
J Comput Virol (2008) 4:137–157
DOI 10.1007/s11416-007-0069-6

SSTIC 2007 BEST ACADEMIC PAPERS

Rootkit modeling and experiments under Linux

Éric Lacombe · Frédéric Raynal · Vincent Nicomette

Received: 5 January 2007 / Revised: 15 July 2007 / Accepted: 15 September 2007 / Published online: 25 October 2007
© Springer-Verlag France 2007

Abstract This article deals with rootkit conception. We
show how these particular malicious codes are innovative
comparing to usual malware like virus, Trojan horses, etc.
From that comparison, we introduce a functional architecture
for rootkits. We also propose some criteria to characterize a
rootkit and thus, to qualify and assess the different kinds of
rootkits. We purposely adopt a global view with respect to
this topic, that is, we do not restrict our study to the root-
kit software. Namely, we also consider the communication
between the attacker and his tool, and the induced interac-
tions with the system. Obviously, we notice that the prob-
lems faced up during rootkit conception are close to those of
steganography, while however showing the limits of such a
comparison. Finally, we present a rootkit paradigm that runs
in kernel-mode under Linux and also some new techniques
in order to improve its stealth features.

É. Lacombe (B) · V. Nicomette
LAAS-CNRS, University of Toulouse,
7 Avenue du Colonel Roche,
31077 Toulouse Cedex 4, France
e-mail: eric.lacombe@laas.fr; eric.lacombe@security-labs.org

V. Nicomette
e-mail: vincent.nicomette@laas.fr

F. Raynal
Sogeti ESEC, 6/8 rue Duret,
75116 Paris, France
e-mail: frederic.raynal@security-labs.org

F. Raynal
MISC Magazine, Diamond Editions,
20142, 67603 Sélestat Cedex, France

1 Introduction

Contrary to a widespread idea, an exploit1 is not systemati-
cally required to penetrate an information system. However,
once compromised, the intruder carries out some actions to
use the system and often to maintain its access into the system
behind the legitimate users’ back: he uses a rootkit to achieve
this goal. We call rootkit a set of modifications that allow an
attacker to maintain along the time a fraudulent control of the
information system. To achieve its goal, the rootkit combines
different techniques used by different malware approaches
(logic bomb, Trojan horse, virus, etc.). In that sense, a rootkit
forms a new kind of malicious code even if he borrows from
others (cf. Sect. 4 on page 141). In this paper, we develop the
fundamental principles that characterize rootkits. We adopt
the rootkit designer and the rootkit user’s point of view, to
identify the different strategies and the technical constraints
to be considered.

Regarding the security properties of the rootkit,2 the
intruder needs to preserve at least one way or access to
send instructions to the compromised system. Then, he has
to make a choice. Does he need to be directly logged in to
the system or is it enough for him to send instructions which
are executed in an asynchronous way? Does he need to oper-
ate stealthily or can his actions be revealed? Are the rootkit
internals a problem for his machinations? In order to answer
those strategic questions, we detail the intruder’s objectives
and examine his security expectations to meet them. From
that step, we propose in this paper some criteria in order to
assess rootkit efficiency. Note that the attacker’s objectives

1 An exploit is a little program that uses a flaw inside a software to
penetrate the host system.
2 Let us stress on the fact that since we adopt the intruder’s point of
view, the security properties are the attacker’s ones.

123

138 E. Lacombe et al.

can greatly vary and hence the capabilities of his rootkit.
Nonetheless, some common features must be shared by any
rootkit. Indeed, the intruder often needs some means to hide
his activity or to carry out operations inside the compromised
system.

This paper finally proposes a new method to subvert and
divert the Linux kernel. Our approach is focused on invis-
ibility inside the compromised system. Thus, we hide our
malicious code into the kernel space and make it a parasite
upon a process, which is generally sufficient to compromise
the whole system.

This article is divided into five parts. First, we recall in
Sect. 2 the technical background required to make this paper
self-contained. Then, we summarise in Sect. 3 the evolu-
tion of rootkits and recall the injection and diversion mech-
anisms used by kernel rootkits on Linux. Section 4 deals
with the objectives that conduct to rootkit design. We adopt
the attacker’s point of view in order to figure out how the
rootkit can change according to the attacker’s objectives and
constraints. We propose an analogy with the dissimulation
of information in order to assess rootkit’s efficiency. But we
limit ourselves to the invisibility criteria. We show in Sect. 5
the method that we have elaborated to corrupt a Linux kernel
and stay as stealth as possible. Finally, we conclude in Sect. 6
and expose the previous contributions in the rootkit field as
well as the limits of our approach.

2 Technical background

In this part, we recall some kernel internals and some features
which are specific to the x86 architecture.

2.1 Operating system kernel

An operating system kernel is a software that handles the
computer hardware (memories, processors, disks, devices,
etc.) and that provides an interface to the user, dedicated to
easily interact with it. Different kinds of kernel have been
designed. Among them, the most widespread are monolithic
kernels and micro-kernels. The latter contains what needs to
be executed in a privileged mode, only. All the other ser-
vices are supplied made at the user space level. Thus, the
different subsystems of the operating system (virtual mem-
ory manager, etc.) are isolated one from the other and com-
municate with messages conveyed through the micro kernel.
At the opposite, in monolithic kernels, the main part of the
critical services are implemented at the kernel space level:
hardware management (hardware interruption, Input/Output,
etc.), memory management, process scheduling, system calls
supplied to the user space, etc.

In the rest of this paper, we focus on the Linux kernel
which is a modular monolithic kernel. It offers to users many
services without enforcing a policy, whenever possible.

2.2 The x86 architecture

The primary goal for the operating system is to manage the
hardware upon which it is executed. Thus, the operating sys-
tem depends on this hardware. However, if the design of
operating system is decomposed into layers, hardware spe-
cific features are managed by the lower layers while being
invisible from the highest ones. The Linux kernel consid-
ers that approach and implements most of its services in a
hardware-independent way.

We focus on the x86 architecture, which is widespreaded.
Although each architecture has its own characteristics, how-
ever they share some common features: memory management
(less typical for embedded system), processor’s privilege
levels, communication between the different hardware parts
and the software (often through interrupts), etc. On x86,
memory management is operated through a segmentation
unit (mandatory) and a paging unit (optional). Contrary to
the segmentation unit, the paging one is very common to all
kind of architectures. As Linux is a multi-platform kernel,
the segmentation unit is only used in its bare mode (i.e., the
flat mode3). This enables to easily cut oneself off from it, to
eventually use the paging mechanism only (cf. Fig. 1). The
x86 architecture is designed in a 4-ring structure, and each
of them represents a processor’s specific execution mode. A
privilege level is associated to each mode. The most privi-
leged ring is the 0 one—the kernel execution mode—while
the least privileged mode is the ring 3 which is limited to user
space applications.

The communication between kernel and user space—i.e.,
switching from ring 0 to ring 3 and conversely—occurs from
different events. Among them, interrupts are the most fre-
quent: asynchronous signals (requests) from hardware. They
are divided into exceptions (i.e., interrupts from the processor
whenever a division by zero or a page fault occurs, etc.), hard-
ware interrupts (i.e., those which are triggered by devices,
such as hitting the keyboard for example) and finally software
interrupts (i.e., interrupts that are triggered by the software as
an application from user space which invokes a system call).

On x86 architecture, those interrupts are numbered from
0 to 255. Each of them is associated to a handler if it has
actually been set by the kernel. That handler is a function
that is executed when the interruption is raised. All these
functions are accessible from a specific table in memory: the
IDT (Interrupt Descriptor Table). The kernel fills this table
and then loads its address into the processor via the lidt
instruction.

3 A single memory segment is set up from physical address 0 to 4 GB.

123

Rootkit modeling and experiments under Linux 139

32-bit Linear Address

0112131

0

0

1024

1024

XBA

A

B

4096

0

X

Page Global Directory

Page Table

current->mm.pgd

Current Process
PGD:

Physical Address

Page

init_mm.pgd
Primary PGD:

Fig. 1 Paging mechanism

Hardware interrupts or processor’s exceptions interrupt
user space execution and trap them into the kernel. Hard-
ware interruptions occur asynchronously whereas proces-
sor’s exceptions trigger synchronously. The kernel handles
the interruption or exception and then hands over to the user
space. However, before that, the kernel can decide to carry out
more urgent tasks. Particularly, in the Linux case, the sched-
uler verifies whether there exists a more priority process that
needs to be executed.

Software interrupts are typically used within system call
implementation. Once a user has raised the software inter-
rupt defined by the operating system kernel (0x80 for
Linux), the processor switches to ring 0 and hands over to
the kernel entry point in charge of servicing the user request.
In order to get an optimized transition, the x86 architec-
ture defines the sysenter instruction (which is not an
interrupt). Its purpose is to provide an efficient technical
mean to achieve system calls. Our work takes that technology
into account. Appendix briefly explains how that instruction
operates.

The next section gets back those notions in the best prac-
tices of rootkit methods.

3 State of the art

We introduce afterward a brief review of rootkits, and show
how they have evolved to become more and more efficient.

3.1 Rootkit evolution

When an awkward event occurs in his information system,
administrator’s first habit is to consult system’s logs, to call

the last command to see who was recently logged in to the
system, to call netstat to examine the network connec-
tions, and so on. A pirate that knows administrators’ habits,
may try to hide himself within the system by replacing those
typical commands: it is the first, trivial form of rootkits. The
administrator that uses these modified commands does not
detect anything abnormal or unusual.

However, this approach is not reliable for the pirate:

– on former Unix systems, upgrading the system often
required to recompile sources as the bandwidth did not
allow to download Giga-Bytes of binary; as a conse-
quence, the intruder had to substitute each time his pro-
grams with the original ones;

– it is easy to obtain the same information from different
paths (e.g., list files withls,find,grep -r, …). Thus,
the risk for the attacker is to miss one of them;

– usually and especially inside secured environment, check-
sums are generated from hash functions to detect program
modifications during forensic analyses for instance.

In order to partially solve these problems and especially
the two first ones, rootkits evolved to corrupt a maximal num-
ber of programs with fewer efforts. With dynamic shared
libraries, intruders have now a good way to regulate their con-
cerns: a modification of functions inside one library reflects
itself to all the programs that use that library. Nevertheless,
the problems are the same to a lesser extent.

That factorization way (modifying less and corrupting
more) went on to the last resource shared by all elements on
the system: the kernel. In charge of hardware management,
tasks scheduling, memory management, the kernel is the
compulsory stage for all operating system’s elements. We

123

140 E. Lacombe et al.

respectively expose in Sects. 3.2 and 3.3 some injection and
diversion methods in kernel space.

New trends come with hardware-assisted virtualization
inside general public processors (VT-x for Intel and SVM
for AMD). A hypervisor, at the bottom level, deals with vir-
tual machine management on which operating systems are
executed. It is an opportunity for a rootkit to introduce itself at
the hypervisor level so to take over the guest systems (which
are executed on the host) without infects them [1]. Although,
a hypervisor can be integrated to a host system kernel (e.g.,
KVM for Linux), it owns some interception and modifica-
tion means conducted by hardware which are out of host
kernel bounds. Besides, thanks to hardware-assisted virtu-
alization, the development of a hypervisor is easier and its
size has become smaller. This latter characteristic allows a
more stealth transmission of a malicious hypervisor from the
attacker’s system to the system to compromise.

Finally, a stealth-malware categorization has been carried
out. Indeed, J. Rutkowska proposes a taxonomy [2] which
distinguishes malwares through their corruption type. Thus,
three groups of increasing invisibility are set apart:

1. malwares that corrupt fixed elements (e.g., code),
2. those that corrupt non-fixed elements (e.g., data) and,
3. those that act beyond the bounds of the operating

system or its applications, without altering them (e.g.,
hypervisor-rootkits).

3.2 Kernel space injection methods employed
by Linux rootkits

We distinguish four different ways to inject code and data into
the Linux kernel. The first one uses kernel modules which
are dynamically added to Linux [3]. This method is only
allowed if Linux kernel module (LKM) support is enabled.
In that case, protection mechanisms exist however. To detect
malicious kernel modules, it is possible to set up an auto-
matic verification of modules through cryptographic signa-
tures [4]. A functional alternative carries out a static anal-
ysis of kernel module behaviors. This is processed before
module loading to verify that there is no rootkit inside. That
approach of static analysis of binaries has been implemented
in [5].

The second approach consists in corrupting and subvert-
ing the kernel through the access to the /dev/kmem vir-
tual device [6,7]. However, some protection mechanisms like
Grsecurity can be set up to forbid write or read access to this
device. Nonetheless, these typical settings prevent X server
to be executed (unless a discretionnary policy on each binary
is enforced through the rsbac program). Thus, this kind
of protection mechanisms is typically disabled on personal
computers, work stations, etc.

The third one consists in kernel flaws exploitations. Some
allow code injection while others are much more limited. The
problem with this approach lies in the fact that it depends on
the kernel versions that are affected by the specific exploited
flaw.

The last approach uses the specificities of devices that can
access to the memory management unit without involving
the processor (i.e., DMA, Direct Memory Access). Thus, for
instance, the Firewire bus can be used to read or inject data in
physical memory without the operating system consent [8,9].
However, J. Rutkowska shows that physical memory reading
through DMA can be tricked at software level [10].

The injection method used in our work is based on code
injection through /dev/kmem (see next section). This
approach appears to us to be a good compromise:4 a worksta-
tion with LKM being disabled, remains totally usable, while
disabling/dev/kmem prevents the execution of typical pro-
grams on that kind of system. Finally, kernel flaw exploitation
is not enough reliable in time.

3.3 Diversion methods employed by Linux kernel rootkits

The first methods are based on system call table alteration
[6,42]. The attacker diverts kernel services towards its mali-
cious functions which have been injected first. However,
straightforward detection mechanisms counter this approach.
Some compare the current system call addresses with a record-
ing of them which have been made during the system instal-
lation. Others verify the relative position of the code between
the different system calls.

To mitigate this problem, the attacker goes up and alter
the system call handler [6]. First, the attacker copies the sys-
tem call table and modifies the copy to include pointers to
his malicious functions. Then, he modifies the reference of
this table used by the system call handler. Thus, the previ-
ous detection methods are not efficient anymore since the
original table is still in place and is not modified. To counter
this approach, it is possible to memorize and check the table’s
address used by the system call handler.

To execute a system call, a software interrupt at user space
level is raised. It triggers the switching into kernel mode.
This interrupt can be intercepted. Indeed, the reference on
its handler inside the IDT can be replaced by a reference
to a malicious one [12]. To detect this fraudulent activity,
the reference inside the current IDT must be compared to
a backup previously memorized during system installation.
Moreover, if the kernel uses the sysenter instruction only,
this approach cannot be performed.

The IDT also includes the address of the page fault handler.
This latter is executed when the processor raises an exception

4 The last injection mechanism presented above has not been studied
at the time of the development of our proof of concept.

123

Rootkit modeling and experiments under Linux 141

due to a forbidden access to a page, or when a page is not
present in memory. This interrupt can be intercepted through
IDT modification in order to inject malicious code into any
process’ virtual address space [13]. Generally, any interrupt
can be diverted from its original purpose of function.

By going up the execution path, the attacker, this time,
copies the IDT. Then, he modifies this copy to eventually
load its address into the processor (replacing the previous
one) [12]. However, it is easy to retrieve the current address
of the IDT with the sidt instruction. Thus, to counter this
approach, it is sufficient to compare again this address with
a backup made at the system installation. No glaring innova-
tion is on the way yet.

In this cat and mouse game, now the attacker comes down
inside the low level kernel parts. Especially, the Virtual File
System (VFS) functions are diverted thanks to hooking (i.e.,
the substitution of function pointers) when considering the
the adore-ng rootkit [14]. Thus, the attacker hides the files
and the processes he wishes. However, the same kind of
detection methods than before can still be deployed.

In order to put an end to this problem, the attacker can first
inject the malicious code into memory. Then, he calls it inside
the system call handler before the spot where the system ser-
vices are called. To achieve this last step, the attacker uses
for instance Silvio Cesare’s techniques [11,15]. To counter
them a more complicated approach than before can be set
up. It is an integrity control system which verifies the kernel
code integrity by hardware means (TPM, etc.) for instance.

The detection methods that we briefly explained before
and others more sophisticated [16] are bypassed by some
rootkits. Indeed, what is read by a detection program can
be filtered by the rootkit (taking over the read and write
system calls it can trick user space programs). Consequently,
it returns information that does not compromise its stealth,
only. To have an effective detection, some mechanisms are
implemented at the kernel space level to prevent easy reading
interceptions. Some products use kernel modules like Saint
Jude [17].

The Shadow Walker rootkit [18] is one step further in the
improvement process of the attacker technology. This rootkit
succeeds in hiding its data to the whole system. That is at the
user space or the kernel space level, these data are known by
the attacker only. This rootkit uses a similar method to the
memory protection Linux patch: PaX. We come back later
on this technique in Sect. 5.4.

The diversion types that we have described so far, take
place inside the system and especially inside the kernel. Now,
let’s see two relative new technologies that are at the system
bounds. The first one injects the rootkit inside the master boot
record. Thus, it takes over the computer before the operating
system. This idea is implemented for instance in the Boot-
Root [19] or the Boot Kit [20] rootkits. The second innovation
comes from hypervisor rootkits. They implement a malicious

hypervisor assisted by hardware. Blue Pill [21] is an example
of a such hypervisor rootkit that benefits from AMD’s Secure
Virtual Machine (SVM) technology. We suppose that no use
of hardware virtualization is made by the current operating
system. Then, the rootkit declares itself as a hypervisor of
the processor and switch the current operating system into
a virtual machine without the system being aware of that
change. Hence, it takes over the operating system without
corrupting it.

We do not describe, in this state of the art, all the services
that rootkits are accustomed to provide. However, we explain
our approaches, in a more detailed way in Sect. 5, and show
how to achieve some of these services. Before going on with
that part, we present some issues about rootkit design, in the
next section.

4 Rootkit architecture and design

This section presents the fundamental elements that an
attacker has to take into account when designing a rootkit.
This section is divided into four subsections. In Sect. 4.1,
we propose a definition of a rookit, in order to compare this
kind of malware to virus, worms, Trojans, etc. The typical
architecture of a rootkit is then presented in Sect. 4.2. We
introduce the essential components that constitute a rootkit.
A rootkit makes it possible for an attacker to durably keep
the control over a computer. Thus, the attacker must be able
to communicate and interact with the rootkit.

In Sect. 4.3, we detail the possible communication means
between the attacker and his rootkit. Finally, in Sect. 4.4, we
propose to discuss the evaluation of rootkits. As a matter of
fact, an attacker must choose the most appropriate rootkit
techniques, according to his objectives. So that he can make
this choice, it is important that an attacker can use some objec-
tive criteria, that do not exist so far. Thus, we introduce three
criteria in order to evaluate a rootkit. Let us note that these
criteria may of course be used by the defenders that try to
protect their system from rootkits. Better evaluating rootkits
enables defenders to better detect and eliminate them.

4.1 Definition of rootkits and comparison with other
Malwares

Malware are usually classified into two families [22, Chapts.
3, 4]:

– the self-replicating codes, including virus or worms, that
are able to duplicate themselves, into a precise type of
file;

– the basic infections, like logical bombs and trojans, that
are unable to replicate themselves.

123

142 E. Lacombe et al.

Rookits do not directly belong to this classification of mal-
ware. Thus, we do not have a clear and precise characteriza-
tion of what is actually a rootkit. That is why we propose the
following definition:

Definition 1 A rootkit is a set of modifications that allows
an attacker to durably keep a fraudulent control over an infor-
mation system.

Several elements characterize a rookit:

– a set of modifications: this is a first difference compared
to other malware. On one hand, a rootkit is rarely an
isolated program, but is in general constituted of sev-
eral components. On the other hand, the rootkit compo-
nents are rarely autonomous programs, but rather some
modifications made on other components of the system
(user space programs, some parts of the kernel, etc.). This
kind of modifications is very close to the concept of “pro-
gram parasitism”, which is usually associated to malware
that propagate their payload according to nature of their
potential targets.

– a durable control: other malware do not have a real rela-
tionship with respect to time—except in a few cases of
logical bombs that execute their payload at a precise date.
As for a rootkit, an attacker takes the control over a system
in such a way that he can execute operations (information
theft, rebound, denial of service, etc.). In order to do so,
the attacker must ensure that his access to the system is
reliable during a given period of time.

– a fraudulent control: it means that the attacker must
possess particular privileges to execute his operations
whereas he should not be authorized to use the system.
Most of the time, the attacker tries to keep the control over
the system without the knowledge of the other legitimate
users, but this is not necessarily the case. In addition, this
control requires interactions and thus, communications,
between the attacker and the compromised system.

The usual classification of malware did take into account
the inherent characteristics of rootkits and thus is inappro-
priate. A rootkit is not supposed to replicate itself, so it can-
not be included in the set of self-replicating codes. On the
other hand, a rookit is supposed to propagate itself within the
compromised system. In order to do that, a rootkit very often
modifies several parts of the system. For example, the first
generation of rootkits modified several binary programs in
order to hide their own system and network activity. While
a virus is often dedicated to a precise target (binaries only or
documents only for example), a rookit may modify any part
of the system.

A logical bomb is composed of a trigger and a payload.
For example, the payload may be activated at a given date or
when a user executes a particular operation. Once installed

on the system, there is generally no interaction between the
owner of the bomb and the bomb itself. This characteristic
clearly makes a logical bomb different from a rootkit. Never-
theless, a rookit may include logical bombs (for example, to
destroy the system if administrators try to analyse the root-
kit).

Trojan horses are often made of a pair of client and server
programs. The server is involuntarily installed on the system
by a user who believes he is just installing a legitimate pro-
gram. Spyware are probably the most typical example: when
installing a game, a user also installs, without being aware of
that, a spying program responsible for collecting information
on the system. There are two conceptual differences between
a rootkit and a Trojan horse. First of all, the rootkit is volun-
tarily installed by the attacker. Secondly, a Trojan horse is a
“simple” and monolithic program whereas a rootkit is not a
program in itself, but rather a set of modifications made on
several components of the system.

In conclusion, rookit are closer to simple infections than
to self-replicating codes. Nevertheless, this classification is
not accurate enough since a rookit includes functionalities of
any of the other malicious codes.

4.2 Rootkit architecture

In this section, we identify the elements that compose a root-
kit. In order to use a rootkit, the attacker must first install
it and then prevent it from being removed. Thus, a rootkit
necessarily includes a protection module. Once installed in
the system, the rootkit must be able to communicate with the
attacker. To this end, the rootkit includes a central module
that constitutes an interface for the attacker (i.e., a backdoor).
Once the intruder is able to communicate with the rootkit, he
can “ask” it to execute some operations on the system. A
rootkit includes thus one or several modules implementing
these services.

These different modules are described below (cf. Fig. 2).

The Injector. The injector is the mechanism used by the
attacker in order to install the rootkit in the system (kernel
modules infection, code injection via /dev/kmem, etc.). As
a matter of fact, whatever the vulnerability exploited by the
attacker is (weak passwords or software bug), he has to insert
his rootkit in the system. Whatever the rootkit is (user or ker-
nel space, or even hypervisor), it needs an injector to modify
only once some structures of the system.5

The Protection Module. The protection module makes the
rootkit “robust” on the system all along the period required

5 In the case of our rootkit, as described in Sect. 5, this modification is
a bootstrap that is used as a starting point to execute more complex and
deep modifications in the system.

123

Rootkit modeling and experiments under Linux 143

Fig. 2 Functional architecture

Compromised System

Kernel Space

Conniving
Process

Malicious
Kernel
Code

User Space

Attacker’s System

Client
Program

Network

Passive
Services

Active
Services

Protection
Module

by the attacker. Several strategies are possible and may be
mixed together:

– Dissimulating the rootkit:
Two cases must be distinguished. On the one hand, the
rootkit must be hidden while the system is running. On
the other hand, if the rootkit is persistent (goes on being
active after a system reboot), the rootkit code that needs
to be injected in non-volatile memory of the system must
be hidden.

– Making the rootkit resistant:
Let us suppose that the rootkit has been detected. A resis-
tant rootkit must be able to resist to removal attempts
from the administrator. For example, once he is detected,
the rootkit may threaten the administrator by pretending
to make the bios unusable in case of removal attempts.
The purpose is to make the administrator believe (whether
this is true or not) that it more dangerous for himself and
the users of the system to remove the rootkit than to live
with it.

– Making the rootkit persistent:
Making the rootkit persistent consists in making it sur-
vive even in case of a system reboot. This means that at
least a part of the rootkit code must be injected on stable
elements of the system.

– Dissimulating the activity of the attacker:
It consists in dissimulating the processes, network sockets
and files which are used by the attacker. It also consists in
cleaning the event log files on the compromised system.

The Backdoor. The backdoor enables the attacker to keep
the control over the system and to connect to the services

delivered by the rootkit. The backdoor is the central point of
the rootkit and it is the interface between the attacker and the
rootkit services. The backdoor is characterized by an interac-
tion vector with the system, that we divide into two distinct
parts:

– From the attacker system to the compromised system
It consists in the channel used by the attacker from his
machine to communicate with the rootkit itself. It may
be as simple as a connection to a broken account and as
complex as a communication through covert channels. A
discussion about this channel is developped in Sect. 4.3.

– From the compromised system to the rootkit services
It characterizes the path used by the rootkit in the com-
promised system to executed the operations requested by
the attacker (such as hooking of the system call table,
hooking of the Virtual File System, functions hijacking,
etc.).

The backdoor is also associated to a mechanism that acti-
vates it. We call it the backdoor-actuator.

The Services. A rootkit provides services used by the
attacker to perform malicious operations in the compromised
system. Two categories of services are distinguished:

– Passive services or spying:
These services are used by the attacker to obtain sensi-
tive information that may be found on the compromised
system or that may cross the compromised system. A key-
logger is a typical example of such a service: it intercepts
all the key hits on the keyboard of the system.

123

144 E. Lacombe et al.

– Active services:
There are services used by the attacker in order to execute
malicious operations on other systems, such as denial of
service, information or software removal, etc. They also
correspond to services used by the attacker to rebound
to other systems in order to go further in his intrusion
process.

4.3 Communicating with the rootkit

We identify three different phases of communication during
the compromission of a system by a rootkit.

1. during the intrusion phase itself which allows the intruder
to enter the target system;

2. once the system is under control, during the downloading
of the rootkit;

3. when the attacker uses the services of the rootkit by
sending its instructions and receiving the corresponding
results (cf. Fig. 2).

This section focuses on the two latest points only, since
intrusion technics are out of the scope of this paper. It first
should be noted that these communication phases only occur
if the intrusion is a remote one. If the attack is a local one,
it is obvious that the attacker can install the rookit without
any communication; in the same way, he can use the services
of the rootkit without any communication. We consider the
communications as an external activity for the compromised
system. In fact, this is not really the case since these commu-
nications provoke modifications on the compromised system
itself: sockets are created, input/output statistics of network
interfaces are updated, etc. A discussion about these local
modifications is held in Sect. 4.3.

The Rootkit Downloading. Once an attacker has success-
fully broken into a target system, one of his very first tasks is
to make his access to the system durable. Two methods can
be distinguished:

– the usual method: the attacker downloads his rootkit
from a remote site using applications like ftp, sftp,
http, etc. and then installs it;

– all in memory method: the attacker downloads his rootkit
without writting any byte on the disk: every modification
are made in the memory of the compromised process or
other processes of the system [23–26].

In both cases, the attacker must connect to an outside host,
then transfer data. Whatever the bytes are stored in the file

system or in memory does not change the problem from a
network point of view: there is a connection to the intruder
base, thus, the attacker tries to protect it. In order to do so,
he has to face the following problems:

– the base, i.e., the place from which the intruder downloads
his tools, may be discovered when used;

– if the network flow is sniffed, it becomes possible for the
defendor to rebuild the rootkit and as a consequence, to
precisely identify the operations performed by the
attacker on the system.

Authors of [27] have proved that these risks are far from
being hypothetic. From a network traffic capture, they were
able to identify several bases of intruders, to connect to them
and then collect several tools. Moreover, the analysis of the
rootkit revealed a detailed explication of the compromission
process.

In order to protect his base, the attacker may choose to use
proxies or other anonymity methods but the required effort
seems a little disproportionate compared to the other choice:
using the Internet vastness. As a matter of fact, the attacker
has a lot of possibilities to store his data on the Internet: news-
groups, ftp sites, P2P networks, etc. A conscientious attacker
will store his rootkit into one of these places, just before his
attack, and cipher it with a key, as we explain below.

To face the problem of rootkit decoding and flow reb-
uilding in case of interception, the usal method consists in
ciphering. If the network flow is correctly ciphered, even an
interception will prevent any possibility of rebuilding, except
if the key is also intercepted. This is not a trivial probleme
because the key must also be sent through the network and
finally stored on the target system to decipher the rootkit.

A solution to this problem has been presented in the con-
text of the Bradley proof-of-concept virus exposed by Filiol
[28,29]. This virus uses several ciphering layers, the key to
decrypt one layer being calculated from the previous layer.
In this way, it is not possible to analyze the virus while the
first layer has not calculated the correct key. Moreoever, the
whole plaintext code of the virus is never stored in memory,
only pieces are, and they remove themselves just as their
actions are over. The cryptographic protocol used to obtain
this result is based on the notion of environmental keys [30].
The authors explain that a ciphered mobile code evolves in
a hostile environment and must protect its encryption key.
Thus, it must not carry the encryption key but rebuild it from
different pieces of information of the environment. Bradley
proposes several methods to rebuild the key. In the case of a
rootkit, the key must be dependent of a piece of information
of the target system and of an external and private secret of
the attacker.

Figure 3 illustrates this mechanism. The EV Pi blocks are
ciphered with a key calculated by the previous layer. The

123

Rootkit modeling and experiments under Linux 145

Fig. 3 Structure of Bradley
virus

first key is calculated for example thanks to a piece of infor-
mation characterizing the target system (its IP address or a
username) and a private secret (like the hash of a web page
or the RR field of a DNS record, etc.).

Thus, even if the rootkit is captured, its analysis is impos-
sible without knowing all the elements to decrypt it. It was
prooved in [28,29], that, if the cryptographic protocol is cor-
rectly implemented, the complexity of the cryptanalysis is
exponential with respect to the length of the key.

The Command Channel. In the command channel, two
components need to be protected. The contents of the com-
munication may be protected thanks to ciphering protocols
(ssl, ssh, ipsec for example). But this is not sufficient. As
a matter of fact, an administrator could be suspicious if his
network is abnormaly used during the night for example.
Even if ciphered, the unusual quantity of traffic may be
detected. Solutions to this problem exist and consist in using
covert channels [31–34] or statistical simulability techniques
[28,35].

If the rootkit is able to execute operations in kernel mode,
the whole TCP/IP stack can be used. If IP datagrams or TCP
segments are used, some network equipments may modify
the packets headings: load balancer, traffic shaper, or even
proxies. Conversely, more and more network equipements
try to intercept network flows in order to analyse them and
check their conformity to standards. However, these meth-
ods are still hardly reliable. For example, a very few network
equipments correctly check the TCP session number,6 which
allows the attacker to desynchronize the network flows.

The attacker may also choose to use application protocols,
such as DNS or HTTP(S), which are commonly authorized
by firewalls. Moreover, using such protocols from the kernel
mode will not be detected by local network analysis tools.
As a matter of fact, on the sender site, the data are rebuilt in
user space, before entering kernel space to finally be sent on
the network by the corresponding driver. Conversly, on the
recepter side, data are extracted by the driver, pass through
the network stack in kernel space and are finally sent to the
corresponding application in user space. A code which oper-
ates in kernel space is able to bypass all the network analysis

6 Checking the consistency of sequence and acknowledge numbers of
all packets, in addition to many other verifications, may result in to a
congestion of the equipment that makes these checks.

mechanisms—such as anti-virus and HIPS—since the major-
ity of these tools only operates in userspace. Thus, a rootkit
can become parasitic upon the communication and manipu-
late it:

– when the data are transmitted; it can add its own bytes to
the packets just before transfering them to the driver;

– when the data are received by the driver; it can extract the
bytes previously inserted then transfer the packets after
cleaning them, to the corresponding application.

Let us note that our rootkit operates in kernel mode and
executes its operations before any filter rule. Thus, once a
network interface is active, and even if the firewall blocks
all input and output connections, our rootkit is able to go on
communicating with outside components.

Network Activity Traces in the System. If a rootkit oper-
ates in kernel mode (such as our rootkit), it does not use net-
work structures (sockets and ports), thus commands in user
space, such as netstat, will not detect its presence. Nev-
ertheless, examples such as Sebek [36] show that it is not
so easy to dissimulate a kernel rootkit which uses the net-
work [37]. In the first version of Sebek, the statistics regard-
ing packets sent and received increased, even if a sniffer
directly connected to the interface did not capture anything.

We do not enter into details regarding this point. Anyway,
it is important to keep it in mind.

4.4 Towards rootkit evaluation

Whatever the nature of the attacker is (opportunist, hacktivist,
gangster, etc.), his objectives when he uses a rootkit are:

1. gathering information from the compromised system;
2. provoking a denial of service of the system (system

including network in that case);
3. taking the control over the system before using it for

spying, for making it participate to a distributed denial
of service or for turning it into a server with illegal
contents;

4. rebounding towards other systems.

Most of time, the attacker tries to dissimulate his intrusion
to legitimate users. Thus, it seems obvious that an essential
criterion characterizing a rootkit is its degree of invisibility

123

146 E. Lacombe et al.

(we detail this notion below). Nevertheless, the attacker
may not necessarily try to dissimulate his rootkit but, on
the other hand, he may have built it in such as way that it is
very difficult to remove it without making the whole system
in danger. This notion puts the emphasis on a second crite-
rion: the robustness of a rootkit. Finally, whatever its level of
invisibility and robustness is, a rootkit modifies the compro-
mised system so that the attacker can keep the control over
the system. A third criterion expressing this modification of
the compromised system seems relevant in order to evaluate
a rootkit.

Let us try to give a definition of these three criteria. A
comparison with steganographic systems may be very use-
ful for that [38] purpose. As a matter of fact, the conception
of a rookit is close to the conception of a steganographic
system: a safe support, called stegano-medium is modified
in order to dissimulate a secret message. In this analogy,
the stegano-medium is the system and the secret message
that is dissimulated is a set of data and actions bound to the
rootkit. The usual criteria used in steganography are invis-
ibility (the secret message must of course be dissimulated
as much as possible and it must not be possible to detect
the communication itself), robustness (a modification of the
stegano-medium must not deteriorate the secret message)
and capacity (which expresses the quantity of information
dissimulated in the stegano-medium).

The first two criteria can easily be adapted in the context
of the rootkits, as we already explained above. On the other
hand, the analogy with steganography stops here because the
third criterion (capacity) does not seem to be adapted to the
notion of rootkit. Indeed, the information dissimulated in a
stegano-medium are passive data whereas the information
dissimulated in a system by a rootkit are both active and
passive: they are of course modifications of files but also
modifications of data in memory as well as activities such
a processes. These modifications are executed during the
insertion of the rootkit itself and during the execution of all
the rootkit malicious activities. Thus, even if a rootkit does
dissimulate information on the system, the nature of this
information makes difficult to use the capacity criteria as it is.

To characterize a rootkit, we propose to introduce as third
criteria a notion representing the “mischievousness” of the
rootkit, i.e., representing to what extent the rootkit corrupts
the system. This criterion seems close to the notion of vir-
ulence as defined by Filiol [22] and that usually applies to
virus. This notion is defined as follows:

Definition 2

virulence = I 0
v × I 1

v

where:

– I 0
v represents the division of the number of infected files

by the virus v by the total number of files in the system.

– I 1
v represents the division of the number of infected files

by the virus v by the number of infectable files by the
virus.

In the case of rootkit, this notion must be adapted, because,
as we already explained, modifications made by a rootkit are
not file modifications only. This notion of virulence seems
more adequate than the notion of capacity because it also
indicates to what extent the system is corrupted. However,
as defined in medical terms, the virulence is the ability of
microbes to spread in the organism. The notion of infesta-
tion, which is defined as the invasion of an organism by a
parasite, seems more appropriate.

Let us define the three criteria as follows:

Definition 3 The invisibility of a rootkit expresses how dif-
ficult it is for a legitimate user of the compromised system
to detect the rootkit itself as well as the malicious activities
executed by the rootkit.

Definition 4 The robustness of a rootkit expresses how dif-
ficult it is to remove the rootkit from the infected system.

Definition 5 The infestation power of a rootkit expresses the
degree of spread of the rootkit in the system, i.e., the quantity
of elements of the system that are affected by the rootkit.

Let us note that the notion of invisibility includes the activ-
ities that the attacker executes on the compromised system
thanks to the rootkit as well as the rootkit itself. Moreover, it
includes at the same time the dissimulation of passive objects
(files) but also dissimulation of activities (such as processes).
Filiol in [28] proposes the definitions of camouflage (dis-
simulation of passive objects) and furtivity (dissimulation
of activities) [38]. Our concept of invisibility includes both
notions of camouflage and furtivity.

The robustness expresses how difficult it is to remove the
rootkit while the system is running but also when the sys-
tem is halted and possibily rebooted later. The two aboved-
mentioned notions are defined in the general context of the
malware removal, in particular for virus and worms. They
respectively are the resistance and the persistance. Our def-
inition of robustness includes these two notions.

The infestation power of a rootkit expresses to what extent
the system, in which the rootkit is installed, is compromised.
It indicates how the rootkit has spread in the system and gives
an evaluation of the spread of damage. Indeed, as we already
explained in Sect. 4.1, a rootkit is not an autonomous program
but rather a set of modifications made on the system.

We can imagine several strategies for a rootkit: it may
realize limited modifications, hardly detectable but easy to
fix (and thus, focusing on invisibility) or may modify all the
components of the system, making it very difficult to clean

123

Rootkit modeling and experiments under Linux 147

(and thus, focusing on robustness). A measure must be asso-
ciated to these three criteria. Indeed, if we are able to associ-
ate a measure to each criterion, we are able to evaluate each
rootkit and to compare it with others. Cachin in [39] pro-
poses a measure for the security of steganographic systems.
He suggests to use the information theory and statistic tests.
He introduces a formal definition of a steganographic system
and proposes to measure the reliability of such a system by
a probabilistic calculation. This approach has been used to
define program stealth and address the critical problem of
stealth detection in [38].

Finally, to measure the infestation power of a rootkit,
integrity tests on files can be a first step. However, usual
hash functions enforce the avalanche principle,7 and they are
both sensitive to the least modification to the system.8 The
Levenshtein distance seems to be a better tool: it measures
the similarity between two strings (for example the contents
of two binary files). Unfortunately, the infestation power of a
rootkit is not only due to file modifications. Process modifi-
cation must also be evaluated, which is more difficult because
these modifications are made on data in memory.

In the rest of this article, we focus one the invisibility
property.

5 An example of stealth-rootkit design

In this section, we present our stealth rootkit. First, we
introduce our subversion approach based on a 2.6 Linux
kernel upon an x86 architecture (this technique constitutes
our interaction vector with the system). We focus next on
rootkit dissimulation questions and on its backdoor installa-
tion. We finish with the deployed methods that dissimulate
the attacker’s activity9 that is a part of the protection module
inside the functional rootkit architecture presented Sect. 4.2
on page 142.

5.1 Main principle of the kernel part of the backdoor

Our approach consists in corrupting only one process/thread
in the system. What is original in this approach is that no
other process running on the system see any modification
inside its own environment. That is not the case of any of the
other previously presented approaches.

7 A modified input bit of a good hash function must provoke on average
a modification of half of the output bits.
8 They are not adapted to evaluate rootkit. However, from a admin-
istrator viewpoint, a hash function is useful to detect that the system
has been compromised if it reveals that a file that should not have been
modified has actually been modified.
9 Note that we do not discuss on file hiding in this article.

The per-process syscall hooking technique [40] is not
comparable with ours as it acts only at the user space level:10

no malicious kernel code execution is feasible. Moreover,
the modifications carried out on the infected process thread,
affect all the threads of this process while the granularity of
our approach is the thread.

Our approach subverts the system call 0. It is usually
employed by the kernel to restart some interrupted system
calls with new parameters and with user space transparency.
That is the case for instance of an asleep process (after a
sys_nanosleep call) that needs to be waken up in order
to execute a signal handler. Next to this signal handling,
the process must be put to sleep again (if needed) during
a shorter period of time: the initial duration minus the exe-
cution time of the handler. The sys_nanosleep function
is thus restarted with this new parameter through the system
call 0 mechanism. Given that the system call to restart is spe-
cific to each process (or thread) and can change along the
time, a reference to this call is saved for each thread. Thus,
when a system call (among those that need a restart) is carried
out, its address is stored temporarily inside the caller pro-
cess descriptor. More precisely, this address is stored inside
a thread_info structure linked to the descriptor (Fig. 4).

Our subversion technique consists in modifying this
address. This technique permits to run at the ring 0 level
any kernel space function (or arbitrary code injected previ-
ously inside the kernel space) from the user space, and that
modification is only perceptible from the modified process.

5.2 Design of our rootkit

According to the functional architecture introduced in
Sect. 4.2 (cf. Fig. 2), we present the design of our rootkit.
It first consists in a kernel space backdoor that is protected
with a concealment strategy (cf. Sect. 5.4). This kernel back-
door includes:

1. the code that modifies the system call 0 semantic in order
to call any kernel function (cf. Sect. 5.1), and

2. some code that allows the attacker to inject new features
if they are not provided by the kernel.

Then, the attacker constructs his operations from the kernel
functions and the injected code. He then acts either from
within the compromised system, or from another computer
outside the network of the compromised system. In the first
case, his operations (consisting in sequences of system calls 0)
are launched from its session on the compromised system.

10 The technique changes the instruction employed to call the system
in the glibc system call wrappers, from int 0x80 to int 3. Thus,
when a process executes a system call, it receives a sigtrap signal
instead of. So, this signal is intercepted by a malicious handler.

123

148 E. Lacombe et al.

thread_info

restart_block

long (*fn)(restart_block *)

int arg0, arg1, ...

RAM

the function called
by syscall 0

Process Descriptor
(task_struct)

...
_ *thread_info

...

Fig. 4 The process descriptor and the system call 0

Then, the process that supports this session needs to be acti-
vated. It is presented in Sect. 5.5. In the last case, a conniv-
ing process in the compromised system is set up to relay the
commands (i.e., the system calls 0) which has been sent by
attacker, to the kernel backdoor.

In the next section, we describe the basic installation mode
of our rootkit from the attacker’s process on the compromised
system. A more advanced mode hides this process before
installing the rootkit. However, we do not explain this con-
cealment in the next section but in Sect. 5.7 that deals with
stealth.

5.3 Preliminary installation step of the kernel backdoor

From the attacker’s process, the /dev/kmem virtual device
which must access to the kernel address space, is opened.
This operation requires appropriate privileges (we suppose
that these privileges were obtained by the attacker before the
installation of the rootkit). Then, we look for the
get_zeroed_page primitive (especially its address)
thanks to pattern matching through /dev/kmem. This prim-
itive consists in the most low-level call of the kernel memory
allocator. It books a physical memory page and returns its
address. Next, we look for the stack of our process (as well
as its decriptor). As the employed technique is quite complex,
we explain it in the Appendix.

The next step consists in injecting some code into the
kernel stack of our process. This code is only a call to the pre-
vious function (get_zeroed_page) and returns the allo-
cated page address. It is run through the attacker process by
the subversion of the system call 0. For that purpose, we
first replace the address of the function called by the sys-
tem call 0 by the address of the code we have just injected.
Then, we run from our process the system call 0 with no
parameters. The code we have injected runs itself in ring 0
and then we get the address of the memory page that the
kernel has just allocated for us. We inject in this page

(through /dev/kmem writing) a “trampoline” code that
allows to run any kernel function from the user space. We
then replace the address used by the system call 0 (that ref-
erenced our code inside the stack) by the address of this new
code.

From now on, the system call 0 has a new semantic. When
we call it, the following parameters must be passed: the
address of the kernel primitive (or the address of an arbi-
trary code we inject in the kernel space) that we want to
execute in ring 0, then the parameters (if there are) to pass
to it. Then, the trampoline code fetches the parameters trans-
mitted to the system call 0 from the kernel stack of the caller
process. Finally, it calls the requested function with the ade-
quate parameters.

Once this diversion mechanism is installed, we can now
deploy the logic of our rootkit in the user space. We can for
instance create new kernel threads (i.e., ring 0 execution) that
run any code of our choice. However, before using the root-
kit services (provided by the client program), we conceal it.
That is the issue addressed in the next subsection.

5.4 Kernel backdoor concealment

Data and code concealment has to be considered in running
state, but also when the system is offline. In this article, we
only develop the first case by introducing two methods.

VMALLOC Subversion. This section presents one of our
memory concealment approaches that depends on the Mem-
ory management Unit (MMU) paging mechanism and its
implementation in Linux.

A Page Global Directory (PGD) is associated to each pro-
cess whose address is loaded into the MMU at each con-
text switch. This mechanism allows processes to be isolated
from each others. Each one has its own address space. On
x86 architecture, the 3 to 4 GB interval of the linear address
space is reserved to the kernel space and is only accessible in

123

Rootkit modeling and experiments under Linux 149

Fig. 5 Exploitation of
VMALLOC lazy behavior

L1

PGD of the
Process 71

L1

PGD of the
Conniving
Process

Physical Memory

L1

PGD of the
Process 23

P2

P1

L1

PGD of the
Process 67

Malicious
Page

Empty
page

ring 0. The linear addresses in this interval are all associated
to the same physical addresses whatever the process is.

We use in our approach the VMALLOC non-contiguous
memory allocator to allocate a memory page in the kernel
space. This page is used to store the malicious code. Its linear
address is located inside the VMALLOC-reserved address
space area. In this area, contiguous pages of the linear address
space (all 4 KB-size) correspond to physical pages that are
not necessarily contiguous. So there is no constraint in this
area with regard to the association between a linear address
and a physical address. That is not the case of the remaining
kernel address space where pages are 4 MB in size and are
mapped to the same physical pages up to a constant.

The use of the VMALLOC allocator solely provokes a
modification of the primary PGD—accessible from the
init_mm structure (cf. Fig. 1 on page 139)—during a mem-
ory allocation. It is a mechanism that is lazy in order to
improve system performance. Thus, after a process allocate
memory with VMALLOC, the kernel does not update the
caller’s PGD but the primary PGD. Nonetheless, it returns
the kernel linear address—that maps in the primary PGD, the
beginning of the allocated physical memory—to the caller
process. Then, when this process first accesses to this linear
address, a page fault is raised and the page fault handler runs
and updates the PGD of this process by synchronizing it with
the primary PGD.

Our approach (cf. Fig. 5) exploits the lazy behavior of
VMALLOC. It consists in booking two memory pages
through VMALLOC: one that will contain malicious code
and another that will be empty. Let the malicious page have

L1 for its linear address and P1 for its physical address. Like-
wise, let the empty page have L2, P2 for its linear and physical
addresses, respectively. Then the conniving process—which
has allocated these pages—looks for the address L1 inside
the primary PGD to get the associated physical address P1.
It does the same for L2. Then, it changes the primary PGD
entry that contains P1 with P2. It then updates its own PGD
with the mapping L1 ↔ P1. In this way, it can accesses
the malicious page while the other processes in the system
cannot.

Indeed, when they first access to the VMALLOC allocated
area at linear address L1, their PGD is updated with the map-
ping L1 ↔ P2, and so they access to the empty page. Let
us notice that the linear addresses of the VMALLOC area
can be associated to any physical address without restriction.
Thus, whenever a process looks for the physical page we use,
it needs to go through all the physical memory.

Modification of the MMU Control Bits. In this subsection,
we describe the Shadow Walker rootkit [18] because it is a
relevant alternative to our approach. (However, it depends on
a hardware specificity that we find nevertheless in the vast
majority of the x86 type processors.) The employed tech-
nique benefits from the TLB division (Translation Lookaside
Buffer—ITLB for instructions and DTLB for data) in order
to hide its data from the system. We assume that its data are
written into a memory page. Shadow Walker sets this page as
non-present (in the corresponding page table) and the asso-
ciated TLB entry is cleared, which produces a page fault at
the first access attempt. Then, the rootkit verifies whether it

123

150 E. Lacombe et al.

is an execution or a read/write access or not. In the former
case, it loads the ITLB with the malicious page. In the lat-
ter case, it loads either an empty page or another page of its
choice in the DTLB. Thus, the reading at the malicious page
address corresponds to an ordinary page reading, whereas
the execution from this address triggers the malicious code.

The paramount stage for a rootkit is to install a backdoor.
The next section introduces our various approaches.

5.5 Backdoor-actuators for a process

We present how a process that uses our method, with ordinary
user privileges, can interact with the kernel space, that is, how
it can activate the backdoor. A benefit of our technique is that
we can execute any kernel primitive from an ordinary user
process (i.e., not root).

Let us now present the two kinds of backdoor-actuators
we propose. They are based on kernel thread creation. We
assume in these two approaches that the attacker connects to
the compromise system to recover its control.

First Backdoor-Actuator. It consists in partially hiding a
kernel thread. For that purpose, we unlink it from the thread
list to prevent it from being present in the /proc filesys-
tem and so from being caught by system activity tools like
ps or top. Our thread is only partially hidden because it
is also referenced in a hash table that is used when signals
are exchanged between processes (through the sys_kill
system call) or when a process is traced by another (through
the sys_ptrace system call).

In this mode, we communicate with our kernel thread from
the user space by signals. Thus, our thread sets a signal han-
dler and waits for a specific signal. The purpose of this han-
dler is to answer to a signal emitted from the user space.11

Once the signal is emitted, it is then handled by the ker-
nel thread which reads through the user processes list until
it finds the transmitter. Whenever it finds it, it changes the
address used by the system call 0 to the trampoline code
address. An improvement to this approach consists in using
a signal sequence (rather than only one) with different emis-
sion temporal gaps. This improvement guarantees a better
authentication to the attacker.

Nevertheless, it is easy to detect this kernel thread con-
cealment, by sending a termination signal to it, that is neither
maskable nor interceptable (SIGKILL) (e.g., by sending this
signal to all the processes). More sophisticated techniques—
many threads are considered, each of them restoring the
other ones whenever they are killed—would make this active
defense fail.

11 So that a signal sent by the non-root attacker’s process is accepted
by a kernel thread, we simply need to change the kernel thread UID to
the attacker’s UID.

Second Backdoor-Actuator. In this approach, we also
unlink the created kernel thread from the hash table and so cut
off all communication means with it (signals and IPC Sys-
tem V cannot work anymore). However, we cannot totally
conceal it. Indeed, so that a process can be executed, it still
has to be in the scheduler lists. Nevertheless, we limit in time
its stay in these lists by putting it to temporarily and peri-
odically in sleep mode. These concealment cautions being
taken, interaction from user space is no longer possible. The
thread has then to periodically read through the whole set of
the process descriptors12 to find the one that corresponds to
the attacker’s identifier (i.e., the UID used by the attacker).

Then, whenever it finds this process descriptor, it changes
the system call 0 to the trampoline code address. Then, we
inject inside the process the code of the system call proxy and
make the process run it.

5.6 User-land part of the backdoor

As exposed in Sect. 5.5, the modification required to divert
the system call 0 (i.e., the change of an address) was done
inside the attacker’s process in the compromise system. The
user-land part of the backdoor is used when the attacker
remotely operates without connecting to the system through
a regular user account. Let us note that in this scenario,
the backdoor-actuator is limited to an authentication mean
between the attacker and the user-land backdoor. We will not
further develop this topic.

First Scheme for the User-Land Backdoor. In this scheme,
most of the rootkit logic with respect to malicious operations
carries out at the client program side, located on the attacker
computer. The commands (i.e., some system calls 0) that
the attacker wants the compromise machine to execute are
relayed from his computer through a system call proxy [23]
that is injected in a local process whose system call 0 has
been diverted. As only system calls 0 need to be relayed, this
mechanism is totally convenient. However, it is also possible
to adopt remote userland-execve approaches [26] if programs
that are not present in the compromised machine need to be
executed (e.g., nmap).

Alternative Scheme for the User-Land Backdoor. In this
scheme, the previous system call proxy is now executed
through a mobile parasitic technique across the running pro-
cesses in the system. We briefly explain our mobile parasit-
ism algorithm in Sect. 5.7. Likewise, the modification of the
system call 0 address follows this strategy. To figure out the
benefits of parasitism methods with regard to rootkit activity
concealment, we call the reader back to Sect. 5.7. Notice that

12 In the rest of the paper, we use the term process descriptor to also
describe a thread descriptor, as it is the same structure in Linux.

123

Rootkit modeling and experiments under Linux 151

now, the backdoor-actuator consists in a specific communi-
cation between the attacker and the infested process.

Once the kernel backdoor has been hidden and the user-
land part of the backdoor has been installed, we can come
back to the compromise system and keep control over it. In
what follows, we take care of rootkit services to conceal its
system activity produced by the attacker (cf. Sect. 5.7).

5.7 System activity concealment

In this section, we introduce three methods to dissimulate the
attacker’s system activity. We begin with the method that we
expose in Sect. 5.5.

Hiding a Process. To hide the attacker’s system activity,
we have to conceal his tasks from the administrators’ view.
Thus, we have to hide the processes that are executed by the
attacker, if any. In Sect. 5.5, we have exposed a method to
hide a process by untying it from the double linked list that
goes all over the processes—as well as from the hash table—
but also by leaving it temporarily inside the scheduler lists.
This method is used by our demonstrator to hide itself in
memory. However, the attacker has to run programs within
the system and these ones have to be kept hidden.

A naive method is to break the child process links after our
process calls sys_fork (in order to create a clone of itself)
and then to load the program we want to execute through the
sys_execve system call. However, between the time the
process is created and the time we break its links, another
process can take over the system and detect it.

To cope with this problem, we duplicate in memory the
sys_fork system call code and the code of the copy_
process function (that is called by the former one) that
carries out the link operations of the new clone process. It is
then sufficient to delete these link operations. Our new mod-
ified sys_fork function can be used instead of the original
system call through the system call 0 diversion, as explained
previously. By proceeding in this way, the new process is not
linked to its creation time.

An alternative to this last approach is to create another
process having the highest priority and which is in charge of
breaking the links. In this way, when we create a new pro-
cess with our demonstrator through the call to sys_fork,
the third party process takes over the system right after its
creation and goes all over the process list to find the new one
and to unlink it.13

In the next section we use the same method to dissimulate
the lineage of a process.

13 In order to achieve that we indeed verify the relationship between
each process and our demonstrator.

Hiding Process’ offspring. The hidden programs which are
executed by the attacker can also create themselves new pro-
cesses. We introduce here a method to dynamically hide the
offspring of any process. We create a hidden thread that goes
periodically all over the process list of the system and checks
for each one its relationship with the targeted process so to
verify whether it is one of its descendants or not. When it
is the case, the process is hidden, otherwise we go on to the
next process. The algorithm stops himself to go up the rela-
tionship links of a process when it reaches the idle task of
PID 0 that is the first created task (i.e., the father of all the
processes). To improve the task stealth, we put it to sleep
by removing it temporarily from the scheduler lists. Indeed,
we avoid to monopolize the processor and so to wake up the
administrator’s suspicion.

Mobile Parasitism of Kernel Threads. Stealth execution
methods we have previously proposed are problematic
because of the many links that exist between the structures
describing the process descriptor. As a consequence, we plan
to get rid of that descriptor. Thus, we develop a mobile
parasitic algorithm upon kernel threads that run in the
compromised system.14 In what follows, we briefly explain
the basics of this algorithm.

It consists in stealing execution cycles to at least two
threads. The principle is as follows:

1. we first inject some code in kernel memory,
2. we then divert the thread execution to make it execute

this code which,
3. finally executes itself in a loop that makes coming and

going all over the infected threads.15

This algorithm takes care of keeping malicious code execu-
tion as stealth as possible. Thus, we do not want to alter the
initial work of the infested threads. Next, we briefly explain
how it is accomplished in the two-thread scenario.

Our code is composed of two blocks, each one being asso-
ciated to an infected thread (depicted by their descriptor in
Fig. 6). These blocks are similar and divided up into three
parts: the prologue (that recovers the initial state of the thread
that runs the other block), the malicious code and the epi-
logue (that initiates the execution of the other block inside
its associated thread).

We show how it operates in Fig. 7. The first-block executes
itself on thread 1 behalf, then hands over to the thread 2 that
executes the second-block. This latter hands over back to

14 The implementation is easier with kernel thread than with regular
user space process. Indeed, the kernel address space is the same for all
its threads.
15 The instruction pointer of a process waiting to run is stored in its
descriptor. Therefore we can change it to the address of our parasitic
code.

123

152 E. Lacombe et al.

Fig. 6 Execution cycle theft
1/2

task_struct n1

...
eip
...

Malicious Kernel
Code

First Block

task_struct n2

...
eip
...

Second Block

Malicious Kernel
Code

Prologue

Epilogue

Malicious Code

Fig. 7 Execution cycle theft
2/2

task_struct n1

...
eip
...

Malicious Kernel
Code

First Block

task_struct n2

...
eip
...

Second Block

Malicious Kernel
Code

(1) first block
 execution

(3) second block
 execution

(2) n1 hands over to n2

(4) n2 hands over to n1

the thread 1 that goes on with first-block execution and so
on. Thus, we obtain a mobile parasitism that goes from one
process to another and conversely. These processes are tem-
porarily infested so they can do the work for what they were
originally created. In this way, we hamper the detection of
the malicious activity.

6 Experiment synthesis

Let us recall that in this paper we consider x86 architectures,
without any hardware extension for virtualization. We do not
consequently consider hypervisor-rootkits in our synthesis.

6.1 Compatibility and protection of the rootkit

In order to make our rootkit compatible with many kernel
versions, we can take advantage of its stable sections of code.
They are the code sections that have been sustained and are
rarely modified. In addition, the critical sections of the ker-
nel are also of interest. They are the ones (i.e., the essential
parts) that have a great impact on global system efficiency.
Thus, these code sections are implemented with a great care

and are seldom modified along their life-cycle. It follows that
the majority of these sections are also stable. We explain next
why it is a benefit for our rootkit.

To favor the concealment of our rootkit or of its activities
(i.e., to favor the invisibility criterion) it is relevant to act
upon the environment of the kernel critical sections (i.e., the
data the kernel manipulates or uses) without modifying them.
Indeed, as we have just seen, the addition of code in these sec-
tions can be catastrophic for the system performance. Thus,
administrators have to cope with a painful choice. In case of
they want to implement some detection or prevention mech-
anisms like data filtering in these sections, it results in a
totally unusable system.16 We illustrate that with our original
interaction approach with the compromised system kernel.
We divert a kernel critical section (the system call 0) without
modifying it (cf. Sect. 5.1). We only act upon the data it uses.

By acting upon kernel critical sections, we make the imple-
mentation of protection mechanisms difficult and in this way

16 The impact on the system greatly depends on the critical section
that is modified. However, the modification of many of them results in
system unusability.

123

Rootkit modeling and experiments under Linux 153

we favor rootkit robustness. Moreover, the rootkit may find
it very beneficial to work with these sections in which its
activity will not significantly alter its invisibility.

6.2 Contribution

In this section we go all over the contributions of our work
and compare them with the existing approaches.

Kernel Part of the Backdoor. In our approach, the
necessary steps to install the rootkit are only read and write
accesses to the /dev/kmem device. That constitutes the
preliminary operations to settle a bootstrap. Thereafter, the
remaining part of the installation is carried out through the
system call 0, including the future injections into the kernel
space. Thus, the attacker’s activity is hidden from the begin-
ning, i.e., from the rootkit installation.

We now detail the differences between our approach and
the usual techniques employed in known rootkits:

– Local visibility of modifications:
Our approach modifies the system behavior only for the
process from which we work. The system call 0 opera-
tion is unaffected for all other processes on the system.
Thus, we name it local diversion, to be compared with
hooking and hijacking methods employed by the rootkits
that affect the system globally. Let us recall that the per-
process syscall hooking technique [40] is not comparable
with our method (cf. Sect. 5.1) since it does not allow
any kind of ring 0 execution at all (it is a user space level
technique that does not deal with kernel space).

– Data corruption, not code corruption:
Many rootkits alter the kernel code. Our approach only
acts upon the code environment, i.e., upon the data it
manipulates. From the J. Rutkowska taxonomy [2], our
rootkit is type II: the kernel corruption is carried out inside
non-fixed section (for instance, inside data areas). Rela-
tively to the type II rootkits, we only modify one variable:
a function pointer inside a thread descriptor. Then we add
some code sections to the kernel inside areas that we allo-
cate before through kernel mechanisms.

– Arbitrary code execution in ring 0:
The system call 0 diversion allows to execute the code
of our choice in ring 0. But it is only after we settle our
“trampoline” code that we can execute any kernel func-
tions or some code that we have injected before.

– Use of the kernel-provided mechanisms in the compro-
mised system:
The known approaches do not set up a trampoline code
which allows to take benefit from all the kernel mecha-
nisms. Indeed, the majority of the rootkit malicious-oper-
ations are written completely by the attacker whereas the

kernel implements a lot of mechanisms that could make
easier the attacker’s duty.
The use of kernel services in our rootkit allows us to
deploy the majority of its logical in a client-side program
located in a remote machine. Thus, the contribution of
our approach compared to the “all in memory” current
attack techniques [24–26] lies in the fact that the compro-
mised system memory does not contain any comprehen-
sive part of our rootkit, at any moment. Only actions that
cannot be implemented with the help of kernel services
are designed and implemented to be executed directly in
memory within the compromised system. In this way, we
hamper online forensic-analyse mechanisms by leaving
them some partial clues only, that are not sufficient to
figure out or rebuild the malicious activities the attacker
carried out.17

Kernel Backdoor Concealment. In order to hide the code
and the data of our kernel backdoor, we propose a method
that benefits from the characteristics of the Linux-kernel non-
contiguous memory allocator (cf. Sect. 5.4).

– Use of Kernel Mechanisms: In order to hide a kernel back-
door we do not create any additional mechanism, but we
just exploit the characteristics of the VMALLOC mem-
ory allocator. Through it, our kernel backdoor can thus
be concealed. Once again, we try to benefit as much as
we can from the kernel features any of kernel subsystem
does.

– Efficiency: The method proposed by the Shadow Walker
rootkit [18] (cf. Sect. 5.4) in order to dissimulate a root-
kit is enforced by the hardware. Thus, as it works at a
lower level than our technique, it is technically more reli-
able. However, the price to be paid is its implementation
complexity and its strong dependency on the hardware
architecture, contrary to our approach.

User-Land Part of the Backdoor. These advantages are
only relevant for the case of an the attacker which remotely
operates without connecting himself to the system through a
regular user account. We proposed two approaches that both
use a proxy mechanism (cf. Sect. 5.6).

– Use of a proxy mechanism: Our backdoors use a sys-
tem call proxy mechanism. Thus, they are triggered from
the user mode. It seems less interesting than approaches
that interact with the attacker directly from the kernel.
However, in this way, we are less dependent on kernel
internals.

17 We only relay system call 0 what furthermore hampers the rebuilding
of the attack.

123

154 E. Lacombe et al.

– Alternative scheme for the user-land backdoor:
The alternative envisioned scheme for the user-land part
of the backdoor—that is not implemented yet—includes
an innovation compared to fixed parasitism approaches.
Indeed, contrary to the backdoors which is parasitic upon
a process, ours moves from one process to another (the
collection of infected processes has to be for now
established before the execution of the algorithm). The
backdoor execution alters the execution of the infected-
processes only temporarily. In this way, we can say that
our approach is stealthier than fixed parasitism. However,
it acts upon several processes instead of only one. Thus,
relatively to the implemented detection type on the com-
promised system, the stealth of our backdoor can change.

Rootkit Services. Among the services provided by a root-
kit, we focus on those which cover the attacker’s activities
concealment (actually, the last component of the protection
module of the rootkit architecture proposed in Sect. 4.2).

– A posteriori concealment: The majority of rootkits hide a
posteriori (i.e., after they are started) the processes they
create by unlinking them from the system. We proposed a
converse approach (cf. Sect. 5.7) by preventing the link-
ing at the process creation (duplication and modification
of do_fork). In this way, our processes have a lim-
ited interactivity from the beginning with kernel internal
structures (except with those of the scheduler).

– Dynamic Concealment: We proposed a technique that
hides a process and its offspring each time it evolves (cf.
Sect. 5.7). The approaches that systematically hide all
UID-specific processes reach a nearby outcome.

– Mobile parasitism: Our algorithm goes all over (or a sub-
set of) the processes or the kernel threads of the system
(cf. Sect. 5.7 for a brief explanation of the principle). The
current parasitic techniques usually infect a single target
only. The main contribution of our technique comes from
our purpose on which we focused during its conception:
the work of the infested processes must not be contin-
uously altered. Thus, we improve malicious execution
stealth by temporary process corruption.

6.3 Limitations

Kernel Part of the Backdoor. The main limitation of our
interaction vector lies in the fact that the administrator may
trace us; he can thus observe that the system call 0 is called
from the user space. Since this kind of behavior is a priori
suspicious, the administrator is likely to worry about the fact
that the system may have been compromised.

Another problem is about the compatibility of kernel
internals with respect to different versions. Indeed, the func-
tions we execute through the system call 0 may change from

one kernel version to another. Although these changes are
not very common for critical or stable primitives, they are
more likely than the libc API modification or than the kernel
external ABI modification. Thus, the remote userland-execve
attacks [26] have an undeniable advantage that is an ascer-
tained compatibility whatever the kernel version which is
used in the compromised system.

Kernel Backdoor Concealment. We show here the limita-
tions of our concealment technique for rootkit code.

– Full reading of physical memory:
Our method, which is based on the non-contiguous
Linux kernel memory allocator, does not hold out on a
full reading of physical memory. However, this kind of
action takes long time to operate while greatly stressing
the processor. Therefore this kind of detection mecha-
nisms is usually not conceivable.18

– Safety versus Concealment: The area descriptor which
creates VMALLOC, can betray our dissimulation
attempts. We can of course delete it but then we have
no longer the guarantee that our code could not be over-
written when a kernel module is inserted, for instance.

Backdoor-Actuators for a Process. The two proposed
backdoor-actuators (cf. Sect. 5.5) use a kernel thread which
is then hidden by breaking the majority of its links with the
compromised system. They are only relevant for the case of
an the attacker who logs on to the system through a regular
user account. In the case of an attacker who cannot reconnect
to the system like a regular user, these backdoor-actuators do
not work.

User-Land Part of the Backdoor. These limitations are
only relevant for the case of the attacker who remotely oper-
ates without logging on to the system through a regular user
account.

– Use of a proxy mechanism: As the backdoor depends on
a user-land process, hence it depends on its ability to sur-
vive within the system.

– Alternative scheme for the user-land backdoor: Our alter-
native scheme suffers from the same limitations that our
mobile parasitic technique does. We address this issue in
the remaining part of this section.

Rootkit Services. We present here the limitations of our
concealment techniques of the attacker’s activities.

The concealment of a process is breakable as soon as its
descriptor is present and visible in memory. Indeed, we can

18 Stealth is also the prerogative of defence mechanisms as a rootkit
can detect the actions triggered against it and hence act accordingly.

123

Rootkit modeling and experiments under Linux 155

reveal a process by exploiting many relationships between the
task_struct and the thread_info structures (that, in
part, makes up the process descriptor). Thus, going all over
the physical memory to find out hidden processes, is utterly
conceivable.19 The observation of these limitations has car-
ried us on with the elaboration of our mobile parasitism.
However, this approach is not without drawbacks.

– Limited robustness:
With our mobile parasitism, when the malicious code is
executed by a given process, its survival (i.e., the fact that
it can continue to execute itself or to move to another pro-
cess) depends on this process upon which it is parasitic.
Thus, if this process dies, our malicious code disappears.

– Implementation difficulties of the malicious payload: The
design of the malicious payload has to be specifically
designed to work with our algorithm. Thus, for instance,
for the two-processes case, the malicious code has to be
cut out in two independent chunks.

– Detection risk: The corruption of several processes is a
limitation by itself. Indeed, the bigger this number is, the
more flawed the malicious code stealth is. Indeed, some
of the infected processes could be deception codes settled
by the administrator to detect a mobile parasitic activity.

7 Conclusion and prospects

We have highlighted two main issues with respect to root-
kit technology in this paper: on the one hand, the principles
that allow us to model the rootkits, and on the other hand,
the stealth-rootkit approach through malicious diversion of
kernel subsystems. In addition, we discussed on a usually
main kernel feature: hiding attacker’s activity. Namely, we
think that the longer we legitimately act before operating
fraudulently, the less is obvious for detection mechanisms to
succeed. Indeed, the attacker takes time to draw up its envi-
ronment to make its malicious activity run as well as it can
(the quicker, etc.). Thus, the attacker takes less risks to be
detected when acting maliciously at the latest.

These observations stimulate us to characterize the root-
kits in order to better evaluate them. We brought to light three
criteria that qualify them. The next step is to define some rel-
evant measures on these criteria in order to eventually get an
unbiased comparator on the rootkits.

In addition, we introduced rootkit’s functional architecture
that we set up through its definition. Then, it will be interest-
ing to put together this architecture and the criteria that we

19 Moreover, we have implemented this approach in our demonstrator.
False positives which occur due to the presence of dead process descrip-
tors, are suppressed after a step which checks whether descriptors are
fixed in time or not.

brought to light in order to figure out the essential spots. For
that purpose, the formalization of both the architecture and
the evaluation criteria is essential.

We only focused during our experimental study on the
Linux kernel. Therefore it seems essential to deem the other
current kernels to imagine many diversion ways. This study
would help as an experimental base to determine factors that
favor the diversion potentiality of kernel features.

Acknowledgement This work has been partially carried out by Éric
Lacombe and Frédéric Raynal while at EADS France - Innovation
Works, Suresnes, France.

Appendix: Searching for the current process descriptor
in Linux 2.6

In order to find our process descriptor, we first look for the
associated kernel stack. Indeed, a thread_info structure
is at the bottom of this stack and it includes a reference to
our descriptor.

So to find the location of our kernel stack, we have to
know the esp stack pointer value whenever our process exe-
cute itself in kernel mode. To this end, we base our approach
on the system call internals of x86 Linux since its version 2.6.
The machinery operates thanks to the sysenter hardware
instruction [41].

Let us now briefly describe the internals (Fig. 8). From
the user space, sysenter is executed. At this time, eip
(the instruction pointer register) et esp (the stack pointer
register) are set up to compile-time predefined values (these
values are loaded in machine specific registers during the
system initialization) and the processor switch to ring 0 (i.e.,
the kernel mode).

So, the esp value is always the same whenever the ker-
nel mode is switched. But each process has its own kernel
stack. Actually, the first instruction that is executed after the
switch to ring 0 consists in loading esp with the esp value
of the scheduler-chosen process. This value is stored by the
scheduler within the tss_struct that builds up the Task
State Segment employed by the x86 architecture. Linux 2.6
uses one of them in memory, for each processor only.

Once the sysenter execution is achieved, the esp reg-
ister is loaded with the address of this structure. Therefore,
the first instruction can get the kernel stack address of the
executed process with only the help of esp.

Thus, in order to get the address of our kernel stack back,
we just have to read at the location pointed by esp plus a
fixed offset, at the time of the sysenter execution.20 The
problem is to know how to get the value that is affected to

20 When our process read the memory at this location, it indeed reads
itsesp0 value; no other process is involved in this memory read access.

123

156 E. Lacombe et al.

tss_struct

Scheduler

updates esp0
with the value

associated to the next
thread to execute. esp0

3 GB

(after sysenter)

4 GB

push %ebp
mov %esp, %ebp
sysenter
...

second last
page

Kernel Space

Kernel Stack

thread_info

(of the next executed
kernel thread)

(after the first
instruction
in kernel mode)

esp

esp
...

...

_ *task

Fig. 8 Relationship between the process descriptor and the sysenter instruction

esp at the sysenter time. To this end, a hardware instruc-
tion allows us to get the value back, which is stored inside
a specific register of the processor. However, this instruc-
tion is only runnable in ring 0. Therefore, we chose to find
the kernel function in charge of the specific register ini-
tialization (enable_sep_cpu) to find out the value. To
this end we employ pattern matching techniques through the
/dev/kmem virtual device. From now on, we know the loca-
tion of our kernel stack and hence the location of our process
descriptor.

References

1. King, S.T., et al.: Subvirt: Implementing malware with virtual
machines. In: Proceedings of the 2006 IEEE Symposium on Secu-
rity and Privacy (2006)

2. Rutkowska, J.: Stealth malware taxonomy (2006)
3. truff. Infecting loadable kernel modules. Phrack 61 (2003)
4. Microsoft Corporation.: Digital signatures for kernel modules on

systems running windowsăvista. Technical report, Microsoft Cor-
poration (2006)

5. Kruegel, C., Robertson, W., Vigna, G.: Detecting kernel-level root-
kits through binary analysis (2004)

6. sd and devik. Linux on-the-fly kernel patching without l km. Phrack
58 (2001)

7. c0de. Reverse symbol lookup in linux kernel. Phrack 61 (2003)
8. Dornseif, M., et al.: Firewire—all your memory are belong to us.

In: CanSecWest/core05 (2005)
9. Boileau, A.: Hit by a bus: physical access attacks with firewire. In:

Ruxcon 2006 (2006)
10. Rutkowska, J.: Beyond the cpu: defeating hardware based ram

acquisition tools (part i: Amd case). In: Black Hat DC 2007 (2007)

11. Cesare, S.: Syscall redirection without modifying the syscall table
(1999)

12. kad. Handling interrupt descriptor table for fun and profit. Phrack
59 (2002)

13. buffer. Hijacking linux page fault handler. Phrack 61 (2003)
14. stealth. Kernel rootkit experience. Phrack 61 (2003)
15. Cesare, S.: Kernel function hijacking (1999)
16. Rutkowski, J.K.: Execution path analysis: finding kernel based

rootkits. Phrack 59 (2002)
17. Lawless, T.: On intrusion resiliency (2002)
18. Sparks, S., Butler, J.: Raising the bar for windows rootkit detection.

Phrack 63 (2005)
19. Soeder, D., Permeh, R.: Eeye bootroot: a basis for bootstrap-based

windows kernel code (2005)
20. Kumar, N., Kumar, V.: Boot kit (2006)
21. Rutkowska, J.: Subverting vista kernel for fun and profit. In: Black

Hat in Las Vegas 2006 (2006)
22. Filiol, É.: Computer Viruses: from Theory to Applications. IRIS

International Series. Springer, France (2005)
23. Maximiliano Caceres. Syscall proxying—simulating remote exe-

cution (2002)
24. grugq. Remote exec. Phrack 62 (2004)
25. Pluf and Ripe. Advanced antiforensics: self. Phrack, 63 (2005)
26. Dralet, S., Gaspard, F.: Corruption de la Mémoire lors de

l’Exploitation. In: Symposium sur la Sécurité des Technologies de
l’Information et des Communications 2006, pp. 362–399. École
Supérieure et d’Application des Transmissions (2006)

27. Raynal, F., Berthier, Y., Biondi, P., Kaminsky, D.: Honeypot foren-
sics: analyzing system and files. IEEE Secur. Priv. J., aovt (2004)

28. Filiol, É.: Techniques virales avancTes. Collection IRIS. Springer,
France (2007)

29. Filiol, E.: Strong cryptography armoured computer viruses forbid-
ding code analysis: the bradley virus. In: 14th EICAR Conference,
StJuliens/Valletta - Malta (2005)

30. Riordan, J., Schneier, B.: Environmental key generation towards
clueless agents. Lect. Notes Comput. Sci. 1419, 15–24 (1998)

123

Rootkit modeling and experiments under Linux 157

31. Girling, C.G.: Covert channels in lan’s. IEEE Trans. Softw. Eng.
février (1987)

32. Wolf, M.: Covert channels in lan protocols. In: LANSEC ’89:
Proceedings on the Workshop for European Institute for System
Security on Local Area Network Security, pp. 91–101, London,
UK, 1989. Springer, Heidelberg

33. Rowland, C.H.: Covert channels in the tcp/ip protocol suite. First
Monday, mars (1996)

34. Raynal, F.: Les canaux cachTs. Techniques de l’ingTnieur, dTcem-
bre (2003)

35. Filiol, E., Josse, S.: A statistical model for viral detection unde-
cidability. In: Broucek, V. (ed.) J. Comput. Virol., EICAR 2007
Special Issue, 3(2) (2007)

36. The Honeynet Project Staff. Know your enemy: Sebek—a kernel
based data capture tool (2003)

37. bioforge. Hacking the linux kernel network stack. Phrack 61 (2003)
38. Filiol, E.: Formal model proposal for (malware) program stealth.

In: Proceedings of the 17th Virus Bulletin Conference (2007)
39. Cachin, C.: An information-theoretic model for steganography. In:

Proceedings of the International Workshop on Information Hiding
(1998)

40. 7a69ezine Staff. Linux per-process syscall hooking (2006)
41. Intel. IA-32 Intel Architecture Software Developer’s Manual Vol-

ume 2: Instruction Set Reference (2003)
42. Pragmatic and THC.: (nearly) Complete Linux Loadable Kernel

Modules. The definitive guide for hackers, virus coders and system
administrators (1999). http://newdata.box.sk/raven/skm.html

123

http://newdata.box.sk/raven/skm.html

	Rootkit modeling and experiments under Linux
	Abstract
	Introduction
	Technical background
	Operating system kernel
	The x86 architecture
	State of the art
	Rootkit evolution
	Kernel space injection methods employedby Linux rootkits
	Diversion methods employed by Linux kernel rootkits
	Rootkit architecture and design
	Definition of rootkits and comparison with other Malwares
	Rootkit architecture
	Communicating with the rootkit
	Towards rootkit evaluation
	An example of stealth-rootkit design
	Main principle of the kernel part of the backdoor
	Design of our rootkit
	Preliminary installation step of the kernel backdoor
	Kernel backdoor concealment
	Backdoor-actuators for a process
	User-land part of the backdoor
	System activity concealment
	Experiment synthesis
	Compatibility and protection of the rootkit
	Contribution
	Limitations
	Conclusion and prospects
	Acknowledgement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

