J Comput Virol (2008) 4:235-250
DOI 10.1007/s11416-008-0085-1

ORIGINAL PAPER

Malware as interaction machines: a new framework for behavior

modelling

Grégoire Jacob - Eric Filiol - Hervé Debar

Received: 15 June 2007 / Revised: 17 November 2007 / Accepted: 2 February 2008 / Published online: 21 February 2008

© Springer-Verlag France 2008

Abstract Several semantic-based malware analyzers have
recently been put forward, each one defining its own model
to capture the code behavior. All these semantic models, and
abstract virology models likewise, fundamentally rely on for-
malisms equivalent to Turing Machines. However, as stated
by recent advances in computer theory, these same forma-
lisms do not capture appropriately interactions and concur-
rency. Unfortunately, malware, adaptable and resilient by
essence, are likely to use these mechanisms intensively. In
this paper, we thus extend the malware models to the spe-
cifically designed Interaction Machines. We first introduce
two formal definitions for the interactive and the distribu-
ted viruses. According to different classes of interactions,
their detection complexity is strongly impacted. Based on
interactive languages, we then design an operational frame-
work to describe malicious behaviors. Descriptions for some
representative behaviors are given to complete and assess this
framework.

1 Introduction

This article relies on a very simple observation. A survey we
draw up over the techniques of behavioral detection, revealed

G. Jacob (X)) - H. Debar
France Télécom R&D, Caen, France
e-mail: gregoire.jacob@orange-ftgroup.com

H. Debar
e-mail: herve.debar @orange-ftgroup.com

G. Jacob - E. Filiol

French Army Signals Academy,

Virology and Cryptology Lab., Rennes, France
e-mail: eric.filiol @esat.terre.defense.gouv.fr

a multitude of systems, each one redefining its own behavior
model, in particular semantic-based ones. The underlying
idea was then to provide a reference language to express
malicious behaviors. In a first place, Turing complete lan-
guages seemed an adequate starting point, since most of
abstract virology models rely on Turing Machine equivalent
formalisms. Yet, it appeared gradually that some dynamic
aspects, such as interactivity, were fundamentally missing to
apprehend certain recent malicious trends. This article tries
to explore new directions in computer virology to cope with
the problem.

First, we recall briefly the known lacks of Turing Machines
and equivalent models (Sect. 2). Next, we introduce the
extended model chosen as solution: Interaction Machines.
According to this model, we provide new definitions and
complexity results (Sect. 3). The remaining of the paper
is more operational and provides a modelling framework
keeping interactions as leading thread (Sect. 4). Application
cases are finally considered in order to assess the relevance
of the model (Sect. 5).

2 Shortcomings of the Turing Machine models
2.1 Existing models in abstract virology

Surprisingly, very few formal models have actually been
published in abstract virology. Since the release of the ori-
ginal concepts in the eighties, about only ten publications
can be listed. As we are going to base our discourse on these
models, it may be interesting to remind the most significant
ones briefly. For those who would like to delve deeper into
the subject, references are given for each model, otherwise a
detailed survey is given in [1].

@ Springer

236

G. Jacob et al.

Based on self replicating cellular automata introduced by
von Neumann [2], F. Cohen was the first to establish a formal
definition of a computer virus using Turing Machines [3]:

Definition 1 According to Cohen, a symbol sequence is a
virus with regards to a Turing Machine if, as a consequence
of its execution, a possibly evolved copy of itself is written
further on the tape.

Cohen’s thesis supervisor, L. Adleman came up two years
later with a more abstract formalization [4]. He transposed
the problem from a Turing Machine point of view, which is
by nature linked to physical computers, to the more abstract
theory of recursive functions. He defined a virus as a function
associating to each program, an infected form exhibiting one
of the following capabilities:

(1) Injuring where a malicious task is run instead of the
intended one.

(2) Infecting where a malicious task is run once the inten-
ded one has halted.

(3) Imitating where only the intended program is run for
stealth reasons.

Years later, Z. Zuo and M. Zhou extended the formalization
to introduce the mutation process and additional aspects such
as residency or stealth [5].

Definition 2 According to Adleman, a total recursive func-
tion v is a virus with respect to a Godel numbering of the
partial recursive functions {¢;} if and only if for all possible
input x either:

1) (vp,q € N)¢v(p)(x) = ¢v(q)(x)’
(2) (Vp € N)py(p)(x) = v(p(x)),
3) (VP e N)pyp)(x) = ¢p(x).

Recently, G. Bonfante, M. Kaczmarek and J.-Y. Marion
have provided a last formalism based on the existence of
fixed points which not only matches up with the previous
models but also offers a greater flexibility [6]. As a direct
consequence of Kleene’s recursion theorem, a virus is built
as the solution of a fixed point equation. The virus is no lon-
ger considered as a function but as a program making the
notions of programming environment and program speciali-
zation available.

Definition 3 According to Bonfante, Kaczmarek and
Marion, a virus v is a program which, for all values of p
and x over the computation domain D, satisfies the equa-
tion @, (p, X) = @p(v, p)(x) where B denotes the propagation
method.

Even if their potential expression capabilities may
differ, according to the Church-Turing thesis, the three pre-
vious models finally rely on common foundations: computa-
bility, the recursion theorem of Kleene and self-reproduction
theory.

@ Springer

2.2 Known limitations

Basically, current abstract models captures effectively
duplication, propagation and mutation concepts, but most
importantly they provide fundamental results on the detec-
tion complexity. However, P. Wegner rightly underlines the
fact that, if Turing Machines remain sufficient to model clo-
sed system wholly determined by their input, they fail to
model open systems [7]. Extending the formalism of repli-
cating virus to more complex malware will eventually fail
because of missing dynamic concepts:

Interactions: Dynamic interactions with the external world,
seen as ways to import and export data, are missing in
simple Turing Machines. As mentioned in E. Filiol’s
recent paper on k-ary malware [8,9], even k-Turing
Machines using multiple tapes cannot wholly apprehend
interactions since they are limited by a quadratic enhan-
cement in the complexity of the computed algorithm.
As a matter of fact, the set of possible interaction his-
tories is undecidable because it cannot be diagonalized
(see Sect. 4.3). Unfortunately, interactions are crucial to
model malware since they can perform tasks that are enti-
rely determined by stimuli or observations of their envi-
ronment (emulation detection, triggering through user
actions, random execution).

Concurrency: The limitations appearing for interactions
obviously impact concurrency likewise. According to
R. Milner [10], Turing Machines, and generally sequen-
tial models, are no longer sufficient to model concurrent
processes. Moreover Z. Manna and A. Pnueli have shown
that non-terminating reactive processes, such as opera-
ting systems, cannot be captured either [11]. This could
be a major drawback, since malware are highly adaptable
by nature. They often use the system in a complex way in
order to make its facilities work to their own benefit (file
system, mail or P2P clients). In parallel, concurrency can
also be seen in the scope of the malware itself: its code can
be distributed over several components just as E. Filiol
stated in its paper on k-ary malware [8,9].

2.3 Related works and contribution

To our knowledge, only two related works have already tried
to extend the viral models to take interactions into account.
F. Leitold first has introduced a new mathematical formalism
based on Random Access Stored Program Machines with
Attached Background Storages [12]. These storage facilities
are additional bands with concurrent access in reading and
writing modes, shared by all the processes. He has proved that
this type of machine could capture communicating processes
and operating systems. Unfortunately, only the interactions

Malware as interaction machines

237

constrained by the band access are considered and most non-
deterministic behaviors are simply ignored since the execu-
ted program is fixed. In parallel, M. Webster has introduced
another model based on Distributed Abstract State Machines
to capture the virus’s environment but only few details are
given since interactions are not the central point of the paper
[13].

This paper intends to introduce a new formal model in
order to describe malicious behaviors more completely with
regards to interactions. This model is based on the established
domains of language theory and interaction mechanisms. To
sum up our contribution:

e Interactions are divided into several classes according to
the nature of the considered adversary and the communi-
cation channel.

e Formal definitions are introduced for recent malicious
strains. These definitions have led to new detection com-
plexity results.

e An operational framework is put forward to model beha-
viors. Its coverage is assessed in terms of soundness and
completeness.

e Several existing behaviors are described within the fra-
mework, to give hints of its expressive power.

3 Interaction machine based models
3.1 Theory of interactive machines

The shortcomings of the Turing model are not really new,
even A. Turing himself was aware of certain gaps. Fortuna-
tely, several alternative extensions of Turing Machines have
been put forward and in particular the Interaction Machines.
According to the definition advanced by P. Wegner [14], an
interaction machine can be described as a Turing Machine
with dynamic input and output facilities.

Definition 4 According to Wegner, Interaction Machines
(IMs) extend Turing Machine (TMs) by adding dynamic
input/output (read/write) actions. Interaction Machines may
have single or multiple input streams, synchronous or asyn-
chronous communications, and differences along many other
dimensions, but all Interaction Machines are open systems
that express dynamic external behaviors beyond that compu-
table by algorithms.

Basically, an Interaction Machine has the same express-
ive power than a Turing Machine with oracles and/or infi-
nite input [15]. Leaving aside the infinite input, an Oracle
Machine also denoted O-Machine has one or several oracles
represented as immediate responses stored on additional
bands [16]. The main interest is that an oracle can hypo-
thetically solve problems of any complexity class, even

undecidable. In addition, an unbounded input streams would
have been required to model reactive processes by infinite
computation [17]. However, we would have lost any pos-
sibility to use the computability foundations on which we
base our results. As a consequence, if the operating system
functioning can be hidden behind oracles, on the other hand,
reactive viruses (resident in memory) cannot be modelled.

Definition 5 An Oracle Machine is a Turing machine
connected to an oracle ® through an additional tape. The
Turing machine can write on this new tape an input for the
oracle and then signal its request thanks to a particular state
¢2. In a single step, the oracle computes its function in a black
box way, writes its output to the tape and signal the result is
ready by a second state g, .

In Interaction Machines, the executed program is pla-
ced into an open environment with possible adversaries. An
adversary is basically any object (concurrent process, opera-
ting system, network, hardware with computing facilities...)
able to interact with the given program. With regards to Inter-
action Machines, the behavior of any concurrent adversary
can be modelled as follows. According to the adversary’s
internal mechanism, the result of an interaction between an
object O and an adversary A: IA, is function of three main
factors: the transmitted data, the interaction history (string
made by concatenation of the data previously sent and recei-
ved) and time. No assumption is made about the nature of the
exchanged data. These data may be seen as simple values,
implying that / 3 is a simple function. But considering trans-
mission of executable code for example, these data can also
be functions, and / g will consequently have a higher order.

13 (data transmitted, time, interaction history) =
data received

The oracle is used to simplify the computation acting as
a black box: the time and dynamic aspects hard to capture
in Turing Machines are hidden behind the oracle. Basically,
the argument taken by the oracle represents the data sent by
an object O to trigger the interaction with an adversary A,
whereas the result represents the data returned.

@g (data transmitted) = data received

In case of unilateral interactions, either the input or the
output can be null. To simplify the notations in the coming
definitions, we denote the string describing the whole inter-
action history between the object O and an adversary A:
040.

3.2 Abstract models for new classes of viruses

Based on a formalism equivalent to O-machines, we pro-
vide a model for two new classes of viruses. The first defi-
nition is based on the one of an implicit virus introduced by
G. Bonfante et al. using the Definition 3 [6]. Their defini-
tion is extended to the concept of interactive virus. Basically,

@ Springer

238

G. Jacob et al.

the designated virus performs several actions depending on
some conditions not only on its arguments but on its inter-
actions with adversaries. In particular, these actions can take
the results of these interactions as parameters.

Definition 6 Let Cq, ..., C; be k semi-computable disjoint
subsets of a computation domain D, ®!, ..., ©®" be the n
oracles associated to n interactive adversaries and V1 1, .. .,
Viu.k be a set of semi-computable functions. An interactive
virus v is defined such that, for all p and x:

Vii(u, p,x, ©,0) if (p,x,0,0) € Cy

(pv(pa)C) =
‘/n,k(vv pvxv ®:l)())

Proposition 1 An interactive virus v satisfying the Defini-
tion 6 exists.

Proof The proof is similar to the one developed for the impli-
cit virus by G. Bonfante et al. [6], except that it relies on
relativized computability [18]. Let us consider the viral set
V according to Definition 3 and a set of possible adversa-
ries A. We can define on V x A a function f as follows:
f,a) = ©F() if the oracle ®¢() is defined and f (v, a) 11
otherwise.

The set I of known interaction schemes is built as: I =
{©0lveV,ae A, 0% |}. fissaid I-semi-computable
because f becomes semi-computable as soon as we can com-
pute elements of /.

Let us consider now the case of an interactive virus with
a single adversary a (the result can be extended easily to n
adversaries). Let us now define two functions F’ and F such
as:

vl(yﬂpvxvi)) if (p7xvi)ecl
F'(y, p,i,x) = .

Viely, p, x,10) if (p,x,i) € Cy.
F(y,p,x) = F'(y, p, f(y,a),x) if f(y,a) |, otherwise
F(y,p,x) 1.

F being I-semi-computable, by application of the relati-
vized recursion theorem, we obtain a program v satisfying
cpg (p,x) = F(v, p, x).Lete be aprogram computing F, ¢’ a
program computing F’ and consider 81 (v, p) = S(e, v, p),
Ba(v, p, f(v) = S(, v, p, f(v,a)) where S is the specia-
lization function.

Chr0.p)) = P50y (¥)
= q)! (v, p, x) by the relativized s-m-n
theorem
=F(,p,x)
= ¢y (p, x).

' According to the standard notation: f is defined at x will be denoted
f(x) | whereas f is undefined (divergent) at x will be denoted f(x) 7.

@ Springer

it (p.x,0"0) € C.

Similarly:

1 1
Py w.p. f.a)) = PS(.p.) XD

= (pel/(v, p, f(v), x) by the
relativized s-m-n theorem

= F'(v, p, f(v), %)
=F(v, p,x)
=9} (p, x).
This second construction proves that the result of the inter-

action can also be used as a parameter in the propagation
function. O

Example 1 The contradictory virus was introduced by Cohen
to illustrate the detection undecidability [19]. Let us assume
that the procedure D determining if a program is a virus is
an interaction. We thus can describe the contradictory virus
as follows:

if ®P() e true
o(p, %) = [if ®P() e false

‘Pp(x)
PB(v, p) (x)

Example 2 An other typical example would be a botnet
where the conditions Cy; symbolize the different types of
supported requests (DDos, Spam relay, Remote execution).
Let us consider a remote command channel r represented
by the oracle ®". The oracle result is a couple of the form
(c, p) where c is the request type and p the additional para-
meters (each component can be accessed separately using the
projections 71y and 7). A definition for a botnet could be:

[Vg, p)(X) if m1(®)() € install
@q(p, x) if m(®7(0) € exec
with ¢ = m2(®7())
Omailer (M) if 7Tl(®{)()) € relay

Pu(p.x) = ey

with m = m2(®7())
<@connect (), ...,
@connect (1) >

if m1(®)() € denial
with 1 = m2(©7%())

Following the same formalism, we now suggest the defini-
tion of a distributed malware. A distributed malware is made
up of two or more programs executing and interacting. Dis-
tributivity can be seen as the interactive composition of seve-
ral processes as suggested by P. Wegner [14]. To put things
simply, we can consider distributivity over two processes
as the decomposition Behavior(P|Q) = Behavior(P) +
Behavior(Q)+ Interaction(P, Q). For the purpose of this
definition, we introduce a new notation ¢, that refers to the
parallel computation of two programs p and q.

Definition 7 Let ®}/() and ®}, () be the oracles reflecting
the interactions of two programs v and w. v and w are com-
ponents of a distributed virus v|w if there is a combination
function f, semi computable, such as:

o (P, x,¥) = flpu(p, x, 05 0), pu(p, y, ©},0)).

Malware as interaction machines

239

Proposition 2 Components v and w for a distributed virus
satisfying the Definition 7 exist.

Proof The proof is almost identical to the previous one,
using relativized computability. By a similar reasoning, it
can be proven that a propagation function g exists such that

Yulw(p, X, y) zwﬁ(v,w,p)(xa y). O

A definition of distributed malware has been given for
two components. Let us now extend our formalization to n
components. Before to go any further, it shall prove useful
to make a parallel with E. Filiol’s work on k-ary malware
[8,9]. According to his definition, k-ary malware are made
up of several files which can be either active (executable)
or inert (only used as data repository). By convention, we
denote active components v; and inert ones d;. As stated
by E. filiol, component interactions can be seen as graphs
where the vertices symbolize the components and the edges
symbolize interactions between the connected extremities. In
other words, if two components v; and v ;j interact, the edge
(vi, vj) is included in the edge set of the graph denoted E¢.

In his work, he makes the distinction between two classes
of k-ary malware. The first class I gathers the sequential
k-ary codes whose components are executed consecutively
using the results of the previous ones. By choice, we do consi-
der it as real concurrency but rather as a simple composition
denoted v - w: @y.u(p, X) = @y(@w(p, x)). On the oppo-
site, the second class /1 of parallel k-ary codes dynamically
interacting is typically the notion we want to capture in the
following proposition.

Definition 8 Let G be an interaction graph made up of n
active components v; and m inert components d;. We intro-
duce G),‘)/l_ O (resp. ®3 ()) which correspond to the concatena-
tion of all the interaction histories with its connected active
(resp. inert) components: @3,’ O where {v;|(vi,vj) € Eg}
(resp. @‘3;‘ () where {di|(vi,dr) € Eg}). The components
of the graph G constitute a distributed malware if there is a
semi-computable functions g satisfying the system:

96 (. x) = &gy, (p. x,0,,0,0.0). ...

v, (P, x, 0] 0,00 0))

The complexity of the combination is dramatically increa-
sing with the number of components. A solution to simplify
the approach would be to partition the original graph into
biconnected subgraphs in order to pinpoint the articulation
vertices. As a consequence, it should reduce the complexity
of the interaction network as pictured in Fig. 1. Therefore,
we would have, instead of a massive combination function, a
system of n 4+ 1 more simple equations, where » is the num-
ber of biconnected subgraphs, plus one for the combination
of the subgraphs. The idea is to study interactions locally
before to enlarge the scope.

G,

G,— G,

G,

Fig. 1 Distributed virus made up of nine components. This graph of
interaction is given as an example and pictures a quite complex distri-
bution. We can see that by searching for biconnected subgraphs we can
decrease the complexity of interaction to a condensed graph

3.3 Complexity of the detection problem
3.3.1 Classes of interaction and their time complexity

Interactions may be different according to the entities put into
relation. By considering the different classes of interactions,
we can associate a time complexity to the oracles model-
ling them and measure their impact on the performance of a
detector.

(Class I) Interactions with inert objects: This class gat-
hers the interactions made with inert objects which have
no internal mechanisms. Data files, registry entries and
more generally storage memories, data repositories are
typical examples. These interactions are always initiated
by the observed program. In this case, the complexity is
proportional to the size of the requested data and thus
linear.

Proposition 3 The complexity of interactions with inert
objects is in P.

(Class I;) Interactions with active objects through inter-
faces: This second class gathers the interactions made
with active objects which exhibit internal mechanisms
constrained by defined communication interfaces. Kernel
objects such as synchronization objects are typical exa-
mple. These interactions remain initiated by the obser-
ved program. Even when waiting for a remote activation
signal, it cannot be achieved without an explicit request
from the program.

Proposition 4 The complexity of interactions with active
objects through defined interfaces is NP-Complete.

Proof These active objects have limited internal mecha-
nisms able to process a given input if it complies with

@ Springer

240

G. Jacob et al.

its interface. We can choose to describe the constraints
weighting on the input as a context-free grammar (CFG).
The active object can thus be described as a pushdown
automaton recognizing the language described by the
CFG. Let us define the automaton as the following
7-tuple (Q, X, I, 8, qo0, Zo, F):

— Qs the finite set of states associated to the different
combinations of values taken by the internal attri-
butes,

— X is the alphabet of input symbols corresponding to
the range of values authorized by the interface signa-
ture. Likewise I is the stack alphabet which can basi-
cally be the same one,

— & is the transition function modelling the internal
mechanism processing the inputs,

— go € Q is the initial state taken and Z; the stack
initialization,

— F C Qisthe set of accepting states corresponding to
the different possible return values that will be sent
back including errors.

Determining the interaction result is equivalent to deter-
mining which accepting state is reached by the automa-
ton. The complexity is thus equivalent to the accepting
problem of a word over a language described by a CFG.
This particular problem is known to be NP-complete [20].
Nevertheless, in some particular cases the grammar can
be proven regular. The problem becomes P-hard since it
can be solved by a deterministic finite automaton. O

Example 3 Contrary to common sense, network commu-
nications are a practical example from I,. Even if the
resulting value of the interaction seems unpredictable,
partly because the remote system is out of our control,
the interaction remain constrained by a protocol defining
the structure of the exchanged data packets. These struc-
tures such as an IP packet for example, can finally be
described by means of context-free grammars [21]. They
are then interpreted by a dedicated parser using its own
internal stack.

(Class Iz) Unconstrained interactions with adversaries:
This last class gathers the unconstrained interactions with
any active objects including human interventions.
Contrary to the three previous ones, these interactions
are not necessarily requested by the observed program.
An obvious case would be concurrent processes rewriting
memory locations or their own code. Typically, a rootkit
modify dynamically the system API addresses. Once loa-
ded, it has repercussions on the behavior of any program
using system services.

Proposition 5 The complexity of unconstrained interac-
tions with active objects is undecidable.

@ Springer

Proof Let P be the observed program, and Q a concur-
rent process. P uses the value (data or instruction indiffe-
rently) stored in a memory space M without being aware
that Q can modify it. M is left unmodified by Q until
the end of its execution. At termination, Q writes a dif-
ferent value in M. Guessing which value will be used by
P is equivalent to determine the termination of Q. The
complexity of such interactions is thus equivalent to the
halting problem which is undecidable.

Going back to our parallel with formal grammars, uncons-
trained interactions can relevantly be described by
Turing-complete languages. O

The complexity of interactions is not only determined by
their nature but also by their combination. Their complexity
are multiplied by a factor depending on the structure and per-
imeter of the observed system. In the case of an interactive
virus, we simply consider one to one interactions with the
target of the observation. The factor is then directly propor-
tional to the number of adversaries. The complexity of the
oracle according to the interaction class is thus multiplied
by a linear factor n. In the case of distributed malware, we
consider multiple interactions between the adversaries. The
complexity increases polynomially with the complexity of
the interaction graph. The worst case is reached whenever the
malware is a complete graph which cannot be divided into
biconnected subgraphs. The complexity is then multiplied
by a factor (n x (n — 1))/2 corresponding to the maximum
possible interactions. In both cases the increase induced by
the combining factor is polynomial.

3.3.2 Impact of the interactions on detection

By extending the existing models with interactions, we can
show that the detection complexity, previously bound by
Turing Machine expressiveness, is increased by their intro-
duction. According to Bonfante et al. the set of viruses for a
given propagation function is IT, [6]. To introduce the new
result, let us define the two following sets:

Vi={v | visaninteractive virus}

Va = {(v, w) | vlw is a distributed virus}

Proposition 6 The set of interactive viruses V; (resp. distri-
buted viruses V) for a given propagation function is at least
3.

Proof Proof is given for distribution over two components
but can be generalized to any arbitrary n. The proof for the set
of interactive viruses is almost identical and is not detailed.
Let us consider globally possible interaction schemes as a set
I . From the detector perspective, detection is only possible if
the set of possible interaction schemes can be explored. We

Malware as interaction machines

241

can thus consider the reductive hypothesis that I is compu-
tably enumerable in order to express a lower bound for the
detection complexity.

Let g be a program computing the distributed propagation
function f from the definition. The set of distributed viruses
over two components is then given by:

30,0, 0,0Vx, y, pIy1, ..., ¥8
[/ is a computably enumerable set]A
[OY0) el AB®,()el]lA
(P, x,070) = y1 A (p,y, 0},0) = »n2A
(P, x,¥) = y3 Agu(y1) = yan
©w(¥2) = y5s A (¥4, ¥5) = Y6/
©q(¥6) = y7 A o (¥3) = 7

We know that ®() € I and ®},() € I are X predicates
whose complexity is added to the set complexity which was
originally ITp, thus V; is X3. O

4 A formal semantic based on interactive machines
for malware behaviors

The previous theoretical background justifies the importance
of interactions by studying their impact on modelization and
detection. Based on the Interaction Machine formalism, we
want now to establish a language to model malware and more
particularly malicious behaviors. The formal grammars have
the advantage of providing a better understanding of the mal-
ware effects and great manipulation facilities, while remai-
ning formal enough for a high level representation. The key
idea is the migration from abstract virology to a more opera-
tional context. The purpose is similar to the recent imperative
programming language introduced by Bonfante et al. in order
to study the implementation of their theoretical results [22].
Unfortunately, they do not consider interactions and paralle-
lism, which leaves some place for possible improvements.

The behavioral approach to model malware is not really
new, several attempts to provide a semantic description of
malicious behaviors have already been made. In 2002, Mar-
kus Schmall put forward a metalanguage which finally pro-
ved itself insufficiently formal to establish proofs about the
language properties [23]. Other semantics based on simpli-
fied programming language were introduced afterwards [13],
but they remained too close to the assembly level. On the
opposite, recent works in the domain of intrusion detection
put forward a semantic traducing the intrinsic properties of
the vulnerabilities rather than the exploits themselves [24].
Our guiding principle is similar, we focus on describing the
final purpose of a behavior rather than the technical solu-
tions used to achieve it. That is why we have decided to
establish a new high level dedicated formalism which can
then be declined into more concrete models or instantiations
by refinement.

4.1 Introduced framework

By choice, the problem was addressed from an object orien-
ted perspective. The malware is thus considered as an object
with internal attributes and mechanisms. Additional inter-
faces are then provided for interaction with external objects.
Before getting any further, let us begin with introducing our
grammar defining the Malicious Behavior Language (MBL).
This grammar is wholly described on the next page. The
associated operational semantics is not truly necessary to
understand what follows, but the interested reader can refer
to Appendix A.

4.2 Internal mechanisms

Internal mechanisms are operations performed by the mal-
ware without requiring external interventions assuming that
the processed data is available. Even if the data is originally
supplied by an adversary, the data processing on its own is
considered internal. With regards to the grammar, atomic
internal operations are defined mainly within the rules (5)
and (6). These operations are then combined into blocks and
structures according to the rules (10) to (14).

Proposition 7 The MBL language is Turing-complete.

Proof An obvious proof can be given by describing a Turing
Machine in the MBL. O

Even if the proof of Turing Completeness states that our
language is sound and complete with regards to internal
mechanisms, Sect. 2 has shown that it remained insufficient
to capture interactions. Notice that Turing Machine equiva-
lent languages are the richest languages known to be both
complete and sound.

4.3 Interaction extension

Our main improvement compared to other program gram-
mars [25], lies in this extension. The difference with the pre-
vious approaches is that system calls and more generally
interactions are treated in a generic way by semantic inter-
pretation. Different service calls can basically have the same
effect. Most of these calls can finally be reduced to simple
control or input/output operations offering classification pos-
sibilities. Dealing with this equivalence is critical since the
used services often betray the final purpose of the behavior.

As a matter of fact, interaction grammars require additio-
nal dynamic features. In interactive languages, some terminal
grammar units may be impacted by concurrent objects. As a
consequence, listening and transmitting operators are requi-
red to dynamically affect values to these units. The rules
(7) to (9) define dynamic interactive commands for liste-
ning and transmitting operations. The future possible values,

@ Springer

242

G. Jacob et al.

(1) <Attribute>
(2) <Adversary>

= var | const

=o0bj_perm | obj_temp | obj_com
| obj_boot | obj_exec | obj_sec
| env_var | this

3) <Opl> n=-l&
4) <Op2> s=VIAl®I << |=12]>
[+l=Ix|+-|=|<<]|>>

(5) <Term> = <Attribute> | [<Term>]
| <Opl> (<Term>)
| <Op2> (<Term>, <Term>)
| <Operation> | <lInteraction>
n=var := (<Expression>)
| [<Expression>]:= (<Expression>)
| goto <Expression>
| stop
(7) <Interaction> := <Control><Adversary> | <I/O>
(8) <Control> = open | create | close | delete
9 <I/0> =receive var <—<Adversary>

(6) <Operation>

| receive [<Expression>] <—<Adversary>
| send <Expression>—<Adversary>
| wait <Adversary>
| signal <Adversary>
(10) <Block> = <Term>; <Block>
| <Term>;
= <Block>
| if (<Expression>)then{
<Sequence>
else{
<Sequence>

(11) <Structure>

}
| if (<Term>)then{
<Sequence>
}
| while(<Term>){
<Sequence>
}

| [<Sequence>|<Alternatives>]

(12) <Alternatives> ::= <Sequence>| <Alternatives>
| <Sequence>

(13) <Sequence> = <Structure><Sequence>
| <Structure>

(14) <Behavior> = <Sequence>

taken by the variables storing the results of these interac-
tions, are incrementally transformed into a sequential past
at each computational step (see Appendix A for operatio-
nal semantic). These operators prove themselves sufficient
for modelling the interactions of classes I; and I,. In effect,
they describe cases where the malware is set in a listening or
transmitting state willingly. Notice that the wait and signal
commands distinguish synchronous and asynchronous com-
munications. On the other hand, the interactions of class I3
can only be modelled by non-deterministic choices requiring
a third additional operator. In our grammar, the respective
operator is introduced in rule (11) with the notation [s || s].
The choice between the different alternative sequences can
be indirectly committed according to such unforeseen inter-
actions. By nature, these behaviors are almost impossible to
predict (see the undecadibility result in Sect. 3.2) and thus
can hardly be integrated to models in first place.

@ Springer

Proposition 8 Soundness of the MBL with regards to inter-
actions is quite intuitive considering the fact that the concept
of object-oriented modelling is directly inspired from the rea-
lity. On the opposite, completeness is impossible to achieve.

Proof Interactive systems have an inherent incompleteness
[7]. Dynamically generated streams can be mathematically
modelled by the set of infinite sequences which cannot be
diagonalized. Similarly to the Godél incompleteness result
for the integers, any domain whose set of true assertions
cannot be diagonalized, cannot be complete. Moreover, the
results of interactions are not necessarily strings: in case of
code rewriting, the interaction can be seen as a function pas-
sing (class I3). Nevertheless, a partial completeness can be
guaranteed empirically showing that we are able to express
sufficiently interactions to capture the actions of malware. O

4.4 Adversaries classification

To extend the framework, object types are defined to clas-
sify the adversaries. Using the object-oriented approach, an
inheritance scheme has been developed based on the final
purpose of each object. Only classes with relevant effects
on the malware lifecycle have been specified in detail. This
classification suggests a certain approach but remain open
for discussion.

Basically, objects are separated into two classes according
to their persistence as pictured in Fig. 2. The first class gathers
the permanent objects (obj_perm) which remain present
after a complete reboot of the system. Files, directories or
registry keys are members of this class. At the opposite, the
second class gathers the temporary objects (obj_temp) exis-
ting only for a given time, as long as the system remains
active. Mutex or events are simple examples already used by
malware writers. Particular objects inheriting of these two
classes are defined more specifically. The more specific class
always prevails on the generic one:

e A first permanent subclass gathers the boot objects
(obj_boot). These objects provide the malware facilities
to execute its code automatically. The run registry keys,
the win.ini file for Windows, or the master boot record
make execution possible during the boot sequence. Auto-
matic execution is also possible at runtime by overwri-
ting the global system service descriptor table, the import
tables or entry points in executables. Such locations are
also considered as members of the boot class.

e A second permanent subclass is made up of the envi-
ronment variables (env_var). These objects store impor-
tant information about the platform. Configuration files,
registered path but also hardware fixed data structures
available through particular instructions (cpuid) are just
a few examples.

Malware as interaction machines 243
Fig. 2 Adversary inheritance .
scheme. Any system object is Object
either permanent or temporary
making the classification
complete. They have been
derived into several specific
classes according to the Permanent Object Temporary Object
malware perspective — “Registry key Kh D “Mutex G
-File -Event
Boot Object Communicating Object Executable Object
-Run registry key -Network socket -Thread
-Entry point -Shared folder -Process
Environment Variable Security Object

~Cpuid
-PATH

< -Antiviral process
-Policy registry key

e The subclass made up of the communicating object inhe-
rits from both the permanent and temporary classes
(obj_com). These objects constitute communication
channels to remote locations or systems. The definition of
a communicating object is very large. Obviously
network drives, shared directories (intranet, P2P), or
removable devices are permanent members of this class
whereas network connexions, or processes pipes are
particular temporary members.

e Executable objects (0bj_exe) constitute a fourth subclass
inheriting from the temporary object. Process and threads
in particular are appealing target for corruption by the
malware.

e Security objects (obj_sec) can be either environment
variables or executables making this subclass hybrid.
They play an important role in the protection of the sys-
tem. They can be respectively antiviral processes or regis-
try keys storing the security configuration for certain web
or P2P clients.

e Ultimately, the definition of an autoreference (this) shall
proveitself useful as in object programming. This element
has no particular type as it can be either the drive image
of the malware, its associated process in memory. Such a
reference can be obtained under Windows thanks to func-
tions like GetCurrentProcess() or GetModuleHandle()
called with a null value. It corresponds more simply to
the $0 in a shell script.

5 Behavior modelling through interactions
5.1 Behaviors identified “in the wild”

As stated in part 4.3, theoretical completeness cannot be
proven. To assess partial completeness, the framework has

been confronted to a pool of real world cases. To do so, we
have considered a pool of a dozen of representative malicious
strains. Similarly to the analysis led in a previous paper [26],
we have identified different techniques used to achieve seve-
ral classes of typical malicious behaviors. Global informa-
tion about these behaviors are partly available on observatory
websites [27]. When deeper information were required, they
were found in detailed analyses of malware (wild examples:
Bagle [28], MyDoom [29], or significant zoo examples:
Magistr [30], Zellome [31]).

Through the results of this survey, several behavior classes
have been successfully described. The obtained descriptions
have proven themselves generic enough to apply to all our
example. Even if some differences were observed in the dif-
ferent instantiations of a given behavior, the generic principle
remained quite similar and was successfully traduced by the
descriptions we introduce in the next part.

5.2 Specific behavior definitions

Based on this survey, we now describe several malicious
behaviors as subgrammars of the generative one. This means
that any language generated by one of them is included in
the language defined by our framework. Each of the used
grammar unit can then be translated into several possible
instruction metastructures by refinement from the abstrac-
tion to the implementation (see example in Appendix B for
illustration).

5.2.1 Replication mechanisms

Self replication is a key mechanism with viruses or worms.
Most of the definitions put forward for these agents are based

@ Springer

244

G. Jacob et al.

on this principle. In our description we have split replication
according to three modes:

Duplication: Simple duplication requires no target to host
the code. The viral code is first stored in a local buffer sym-
bolized by the generic variable V4. This code is then sto-
red in a newly created permanent object Ojy,.. During the
duplication, mutations can occur but these mechanisms shall
only be described in appendix for the interested reader (see
Appendix C).

Veode € var
Oclone € 0bj_perm
(i) <Duplication> ::= <Creation><Reading>
<Mutation><Writing>
| <Reading><Creation>
<Mutation><Writing>
(ii) <Creation> create Oclone;
(iii) <Reading> n=receive Viopqe < this;
(iv) <Writing> =send Veoge = Oclone:

Infection: Contrary to duplication, infection requires an
existing entity to host the viral code. As a consequence, the
first phase of the replication always consists in crawling into
the system to look for a potential target. Conditions model-
led by Cyu1iq are defined to check the validity of the tar-
get, one of them being the absence of previous infection. An
example could be the absence in the file of an infection mar-
ker, a “magic constant” for example. In our model we have
integrated append and prepend modes of infections, whether
destructive or not. In particular, the variable V4. is used as
a buffer during the optional recopy of the original data. Once
again mutations may intervene.

Viarget» Veodes Vsave» Veomparison € var
Cyalid € const
Otarger € 0bj_perm
(i) <lInfection> ::= <Searching><Opening><Relocating>
<Reading><Mutation><Writing>
| <Searching><Opening><Reading>
<Relocating><Mutation><Writing>
(ii) <Searching> ::= While(vcompar[wn = (~(= (Vlargeza Coatia))){
open Oturg('t;
receive Vrarget <~ Otarge!;
}
(iii) <Opening> :=open Oarger:
(iv) <Relocating> ::=receive Viqye < Orarger:
send Ve — Omrget;
| €
n=receive Vepge < this;
= send Veode = Ozargef;

(v) <Reading>
(vi) <Writing>

Propagation: Propagation is a third way of replicating,
specific to worm. Contrary to the two previous cases of local
replication, propagation is the capacity to replicate over
remote systems. The code is no longer copied into a per-
manent object but rather sent to a communicating object.

@ Springer

According to the nature of the channel used, a formatting
phase may be required. For example, mail propagation requi-
res the construction of a mail structure with valid headers and
the encoding of the attached code of the malware in a base 64
format. Notice that encoding may take several steps. Like any
other replication mechanism, mutations are likely to occur.

Veode Vformatteda Vparameters Vposition € var
Cheader» Chsize € const
Ochannel € obj_com
(i) <Propagation> 1= <Opening><Reading>
<Mutation><Transmitting>
| <Reading><Opening>
<Mutation><Transmitting>
(ii) <Opening> = open Ochannel;
(iii) <Reading> =receive Vipge < this;
(iv) <Transmitting> ::= send Veode = Ochannel;
| <Formatting>
send Viormatted = Ochannel
L= V[mxitirm = (&(Vformmzed));
[Vposition] = (Cheader):
Vpo.yition = (+(Vpo.yitiom Chsize))
<Encoding>
[Vpo:irion] = (Veode)s
= Veode = (<0]72> (Vcodes Vparameter));
<Encoding>
| €

(v) <Formatting>

(vi) <Encoding>

5.2.2 Overinfection and activity tests

Overinfection test: The overinfection test detects if any ins-
tance of the malware is present on the system. The detection
is done by checking the existence of a permanent marker
Omarker- This test can be achieved through at least three dif-
ferent methods. In the case of file infection, the overinfection
test for a target is already integrated in the searching routine
which search for an healthy target. It does not need to be
redefined here.

Omarker € Ob.j—perm

(i) <Overinfection> 1= <Testl> | <Test2> | <Test3>
(ii) <Testl> n=if(create Opqrier)then{
stop;
}
(iii) <Test2> n=if(open Omarker)then{
stop;
telse{

create Omarker;
1
n=if(—open Omarker)then{
create Omarker;
telse{
stop;

(iv) <Test3>

Activity test: If overinfection test addresses the static pro-
blem, the activity test deals with the dynamic aspect. The
activity test detects if an instance of the malware is already
running in memory. It proves itself really useful for worms

Malware as interaction machines

245

whose code is never written down on the disk. The execu-
tion is betrayed by the presence of a particular temporary
object Ogetive. Otherwise the structure is quite similar to the
previous one.

Ouctive € 0bj_temp
(i) <Activity> = <Testl> | <Test2> | <Test3>
(ii) <Testl> u=if(create Oyetive)then{
stop;
}
n=1if(open Ogetive)then{
stop;
telse{

create Ouetive;

(iii) <Test2>

}
(iv) <Test3> = if(—open Ogctive)then{
create Ogctive;
telse{
stop;

}

5.2.3 Residency mechanism

Residency is a way for the malware to trigger its execu-
tion automatically. It is achieved by writing its reference
Vieference in a boot object O,y;,. According to the object
used, the nature of the reference will be different. For a run
registry key, it will be its path in the file system whereas for
import tables or entry points, it will be its address in memory.

Vreference € var Oy, € obj_boot
(i) <Residency> ::=send Vyeference —> Oruns

6 Conclusion and perspectives

Throughout this paper, we have introduced a new frame-
work based on interactions to describe malicious behaviors.
The first theoretical approach has given results measuring
the heavy impact of interactions on the detection complexity,
thereby justifying their consideration. We have then provi-
ded a semantic that seems relevant with respect to malware
modelling since we have managed to describe most of the
identified malicious behaviors. In order to achieve a greater
completeness, the scope of the survey should be increased to
a wider range of malware. Anyhow, the generative grammar
proves itself sufficiently generic to define additional beha-
viors or refine existing descriptions. Additional behaviors
such as data gathering or typical final payload could have
been described but we had to limit ourselves not to bury the
important facts among examples. Eventually this grammar is
proposed as a base and can be extended for specific purposes.

Working at a higher level of representation has several
advantages. It proves really useful in expressing the final aim

of behaviors rather than the techniques used to achieve it. In
fact, this semantic brings into light functional similarities
more evolved than simple instruction equivalence which is
the major drawback of most current detection systems. This is
particularly due to the generic interpretation of interactions.
Eventually, it could be worth considering integrating our fra-
mework to existing semantic analysis systems for malware
detection as in [25,32,33].

The inheritance scheme for adversaries is also an interes-
ting feature since it helps to understand the relation between
a malware and its environment. Studying this classification
further would help to refine the scheme and bring additional
information about the data flow. Another perspective would
be to explore deeper the existing interaction semantics for a
more proper theoretical formalism than oracles [10].

Acknowledgements We would like to thank the reviewers, their inter-
esting comments have helped much to improve this paper. Another spe-
cial thanks in particular to Jean-Yves Marion for his valuable remarks
and advices when correcting this paper.

Appendix A: MBL operational semantic

The MBL operational semantic requires important data struc-
tures to manage interactions between the different objects.
Let us define a configuration of n concurrent objects. First
an array ¢ = 01 ...0y is required to store the immediate
results during the evaluation of the different objects execu-
tions. A second array V = V...V, is required to store the
values manipulated by these objects. At last, to model the
exchanges between the objects three matrices of size n X n
must be defined:

— A matrix L symbolizing the links between objects. A link
exists between the ith object and the jthobjectif L;; = 1.

— Amatrix S symbolizing the signalization between objects.
A signal is sent from the ith object to the jth object if
Sij = true.

— Amatrix D of lists storing the values transmitted between
the objects.

Let ¢! denote the evaluation function for the ith object, [x/y]
denote the substitution of y by x, and the operator - denote
the concatenation of two lists.

Evaluation of interactions:

Link creation and destruction

€open o, (<0, V. L, S, D>)

. <O'[Ui/1],V,L[Lij/1],S,D> ifLij =0
<olo;/0],V,L,S, D> otherwise

6i‘lose oj(<a» V,L,S,D>)

_ <oloi/11,V, L[L;;/0], S, D> if Lij=1
“ | <oloi/01,V,L,S,D> otherwise

@ Springer

246

G. Jacob et al.

Signalization
eélgnal 0j (<O" V’ Ls S, D>)

<oloi/11, V, L, S[S;j/true]l, D> if L;j =1
<olo;/01,V,L,S, D> otherwise

€ it 0 (<0, VL, S, D>)
J

wait
<oloi/11, V. L, S[Sji/false], D> if L;j =1
= and Sjl = true
l (<0, V,L,S,D>) otherwise
j

Cwait o
Data transmission and reception

Ei
send v—o

j(<a, V.L,S,D>)

<oloj/11,V, L, S, D[D,"/'/D,'j s [v]l> if L,'j =1
<olo;/0L,V,L,S, D> otherwise

el [(<0.V.L.S.D>)

receive v<—o

<oloi /1], V[v/v/],L,S,D[Dj,-/T]> if Ljj=1 and
= Dji=[]-T
<olo; /0L, V,L,S, D> otherwise

The evaluation of the other expressions from the grammar is
quite similar to any other programming language and shall
not be described here. The reader can refer to the semantic
described by Bonfante et al. to have a complementary over-
view (Appendix [22]).

Appendix B: From instanciation to semantic description

This appendix gives more details about our survey of existing
behaviors. As said in Sect. 5.1, we have deployed our analysis
on several malware strains from different types: File Infec-
tors (Flip, Lewor, Magistr, Metaphor, Rile, Zelly), Worms
(Slammer, CodeRed), E-mail Worms (Bagle, Chir, Feebs,
LoveLetter, MyDoom, Sober, Zellome), Peer-to-peer Worms
(Supova, Winur), Trojans (Puper), Rootkits (Vanti). A list of
characteristic behaviours has been established which is detai-
led through the different description from Sect. 5.2 and the
next appendix.

Let us now focus on the translation approach that has been
used during the different analyses. How can some instruc-
tion blocks be interpreted into grammar units. Let us consi-
der a practical example with the propagation function which
is quite complete. The propagation behavior can be imple-
mented through different technical solutions which remain
nonetheless quite similar as the table below underlines it.

@ Springer

Propagation to other systems

V/FI

Lewor Copy on removable devices
Copy on connected network drives

V/EmW

Bagle Massmailing with the virus as attached file

Chir Massmailing with the virus as attached file
Copy on connected network drives

Feebs Massmailing with the virus as attached file
Copy in directories whose name evoked
shared folders through P2P

Loveletter | Massmailing with the virus as attached file
Using IRC channels

Magistr Massmailing with the virus as attached file

MyDoom | Massmailing with the virus as attached file
Copy in the KaZaA default shared directory

Sober Massmailing with the virus as attached file

V/P2PW |

Supova Copy in the Windows media folder and share
it by configuring KaZaA Automatic sending
to the MSN Messenger contact list

Winur Copy in a new hidden directory and configure
known P2P clients to share it
Copy on a floppy disk if present

W |

Slammer | Transmission by UDP packets with a fixed
port to a random IP address

CodeRed | Transmission by TCP/IP packets on port 80

To move still closer to intantiation, let us chose a specific
example with the e-mail worm MyDoom (already analyzed
in [26]) and illustrate the translation with quotes from its
source code. Obviously, the same explanation stands for the
other samples. Let us remind briefly the generative rule of
the description:

Veode, Vformatted’ Vparameter» Vposition € var
Cheader Chsize € const
Ochannel € 0bj_com
(i) <Propagation> ::= <Opening><Reading>
<Mutation><Transmitting>
| <Reading><Opening>
<Mutation><Transmitting>

This rule does not contain any final unit, let us move for-
ward to the opening rule:

(ii) <Opening> ::= open Ochannel;

/* Open socket */

struct hostent *h = gethostbyname (hostname) ;
struct sockaddr_in addr = *(h->h_addr_1ist[0]);
sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
connect (sock, addr, sizeof (struct sockaddr_in));

A simple call to the socket function is sometimes insuffi-
cient. Combined with the connect call, we can interpret pre-
cious information about the kind of socket created. Anyhow,

Malware as interaction machines

247

a socket is basically a communicating object. Similarly, if
the communicating object had been a shared directory, an
interpretation would have been required on the path given
as parameters to the CreateFile in order to recognize a P2P
associated folder.

(iii) <Reading> ::= open this;
receive Viopqe < this;

/* Open currently executing file */

GetModuleFileName (NULL, selfpath, MAX_PATH);

HANDLE hFile = CreateFile(selfpath, GENERIC_READ,
FILE_SHARE READ|FILE_SHARE WRITE, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

/* Reading file content in buffer */

DWORD dwSize = GetFileSize(hFile, &dwUp);

ReadFile(hFile, pBufferCode, dwSize, &dwRead, NULL);

Once again, the call to GetModuleHandle allow us to ana-
lyze the parameters passed to CreateFile. This preliminary
call makes the distinction between a simple permanent object
opening and the access to the auto-reference.

(iv) <Transmitting> := send Veoge = Ochannel;
| <Formatting>
send Vfurmatted — Ochannel’

/* Sending information */

send(sock, pBufferCode, lstrlen(pBufferCode), 0);

This translation is quite trivial. Nevertheless in our case,
a formatting preliminary phase is required since the propa-
gation is done by e-mail. It would not have been the case for
example in basic worms like Slammer who send their code
like raw data.

(v) <Formatting> ::= position ‘= (&(Vformatted));
[Vposirion] = (Cheader);
Vposition = (+(Vp0:itians Ch:ize))
<Encoding>
[Vpositinn] = (Veode);

/* Concatenate header */
char header[] = ‘From: myadresse@domaine.ext\r\n
To: target adresse@domaine.ext\r\n
Subject mail subject\r\nDate\r\n
MIME-Version\r\nContent-Type: multipart/mixed\r\n’’;
lstrcat (pFormatted, header);

/* Optional encoding */

/* Concatenate code */

lstrcat (pFormatted, pBufferCode);

The concatenated header is a constant which is directly
determined by the exchange protocol used by the communi-
cating object. In our particular case, the constant is a SMTP

header predefined in the character table. In addition to the
header, an encoding step is required in MyDoom because
attached files must be encoded in a base 64 to comply with
the SMTP protocol.

(vi) <Encoding> ::= Veode := (< Op2 > (Veodes Vparameter));
<Encoding>
| €

/* Base 64 table */

BYTE alphal] = ¢‘ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz0123456789+/° 7 ;

/* Base 64 encoding */

ql0] = alphalt[0] >> 2];

ql[1] = alphal((t[0] & 03) << 4) | (t[1] >> 4)]1;

ql[2] = alphal((t[1] & 017) << 2) | (t[2] >> 6)];

q[3] = alphalt[2] & 077];

Appendix C: Additional behavior descriptions

In this appendix, we have chosen to detail some additio-
nal behaviors which are not necessarily relevant to our main
focus: interactions. Nevertheless, they constitute a proof of
the expressiveness of the semantic approaches.

Mutation mechanisms

Up until now, mutation mechanisms have been mentioned
without definition. We now fill this gap. Mutations are mainly
divided into two types of engine: polymorphic and metamor-
phic. Any one of them, both or none can be applied at the
same time.

(i) <Mutation> ::= <Polymorphism><Metamorphism>
| <Polymorphism>
| <Metamorphism>
| €

Polymorphism: Polymorphism is historically the first type
of engine and thus the simpler. In polymorphism, the plain
code is encrypted during copy. As a matter of fact most of
the actual encryption functions used by malware writers are
simple binary operations (like XOR applied with a constant
key value Vi,y). Basically, our subgrammar is really simi-
lar to the behavior template described by Christodorescu et
al. but with several extensions [25]. In particular, key varia-
tion and chaining like CBC have been encountered in some
of the analyzed malware and have thus been added. If this
model only describes simple encryption algorithms, it can
be extended to more complex ones as our grammar is Turing
complete. It is also possible to define a particular progres-
sion during the process. Certain algorithms such as in PRIDE
(Pseudo-Random Index DEcryption [34]) have complex or

@ Springer

248

G. Jacob et al.

even random memory accesses instead of sequential ones in
order to delude emulators.

Veode Vposilion’ Vzempv Vkeyv Vposprevv Vprevioum chmpar[son € var

Ciimit> Cuariation» Cprogress € const
(i) <Polymorphism> ::= Vposition := (&(Veode))s
U)hi]e(‘/(‘(7m;7urisotl = (< (Vpasitiona Climi))N
<Ciphering>
<KeyVariation>
<Next>
}
= V/emp = ([Vposilhm]);
<Chaining>
Vremp = (<O0p2> (Vtemps Vkey));
[Vpo.vitinn] = (Vtemp)§
n= Vpuxprev = (_(Vpuxitivnv 1);

(ii) <Ciphering>

(iii) <Chaining>
Vprev[oux = ([Vposprev]);
Vremp = (<0p2> (Vrempw Vprevioux));
| €
(iv) <KeyVariation> ::= Viey := (<Op2> (Viey, Cvariation)):
| €

(v) <Next> = Vposit[tm = (<0p2> (Vposit[ona Cprogress));

The associated decrypting routine structure is almost iden-
tical to the mutation process as encryption and decryption
algorithms are almost the same. According to the algorithms
the key may vary or the arithmetic operations implied. The
main difference relies in an additional jump for the malicious
code to gain control.

(i) <DecryptRoutine> ::= <Polymorphism> goto Vposition:

Metamorphism: Metamorphism is much more complex to
describe with formal grammar. In recent works, E. Filiol
has given a definition of the metamorphism as a rewriting
system transforming a grammar into an other [9,35]. We
thus base our model on this definition establishing rewri-
ting rules for our grammar. Metamorphic engines use four
main types of techniques: reordering, register reassignement,
garbage insertion and substitution with equivalent instruc-
tions. This last technique is partially addressed by working
at the semantic level and thus shall not be described formally.
In particular, in our formalization, the use of different sys-
tem services with varying parameters can be reduced to their
basic interpretation as interactions bringing equivalences into
light.

The first technique is garbage insertion. Existing works
already define the insertion of dead code as a grammar pro-
duction rule [36]. This model considers only the insertion
of nop equivalent instructions. In our model, we extend the
notion of garbage code to any sequence that once inserted
does not modify any variable or interaction history of the ori-
ginal code. In order to define our rewriting rule, let us define
a sequence S generated by our framework. Let 51, ..., s, be
any possible partition of § into n subsequences. Such a par-
tition is always possible as soon as the sequence is not made
up of a single command or a single structure.

@ Springer

S1...8p =R <Garbage> s; <Garbage> --- <Garbage> s, <Garbage>
with

<Garbage>:=<Sequence'>

where <Sequence’> has the same syntax than <Sequence> but for all variable
v and object o of S, we have v ¢ L(Sequence’) and o ¢ L(Sequence’). The
sequence is thus defined on a restraint spaces for variables var \ {v € var|3i, v €

si} and objects L(<Object>) \ {o € L(<Object>)|3i, 0 € s;}.

We use the same notation in order to define code reorde-
ring. The sequence is once again partitioned and then
recombined according to any possible permutation of the
subsequence s; . ..s;. Jump are then introduced in order to
maintain the correct control flow.

S1...8p =R goto Vaddressl s 8is goto Vaddress,-+| J...381; goto Vuddressz; L. 8n

As we are working at a semantic level, the problem of
register reassignement is already addressed using generic
variables. But we once again extend the notion of register
reassignement to the more generic principle of variable reas-
signement.

S =R Vaiew := Voia); S[Vora/ Viewl
where S[Vyia/ View] 1s equal to S where all occurrences of
Voia are replaced by V.

These rules describe the techniques usually used by mal-
ware writer but E. Filiol has shown that by choosing more
thoughtfully these rewriting rules it is possible to generate
mutating malware whose form-based detection is undeci-
dable [9,35].

Anti-antiviral mechanisms

Proactive defense: According to the principle, the best
defense is attack, malware sometimes deploy proactive pro-
tections. The malware will try to delete security files or ter-
minate antivirus processes in order to execute freely.

Oprotect € 0bj_sec
(i) <Proactive> ::=delete Oprorect;

An other form of proactive protection is the modification
of the security policy. Most of programs, even the operating
system store this information in policy objects O poyicy like
registry keys or configuration files. The current configuration
is thus replaced by the weaker possible.

Vweaker € var
Opolicy € 0bj_sec
(i) <Policy> ::=open Opolicy;
send Viyeak — Opolicy;

Malware as interaction machines

249

These two techniques are quite aggressive and they are
toughly monitored by antivirus and HIPS. There are more
subtle ways to avoid detection, such as preventing the cap-
ture of any information betraying the malicious activity. In
order to analyze malware, they are often primarily run in an
emulated environment. Such a virtual system can be detec-
ted because it does not match up entirely with a real one.
Typically, the redpill technique is based on this kind of com-
parison by reading the CPU structure thanks to the cpuid
instruction [37]. In case of detection, the malware can exe-
cute a legitimate sequence or simply stop.

Viead: Veomparison € var
Cexpected € const
Oinfostructure € env_var
(i) <DetectEmulator> ::=receive Vyead < Oinfostructure
if Veomparison = (= (Vread» Cexpectea)))then{
<Sequence>
telse{
<Sequence>

}

Stealth: A malware is said stealthy with regards to its envi-
ronment if no reference is made to it in the information struc-
tures controlled by the system. In the terms of our grammar, it
could be translated by the following result: env_varNthis =
@. For example no reference to the malware should be clearly
visible in the file system tables or the process list. Most of
these environment structures are accessed thanks to services,
so the references to the malware should be deleted at this
level. In order to achieve this, we define ways for a mal-
ware to be stealthy relatively to services and in particular
system calls by replacing them with altered functions. There
are two basic cases. Either the malware is specifically tar-
geted by the call through the parameters and then its refe-
rence should be locally replaced by a benign parameter like
in the preprocessing case. Or the function returns data likely
to contain this reference like in the postprocessing case. In
this last case, the data sent back can be an explicit value but
also an address toward a complex structure requiring analy-
sis through a loop.

Veomparison> Vparameter, Vreturns Voenign: Vposition Vsizes Vvalue € var

Cthis» Cprogress € const

(i) <StealthFuntion> ::= <Preprocessing>
<SysCall>
<Postprocessing>
(ii) <Preprocessing> == if Veomparison = (= (Vparameter. Crnis)))then{

Vparumeter = (Vbenign);
}
| €
(iii) <Postprocessing> ::= if(Vw,,,par,-mn = (= Vreturn, Crnis)))then{
Vreturn = (Vbenign)I,
}
| Vposition *= (Vreturn);
While(vz?umparison = (< (Vpositiom Viimi)){
Vvatue = ([Vposition]:

if(vwmparison = (= (Vyatue- Cthis)))then{
[Vpositian] = (Vhenign)§
}

Vpositinn = (<0p2> (mesitiom Cprogress))

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

. Filiol, E.: Computer Viruses: From Theory to Applications.

Springer, Berlin, IRIS Collection, ISBN:2-287-23939-1 (2005)
von Neumann, J.: Theory of Self-Reproducing Automata. Univer-
sity of Illinois Press, ISBN:0-598-37798-0 (1966)

Cohen, F.: Computer Viruses. Ph.D. Thesis, University of South
California (1986)

Adleman, L.M.: An abstract theory of computer viruses. In:
CRYPTO ’88: Proceedings on Advances in cryptology, pp. 354—
374 (1990)

Zuo, Z., Zhou, M.: Some further theoretical results about computer
viruses. Comput. J. 47(6), 627-633 (2004)

Bonfante, G., Kaczmarek, M., Marion, J.-Y.: On abstract com-
puter virology from a recursion-theoretic perspective. J. Comput.
Virol. 1(3-4), 45-54 (2006)

Wegner, P Why interaction is more powerful than algo-
rithms. Commun. ACM 40(5), 80-91 (1997)

Filiol, E.: Formalisation and implementation aspects of k-ary (mali-
cious) codes. J. Comput. Virol., vol. 3, no. 3, EICAR 2007 Special
Issue. Broucek, V., Turner, P. (eds) (2007)

Filiol, E.: Techniques Virales avancTes. Springer, Berlin, IRIS Col-
lection, ISBN:2-287-33887-8 (2007)

Milner, R.: Elements of interaction: Turing award lecture. Com-
mun. ACM 36(1), 78-89 (1993)

Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and
Concurrent Systems. Springer, New York, ISBN:0-387-97664-7
(1992)

Leitold, F.: Mathematical model of computer viruses. In: Best
Paper Proceedings of EICAR, pp. 194-217 (2000)

Webster, M.: Algebraic specification of computer viruses and their
environments. In: Selected Papers from the First Conference on
Algebra and Coalgebra in Computer Science, Young Researchers
Workshop (CALCO-jnr), University of Wales Swansea Compu-
ter Science Report Series CSR 18-2005, Mosses, P., Power, J.,
Seisenberger, M. (eds) pp. 99-113 (2005)

Wegner, P.: Interactive foundations of computing. Theor. Comput.
Sci. 192(2), 315-351 (1998)

Wegner, P.: Interaction as a basis for empirical computer
science. ACM Comput. Surv. 27(1), 45-48 (1995)

Atallah, M.J.: Algorithms and Theory of Computation Handbook.
CRC Press LLC, West Palm Beach, FL (2000)

Thomas, W.: Automata on infinite objects. In: Handbook of Theo-
retical Computer. Elsevier, Amsterdam (1990)

Rogers, H.: Theory of Recursive Functions and Effective Com-
putability. MIT Press, Cambridge, MA, ISBN:0-262-68052-1
(1987)

Cohen, F.B.: Computer viruses: theory and experiments. Comput.
Secur. 6(1), 22-35 (1987)

Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata
Theory, Languages and Computation, 2nd edn. Addison-Wesley,
Reading, MA, ISBN:0-201-44124-1 (1995)

Manual reference pages—ipsend. http://www.gsp.com/cgi-bin/
man.cgi?section=5&topic=ipsend

Bonfante, G., Kaczmarek, M., Marion, J.-Y.: A classification of
viruses through recursion theorems In: Computation and Logic in

@ Springer

http://www.gsp.com/cgi-bin/man.cgi?section=5&topic=ipsend
http://www.gsp.com/cgi-bin/man.cgi?section=5&topic=ipsend

250

G. Jacob et al.

23.

24.

25.

26.

27.
28.

29.

the Real World, CIE’07, vol. 4497 of Lecture Notes in Computer
Science, pp. 73-82. Springer, Berlin (2007)

Schmall, M.: Classification and Identification of Malicious Code
Based on Heuristic Techniques Utilizing Meta-languages. Ph.D.
Thesis, University of Hamburg (2002)

Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards
automatic generation of vulnerability-based signatures. In: Pro-
ceedings of IEEE Symposium on Security and Privacy, pp. 2-16
(2006)

Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.:
Semantic-aware malware detection. In: Proceedings of IEEE Sym-
posium on Security and Privacy, pp. 3246 (2005)

Filiol, E., Jacob, G., Liard, M.L.: Evaluation methodology and
theoretical model for antiviral behavioural detection strategies. J.
Comput. Virol., vol. 3, no. 1, WTCV’06 Special Issue, G. Bonfante
and J-Y. Marion Eds., pp. 23-37 (2007)

Fortinet observatory. http://www.fortinet.com/FortiGuardCenter/
Rozinov, K.: Reverse code engineering: An in-depth analysis of
the bagle virus. In: Proceedings of the 2005 IEEE Workshop on
Information Assurance, pp. 178-184 (2005)

Filiol, E.: Le ver mydoom. MISC—Le magazine de la sTcuritT
informatique, vol. 13 (2004)

@ Springer

30.

31.

32.

33.

34.

35.

36.
37.

Ferrie, P.: Magisterium abraxas. In: Proceedings of Virus Bulletin,
pp. 67 (2001)

Ferrie, P, Shannon, H.: It’s zell(d)ome the one you expect—
w32/zellome. In: Proceedings of Virus Bulletin, pp. 7-11 (2005)
Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting
malicious code by model checking. Lect. Notes Comput.
Sci. 3548, 74-187 (2005)

Shin, J., Spears, D.: The Basic Building Blocks of Malware. Tech-
nical Report, University of Wyoming (2006)

Driller, T.M.: Advanced polymorphic engine construction. 29A
E-zine, vol. 5 (2003)

Filiol, E.: Metamorphism, formal grammars and undecidable code
mutation. In: Proceedings of the International Conference on Com-
putational Intelligence (ICCI), Published in the International Jour-
nal in Computer Science, vol. 2, issue 1, pp. 70-75 (2007)
Qozah, Polymorphism and grammars, 29A E-zine, vol. 4 (1999)
Rutkowska, J.: Red pill...or how to detect vmm using (almost) one
cpu instruction (2005). http://invisiblethings.org/papers/redpill.
html

http://www.fortinet.com/FortiGuardCenter/
http://invisiblethings.org/papers/redpill.html
http://invisiblethings.org/papers/redpill.html

	Malware as interaction machines: a new framework for behavior modelling
	Abstract
	1 Introduction
	2 Shortcomings of the Turing Machine models
	2.1 Existing models in abstract virology
	2.2 Known limitations
	2.3 Related works and contribution

	3 Interaction machine based models
	3.1 Theory of interactive machines
	3.2 Abstract models for new classes of viruses
	3.3 Complexity of the detection problem

	4 A formal semantic based on interactive machinesfor malware behaviors
	4.1 Introduced framework
	4.2 Internal mechanisms
	4.3 Interaction extension
	4.4 Adversaries classification

	5 Behavior modelling through interactions
	5.1 Behaviors identified ``in the wild''
	5.2 Specific behavior definitions

	6 Conclusion and perspectives
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

