is highly recommended as a first shot tool
against an application in order to find the most obvious bugs
if the fuzzer is protocol-oriented (or application-oriented),
but this technique cannot be helpful for identifying complex
bugs that could be found by source code auditing or reverse
engineering only.

Fuzzing may be considered as a part of the software testing
domain (since they have different goals, all testing techniques
are indeed complementary).

3.3 Some fuzzing successes

Fuzzing is now a popular technique when finding security
vulnerabilities. A lot of vulnerabilities are identified thanks to
fuzzing research as it is usually performed by some software
vendors (e.g. Microsoft) or other initiatives like “Month of
Browser Bugs (MOBB)”, “Month of Kernel Bugs (MOKB)”,
“Month of Apple Bugs” and “Month of PHP Bugs” [13–16]
that published a new security vulnerability every day during
1 month.

The file system fuzzer fsfuzzer [17] released during the
MOKB was very effective. His author disclosed numerous
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Fig. 1 802.11 Finite state machine

critical security flaws in most file systems2 thanks to a basic
fuzzer that randomly mangles some bytes in the file to be
mounted—at the source code level, there is no tests aiming at
a specific file system. So even a basic fuzzer may be extremely
effective, but, when considering the finding of complex bugs,
fuzzing is much less efficient.

4 802.11 Standard overview

4.1 802.11 Finite state machine

The 802.11 finite state machine exposed in Fig. 1 are com-
posed of three kind of states:

• State 1: initial state, not authenticated, not associated;
• State 2: authenticated,3 not associated;
• State 3: authenticated, associated.

For 802.11 wireless communications, the authentication,
association, deassociation and deauthentication procedures
enable the wireless client and access point to be synchronized
regarding their own finite state machines. De-authentication
and deassociation procedures are in charge in keeping the
state machines synchronized.

From client-side, we have:

2 We speak of file systems that are parsed and thus the parser may have
implementation bugs as well; and as the parser is located in kernel-land
because mounting file systems is devoted to the kernel, the vulnerability
are somewhat critical.
3 In the 802.11 sense, i.e. “open” or “shared key” authentication, which
is completely different than security mechanisms implemented in the
802.11i standard.

• State 1 is the initial state where the client device probes
for access points,

• State 2 is the authenticated state where it is authenticated
to the access point,

• State 3 is the associated state where it is authorized to send
(and receive) data communication frames to (and from)
the wired network through the wireless access point. All
state transitions are processed thanks to 802.11 manage-
ment frames.

The 802.11 standard specifies the state machine as it must be
implemented in firmware and/or driver, but of course, nume-
rous other internal states in the driver are managed in order
to fully operate. For example, an access point will accept
association requests that includes a valid configured network
name only. Regarding the implementation, numerous states
must be implemented in the driver, and that is implementation
dependent…This is a critical issue for the fuzzing process as
the purpose is to test as many as possible different code paths
in order to maximize the code coverage by choosing an ade-
quate testing strategy. This is an important requirement for
the design of an effective fuzzer.

4.2 Scanning for 802.11 networks

The 802.11 standard [1] defines two different scanning
mechanisms in order to detect wireless access points:

• Active scanning: a wireless client sends successively
probe request frames to the broadcast address on every
802.11 channel and listen to beacon and probe response
frames sent back by access points (they must answer to
such probe request frames if it contains a null SSID—
also called empty SSID, which can be translated by any
SSID—or the configured SSID network name), these
frames are advertising all required information (network
name, channel, rates, cryptographic capabilities) in order
to show all these to the user through a user interface;

• Passive scanning: wireless client listens to beacon frames
on every 802.11 channels successively (beacon frames
are usually sent periodically4 by access points), these
frames are advertising all required information (network
name, channel, rates, cryptographic capabilities) in order
to show all these to the user through a user interface.

Thanks to these two scanning techniques, the wireless client
is able to build a list of nearby access points. Wireless Zero
Configuration service on Microsoft Windows and the iwlist
tool of wireless-tools [18] under Linux are using these scan-
ning techniques. These two methods are critical for 802.11

4 Usually a period of 100 ms is used.
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Fig. 2 802.11 Station attack
overview

fuzzing as the first step in 802.11 client-side fuzzing will
be devoted to send back appropriate beacon and probe res-
ponse frames in order to fuzz the initial state (i.e. detecting
access points). Of course, this is the most promising state
to fuzz as any exploitable bug would be exploited whenever
the client scans for wireless networks (i.e. without needing
to be associated to an access point—only by switching the
wireless interface on). Regarding security mechanisms, we
must also notice that some 802.11 firmware/driver imple-
mentations may behave differently from the 802.11 standard
and this will have impacts on the design of the fuzzer. This
particular issue will be discussed in the next part of our paper.

5 Design of a 802.11 fuzzer

5.1 Which frames to fuzz?

Every 802.11 states can be fuzzed. However, fuzzing state 1 is
obviously easier than fuzzing state 2 and 3; as a matter of fact,
fuzzing other states requires a successful process of authenti-
cation and/or association. Regarding the 802.11 MAC layer,
the acknowledgment of 802.11 frames is a requirement for
the frames to be accepted at MAC layer; thus for a suc-
cessful authentication, every frame must be ACKed within a
short period of time. This is usually hardly feasible efficiently
by user-land processes as acknowledgments procedures are
performed by the firmware. To fuzz other states, a solution
for ACKing 802.11 frame is mandatory while in monitor
mode.5

5 This is a specific mode on some chipset, firmware and driver imple-
mentations that allows arbitrary frame injection which is a requirement
for fuzzing, as we want to inject any kind of wireless frame (even if not
compliant to the 802.11 standard)!

In this paper, we will detail our work on state 1 client
side fuzzing as shown in Fig. 2. If exploitable security bugs
are found, then it implies possible compromising during the
scanning phase which is extremely critical. It is not necessary
for the client to be associated to a rogue access point to be
exploited: as the scanning is usually performed whenever you
activate the wireless interface, your kernel (and then your
operating system) can be compromised by listening to one
malicious beacon or probe response frame.

The risk is extremely critical comparing to other classic
wireless attacks that heavily rely on rogue access points [19]
or wireless traffic injection in upper layer communications
(HTTP...) [20,21]. Thanks to wireless driver vulnerabilities,
any exploitable security flaw will give the attacker the capa-
bility to execute arbitrary code with kernel privileges.

Today the popularity of 802.11 technology is obvious,
802.11 enabled devices are now ubiquitous: laptops, cellular
phones, PDAs, printers, cameras…So many potential vulne-
rable devices and so hard to mitigate security issues!

5.2 Main constraints for a 802.11 fuzzer

This chapter summarizes some issues encountered during the
design of our client-side 802.11 fuzzer.

802.11 state machine fuzzing Fuzzing the association pro-
cedure of a client to an access point is much more complicated
than only fuzzing the initial state. As a matter of fact, some
timing constraints at the 802.11 MAC layer level impose that
802.11 frames must be acknowledged with 802.11 control
frames within very short delays—about 300µs —and thus
making it very difficult to emulate it in user-land under moni-
tor mode of a wireless card. So during the association pro-
cess, the fuzzer would be able to send both authentication
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and association responses but also acknowledgment frames
for authentication and association requests (emulating a true
access point), if not the case, its responses will not be proces-
sed by the client device. We encountered this kind of issue
when developing a proof-of-concept tool called Raw Glue
AP [22] that emulates a set of virtual access points in moni-
tor mode, in order to capture any wireless clients in scanning
mode (a kind of captive portal at 802.11 MAC layer).

That’s one of the reason why we implemented only the
state 1 fuzzing. Moreover, most implementations when they
check for correct length or values in frames are calling the
same functions for both checking probe responses or associa-
tion responses (for example): thus, it is more than probable
than finding an implementation bug in state 1 will be the same
case than finding it in state 2. But, of course, this is only an
assumption from a developer point of view, and real life can
be quite different.

Firmware fuzzing This article focuses on 802.11 drivers
only. But some 802.11 chipsets are managing the MAC layer
in their firmware and are not entirely relying on the driver for
the MAC layer. For example, Prism2.5 and Prism54 chipsets
are parsing probe request and probe response frames in the
firmware, so, if an implementation bug is found, it is likely
to have some impact on the wireless connexion (e.g. hanging
and/or resetting the firmware) [25].

The main difficulty is to find this implementation bug
as there is usually no verbose information from the firm-
ware to the operating system (no logging, no debugging…),
most of the time the driver may detect that the firmware is
non responsive and may reset it. The second issue would be
to exploit this vulnerable firmware! So, if such issues are
identified, these should only imply denial of service attacks.

Test space versus testing time When considered random,
the entire test space is virtually infinite as every byte represent
a range of 256 possibilities, so full random fuzzing has nearly
no chance to be effective if the protocol is not trivial. Protocol-
oriented fuzzing is a better approach in order to elect only
interesting fields that will be parsed by the driver (this is the
goal of an efficient fuzzer, try to choose tests that will be par-
sed by multiple parts of the driver). If the fuzzer implements
a smart testing strategy which is designed according to the
protocol, it will improve the overall code coverage. Thus, it
is interesting to choose the best options to fuzz some speci-
fic fields, for example, fuzzing strings with format strings,
fuzzing bytes and words with boundary values in order to
trigger overflows…The design of the fuzzer must take into
account the most relevant tests by imagining which program-
ming errors would have been done in a buggy driver.

To the opposite, the 802.11 fuzzer disclosed at the Black
Hat US 2006 [23] conference considered a completely dif-
ferent approach as it is a fully random testing strategy.

These two different techniques may be complementary
but we preferred to implement a protocol-oriented version
for both testing time requirements—1 day of full testing and
no more—and efficiency, i.e. finding bugs.

Force 802.11 scan At first sight, this seems to be obvious,
but it is necessary to be sure that the wireless driver is parsing
the frames sent by the fuzzer. So it is more than interesting
to force the scanning process in order to accelerate tests6 and
reduce false negatives.7 This is implementation-dependent.

Under Microsoft Windows, we force 802.11 scanning
thanks to NetStumbler [24], and under Linux, thanks to iwlist
that calls SIOCSIWSCAN and SIOCGIWSCAN when exe-
cuted in privileged mode (SIOGIWSCAN only when execu-
ted in non privileged mode, in this particular case, scanning
results are given back thanks to a background scanning—in
the madwifi driver, it is the bgscan value in its configuration—
that calls SIOCSIWSCAN).

Making sure that packets are parsed by the driver During
scanning, the 802.11 wireless interface listens to every chan-
nel during a given time, which depends on its capabilities and
configuration. When tests are sent on a different channel than
the wireless card listens to, it could lead to false negatives as
these packets will not be interpreted and parsed by the driver.
A good workaround is to flood the radio with both beacon
and probe response frames during several seconds in order to
be sure that the particular packet will be parsed by the driver.

Of course, you must be sure that the wireless card is still
in scanning mode during all the fuzzing process (in case of it
associates to an open access point) thanks to functions in the
fuzzer devoted to check if active scanning is still operating
(e.g. by listening to probe request frames sent by the wireless
device).

Finding implementation bugs During the fuzzing process,
malfunctions may occur at the 802.11 driver level—in fact,
it is strongly suggested! Under Microsoft Windows, critical
implementation bugs will trigger a Blue Screen of Death (and
optionally8 a memory dump). In this particular case, it is quite
easy to detect it as the station is neither responding anymore
to any request (at network layer, e.g. wired Ethernet) nor have
any wireless activity, this will enable us to stop on the latest
test that triggered the bug.

Under Linux, it is quite different, as driver crashes or bugs
will be logged thanks to the kernel logging features (BUG,
oops…). Thus, it is interesting to parse the kernel logs in order

6 I.e. we do not want to wait for the driver to operate 802.11 scans regu-
larly, that are usually defined by default values especially in embedded
devices like 802.11 enabled cellular phones.
7 Fuzzing tests that will not be parsed by the driver.
8 It is configurable.
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Fig. 3 802.11 Fuzzing architecture

to match some interesting keywords and stop the fuzzer on
the latest test that triggered the implementation bug.

Other techniques are possible, especially when fuzzing
802.11 devices that do not have log nor wired interface such
as 802.11 enabled phones. For example, listening wether the
active scanning process is still operating by listening to probe
requests sent by the wireless device: if no more probe requests
occur, it is likely to have crashed. This particular technique
works for any kind of device.

Of course, in this part, we are finding only critical bugs that
have an impact on normal operation of the wireless device.
A lot of implementation bugs are still very hard to trigger
thanks to fuzzing and crash detection techniques. This is
unfortunately quite hard to overcome, especially when tes-
ting embedded devices. For example, some information leak
bugs were discovered by our fuzzer, when it was possible to
make the driver read some adjacent memory zones (of the
802.11 packet), but as these memory areas are readable this
is not a major malfunction (e.g. a buffer overflow) and thus
cannot be detected by the crash detection techniques exposed
in this chapter.

In Fig. 3, the Ethernet interface enables us to detect dri-
ver malfunctions in order to stop the fuzzing process on the
latest test that triggered the implementation bug. This is com-
plementary with the wireless interface that listens to probe
requests in order to check whether the scanning process is
still operating or not. It is also possible to attach a kernel
debugger on the fuzzed device communicating through the
wired interface, in order to catch exceptions and to trace the
driver. But of course, this is only feasible on general purpose
operating systems, i.e. not on embedded devices like 802.11
enabled phones.

5.3 Implementation

Chipset for wireless injection The Atheros chipset and its
Open Source driver madwifi [26] under Linux are well known
within the hacking community as they are very flexible—the
firmware is minimalist and the MAC layer is operated in
the driver. As a matter of fact, fuzzing requires to tweak all
protocol fields that could be operated (and thus overwritten)
by the firmware. It is critical to use a chipset that let us the

capability to perform arbitrary wireless frame injection over
802.11 bands (these frames could be compliant or not to the
802.11 standard). One could imagine that 802.11 protocol
conformance may be enforced at firmware level, nowadays
it is not the typical case since most chipset manufacturers
prefer to implement the MAC layer in software rather than
in the chipset, probably for cost reasons and flexibility.

Some fields are usually overwritten by most—but not the
Atheros one—firmwares as:

• The sequence number value in management and data
frames,

• The BSS Timestamp value in beacon and probe response
frames,

• The duration ID value,
• The capability to inject fragmented frames,
• The capability to inject control frames.

The Atheros chipset supports all above-mentioned features
except the sequence number forging that can be activated
thanks to a small patch [27] (but will set the retry flag to 1
for every injected frame which could be bad from an attacker
point of view; indeed retries will be detected by a wireless
intrusion detection system as an abnormal traffic). Taking a
look at LORCON [28] source code (which is a library for
wireless device abstraction and frame injection) gives better
information on chipset capabilities regarding monitor mode,
frame injection…

Programming language Even if it is possible to write a
fuzzer in C/C++ languages [23], it is more convenient to use
a high level language for 802.11 packet forging. We have
chosen the Python language for its capabilities, ease of use
and good performance.

As we will flood the radio with both beacon and probe
response frames, there will be no issue regarding frame injec-
tion performance where it would be necessary to answer to
probe request frames within a small window (several hun-
dreds of microseconds). As a matter of fact, probe request
frames sent by the client do not contain any cookie necessary
for the probe response (and thus emulating a kind of session
for the scanning process). So flooding the radio with both
beacon and probe response frames is by far the best option
(effective and easy to implement). Moreover, as stated in the
Johnny Cache, HD Moore and skape paper [29], some drivers
are only parsing beacon frames if probe response frames are
also sent in the air. Flooding the radio, seems again the best
option!

Relying on existing tools or development from scratch?
In our first version of the fuzzer, we developed a set of
functions to forge and inject 802.11 packets. Now, we have
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implemented our fuzzer thanks to Scapy [30] that implements
most parts of the 802.11 protocol and load of useful functions
for sending and receiving frames.

5.4 Choosing the 802.11 fields to fuzz

This section details the most important 802.11 frames.
A good understanding of the protocol is a requirement to
identify the best fields to be fuzzed. During the design of the
fuzzer, it is mandatory to be aware of possible implemen-
tation bugs and to find means to trigger them by tuning the
most appropriate 802.11 fields.

In Table 1, the frame control defines the 802.11 frame,
other fields in Table 1 do not seem to be promising regarding
fuzzing.

In Table 2, the frame control defines the 802.11 frame hea-
der. According to type and subtype values, the frame could
be a management frame (beacon, probe request…) or any
other frame. The type and subtype values are defined in the
802.11 standard and its extensions (QoS, action frames…). It
may be interesting to fuzz these fields since the driver needs
it to identify the kind of frame in order to parse the next layer
(which is defined thanks to the standard). Fuzzing at this level
checks the preliminary parts of the driver whenever it must
check for the frame type to be parsed or dropped.

In Table 3, management frames have a predefined frame
control (according to 802.11 standard). For example, it
defines that no more than three MAC addresses are set in this
mode. The driver parses the subtype value in order to parse
differently probe request and beacon frames for example.
Fuzzing at this level extends the code coverage comparing to
the latter test.

In Table 4, beacon and probe response frames are par-
ticularly interesting as they are parsed by wireless drivers
during 802.11 scanning. The timestamp, beacon interval and

Table 1 802.11 Frame

Field Size Information

Frame control 16 bits 802.11 Frame identification
and attributes

Duration/ID 16 bits NAV update and/
or association ID

Address 1 48 bits First MAC address

Address 2 48 bits Second MAC address

Address 3 48 bits Third MAC address

Sequence 16 bits Sequence and fragmentation
control numbers

Address 4 48 bits Fourth MAC address (WDS modea)

Frame body 0–2312 octets Frame body

FCS 32 bits Integrity check (CRC32)

a Wireless distribution system: repeater mode over wireless extend the
wireless coverage thanks to WDS enabled access points

Table 2 802.11 Frame control header

Champ Size (bits) Information

Protocol 2 For the 802.11 standard, equals 0

Type 2 802.11 Frame type

Subtype 4 802.11 Frame subtype

To DS 1 To distribution system

From DS 1 From distribution system

More frag 1 802.11 Fragmentation

Retry 1 Retransmitted 802.11 frame

Pwr Mgt 1 Save energy mode announced
by stations

More data 1 802.11 Frames ready to be
sent from access point

WEP 1 Set to 1 if frame body encrypted

Order 1 Set to 1 if strictly ordered activated

Table 3 802.11 Management frame header

Field Size Information

Frame control 16 bits 802.11 Frame identification
and attributes

Duration/ID 16 bits NAV update and/or association ID

Address 1 48 bits First MAC address

Address 2 48 bits Second MAC address

Address 3 48 bits Third MAC address

Sequence 16 bits Sequence and fragmentation
control numbers

Frame body 0–2312 octets Frame body

FCS 32 bits Integrity check (CRC32)

Table 4 802.11 Beacon or probe response header

Information Size (bits) Type

Timestamp 64 Synchronizing clock

Beacon interval 16 Time between two beacons

Capability information 16 Access point capabilities

Table 5 802.11 Information element

Field Size Type

Type 1 byte Information element type (ID)

Length 1 byte Information element length

Value Length byte(s) Information element value

capability fields are mandatory but do not seem to be promi-
sing regarding implementation bugs (e.g. overflows or format
strings).

In Table 5, information elements are optional fields after
mandatory fields in management frames. The information
elements are specified by type, length, and value attributes.
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This is extremely promising regarding implementation bugs!
The Length value may be useful in order to trigger buffer
overflows if not carefully checked by the implementation
during the parsing of the 802.11 frame. Most of these infor-
mation elements have minimal, fixed or maximal values that
can be different from byte boundaries (0 and 255). Thus,
implementation bugs in this part of the driver code are more
than probable.

In Table 6, the most obvious implementation bug we want
to discover is the allocation of a 32 bytes static buffer for
the SSID information element, then reading the advertised
length in the information element, and lastly copying the
information element payload in the static buffer without che-
cking the copied length, which may lead to a buffer overflow.
Many other bugs are possible (NULL pointer dereference,
integer overflows…) by invalid parsing the information
elements: they must be extensively fuzzed!

5.5 Implemented features

During the design of the fuzzer, we implemented several
testing strategies. We focused on the information elements
fuzzing as they were really promising in terms of possible
implementation bugs (remember that Type, Length, Value
fields are error-prone). These tests are then skipped till no
further test is available or if a bug is found.

Implemented testing strategies are:

• Optimized information elements fuzzing,
• Brute force information element fuzzing,
• Random information elements fuzzing,
• Partial protocol aware information elements fuzzing,

• For proprietary information elements (Atheros,
Cisco…),

• Full protocol aware Information Elements fuzzing,

Table 6 Some information elements

Information Information
element ID element type

0 Service set identifier (SSID)

1 Rates

2 FH parameters

3 DS parameters

4 CF parameters

5 Traffic information map

7 Country

48 RSN

50 Extended rates

221 Vendor specific or WPA

• Wi-Fi Protected Access (WPA), Robust Security
Network (RSN), Wireless Multimedia Extensions
(WMM)…

• discovered vulnerabilities tests (according to the current
state-of-the-art).

These tests may be manually passed by the user of the fuz-
zer in order to check the most appropriate tests to execute
according to the available time for fuzzing.

6 Fuzzing in two easy steps

Our fuzzer has advanced features especially regarding tes-
ting strategy, but according to the state of the art of 802.11
driver vulnerabilities, most implementation bugs would have
been discovered thanks to basic fuzzers. Thus, this chapter
explains how to perform 802.11 fuzzing at an incredible low-
cost.

6.1 Fuzzing with scapy

Thefuzz() function generates random values for non filled
fields during the frame specification by the user. It is quite
trivial to implement a basic 802.11 fuzzer thanks to Scapy
[30].

Random fuzz

frame = Dot11(addr1=DST,addr2=BSSID,addr3=BSSID,addr4=None)
sendp(fuzz(frame), loop=1)

Sent frames are both valid and invalid 802.11 frames accor-
ding to the standard, and most of them will be considered as
malformed frames. This test evaluates the capability of the
driver to drop invalid and malformed frames.

Information elements random fuzzing in beacon frames

frame = Dot11( proto=0,FCfield=0,ID=0,addr1=DST,addr2=BSSID,
addr3=BSSID,SC=0,addr4=None)

/Dot11Beacon(beacon_interval=100, cap="ESS")
/Dot11Elt()

sendp(fuzz(frame), loop=1)

Sent frames are only beacon frames with random informa-
tion elements that are not necessarily specified in the 802.11
standard. This test evaluates the capability of the driver to
parse both valid and invalid information elements in a valid
frame (beacon).
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SSID information element random fuzzing in beacon
frames

frame = Dot11( proto=0,FCfield=0,ID=0,addr1=DST,addr2=BSSID,
addr3=BSSID,SC=0,addr4=None)

/Dot11Beacon(beacon_interval=100,cap="ESS")
/Dot11Elt(ID=0)

sendp(fuzz(frame), loop=1)

Sent frames are only beacon frames with SSID informa-
tion element with different lengths that are not correct regar-
ding the 802.11 standard. This test evaluates the capability of
the driver to parse both valid and invalid SSID information
elements in a valid frame (beacon).

6.2 Fuzzing with metasploit

Thanks to the LORCON [28] library integration in Metas-
ploit [31] framework, it becomes easy to create and inject
arbitrary 802.11 frames within Metasploit modules. There
are some interesting examples in the SVN that aim at crea-
ting fake access points or executing fuzzing tests.

Randomly fuzz probe responses information elements

./msfcli auxiliary/dos/wireless/fuzzproberesp
DRIVER=madwifing ADDR_DST=11:22:33:44:55:66
PING_HOST=192.168.1.10
E

These probe response frames include information elements
that are not necessarily correct in the 802.11 standard point
of view. This particular fuzzing technique aims at testing the
driver capabilities in parsing both correct and incorrect probe
response frames. Moreover the module tries to regularly ping
the wireless host in order to check whether it is still alive and
then stop the last test in case of the fuzzed device has crashed.

7 Discovered vulnerabilities thanks to our fuzzer

Of course, all tests were performed in order to discover unk-
nown implementation bugs. Thus, we used only latest ver-
sions of drivers and firmwares. Sometimes, we found some
vulnerabilities that were silently patched by the vendor; thus
these vulnerabilities cannot be considered as new or unknown
as they were known by the vendor…

Using our fuzzer on several 802.11 driver implementa-
tions enabled us to find several critical bugs that would be
remotely exploitable and to a minimum would result in a
remote denial of service. We focused on the most interesting
one only, that we succeeded in exploiting: the first remotely
exploitable 802.11 driver under9 Linux! Moreover, this vul-
nerability was on the driver of a very popular chipset in the
hacking community, i.e. the Atheros chipset.

9 Note the word “under” is used and not “in”, as madwifi is not a part
of the mainline kernel.

7.1 Netgear MA521 wireless driver long rates overflow
(CVE-2006-6059)

This vulnerability was disclosed on November 18, 2006
thanks to Month of Kernel Bugs [32].

An overflow on the “RATES” information element trig-
gers the bug (Blue Screen of Death on Microsoft Windows).
According to the kernel dump, it seems to be a heap overflow.

We did not investigate further and we published the Metas-
ploit module for the denial of service only. To date, no secu-
rity fix is available yet.

7.2 Netgear WG311v1 wireless driver long SSID overflow
(CVE-2006-6125)

This vulnerability was disclosed on November 22, 2006
thanks to Month of Kernel Bug [33].

An overflow on the “SSID” information element trig-
gers the bug (Blue Screen of Death on Microsoft Windows).
According to the kernel dump, it seems to be a stack overflow.

We did not investigate further and we published the Metas-
ploit module for the denial of service only. To date, no secu-
rity fix is available yet.

7.3 D-link DWL-G650+ wireless driver long TIM overflow
(CVE-2007-0933)

This vulnerability was disclosed on March 28, 2007 thanks
to Black Hat Europe conference [34,35].

An overflow on the “TIM” information element triggers
the bug. According to the kernel dump, it seems to be an
off-by-one stack overflow.

We did not investigate further and we published the Metas-
ploit module for the denial of service only. To date, no secu-
rity fix is available yet.

7.4 Madwifi driver “giwscan_cb()” and “encode_ie()”
remote buffer overflow vulnerability (CVE-2006-6332)

This vulnerability was disclosed on December 7, 2006 thanks
to Daily Dave [36]. We reported the vulnerability to the Mad-
wifi team on December 5, 2006 and they issued a patched
release with an advisory on their website on December 6,
2006. So, we waited for the public announcement before
publishing a proof-of-concept exploit that was only a “local”
exploit (which was not critical because it required a local
user account to be exploited).

We thank the Madwifi team for their reactiveness as they
released a patched version with all relevant information to
their users the day after we contacted them. Overall security
level of a software is generally a matter of process (in parti-
cular when managing security incidents), and, here this is a
pretty good example of software vendors would do. Because,
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implementation bugs are hard to avoid in complex software,
so, the main issue is to manage the correction of security bugs
with efficiency (publishing an advisory, releasing patches and
new stable version…).

An overflow on the WPA, RSN, ATH or WMM information
elements triggers the bug (kernel oops). According to the
kernel oops, it is a stack overflow.

8 Vulnerability exploitation: a practical case

In this chapter, we now detail where the vulnerability is loca-
ted and how to trigger it with a specifically crafted 802.11
frame. We must not forget that only one 802.11 frame may
perform remote arbitrary code execution in kernel mode over
a 802.11 radio link (from an unauthenticated attacker). It is
indeed a quite critical issue.

8.1 Introduction

Our fuzzer implements some features designed to fuzz par-
ticular information elements like WPA and RSN…Thanks to
these features, the fuzzer has triggered the driver by fuzzing
WPA information elements.

The driver parses all information elements included in
the beacon or probe response frames in order to detect WPA
information elements for further parsing—the cryptographic
capabilities such as authentication method or multicast and
unicast encryption protocols. For the WPA information ele-
ment to be parsed, it must contain a specific header which
is composed of OUI (Organizationally Unique Identifier),
TYPE and VERSION fields that accordingly fit the driver
requirements (according to its configuration).

So a basic fuzzer is not be able to discover this kind of
implementation bug because the WPA header must be (to a
minimum) correctly filled by the fuzzer. A minimal unders-
tanding of the protocol must be implemented in the fuzzer.
That is the reason why this vulnerability was not detected
sooner than we did! Moreover the vulnerability is located in
an Open Source driver which could be easily spotted by static
analysis or code reviewing (even if quite time consuming).

This vulnerability is also present in RSN, WMM and ATH
information elements parsing.

BUG:

unable to handle kernel paging request at virtual address 45444342

printing eip:

45444342

*pde = 00000000

Oops: 0000 [#1]

PREEMPT

CPU: 0

EIP: 0060:[<45444342>] Tainted: P VLI

EFLAGS: 00210282 (2.6.17.11 #1)

EIP is at 0x45444342

eax: 00000000 ebx: 41414141 ecx: 00000000 edx: f4720bde

esi: 41414141 edi: 41414141 ebp: 41414141 esp: f3f2be24

ds: 007b es: 007b ss: 0068

Process iwlist (pid: 3486, threadinfo=f3f2a000 task=f6f8a5b0)

Analyzing this Linux kernel “oops” enabled us to detect
that several registers where overflowed by the attacker, and
more precisely a well-known register: EIP! If the attacker
masters the content of EIP register, it makes possible remote
arbitrary code execution. Thus, one the main goals would be
to point EIP directly or indirectly to interesting instructions
that are mastered by the attacker (i.e. in the 802.11 frame that
triggered the vulnerability).

8.2 Multiple vulnerabilities

In giwscan_cb() function

static void
giwscan_cb(void *arg, const struct ieee80211_scan_entry *se)
{

struct iwscanreq *req = arg;
struct ieee80211vap *vap = req->vap;
char *current_ev = req->current_ev;
char *end_buf = req->end_buf;

#if WIRELESS_EXT > 14
char buf[64 * 2 + 30];

#endif

All recent Linux kernels are compiled with wireless exten-
sions greater than 14, thus a static buffer buf of 158 bytes
is allocated.

<snip>

#ifdef IWEVGENIE
memset(&iwe, 0, sizeof(iwe));
memcpy(buf, se->se_wpa_ie, se->se_wpa_ie[1] + 2);
iwe.cmd = IWEVGENIE;
iwe.u.data.length = se->se_wpa_ie[1] + 2;

If the IWEVGENIE parameter is defined, as it is the case
in recent Linux kernels, a first vulnerability is present when
memcpy() is called with a non checked length. The static
buffer buf is 158 bytes length, and se->se_wpa_ie[1]
may have the value of 255 (as copied from the WPA infor-
mation element in the 802.11 frame). This value is never
checked in any other part of the driver, making it possible for
the attacker to trigger the stack overflow putting a maximum
of 257 bytes in a 158 bytes-long buffer!

#else
static const char wpa_leader[] = "wpa_ie=";
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = encode_ie(buf, sizeof(buf),

se->se_wpa_ie, se->se_wpa_ie[1] + 2,
wpa_leader, sizeof(wpa_leader) - 1);

#endif

If the IWEVGENIE parameter is not defined, the
encode_ie() function is called with arguments that could
trigger the bug. If a second vulnerability exists, it is located
in encode_ie() fuzzing.
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<snip>

if (se->se_wme_ie != NULL) {
static const char wme_leader[] = "wme_ie=";

memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = encode_ie(buf, sizeof(buf),

se->se_wme_ie, se->se_wme_ie[1] + 2,
wme_leader, sizeof(wme_leader) - 1);

<snip>

if (se->se_ath_ie != NULL) {
static const char ath_leader[] = "ath_ie=";

memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
iwe.u.data.length = encode_ie(buf, sizeof(buf),

se->se_ath_ie, se->se_ath_ie[1] + 2,
ath_leader, sizeof(ath_leader) - 1);

<snip>

WithWMM orATH information elements, it is the same ope-
ration than when the IWEVGENIE parameter is not defined,
i.e. the encode_ie() function is called with arguments
with non checked sizes. If another vulnerability is present, it
may be located in the next function called.

In encode_ie() function

static u_int
encode_ie(void *buf, size_t bufsize, const u_int8_t *ie,

size_t ielen, const char *leader, size_t leader_len)
{

u_int8_t *p;
int i;

if (bufsize < leader_len)
return 0;

p = buf;
memcpy(p, leader, leader_len);
bufsize -= leader_len;
p += leader_len;
for (i = 0; i < ielen && bufsize > 2; i++)

p += sprintf(p, "%02x", ie[i]);
return (i == ielen ? p - (u_int8_t *)buf : 0);

}

The ielen variable is controlled by the attacker and p is
a pointer to the static buffer buf. The vulnerability is then
triggered when sprintf() is executed since the informa-
tion element is converted in ASCII in buf. The main issue
about possible exploitation is that the information element is
converted in ASCII and so the exploit is also converted!

8.3 Remote exploitation

Given the control of the instruction pointer (EIP), we now
aim at detecting an address whose code is under our control.
The obvious way to inject code into the process’ address

Fig. 4 Kernel stack

space10 is to use the very 802.11 frame that triggers the vul-
nerability.

We should have enough space to embed interesting shell-
codes, because buf is 158 bytes long. Only the first six bytes
are not usable because they identify the information element
as WPA (OUI + TYPE + VERSION).

Our problem is now to locate our 802.11 frame, which
embeds our shellcode, in memory. We know that it will be
on the kernel stack, so our idea is to find a jmp esp with
a stable, fixed, address and make EIP point to it. That way,
we will execute an instruction in the 802.11 frame that we
control, this instruction will be another jump that will lead
to the beginning of the information element, where our real
shellcode lies. The reason behind this second jump is that we
do not want to “crash” the kernel stack. The jmp esp will
execute the instruction on the kernel stack that lies just after
the saved instruction pointer (that we overwrite to control the
execution flow).

The problem is that after the saved instruction pointer there
are valuable data such as function arguments, local variables
or saved registers that we do not want to overwrite. That is the
reason why we encode the smallest possible jump (2 bytes)
and jump back to the beginning of the information element.
Unfortunately, it is too far away for a 2-bytes jump (more
than 128 bytes), and we will have to proxy it, one more time,
through a third jump as shown in Fig. 4.

We now are able to remotely execute arbitrary code in
kernel mode on any Linux with a vulnerable version of Mad-
wifi. Most of our tests took place on a stock 6.10 version
of the Ubuntu Linux distribution (with a version of the res-
tricted modules packages that includes a vulnerable madwifi
version).

10 We are in process context, since we are in a system call.
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The last part is to write a kernel-mode shellcode. As we
are in process context, it is really very easy to get back to
user-land and execute an ordinary user-land shellcode. For
instance, we can copy a user-land shellcode to the user-land
stack, temper with the saved user-land instruction pointer
(EIP) which lies on top of the process’ kernel stack and
make it point to the user-land stack. We now only have to
return to user-mode.

The easy way would be to do an IRET, but this would
leave the 802.11 stack in a flimsy state. If we want to do this
properly, we have to emulate the epilogue of the function
that called the vulnerable function (we cannot just return
to it because we would overwrite the return address) and
return to the caller of the caller. That way, we will ultima-
tely return to user-land and execute our user-land shellcode
without breaking the 802.11 stack. There are however some
efforts involved in the caller’s epilogue emulation, because
there are spinlocks to unlock.

We have written an implementation of this exploit for the
Metasploit[31] framework which is now available (for the
interested reader) in the SVN repository.

8.4 Triggering the vulnerability

The vulnerability is located in the giwscan_cb() func-
tion. This function is called thanks to a SIOCGIWSCAN.
This system call enables the analysis of a wireless scan and
to show them to the user (e.g. thanks to a command-line
interface). For example, the iwlist tool calls this system call
thanks to iwlist ath0 scanning with non privileged
rights. But, for the vulnerability to be exploited, it is man-
datory that malicious frames are given through the struc-
ture const struct ieee_scan_entry *se which
is possible only if a 802.11 scan has updated the wireless
scanning data:

• Manually thanks to aSIOCSIWSCAN (e.g. withiwlist
ath0 scanning with privileged rights),

• Automatically by the 802.11 driver when “background
scanning” occurs (tunable with internal parameters like
bgscan, bgscanidle and bgscanintvl),

• Automatically thanks to third-party tools like
wpa_supplicant that performs scanning periodically.

9 Automated exploitation

Thanks to 802.11 fingerprinting techniques, it would pos-
sible to elect the best appropriate exploit regarding the wire-
less device. So, automated exploitation is more than feasible
especially in public area networks like conferences or hot
spots.

Metasploit, the infamous exploitation framework, now
includes LORCON and its ruby bindings making it possible
to exploit any vulnerable wireless driver (note that several
Windows-based 802.11 driver exploits are available). At the
present time, our madwifi remote exploit is now included in
the Metasploit SVN repository.

10 Automatic spreading of malware thanks to wireless
driver vulnerabilities

Since it is possible to remotely execute arbitrary code with
kernel privileges, it is potentially feasible to propagate a piece
of code such as a Trojan dropper that will compromise the
victim (e.g. download and execute function). But, the main
issue is to keep the network stack (802.11 and/or Ethernet)
intact during the exploitation, this is not an easy task and
depends on the vulnerability, driver and kernel.

For example, in the madwifi exploitation, we have succee-
ded in releasing properly the spinlocks giving the possibility
to execute commands that will rely on network (like a reverse
connection) without smashing the 802.11 stack. Thus it is
possible to perform a reverse connect to an Internet host if
the victim is associated to a IP network over a 802.11 link.
But, it is really hard to have an autonomous malware sprea-
ding through wireless exploits as the main requirement is to
inject 802.11 arbitrary frames (which is not available in out
of the box drivers running on Microsoft Windows and which
requires the driver to use monitor mode).

To sum up, wireless driver vulnerabilities may be useful
to compromise hosts and install some kind of malicious code
(and then for a targeted attack), but are really hard to use for
an autonomous propagation relying only on 802.11 wireless
networks (due to 802.11 frame injection limitations in usual
configurations).

11 Conclusions

In this paper, we have undeceived 802.11 driver vulnerabi-
lities. Most publicly disclosed vulnerabilities were easy to
spot and a basic fuzzer would have discovered most of the
disclosed 802.11 driver vulnerabilities. Our fuzzer enabled
us to discover several critical implementation bugs, one of
them has been successfully exploited: the first 802.11 remote
kernel stack overflow under Linux!

Moreover, one could remind that our fuzzing, despite a
“smart” testing strategy, is only focused on 802.11 state 1.
Thus a lot of other vulnerabilities could be present in both
firmware and drivers at other states. Today, there is no
demonstration of such issues, but the design of a stateful
802.11 fuzzer for both client and access points would be an
answer.
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