
J Comput Virol (2008) 4:251–266
DOI 10.1007/s11416-008-0086-0

ORIGINAL PAPER

Behavioral detection of malware: from a survey towards an established
taxonomy

Grégoire Jacob · Hervé Debar · Eric Filiol

Received: 15 June 2007 / Revised: 27 October 2007 / Accepted: 31 January 2008 / Published online: 21 February 2008
© Springer-Verlag France 2008

Abstract Behavioral detection differs from appearance
detection in that it identifies the actions performed by the
malware rather than syntactic markers. Identifying these
malicious actions and interpreting their final purpose is a
complex reasoning process. This paper draws up a survey
of the different reasoning techniques deployed among the
behavioral detectors. These detectors have been classified
according to a new taxonomy introduced inside the paper.
Strongly inspired from the domain of program testing, this
taxonomy divides the behavioral detectors into two main
families: simulation-based and formal detectors. Inside these
families, ramifications are then derived according to the data
collection mechanisms, the data interpretation, the adopted
model and its generation, and the decision support.

1 Introduction

Even though behavioral detection seems a recent trend, in
antivirus products as well as in virology research, its princi-
ples are not really new. In 1986, Cohen [1,2] already estab-
lished a basis for behavioral detection within his first formal
works. He made his point that viruses, just like any other
running program, use the services provided by the system.
Predicting the viral nature of a program by its behavior was

G. Jacob (B) · H. Debar
France Télécom R&D, Caen, France
e-mail: gregoire.jacob@orange-ftgroup.com;
gregoire.jacob@gmail.com

H. Debar
e-mail: herve.debar@orange-ftgroup.com

G. Jacob · E. Filiol
French Army Signals Academy,
Virology and Cryptology Lab, Rennes, France
e-mail: eric.filiol@esat.terre.defense.gouv.fr

then equivalent to defining what is, and what is not a
legitimate use of the system services. This problem was even-
tually reduced to an appearance analysis of the inputs sent to
the system, which is undecidable. Basically, this definition
is strongly linked to the operating system but it can easily
be extended to the use of any hardware or software resource
(processor, memory, programs). This extended definition is
often referred as function-based detection. The difference
remains a question of perimeter explaining that function-
based and behavioral detections are considered indifferently
along the article.

1.1 Two opposite approaches for behavioral detection

As stated by Cohen, two opposite approaches can apprehend
the problem of behavioral detection. The first approach is
to model the behavior of legitimate programs and measure
deviations from this reference. The great advantage of this
approach lies in its capacity to detect completely unknown
viral strains. Nevertheless, defining a global behavior for pro-
grams reveals itself extraordinary complex. An obvious rea-
son is the multitude of applications with different natures
existing on a system. A web or mail client exhibits an inten-
sive use of the network facilities whereas a multimedia player
decodes large buffers of data and renders them over physi-
cal devices such as the graphic or sound cards. No com-
mon characteristics can be extracted and a different profile
is required for each kind of application. Moreover the avail-
able information is too important for each program (several
megabytes of code, hundreds of system calls) to be consid-
ered wholly. As a consequence, legitimate models are always
statistical, thus prone to false positive and non resilient to
major environment changes. It explains why, in virology, the
second opposite approach of modelling and detecting sus-
picious behaviors is mainly adopted. When a set proves too

123

252 G. Jacob et al.

complex to be defined exhaustively, the problem can intui-
tively be addressed working on its complementary. The main
drawback is that unknown malware can no longer be detected
as soon as they use innovative viral techniques.

It is interesting to parallel antivirus products with intru-
sion detection systems, where the perception is diametrically
opposed. In the intrusion domain, behavioral detection is
based on legitimate models whereas the suspicious mod-
els used in virology are considered as simple signatures for
knowledge-based detection, also called misuse detection
[3,4]. Modelling legitimate behaviors goes back to the early
works on intrusion detection published by Anderson [5] and
Denning [6]. It still remains an active research field as it is
clearly impossible to generate misuse signatures for the thou-
sands of vulnerabilities discovered every year. Such models
are out of the scope of this paper but, for further information,
the reader is invited to refer to the works of Forrest et al. [7]
on host-based intrusion detection and the works of Zanero [8]
on the use of Markovian Models to capture legitimate uses of
systems. To go back to our main focus, viral techniques are
less numerous than vulnerabilities and misuse models seem
more adequate to the present problem of malware detection.

1.2 Paper contribution and organization

In virology, the domain of behavioral detection shows an
increasing activity both in commercial products and research.
Paradoxically, no global survey covering this domain has
been published. A striking multitude of behavioral detection
systems can be observed without any will of consistency in
the used vocabulary and designations. To our knowledge, this
taxonomy dedicated to behavioral detection in virology is the
first of its kind, contrary to intrusion detection where the lit-
erature is abounding. The novelty of our approach lies in
the parallel made with the domain of program testing which
makes a distinction between simulation-based and formal
verifications. The domain of behavioral detection should ben-
efit greatly from a consistent reference taxonomy. In effect,
this taxonomy should remove the divisions between the dif-
ferent sub-domains of behavioral detection, helping informa-
tion sharing and reuse.

The scope of this taxonomy has been defined as wide as
possible, according to the definition of behavioral detection
given in introduction. The virology point of view has been
willingly chosen, meaning that the modelling of suspicious
behaviors has been implicitly considered. As the need arises,
relevant intrusion detection papers are also given as addi-
tional references. Globally, the paper has been organized
as follows: Sect. 2 explains the recent interest in behav-
ioral detection by the predicted failure of appearance detec-
tion, Sect. 3 describes a generic behavioral detection system,
Sect. 4 is the core part of the article introducing the taxonomy,

and Sect. 5 gives an illustrative overview of both existing
commercial products and research prototypes.

2 Why behavioral detection may succeed where
form-based detection will undeniably fail

Historically, appearance detection also called form-based
detection has been the first technique used to fight malware
and still remains at the heart of nowadays antivirus software.
These detection techniques search system objects such as
files for suspicious byte patterns referenced in a base of sig-
natures. These betraying patterns must exhibit a discriminat-
ing character combined with non-incriminating properties
for legitimate programs [9, p. 147]. Even if these purely syn-
tactic signatures can precisely identify the threat and name it,
form-based techniques are bound to detect known malware
or trivial variants.

On the opposite, behavioral signatures are no longer
simple byte patterns but complex meta-structures carrying
dynamic aspects and a semantic interpretation. Programs
with distinct syntaxes can basically have an identical behav-
ior captured by a single behavioral signature. As a conse-
quence, a behavioral signature no longer identifies a single
piece of malware but a whole class of malware. Behavioral
detection is thus more generic and more resilient to mod-
ifications than form-based detection. On the other hand, a
precise identification of a piece of malware inside its class is
no longer possible, which can be problematic when choosing
the relevant countermeasure. Nevertheless, behavioral detec-
tion should bring a solution to two of the major problems
encountered by form-based detection.

2.1 The signature extraction problem

Form-based detection provides undeniable advantages for
operational use. It uses optimized pattern matching algo-
rithms with controlled complexity and very low false
positive rates. Unfortunately, form-based detection proves
completely overwhelmed by the quick evolution of the viral
attacks. The bottleneck in the detection process lies in the
signature generation and the distribution process following
the discovery of new malware.

The signature generation is often a manual process requir-
ing a tight code analysis that is extremely time consuming.
Once generated, it must be distributed to the potential tar-
gets. In the best cases, this distribution is automatic but if
this update is manually triggered by the user, it can still take
days. In a context where worms such as Sapphire are able to
infect more than 90% of the vulnerable machines in less than
10 min, attacks and protection do not act on the same time
scale.

123

Behavioral detection of malware: from a survey towards an established taxonomy 253

Moreover this signature can easily be bypassed by creating
a new version of a known viral strain. The required modifica-
tions are not considerable; they simply need to be performed
at the signature level. The numerous versions of the Bagle e-
mail worm referenced by certain observatories illustrate the
phenomenon [10]. In a few months, several versions have
been released by simply modifying the mail subject or add-
ing a backdoor. With regards to more recent developments, a
major concern during the last RSA Security Conference was
the server-side polymorphic malware Storm Worm [11]. Its
writer produces beforehand vast quantities of variants which
are delivered daily in massive bursts. Each burst contains sev-
eral different short-lived variants leaving no time to develop
signatures for all of them. On a long-term scale, experts will
not be able to cope with this proliferation. As an obvious
explanation, formal works led by Filiol [12] underline the
ease of signature extraction by a simple black box analysis.
This extraction remains possible because of weak signature
schemes.

Because of its generic features, a single behavior signature
should detect all malware versions coming from a common
strain. Experts would be able then to establish a hierarchy in
their work, focusing uppermost on new innovative strains. In
addition, another side effect of form-based detection is the
alarmingly growing size of the signature bases. As a solution,
older signatures are regularly removed leaving the system
once again vulnerable. On the opposite, the behavior base
size is less consequent and the signature distribution less fre-
quent. Regular base updates remain nevertheless necessary,
contrary to what certain marketing speeches claim.

2.2 Resilience to automatic mutations

In the previous part, we have considered the manual evolution
of malware. What happens when these mutations become
automatic during propagation? The first significant gener-
ation of mutation engines is born with polymorphism [13,
p. 140], [14, p. 252]. Polymorphic malware encrypt their
entire code in order to conceal any potential signature. A sim-
ple variation of the ciphering key modifies totally their byte
sequences. A decryption routine is then required to recover
the original code and execute it. This routine must possess
its own mutation facilities to avoid becoming a signature on
its own.

It was quickly discovered that simple emulation could
thwart these engines, making the original code available. But
searching for signatures has become far more complex with
metamorphism. The malware is not simply encrypted; its
whole body suffers transformations affecting its form while
keeping its global functioning [13, p. 148], [14, p. 269].
The mutation process always begins with disassembling the
code, which is then obfuscated before being reassembled:
code reordering, garbage insertion, register reassignment and

Fig. 1 Functional design of a behavioral detector. This decomposition
of the system brings into light the articulation between the generation
of the behavior models and the detection process. Each one of the three
sequential tasks making up detection, processes the data to a higher
level of interpretation until the final assessment

equivalent instruction substitution. Syntactic analysis is no
longer sufficient to fight these mutations. Eventually, Spinel-
lis [15] has shown that the detection of mutating size-bounded
viruses by signature is NP-complete. For metamorphic
viruses, whose size in unbounded, the result is even worse.
Filiol [16] showed that some well chosen rewriting rules
could lead to the undecidability of detection.

If these mutations modify the malware syntax, they are not
likely to modify its semantic, at least for the known cases.
Typically, the malware will always use the system services
and resources in an identical way. Behavioral approaches
should consequently offer a better resilience to mutations.

3 Generic description of a behavioral detector

3.1 System architecture and functioning

A behavioral detector identifies the different actions of a pro-
gram through its use of the system resources. Based on its
knowledge of malware, the detector must be able to decide
whether these actions betray a malicious activity or not. Infor-
mation about system use is mainly available in the host envi-
ronment thus explaining that behavioral detectors work at this
level. How malware are introduced in the host is not the main
focus of antivirus products. They can either be automatically
introduced through a vulnerability, which is the concern of
intrusion detection, or manually introduced by negligence
of the user. Antivirus products often act as a last local bar-
rier of protection when previous barriers (firewalls, intrusion
detection systems. . .) have been successfully bypassed.

Behavioral detectors are basically split into four main
components responsible for distinct tasks. This decompo-
sition is schematically represented in Fig. 1.

123

254 G. Jacob et al.

At first, we will purely focus on detection. The detection
process consists in three sequential tasks addressed by indi-
vidual components. A first component performs the data col-
lection, where dynamic capture and static extraction have
been considered indifferently. In both modes, the intended
actions of a program can be observed: in the first case only
the effectively performed actions are collected whereas in
the second all potential actions are. In practise, data can be
collected from different sources: the local host for personal
computers or host honeypots deployed in strategic points
for networks. Because behavioral detectors work at a higher
interpretation level than simple form-based detection, a sec-
ond component is required to analyze and interpret the col-
lected data. This second tasks brings into light the important
characteristics of the collected data. These characteristics are
then formatted into an intermediate representation to feed
the last part of the process. The last component embeds the
matching algorithm used to compare the representation to
the behavior signatures. According to the result, the program
will be labelled as malicious or benign. This division into
three pieces is particularly important since it structures the
coming taxonomy.

Extending our perspective, a preparatory step is obviously
required prior to detection. An initial task is required to gen-
erate the behavior signatures stored in the dedicated database.
Just as for detection, the signature generation relies on com-
mon properties that are extracted by interpretation on a pool
of known malware. Even if this generation may not be an
actual software component, it requires a dedicated process
since it is a key element in the detection efficiency. As a con-
sequence, the signature generation shall also be an element
of our taxonomy.

3.2 Basic properties for assessment

It is fundamental to define the important properties of a
behavioral detection system since they provide the main basis
for assessment. Actual certifications simply confront mal-
ware detectors to known strains thereby solely assessing
completeness of form-based detection. Assessing antivirus
product is still an open problem and several more complete
test procedures have been put forward [17,18]. One of them
focuses more particularly on behavioral detection using func-
tional mutations [19]. This new kind of mutation generates
new viral strains using different known techniques to achieve
a same final behavior that should be detected. This test pro-
cedure has among others shown that, in order to make up
for the false positive rates, the behavioral detection is often
confronted to an additional syntactic signature. If a neat
decrease is observed in these rates, the behavioral detection
remains severely hindered by this measure which prevents the
detection of unknown strains using known viral techniques.
More generally, any complete test procedure with regards to

behavioral detection should at least consider the following
properties:

• Completeness and accuracy. A system which fails to
detect too many malware is said incomplete because its
false negative rate is too high. These failures may be
explained either by incomplete behavior signatures or
missing data that remain uncollected. On the other hand,
accuracy determines the system tendency to false posi-
tives. Two factors mainly impact this property: the sound-
ness of the chosen signatures and the relevance of the
collected data. Regarding coverage, two others important
properties are directly related:
− Adaptability. When a system is deemed inaccurate or

incomplete, modifications must often be performed on
the behavior signatures. Adaptability traduces the ease
of modification of the chosen behavior model.

− Resilience. Malware often deploy anti-analysis mech-
anisms. These techniques introduce bias during the
data collection in order to blur any similitude with
the behavior models. Obfuscation and, respectively,
stealth are effective means used to thwart, respectively,
static and dynamic detections. The coverage of the
behavior model should resist to such attempts.

• Efficiency. Efficiency must not be only restricted to
performance which measures the resource consumption
introduced by the detector in its environment. This con-
sumption is undoubtedly an important property since the
overload it introduces, explains the belated interest
in behavioral detection. For several years, the comput-
ing power of processors, the available memory space and
bandwidth have been insufficient in order to deploy such
complex techniques. Performance may vary according to
various factors such as the data collection mechanism,
the deployment of the detector on personal computers
or dedicated honeypots. But another aspect is even more
critical to efficiency. The computational complexity of
the detection algorithm constitutes the ultimate bound-
ary to the detection efficiency. In case of approximate
methods, the precision bounds this complexity. In
addition, dynamic properties are introduced by the fact
that the malware may be active during the detection
process.
− Timeliness. Timeliness checks whereas the detection

is reached before the damages, done to the environ-
ment by the observed malware, are irreversible.

− Fault-tolerance and unobtrusiveness. Fault-
tolerance assesses the capability of the behavioral
detector to stand up to any external perturbation and
in particular intended attacks launched by malware.
On the opposite, according to the principle of the
physicist Schrödinger, the behavioral detection must
not introduce perturbations in the malware execution.

123

Behavioral detection of malware: from a survey towards an established taxonomy 255

Fig. 2 Characteristics of
behavioral detectors. The
classification is globally divided
into two axes corresponding to
the simulation-based verification
and formal verification. The
type of verification is directly
impacted by the method used for
data collection: static or
dynamic. The behavioral model
generation is introduced as an
additional transversal axis

Unobtrusiveness guarantees that the observed
behavior will not be altered by the detection.

4 Taxonomy of behavioral detector

As said in Sect. 1, the leading thread of our taxonomy is
the parallel made between behavioral detection and program
testing. The taxonomy is thus built on two main axes divid-
ing the detection process into simulation-based verification
and formal verification. A third transversal axis is added for
the behavioral model generation. The global structure of the
taxonomy and the classification of the detectors is pictured
in Fig. 2.

Inside simulation-based verification and formal verifica-
tion, the different classes of detectors have been divided
according to the different tasks of the detection process (see
Sect. 3.1). In particular, these tasks define the progression
used in the next sections that detail, respectively, the two ver-
ification approaches. To simplify the reading, data collection
and interpretation are presented in a same part because the
nature and the quantity of the collected data strongly impact
the possible means of interpretation. Similarly, the matching
algorithms and the behavior models are also gathered in a
same part since the algorithm directly determine the model
format. Now let us describe the three axes of the taxonomy
according to this division.

4.1 Simulation-based verification

Simulation-based verification is similar to a black box test
procedure and is thus strongly linked to dynamic analysis.
Only the current execution path is analyzed making the
behavioral detector work on a sequence of discrete events
that will be compared to the reference model: the behavioral
signature. In particular, this kind of verification requires a
dedicated simulation environment for data collection.

4.1.1 Data collection and interpretation: dynamic
monitoring

Detection of malware during their execution must rely on
elements observable from an external agent. On older oper-
ating systems, the interception of interruptions was the first
source of information about the resources used by a pro-
gram. They have been progressively replaced by the inter-
ception of system calls with the apparition of 32-bit systems.
System calls are particularly interesting since, in order to
comply with the C2 criteria from the Orange Book, they
remain a mandatory passing point to access kernel services
and objects from the user space. In their work on intrusion
detection based on system calls, Forrest et al. [7] underline
the importance of the collected data and their representa-
tion: they strongly influence the analysis and the detection. In
the present case, sequential representations are mainly used

123

256 G. Jacob et al.

Fig. 3 Extract from a trace of system calls. The whole trace is made
up of a list of system calls with various attached information. The pro-
cess identifier is important to correlate the different system calls from
a target process

but other representations like frequency spectres could be
considered. In addition, the context of the system calls must
also be attached. The passed parameters, the identifier of the
calling program as well as its privilege level are useful infor-
mation to refine the interpretation. By nature any system call
is legitimate, only the arguments betray a malicious purpose
as stated by Kruegel et al. [20]. As an illustration, a simple
extract from a system call trace is given in Fig. 3.

The nature of the collected data is not the only factor to
consider for classification. The monitoring conditions are
equally important. According to these conditions, several
properties of the detector may be impacted: performance,
unobtrusiveness, timeliness or the completeness of the avail-
able data.

Real-time conditions: The progression of the malware is
observed directly in its environment without restrictions.
Real-time conditions are often criticized because malev-
olent actions are effectively executed. Timeliness is thus
of utmost importance before the point of no return of
the infection is reached. To intercept system calls in real-
time, the main technique used by detectors is API hooking
which is often used by rootkit writers as well [21]. The
overload generated by the interception and the interpre-
tation of the call may be perceptible by the user. Yet, it
remains less significant than for the other capture condi-
tions.

Real-time with action recording: Action recording is a
particular case of real-time capture where the actions
taken by the observed program are recorded as well as
the intermediate states of the environment [22,23]. This
trade-off benefits from the advantages of real-time mon-
itoring while keeping a possibility to restore the environ-
ment in a healthy state as soon as a threat is detected. This
countermeasure remains possible as long as the restora-
tion mechanism and the records stay uncompromised.

Sandboxes: The observed target is first run in a sandbox
where its execution is isolated in a confined space
[24,25]. This technique, popularized by JAVA, constrains

the execution in an escape-proof memory space with low
privileges and limited accesses to services. The main
advantage is that the external observer has a total access
over the memory space and can control the execution
step by step. Sandboxes offer better observation facili-
ties than real-time conditions. On the other hand, they
use more significant resources since they introduce an
intermediate layer between the program and its environ-
ment. To reduce the overload, only suspicious code por-
tions of the program are analysed. Once this preanalysis is
performed, the normal execution of legitimate programs
is resumed without hindrance. Unfortunately, sandboxes
provide a set of services more restricted than real sys-
tems and can easily be detected. Debugging detection
techniques checking the execution time or using error
handling structures can succeed easily. Once the sand-
box is detected, the malware can adapt its execution to
look benign. If the privileges and service accesses are not
properly restrained, malware can even escape through
open interfaces of the sandbox.

Virtual machines: Virtual machines can emulate a whole
environment with minimal risks to be detected. In effect,
the host environment controls every access point to the
hardware from the unaware guest system. In the case of
purely software virtual machines, system calls can be
intercepted at the level of the emulated processor by rec-
ognizing the INT 2E and SYSENTER instructions. The
analysis can then be performed before entering or after
returning from the system call without leaving any trace
for the virtual environment that can carry on its execu-
tion [26]. In comparison to sandboxes, virtual machines
emulate any fictive resource, either hardware (network
connections) or software (mail or P2P clients). These
resources are often used malevolently by the malware to
its own profit either to propagate or gather information.
Total virtualization enables the observation of these inter-
actions without risks for the host. On the other hand, vir-
tual machines require large amount of resources making
them impossible to use in an operational context except
with restricted virtualization support (only the file system
for example). They remain mainly used by experts and
researchers on the purpose of analysis and classification.
Just as sandboxes, they can be detected by the observed
program but no escaping technique has been reported yet
[27,28].

Whatever dynamic condition is considered, they all glob-
ally exhibit the same properties. As a comparison basis, we
have identified the following ones:

Assets: Dynamic monitoring proves resilient to most muta-
tions techniques like polymorphism and metamorphism.
These mutations are fundamentally based on syntax and

123

Behavioral detection of malware: from a survey towards an established taxonomy 257

Fig. 4 Rules for expert systems. A rule always specifies the nature of
the action (reading, writing, opening, terminating. . .), the target along
with the associated decision (permission, refusal). If no rule is defined,
the action is allowed by default

thus do not modify the final execution. The different
versions issued of a same mutating strain eventually
provide the same event trace.

Limitations: The interception of system calls is not the ulti-
mate solution. Certain behaviors such as encryption do
not use the system services for obvious stealth reasons.
Some malware even redefine whole system primitives for
these exact same reasons. Another phenomenon to take
into account is the migration of malware towards the sys-
tem kernel, in order to acquire privileges equal to anti-
virus products. Using these privileges, complex stealth
techniques become possible since malware can interact
directly with the hardware and the system objects with-
out necessarily using any of the monitored system calls
[13, p. 188]. This limitation could be solved by captur-
ing additional data from more privileged sources. On the
other hand, the second limitation can not easily be solved.
By nature, dynamic monitoring only captures the cur-
rent execution path. This execution path could be biased
since non deterministic behaviors may be randomly exe-
cuted or conditioned by external stimuli and observations
(sandbox and virtual machine detection for example).

4.1.2 Matching algorithms and models: expert systems

Expert systems rely on a set of case-based rules modelling the
experience and expertise of an analyst confronted to a par-
ticular situation [29]. Like the ones pictured in Fig. 4, rules
are defined for each known suspicious attempt to use sys-
tem facilities. Every separated action taken by the observed
program is dynamically confronted to the related rules. The
target and the privilege level of the caller are important fac-
tors because they often draw the distinction between a legit-
imate action and a malicious one. The class of complexity
for the rule-matching algorithms remains acceptable since it
is equivalent to pattern matching algorithms that are in the
class P.

The decision whether a behavior is malicious or not must
then be preemptively taken. Attempts to use a service can
be intercepted by systems such as the one in Fig. 5. They
can react consequently before these attempts are resolved,
explaining why these proactive systems are often called
“behavioral blockers” [30]. Generally speaking, expert sys-
tems are prone to false positives because it proves really

Fig. 5 Rules enforcement. For each captured system call, the related
rules will be scanned. According to the relevant rule, the system yields
the control to the originally called function or sends a refusal/killing
notification to the calling process

intricate to judge the legitimacy of separated actions without
correlation.

4.1.3 Matching algorithms and models: heuristic engines

Historically, heuristic engines were the first detectors
deployed to detect malicious functionalities. Contrary to the
previous expert systems, the captured actions are no longer
considered separately but sequentially. They function on the
basis of interruptions and system calls, usually collected
thanks to a sandbox, along with their preceding instructions
defining their parameters. Basically, heuristic engines are
made up of three parts [31,32]:

Association mechanism: Association mechanisms label
the different atomic behaviors of malware. An atomic
behavior corresponds to a functional interpretation of
one or several instructions as pictured in Fig. 6. Funda-
mentally, two labelling techniques exist. Weight-based
association uses quantitative values, obtained by experi-
mentation, in order to express the action severity. Flag-
based association uses semantic symbols to express a
corresponding functionality [33,34]. Figure 7 presents a
typical example of flag-based association where atomic
actions eventually corresponds to real instructions
sequences.

Rule database: This database defines the detection crite-
rion. In the case of weight-based systems, there is a unique
detection rule consisting in a threshold above which the
accumulation of malicious behaviors betrays a malicious
activity. Otherwise, the detection rules consist in flag
sequences. These sequences are combined together into
a detection tree like pictured in Fig. 8.

Detection strategy: The detection strategy impacts the
progression within the detection rules. In the case of a

123

258 G. Jacob et al.

Fig. 6 Atomic behaviors. This
example is quoted from the
documentation of the
Bloodhound engine [35]. It
illustrates the association
between several instruction
sequences and a final atomic
action

Fig. 7 Behavior base. This
example has been extracted
from the base of the TBScan
engine [33]. Each behavior is
associated to a flag carrying a
semantic value

Fig. 8 Detection rules and
strategies. The trees are built
according to rules from the
TBScan engine, corresponding
to five viral strains [33]. The
first chosen strategy is a simple
greedy algorithm where the first
valid path is always taken
without possibilities to go back.
This combination fails to detect
Backfont but another strategy
where back-steps are possible
can detect the virus. A
backtracking mechanism is
integrated to taboo algorithms in
order to store the explored
nodes, thus allowing back-steps
for authorized branches (other
branches are called taboo).
Irrelevant behaviors can then be
ignored to detect Jerusalem.
This observation underlines the
importance of the strategy

weight-based association, the strategy is the accumula-
tion function, chosen to correlate the captured values.
Otherwise, the strategy determines the tree search

algorithm. Several kinds of algorithm exist: greedy
without possible back-steps during exploration as
in Fig. 8, genetic, taboo or simulated annealing with

123

Behavioral detection of malware: from a survey towards an established taxonomy 259

conditioned back-steps [36]. The choice of the strategy
is primordial since it allows to find approaching but still
satisfactory values in a reasonable delay for NP-complete
problems [13, p. 67].

4.1.4 Matching algorithms and models: state machines

Just like heuristic engines, state machines are based on
sequential models of system calls. The malicious behav-
iors are described as Deterministic Finite Automata (DFA)
according to the following principle [37,38]:

• The states S of an automaton corresponds to the internal
states of the malware along their lifecycle.

• The set of input symbols � defined upon the collected
data which are mainly system calls.

• The transition function T describes the symbol sequences
known as suspicious.

• The initial state s0 corresponds to the beginning of the
analysis.

• The set of accepting states A conveying the detection of
a suspicious behavior.

From an initial state, the automaton will progress step-
by-step by evaluating the elements from the sequence of
collected data. If during its progression, the automaton
reaches an accepting state, a malicious behavior has been
discovered. Otherwise, if the automaton does not reach an
accepting step before the end of the data sequence or reaches
an error state, only behaviors supposed legitimate have been
captured. Figure 9 gives an example of automaton detecting
a file infection mechanism. In state machines, the match-
ing algorithm is defined by the word acceptance problem by
an automaton. Using deterministic finite automata, the com-
plexity of this problem remains in P [39].

Notice that state machines can also be used for the oppo-
site approach of behavioral detection that is to say modelling
legitimate behaviors. The considered automaton is then no
longer deterministic but probabilistic. The probabilities of the
different transitions may be based on the frequency of cer-
tain system call sequences during a healthy execution [40].
Unfortunately, the model put forward is used to detect mac-
roviruses and consequently targets a specific type of applica-
tion: office software. It remains almost impossible to extend
generically legitimate models to every application.

4.2 Formal verification

Behavioral detection is traditionally associated to dynamic
execution and thus to simulation-based verification. This
seems a short-sighted view since behaviors are originally
written down in the code of malware. Thereby, the mal-
ware actions can also be discovered formally through static

Fig. 9 Automaton of the infection mechanism. This automaton
describes two types of file infection. The left branch depicts the
“append” infections where the viral code is copied at the end of the
file and the entry-point is redirected. The right one depicts the “pre-
pend” infections, destructive or not. Either the original code is saved at
the intermediate states e′

2 and e′
2 or the automaton jumps directly to the

infection point at state e′
4

analysis. Formal verification, in the context of behavioral
detection, consists in verifying that a program abstraction
satisfies or not a behavior formal specification, which is basi-
cally a bisimulation problem. Thanks to this white box
approach, these detectors can combinatorially explore the
different execution paths. Only few systems have been refer-
enced for formal verification since it remains a recent
approach.

4.2.1 Data collection and interpretation: static extraction

Static extraction provides richer and more complete informa-
tion about potential actions than dynamic monitoring which
is bound to collect observable elements only. The original
code sample may simply be a local file from the system
but also a file rebuilt from different payloads collected by
a honeypot. The main challenge is to reach, from the binary
code, a semantic level of interpretation traducing the intended
actions. Consequently, the data extraction is quite complex
and requires several processing steps to get an intermediate
representation of the program.

Static extraction, described with more details in Fig. 10,
uses the traditional techniques of reverse engineering, that is

123

260 G. Jacob et al.

Fig. 10 Incremental steps of the static extraction. This scheme
describes the different processing stages applied to the program in order
to extract the intermediate representation: unpacking when required,
disassembly and interpretation

to say, disassembly and building of Control Flow Graphs and
Data Flow Graphs (CFG and DFG). Graph-based represen-
tations are used as a majority since they bring into light the
different execution paths of the program. In certain cases, the
instructions and values stored in the nodes of the graphs can
even be interpreted according to a more generic semantic.

In the simplest cases, existing tools can automatically
achieve the process, but additional human interventions are
often required [41]. This is explained by the existence of
software protection techniques which can skew the result of
the extraction. For example, automatic disassembly can be
thwarted by the simple introduction of fake instructions that
hinder the code alignment. Generally speaking, static extrac-
tion is very sensitive to the obfuscation techniques used by
metamorphic engines [42]. Complex dedicated techniques
are required to bypass these software protections and, unfor-
tunately, they can hardly be automated [43]. In fact malware
are often protected using automatic packers like UPX which
deploy these kinds of protections. Unpacking has become a
challenging problem in static analysis, requiring more and
more advanced techniques [44].

Just like dynamic monitoring, the intrinsic properties of
static extraction provides advantages but also drawbacks. By
comparing its properties with those of dynamic capture, it
becomes obvious that these two capture methods are com-
plementary:

Assets: The main advantage of static extraction lies in the
fact that all execution paths are enumeratively available.

Since malware are not running during the capture, they
are not able to adapt their execution or deploy proactive
defence during the analysis.

Limitations: Predicting the behavior of a program from its
simple description is equivalent to the “halting problem”.
Unfortunately this problem has been proven undecidable
by A. Turing in 1936. Still, under certain conditions, the
necessary information can be gathered. Anyhow, static
extraction remains possible as long as disassembly can
be performed, which is a quite strong hypothesis because
of the protection techniques mentioned previously. The-
oretical works to assess the resistance of static seman-
tic analyzers to obfuscation transformations have already
been addressed by Preda et al. [45].

4.2.2 Matching algorithms and models: annoted graph
isomorphism

Isomorphism of annoted graphs works exclusively with static
extraction since it uses Control Flow Graphs (CFG). The
instructions stored in the nodes of the extracted graphs are
often replaced by an associated label to reach a higher level
of abstraction than simple assembly code. The labelling pro-
cedure may follow two approaches: either the instructions
are translated into an intermediate representation carrying a
semantic value [45,46] or instructions are reduced to their
basic class of operation (arithmetic, logic, function call. . .)
[47,48]. A behavior template, or behavioral signature, is thus
specified by a graph structure using an annotation mecha-
nism. Figure 11a provides an outlook of a behavior template
with its graph and its associated semantic labels made up of
symbolic instructions, variables and constants.

Detection is achieved by checking that a program satisfies
a given template, which is equivalent to finding a subgraph of
its extracted CFG, isomorphic with the behavior graph. The
localisation of this subgraph in stand-alone malware may
be easy to determine but it proves much more complex for
program infectors since it requires finding out the insertion
point first. The isomorphism algorithm then begins with asso-
ciating the nodes from the extracted CFG with those of the
template as pictured in Fig. 11. An additional constraint steps
in since a sensible correspondence must be possible between
the labels from the graph nodes. Using a representation with
semantic labels, this association eventually determines the
equivalences between the symbolic elements (variables, con-
stants) and the real values (registers, memory locations). An
additional step may be deployed to check the preservation of
these values from their affectation until their use.

Theoretically, the subgraph isomorphism on its own is
NP-complete but its complexity can often be reduced in the
detection context. In effect, CFG nodes, except in the case of
indirect jumps and function returns, have a bounded number
of successors, typically one or two. Isomorphism remains

123

Behavioral detection of malware: from a survey towards an established taxonomy 261

Fig. 11 Graph isomorphism with semantic equivalence. The template
(a), quoted from the paper of Christodorescu et al. [46], generically
represents a simple ciphering by XOR between two addresses. During
the verification, each node from the instance (b) is associated to its
potentially equivalent node in the template. The instance (b) satisfies
the template (a). Once the correspondence is established, the variable
preservation can be checked. In this concrete case, the value affected to
eax at node 1 must be equal to the value of ecx used at node 5

very sensitive to mutation techniques and in particular to any
modification impacting the graph resulting from the extrac-
tion: code permutation or injection (dead code hidden behind
opaque predicate, additional intermediate variables). These
transformations can partially be addressed by optimization
techniques developed for compilers [47,49,50]. The ultimate
goal would be to reach a canonical and minimal form for mal-
ware, to revert most mutation effects.

4.2.3 Matching algorithms and models: equivalence
by reduction

In equivalence by reduction, the detection relies on an alge-
braic approach. The algorithm progresses by deduction using
logical equivalence at each reasoning step [51,52].

The original program is first translated into an algebra:
commonly a formal specification of the processor instruc-
tion set which attempts to erase differences between equiva-
lent functionalities. A single algebraic expression will stand
for several equivalent instructions such as ‘mov’ operations
using different registers for example.

Once translated, the program abstraction is then simplified
by reduction using rewriting rules preserving some equiva-
lence and semi-equivalence properties. Basically, equivalent
expressions have an identical effect on the whole memory
whereas semi-equivalent ones only preserve specific vari-
ables and locations. The final purpose is to reduce the num-
ber of syntactic variants like pictured by the rewriting rules
of Fig. 12, reversing some metamorphic transformations.

The reduced form is finally checked using an interpreter to
evaluate the results of its execution on different variables or
memory locations such as the stack. These results are com-
pared to the results for known malware specifications, given
in the same precise algebra. Because of the problem com-
plexity, which is equivalent to the halting problem and thus
undecidable, this technique can only be deployed on limited
code samples from malware.

4.2.4 Matching algorithms and models: model checkers

In model checking, the model used to describe the behav-
iors is more peculiar. A behavioral signature is defined by
a temporal logic formula [53,54] which introduces dynamic
aspects in the first-order logic. A detailed example is given
in Fig. 13. For more information, it is recommended to refer
to the corresponding literature [55]. The verification algo-
rithm takes as input a control flow graph as well as one or
several logic formulae. In return, it sends back all the interme-
diate states in the different execution paths satisfying these
formulae. This kind of algorithm is strongly recursive since
it tries to explore enumeratively all the possible execution
paths which can unfortunately be infinite. As a matter of
fact, symbolic temporal model checkers exist which prove to
be PSpace-complete [56].

In the most recent logics, registers, free variables and con-
stants are referenced as generic values for a better abstraction
[57]. This improvement particularly addresses the mutations
by reassignment as shown by Fig. 13. During the verification
process, the algorithm links the generic values with real reg-
isters and variables and stores this information all along the
explored execution path. Notice that a higher level of seman-
tic abstraction could also be possible just like for the two
previous kinds of algorithm. In addition, the temporal pred-
icates used to explore the different paths prove to be really
useful thwarting garbage code insertion and code reordering.

Fig. 12 Reduction rules reversing metamorphic transformations.
These two rewriting rules quoted from Webster paper [51] are writ-
ten using the OBJ formalism. Given a virus in SPL, the first rule is

used to remove the NOP that may have been inserted during possible
mutations. The second one may seem more complex but simply says
that a do{_} while(_) is equivalent to a while(_) do{_}

123

262 G. Jacob et al.

Fig. 13 Temporal logic formulae to detect auto-reference accesses.
A and E are path quantifiers whereas X and F are temporal oper-
ators. The combination E F(p) means that an execution path exists
where an undetermined future state satisfies the predicate p. In the
present case, C1 means that there is a possible path where 0 is
affected to a register r that will be pushed on the stack before a call
to the function Get ModuleHandle. These operations may not be

consecutive. Replacing the operators E F by AX in C2 compels the
register affectation and the following call to be immediate in every
possible path (and no longer in at least one). π1 and π2 are two
illustrative execution paths satisfying, respectively, C1 and C2 but
only C2 captures auto-reference accesses which are basically calls to
Get ModuleHandle with a null value

4.3 Behavior model generation

Along the two previous sections, we have described several
behavior models without mentioning the creation process of
the behavioral signatures. This third part is dedicated to the
third transversal axis of signature generation.

4.3.1 Manual definition

Manual definition, though time consuming, remains the prin-
cipal generation method, because of its reliability. Two main
sources of knowledge are used to feed the process of model
creation. In most cases, an expert with significant experience
defines generic and opaque behavior models that are inter-
operable between the different customer machines. But in
certain systems, this responsibility is passed on to the users.

Fig. 14 Learning process. The original knowledge is extracted from
a learning pool and integrated to the rule database. The rules are then
evaluated by the classifier. According to their relevance, the process is
iterated until stabilization of the rule set

Fig. 15 Boolean expression of the e-mail worm class. The following rules determine the characteristics (system calls and specific strings) common
to the different mail worms. The main difference with a legitimate mail client lies in the fact that the worm does not try to receive data since it does
not wait for any acknowledgement message or response

They are then free to define their own policy, which will be
more adapted to their own system since they can take into
account the different installed software. On the other hand,
they must be well taught and be aware of the possible reper-
cussions of their choices.

4.3.2 Automatic learning: data mining and classifiers

The automatic generation of behavioral signatures is a criti-
cal improvement, necessary to avoid the shortcomings of the
simple byte signatures. Up until now, the learning process
has only been applied to certain models since the manipu-
lated structures in a behavioral context are more complex and
thus harder to learn. The learning mechanism relies on classi-
fication rules built by classifiers combined with data mining
techniques. Whatever the used classifier, the general proce-
dure remains the same. The system is first confronted to a
learning pool made up of large sets of malware and legitimate
samples already labelled as malicious or benign. The size of
the pool must be well chosen and sufficiently important to
exhibit no bias. Like any learning process, the generation of
behavioral signatures remains very sensitive to noise injec-
tion in the training pool. Some effective attacks have already
been published against similar worm signature generators
[58]. During the training period, the classifier crawls into
this data repository to extract common properties between
the different considered classes. In a behavioral context, the
extraction of these common properties relies on three major
paradigms which are briefly described (for further informa-
tion, relevant references are given) (Fig. 14):

123

Behavioral detection of malware: from a survey towards an established taxonomy 263

Fig. 16 Statistics for file infectors. These results are only given as
examples. However, they bring into light the prevalence of certain char-
acteristics. Opening a file on its own is insufficient to decide of the

action nature as it is widely used by both benign and infector programs.
On the contrary, accessing the handle of the current module to copy this
image in a target is more significant of an infection

Rules induction: This first paradigm specifies the
belonging conditions for the different classes of behavior.
For each sample received by the classifier, it integrates
or removes certain characteristic data in the condition
in order to preserve the class consistency [59–61]. Such
rules are often formulated as Boolean expression as pic-
tured in Fig. 15 or as decision trees [62].

Bayesian statistics: The second paradigm based on statis-
tics is used in classifiers like Bayesian networks. For each
collected characteristic, the probability of finding it in a
given class of malware is measured [60–62]. Figure 16
describes examples using system calls and strings as col-
lected data. Ultimately, only the results exhibiting the
most important powers of discrimination are kept. An
important criterion in this choice is the minimal over-
lapping of the characteristics in the different classes. The
ideal case would obviously be when a characteristic exists
with a probability of 100% in a unique class whereas it
is absent of any other.

Clustering: The third paradigm relies on predefined cases.
During the learning procedure, average profiles are built
for each class of malware. When deployed, the classifi-
ers measure a distance between the profiles and the tested
programs [63]. The program is classified according to the
profile with which it exhibits a minimal distance. The
method used to measure this distance may vary from
a system to another but it remains a factor impacting
heavily on the classification accuracy. Figure 17 gives an
example where the distance is calculated on the basis of
the number of modifications necessary to pass from a call
sequence to another.

5 Panorama of existing behavioral detectors

As an illustration, we have classified several existing behav-
ioral detectors according to the elements of our taxonomy.
The result is given in Table 1 completed with additional prac-
tical information about their usage, their environment as well
as their target. The detectors have been separated into two
parts, the first one for the research prototypes and the second
for known commercial products. This table has been built
according to the information made available by the different
editors, which are sometimes very limited.

The main trend brought into light is that most commercial
systems are based either on heuristic algorithms with sand-
boxing or real-time expert systems. It can be explained by the
fact that the diverging research prototypes often require too
much resource or do not exhibit sufficiently low error rates.
These prototypes remain mainly used by researchers and ana-
lysts until their optimization. This is particularly true for sta-
tic analysis which is currently used only for analysis and
signature extraction but not for detection. A second observa-
tion, that was also visible through the referenced papers, is the
convergence of the antivirus products using behavioral detec-
tion with host-based intrusion prevention systems (HIPS). It
becomes less and less obvious to draw a clear demarcation
line between the two. This is not really surprising since virol-
ogy and intrusion detection are connected security domains.

6 Conclusions

The main idea to retain of this paper is that under the terms of
behavioral detection lies a whole set of heterogeneous tech-
niques relying on a common principle: the identification of
the functionalities. In particular, we observe in the taxonomy
a clear distinction between simulation-based verification and
formal verification which are directly linked to the dynamic
and static modes. Yet, these modes are complementary as
they exhibit opposite strengths and weaknesses.

Several researchers have already thought of means to
combine the static and dynamic modes in order to take advan-
tage of their respective assets. Dynamic analysis makes it

Fig. 17 Distance between traces. Two call sequences from a profile
and a capture are compared in this table. Each operation required to
pass from one to another is associated to a different cost. The final
distance is equal to the addition of these costs

123

264 G. Jacob et al.

Ta
bl

e
1

C
la

ss
ifi

ca
tio

n
of

ex
is

tin
g

be
ha

vi
or

al
de

te
ct

or
s

N
am

e
(o

ri
gi

n)
D

at
e

R
ef

er
en

ce
C

ap
tu

re
In

pu
t

Ta
rg

et
E

ng
in

e
ty

pe
U

sa
ge

E
nv

ir
on

m
en

t

T
B

Sc
an

(N
/C

)
19

94
[3

3]
D

yn
.(

SB
)

In
te

rr
up

tio
ns

Fi
le

in
fe

ct
or

s
H

eu
ri

st
ic

al
go

ri
th

m
(fl

ag
s)

D
et

.
M

s
D

O
S

V
ID

E
S

19
95

[3
7]

D
yn

.(
R

T
)

In
te

rr
up

tio
ns

C
O

M
an

d
E

X
E

D
et

er
m

in
is

tic
fin

ite
D

./C
.

M
s

D
O

S

(U
nv

.N
am

ur
&

H
am

bu
rg

)
in

fe
ct

or
s

au
to

m
at

a

N
/C

20
03

[6
0]

St
at

ic
Im

po
rt

ed
fu

nc
tio

ns
,

A
ll

ki
nd

s
of

m
al

w
ar

e
D

at
a

m
in

in
g

an
d

D
et

.
W

in

(U
nv

.C
ol

um
bi

a
&

N
.Y

.)
st

ri
ng

s
cl

as
si

fie
r

G
at

eK
ee

pe
r

20
04

[2
3]

D
yn

.(
R

T
a
)

Sy
st

em
ca

lls
A

ll
ki

nd
s

of
m

al
w

ar
e

H
eu

ri
st

ic
al

go
ri

th
m

D
et

.
W

in

(F
lo

ri
da

In
st

.o
f

Te
ch

.)
(w

ei
gh

t)

N
/C

20
05

[4
6]

St
at

ic
C

on
tr

ol
flo

w
gr

ap
hs

Po
ly

m
or

ph
ic

m
ai

l
Se

m
an

tic
al

ly
an

no
te

d
D

et
.

W
in

(U
nv

.C
am

eg
ie

et
al

.)
w

or
m

s
gr

ap
h

is
om

or
ph

is
m

N
/C

20
05

[5
7]

St
at

ic
C

on
tr

ol
flo

w
gr

ap
hs

W
or

m
s

M
od

el
ch

ec
ki

ng
D

et
.

W
in

(U
nv

.M
un

ic
h)

N
/C

20
06

[5
2]

St
at

ic
A

lg
eb

ra
ic

pr
og

ra
m

M
et

am
or

ph
ic

vi
ru

se
s

E
qu

iv
al

en
ce

by
D

et
.

IA
32

(U
nv

.L
iv

er
po

ol
)

ab
st

ra
ct

io
n

re
du

ct
io

n

T
TA

na
ly

ze
20

06
[2

6]
D

yn
.(

V
M

)
Sy

st
em

ca
lls

A
ll

ki
nd

s
of

m
al

w
ar

e
Si

m
pl

e
ac

tiv
ity

lo
g

C
la

ss
.

W
in

(T
ec

hn
ic

al
U

nv
.V

ie
nn

a)

N
/C

20
06

[6
3]

D
yn

.(
V

M
)

Sy
st

em
ca

lls
A

ll
ki

nd
s

of
m

al
w

ar
e

D
at

a
m

in
in

g
an

d
C

la
ss

.
W

in

(M
ic

ro
so

ft
C

or
p.

)
cl

as
si

fie
r

N
/C

20
06

[6
4]

D
yn

./S
ta

t.
C

O
M

an
d

sy
st

em
ca

lls
W

eb
cl

ie
nt

sp
yw

ar
es

E
xp

er
ts

ys
te

m
D

et
.

In
te

rn
et

(U
nv

.C
al

if
or

ni
a

&
V

ie
nn

a)
E

xp
lo

re
r

T
hr

ea
tS

en
se

-
N

O
D

32
N

/C
[6

5]
D

yn
.(

SB
)

In
st

ru
ct

io
ns

A
ll

ki
nd

s
of

m
al

w
ar

e
H

eu
ri

st
ic

al
go

ri
th

m
D

et
.

W
in

/L
in

ux
/

(E
se

t)
as

so
ci

at
ed

to
ac

tio
ns

Fr
ee

B
SD

A
V

G
A

nt
i-

V
ir

us
N

/C
[6

6]
D

yn
.(

SB
)

In
st

ru
ct

io
ns

A
ll

ki
nd

s
of

m
al

w
ar

e
H

eu
ri

st
ic

al
go

ri
th

m
D

et
.

W
in

/L
in

ux
/

(G
ri

so
ft

)
as

so
ci

at
ed

to
ac

tio
ns

Fr
ee

B
SD

V
iG

U
A

R
D

N
/C

[6
7]

D
yn

.(
R

T
)

Sy
st

em
ca

lls
A

ll
ki

nd
s

of
m

al
w

ar
e

E
xp

er
ts

ys
te

m
D

et
.

W
in

(S
of

te
d)

(u
se

r’
s

de
ci

si
on

)

B
-H

A
V

E
-

B
it

D
ef

en
de

r
N

/C
[6

8]
D

yn
.(

SB
)

In
st

ru
ct

io
ns

A
ll

ki
nd

s
of

m
al

w
ar

e
H

eu
ri

st
ic

al
go

ri
th

m
D

et
.

W
in

/L
in

ux
/

(S
of

tw
in

)
as

so
ci

at
ed

to
ac

tio
ns

Fr
ee

B
SD

B
lo

od
ho

un
d

-
N

or
to

n
19

97
[3

5]
D

yn
.(

SB
)

In
st

ru
ct

io
ns

Fi
le

in
fe

ct
or

s
H

eu
ri

st
ic

al
go

ri
th

m
D

et
.

W
in

(S
ym

an
te

c)
as

so
ci

at
ed

to
ac

tio
ns

E
nt

er
ce

pt
20

04
[6

9]
D

yn
.(

R
T

)
Sy

st
em

ca
lls

A
ll

ki
nd

s
of

m
al

w
ar

e
E

xp
er

ts
ys

te
m

D
et

.
W

in
/L

in
ux

(M
c

A
ff

ee
)

(p
re

de
fin

ed
po

lic
y)

Sa
fe

’n
’S

ec
A

nt
iv

ir
us

20
04

[7
0]

D
yn

.(
R

T
)

Sy
st

em
ca

lls
A

ll
ki

nd
s

of
m

al
w

ar
e

E
xp

er
ts

ys
te

m
D

et
.

W
in

/L
in

ux
/

(S
af

en
So

ft
)

(p
re

de
fin

ed
po

lic
y)

Fr
ee

B
SD

T
ru

Pr
ev

en
t(

Pa
nd

a
So

ft
w

ar
e)

20
06

[7
1]

D
yn

.(
R

T
)

Sy
st

em
ca

lls
A

ll
ki

nd
s

of
m

al
w

ar
e

H
eu

ri
st

ic
al

go
ri

th
m

D
et

.
W

in
/L

in
ux

V
ir

us
K

ee
pe

r
(A

xB
a)

20
07

[7
2]

D
yn

.(
R

T
)

Sy
st

em
ca

lls
A

ll
ki

nd
s

of
m

al
w

ar
e

E
xp

er
ts

ys
te

m
(u

se
r’

s
de

ci
si

on
)

D
et

.
W

in

R
T

re
al

-t
im

e,
SB

Sa
nd

B
ox

,V
M

vi
rt

ua
lm

ac
hi

ne
a A

ct
io

ns
re

co
rd

in
g,

fo
r

th
e

sy
st

em
us

ag
e:

D
et

.d
et

ec
tio

n,
C

la
ss

.c
la

ss
ifi

ca
tio

n

123

Behavioral detection of malware: from a survey towards an established taxonomy 265

possible to determine a reduced perimeter where a static
analysis would be worth deploying. Based on this princi-
ple, a system has already been put forward in order to detect
spyware parasiting web browsers [64]. The dynamic phase is
used to find the processing routines associated to the differ-
ent web events. Once localized a static analysis is deployed
to detect any malicious activity. Generally speaking, a sta-
tic analysis could be deployed at each reached branching to
explore the alternative execution paths that will not be exe-
cuted.

To combine efficiently both modes, it remains necessary
to evolve towards a common model of reference. This model
could then be refined according to the class of system consid-
ered, while remaining compatible with others. Unfortunately,
such a model is still missing.

Acknowledgments We want to thanks specially Pierre Crégut whose
valuable remarks helped greatly to synthesize this taxonomy. We would
also like to thank the anonymous reviewers for their interesting com-
ments which helped to improve this paper.

References

1. Cohen, F.: Computer viruses. Ph.D. thesis, University of South
California (1986)

2. Cohen, F.B.: Computer viruses: Theory and experiments. Comput.
Secur. 6(1), 22–35 (1987)

3. Debar, H., Dacier, M., Wespi, A.: Towards a taxonomy of
intrusion-detection systems. Comput. Netw. Spl Issue Comput.
Netw. Secur. 31(9), 805–822 (1999)

4. Mé, L., Morin, B.: Intrusion detection and virology: an analysis
of differences, similarities and complementariness. In: Bonfante,
G., Marion, J.-Y. (eds.) J. Comput. Virol., vol. 3, no. 1, WTCV’06
Special Issue, pp. 39–49 (2007)

5. Anderson, J.: Computer security threat monitoring and surveil-
lance. Tech. rep., James P. Anderson Company (1980)

6. Denning, D.: An intrusion–detection model. IEEE Trans. Softw.
Eng., vol. SE-13 (1987)

7. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusion
using system calls: Alternative data models, In: Proceedings of
IEEE Symposium on Security and Privacy, pp. 133–145 (1999)

8. Zanero, S.: Behavioral intrusion detection. In: Proceedings of the
19th International Symposium on Computer and Information Sci-
ences (ISCIS), pp. 657–666 (2004)

9. Filiol, E.: Computer viruses: from theory to applications. Springer,
Heidelberg, IRIS Collection (2005). ISBN:2-287-23939-1

10. Fortinet observatory. http://www.fortinet.com/FortiGuardCenter/
11. Malware outbreak trend report: Storm-worm, Commtouch Soft-

ware Ltd (2007). http://www.commtouch.com/downloads/Storm-
Worm_MOTR.pdf

12. Filiol, E.: Malware pattern scanning schemes secure against black-
box analysis. In: Broucek, V., Turner, P. (eds.) J. Comput. Virol.,
vol. 2, no. 1, EICAR 2006 Special Issue, pp. 35–50 (2006)

13. Filiol, E.: Techniques Virales Avancées. Springer, Heidelberg, IRIS
Collection (2007). ISBN:2-287-33887-8

14. Sz’́or, P.: The Art of Computer Virus Research and Defense.
Addison-Wesley, Reading (2005). ISBN:0-321-30454-3

15. Spinellis, D.: Reliable identification of boundedlength viruses is
np-complete. IEEE Trans. Inf. Theory 49, 280–284 (2003)

16. Filiol, E.: Metamorphism, formal grammars and undecidable code
mutation. In: Proceedings of the International Conference on Com-
putational Intelligence (ICCI), Published in the Int. J. Comput. Sci.,
vol. 2, issue 1, pp. 70–75 (2007)

17. Christodorescu, M., Jha, S.: Testing malware detectors, In: Pro-
ceedings of the ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis (ISSTA), pp. 34–44, ACM Press, New
York (2004)

18. Josse, S.: How to assess the effectiveness of your anti-virus? In:
Broucek, V. (ed.) J. Comput. Virol., vol. 2, no. 1, EICAR 2006
Special Issue, pp. 51–65 (2006)

19. Filiol, E., Jacob, G., Liard, M.L.: Evaluation methodology and
theoretical model for antiviral behavioural detection strategies. In:
Bonfante, G., Marion, J.-Y. (eds.) J. Comput. Virol., vol. 3, no. 1,
WTCV’06 Special Issue, pp. 23–37 (2007)

20. Kruegel, C., Mutz, D., Valeur, F., Vigna, G.: On the detection of
anomalous system call arguments. In: Proceedings of the Euro-
pean Symposium on Research in Computer Security, pp. 326–343
(2003)

21. Hoglund, G., Butler, J.: Rootkits, Subverting the Windows
Kernel. Addison-Wesley Professional, Reading (2006). ISBN:
0-321-29431-9

22. Vivanco, A.D.: Comprehensive non-intrusive protection with data-
restoration: A proactive approach against malicious mobile code.
Master’s thesis, Florida Institute of Technology (2002)

23. Wagner, M.E.: Behavior oriented detection of malicious code at
run-time. Master’s thesis, Florida Institute of Technology (2004)

24. Norman’s sandbox malware analyzer. Norman ASA. http://www.
norman.com/microsites/malwareanalyzer/fr/

25. Cwsandbox. Sunbelt Software. http://www.cwsandbox.org
26. Bayer, U., Moser, A., Kruegel, C., Kirda, E.: Dynamic analysis

of malicious code. In: Broucek, V., Turner, P., (eds.) J. Com-
put. Virol., vol. 2, no. 1, EICAR 2006 Special Issue, pp. 67–77
(2006)

27. Rutkowska, J.: Red pill... or how to detect vmm using (almost) one
cpu instruction (2005). http://invisiblethings.org/papers/redpill.
html

28. Ferrie, P.: Attacks on virtual machine emulators. In: Proceedings
of the AVAR Conference (2006)

29. Debbabi, M.: Dynamic monitoring of malicious activity in soft-
ware systems. In: Proceedings of the Symposium on Requirements
Engineering for Information Security (SREIS) (2001)

30. Nachenberg, C.: Behavior blocking: The next step in anti-virus
protection, SecurityFocus, 2002. http://www.securityfocus.com/
infocus/1557

31. Schmall, M.: Classification and identification of malicious code
based on heuristic techniques utilizing meta-languages. Ph.D. the-
sis, University of Hamburg (2002)

32. Schmall, M.: Heuristic techniques in av solutions: An
overview, SecurityFocus (2002). http://www.securityfocus.com/
infocus/1542

33. Veldman, F.: Heuristic anti-virus technology. In: Proceedings of
the International Virus Protection and Information Security Coun-
cil (1994)

34. Zwienenberg, R.: Heuristics scanners: Artificial intelligence?
In: Proceedings of the Virus Bulletin Conference, pp. 203–210
(1994)

35. Understanding heuristics: Symantec bloodhound technology. Tech.
rep., Symantec White Paper Series, vol. XXXIV (1997)

36. Glover, F.W., Kochenberger, G.A.: Handbook of Metaheuristics.
Springer, Heidelberg (2003). ISBN:1-402-07263-5

37. Charlier, B.L., Mounji, A., Swimmer, M.: Dynamic detection and
classification of computer viruses using general behaviour patterns.
In: Proceedings of the Virus Bulletin Conference (1995)

38. Sekar, R., Bendre, M., Bollineni, P., Dhurjati, D.: A fast automa-
ton-based approach for detecting anomalous program behaviors.

123

http://www.fortinet.com/FortiGuardCenter/
http://www.commtouch.com/downloads/Storm-Worm_MOTR.pdf
http://www.commtouch.com/downloads/Storm-Worm_MOTR.pdf
http://www.norman.com/microsites/malwareanalyzer/fr/
http://www.norman.com/microsites/malwareanalyzer/fr/
http://www.cwsandbox.org
http://invisiblethings.org/papers/redpill.html
http://invisiblethings.org/papers/redpill.html
http://www.securityfocus.com/infocus/1557
http://www.securityfocus.com/infocus/1557
http://www.securityfocus.com/infocus/1542
http://www.securityfocus.com/infocus/1542

266 G. Jacob et al.

In: Proceedings of IEEE Symposium on Security and Privacy,
pp. 144–155 (2001)

39. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata
Theory, Languages and Computation, 2nd edn. Addison Wesley,
Reading (1995). ISBN:0-201-44124-1

40. Mazeroff, G., Cerqueira, V.D., Gregor, J., Thomason, M.G.: Prob-
abilistic trees and automata for application behavior modeling. In:
Proceedings of the 43rd ACM Southeast Conference (2003)

41. Kaspersky, K.: Hacker Disassembling Uncovered, 2nd edn.
A-LIST, LLC (2007). ISBN:1-931-76964-8

42. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscat-
ing transformations. Tech. rep., Technical Report 148, Department
of Computer Science, University of Auckland (1997)

43. Kruegel, C., Robertson, W., Valeur, F., Vigna, G.: Static disassem-
bly of obfuscated binaries. In: SSYM’04: Proceedings of the 13th
conference on USENIX Security Symposium, pp. 18–18 (2004)

44. Josse, S.: Secure and advanced unpacking using computer emu-
lation, extended version from the avar conference. J. Comput.
Virol. 3(3), 221–236 (2007)

45. Preda, M.D., Christodorescu, M., Jha, S., Debray, S.: A semantic-
based approach to malware detection. In: Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL) (2007)

46. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.:
Semantic-aware malware detection. In: Proceedings of IEEE Sym-
posium on Security and Privacy, pp. 32–46 (2005)

47. Bruschi, D., Martignoni, L., Monga, M.: Detecting self-mutating
malware using control-flow graph matching. In: Proceedings of
the Conference on the Detection of Intrusions and Malwares and
Vulnerability Assessment (DIMVA), pp. 129–143 (2006)

48. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Poly-
morphic worm detection using structural information of executa-
bles. In: International Symposium on Recent Advances in Intrusion
Detection (RAID) (2005)

49. Periot, F.: Defeating polymorphism through code optimization. In:
Proceedings of the Virus Bulletin Conference, pp. 142–159 (2003)

50. Bruschi, D., Martignoni, L., Monga, M.: Using code normalization
for fighting self-mutating malware. In: Proceedings of the Interna-
tional Symposium on Secure Software Engineering, pp. 37–44,
IEEE CS Press (2006)

51. Webster, M.: Algebraic specification of computer viruses and their
environments. In: Selected Papers from the First Conference on
Algebra and Coalgebra in Computer Science Young Researchers
Workshop (CALCO-jnr 2005), University of Wales Swansea Com-
puter Science Report Series (CSR 18-2005), pp. 99–113 (2005)

52. Webster, M., Malcolm, G.: Detection of metamorphic computer
viruses using algebraic specification. J. Comput. Virol. 2(3), 149–
161 (2006)

53. Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M.M., Lavoie,
Y., Tawbi, N.: Static detection of malicious code in executable
programs. In: Proceedings of the Symposium on Requirements
Engineering for Information Security (SREIS) (2001)

54. Singh, P., Lakhotia, A.: Static verification of worm and virus behav-
ior in binary executables using model checking. In: Proceedings of
the IEEE Information Assurance Workshop, pp. 298–300 (2003)

55. Clark, E., Grumberg, O., Long, D.: Model Checking. MIT Press,
Cambridge (1999). ISBN:0-262-03270-8

56. Schnoebelen, P.: The complexity of temporal logic model check-
ing. Adv. Modal Logic 4, 393–436 (2003)

57. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detect-
ing malicious code by model checking. Lect. Notes Computer
Sci. 3548, 174–187 (2005)

58. Perdisci, R., Dagon, D., Fogla, P.W.L., Sharif, M.: Misleading
worm signature generators using deliberate noise injection. In: Pro-
ceedings of IEEE Symposium on Security and Privacy (2006)

59. Lee, W., Stolfo, S., Chan, P.: Learning patterns from unix pro-
cess execution traces for intrusion detection. In: Proceedings of
the AAAI97 Workshop on AI Approaches to Fraud Detection and
Risk Management, pp. 50–56. Addison Wesley, Reading (1997)

60. Schultz, M.G., Eskin, E., Zadok, E.: Data mining methods for
detection of new malicious executables. In: Proceedings of IEEE
Symposium on Security and Privacy, pp. 38–49 (2001)

61. Wang, J.-H., Deng, P.S., Fan, Y.-S., Jaw, L.-J., Liu, Y.-C.: Virus
detection using data mining techniques. In: Proceedings of IEEE
on Security Technology, pp. 71–76 (2003)

62. Kolter, J., Maloof, M.: Learning to detect malicious executables
in the wild. In: Proceedings of the 2004 ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining,
pp. 470–478. ACM Press, New York (2004)

63. Lee, T., Mody, J.: Behavioral classification. In: Proceedings of
EICAR (2006)

64. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behav-
ior-based spyware detection. In: Proceedings of the 15th USENIX
Security Symposium (2006)

65. Frost&Sullivan, Protection en temps réel contre toutes les menaces,
Tech. Rep., White Paper Eset

66. Avg anti-virus. Grisoft. http://www.grisoft.com/doc/39/lng/fr/tpl/
tpl01

67. Viguard. Softed. http://www.viguard.com/detail_163_logiciel_
antivirus_viguard-platinium#

68. Bitdefender antivirus technology, Tech. Rep., BitDefender White
Paper

69. Host and network intrusion prevention, competitors or partners?
Tech. rep., Mc Affee White Paper (2004)

70. Safe′n′sec antivirus. Safen Soft. http://www.safensoft.com/
technology/

71. Truprevent. Panda Software. http://www.pandasoftware.com/
products/truprevent_tec.htm?sitepanda=particulares

72. Virus keeper. AxBa. http://www.viruskeeper.com/fr/faq.htm

123

http://www.grisoft.com/doc/39/lng/fr/tpl/tpl01
http://www.grisoft.com/doc/39/lng/fr/tpl/tpl01
http://www.viguard.com/detail_163_logiciel_antivirus_viguard-platinium#
http://www.viguard.com/detail_163_logiciel_antivirus_viguard-platinium#
http://www.safensoft.com/technology/
http://www.safensoft.com/technology/
http://www.pandasoftware.com/products/truprevent_tec.htm?sitepanda=particulares
http://www.pandasoftware.com/products/truprevent_tec.htm?sitepanda=particulares
http://www.viruskeeper.com/fr/faq.htm

	Behavioral detection of malware: from a survey towards an established taxonomy
	Abstract
	1 Introduction
	1.1 Two opposite approaches for behavioral detection
	1.2 Paper contribution and organization

	2 Why behavioral detection may succeed where form-based detection will undeniably fail
	2.1 The signature extraction problem
	2.2 Resilience to automatic mutations

	3 Generic description of a behavioral detector
	3.1 System architecture and functioning
	3.2 Basic properties for assessment

	4 Taxonomy of behavioral detector
	4.1 Simulation-based verification
	4.2 Formal verification
	4.3 Behavior model generation

	5 Panorama of existing behavioral detectors
	6 Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

