
J Comput Virol (2008) 4:179–195
DOI 10.1007/s11416-007-0078-5

ORIGINAL PAPER

Enhancing web browser security against malware extensions

Mike Ter Louw · Jin Soon Lim ·
V. N. Venkatakrishnan

Received: 31 August 2007 / Revised: 27 November 2007 / Accepted: 10 December 2007 / Published online: 12 January 2008
© Springer-Verlag France 2008

Abstract In this paper we examine security issues of func-
tionality extension mechanisms supported by web browsers.
Extensions (or “plug-ins”) in modern web browsers enjoy
unrestrained access at all times and thus are attractive vec-
tors for malware. To solidify the claim, we take on the role
of malware writers looking to assume control of a user’s
browser space. We have taken advantage of the lack of secu-
rity mechanisms for browser extensions and implemented a
malware application for the popular Firefox web browser,
which we call browserSpy, that requires no special privi-
leges to be installed. browserSpy takes complete control of
the user’s browser space, can observe all activity performed
through the browser and is undetectable. We then adopt the
role of defenders to discuss defense strategies against such
malware. Our primary contribution is a mechanism that uses
code integrity checking techniques to control the extension
installation and loading process. We describe two implemen-
tations of this mechanism: a drop-in solution that employs
JavaScript and a faster, in-browser solution that makes uses
of the browser’s native cryptography implementation. We
also discuss techniques for runtime monitoring of extension
behavior to provide a foundation for defending threats posed
by installed extensions.

M. Ter Louw (B) · J. S. Lim · V. N. Venkatakrishnan
University of Illinois, Chicago, Illinois, USA
e-mail: mter@cs.uic.edu

J. S. Lim
e-mail: jlim@cs.uic.edu

V. N. Venkatakrishnan
e-mail: venkat@cs.uic.edu

1 Introduction

The Internet web browser, arguably the most commonly used
application on a network connected computer, is an increas-
ingly capable and important platform for millions of today’s
computer users. The web browser is often a user’s window
to the world, providing them an interface to perform a wide
range of activity including email correspondence, shopping,
social networking, personal finance management, and pro-
fessional business.

These uses offer the browser a unique perspective; it can
observe and apply contextual meaning to sensitive informa-
tion provided by the user during very personal activities.
Furthermore, the browser has access to this information as
plaintext, even when the user encrypts all incoming and out-
going communication. This high level of access to sensitive,
personal data warrants efforts to ensure its complete confi-
dentiality and integrity.

Ensuring that the entire code base of a browser addresses
the security concerns of confidentiality and integrity is a
daunting task. For instance, the current distribution of the
Mozilla Firefox browser has a build size of 3.7 million lines
of code (measured using the kloc tool) written in a vari-
ety of languages that include C, C++, Java, JavaScript,
PHP, and XML. These challenges of size and implementation
language diversity make it difficult to develop a “one-stop
shop” solution for this problem. In this paper, we focus on
the equally significant subproblem of ensuring confidenti-
ality and integrity within a browser in the presence of
browser extensions. We discuss this problem in the context
of Mozilla Firefox, the widely used free and open source
web browser software, used by about 70 million web
users [10].

Browser extensions (or “add-ons”) are utilities provided to
customize the browser. These extensions alter the browser’s

123

180 M. Ter Louw et al.

Table 1 Extension support in
popular web browsers Extension capability Firefox Internet Explorer Opera Safari

2.0 7.0 9.02 2.0.4

Extensions are officially supported Yes Yes Yes No

User-installed extensions can be Yes Yes No No

disabled easily

User authentication is required for No No No Yes

installation

Installation integrity is verified and No No No No

enforced

behavior by making use of interfaces exported by the browser
and other plug-ins. Though each build of Firefox is platform-
specific (such as one for Windows XP, Linux or Mac OS X),
extensions are primarily platform-independent based on the
neutral nature of JavaScript and XML, the predominant lan-
guages used to implement them.

Given that extensions plug directly into the browser, there
is surprisingly no provision currently in Firefox to protect
against malicious extensions. One way of providing this pro-
tection is to disallow extensions entirely. Firefox can achieve
this effect by starting up in debugging mode, which prevents
all extension code from loading. However, when started in
the normal mode (the default in a typical installation) exten-
sions are allowed to execute. Extensions are widely popular,
as indicated by the their download numbers [9], and provide
useful functionality to the several thousands of people who
employ them. Dismissing the security concerns about exten-
sions by turning them off ignores the threat to these users.

To better understand the impact of running malicious
extensions, we set a goal for ourselves to actually craft one.
Surprisingly, we engineered a malicious extension for the
Firefox browser we call browserSpy, with modest efforts
and in less than 3 weeks. Once installed, this extension takes
complete control of the browser.

There are two main problems exposed by the actions of
our malware extension:

• Browser code base integrity A malicious extension can
compromise the integrity of the browser code base when it
is installed and loaded. We demonstrate (by construction)
that a malicious extension can subvert the installation
process, take control of a browser, and hide its presence
completely.

• User data confidentiality and integrity A malicious exten-
sion can read and write confidential data sent and received
by the user, even over an encrypted connection. We dem-
onstrate this by having our extension collect sensitive data
input by a user while browsing and log it to a remote site.

In this paper we present techniques that address these
problems. To address browser code base integrity, our solution

empowers the end-user with complete control of the process
by which code is selected to run as part of the browser, thereby
disallowing installation integrity threats due to malware. This
is done by a process of user authorization that detects and
refuses to allow the execution of extensions that are not autho-
rized by the end-user.

To address the second challenge of data confidentiality
and integrity when the user authorizes installation of possibly
malicious or vulnerable extensions, we augment the browser
to support policy-based monitoring of extension behavior.
The monitoring and policy enforcement is achieved using
interposition mechanisms retrofitted to the Spidermonkey
JavaScript engine and other means (Sect. 5).

A key benefit of our solution is that it is targeted to
retrofit the browser. We consider this property very impor-
tant, and have traded off otherwise better solutions to achieve
it. Other benefits of our approach are that it is convenient,
user-friendly and poses very acceptable overheads. Our
implementation is robust, having been tested with several
Firefox extensions.

This paper is an expanded version of our previous work
[15] and is organized as follows. A discussion of related work
appears in Sect. 2. We explain details about our malware
extension and the associated threat model in Sect. 3. We pres-
ent our solution to the extension integrity problem in Sect. 4
and address data confidentiality in Sect. 5. We evaluate these
approaches with several Firefox add-ons and discuss their
performance in the above sections individually. In Sect. 6 we
conclude.

2 Related work

Extensions in various browsers We examined extension
support in four contemporary browsers: Firefox, Internet
Explorer (IE), Opera and Safari. Table 1 lists the level of
extension support for these four browsers. Among the brows-
ers that we studied, only Safari does not natively support the
concept of extensions. The remaining three possess extensi-
ble architecture but none have adequate security mechanisms
addressing extension-based threats.

123

Enhancing web browser security against malware extensions 181

For instance, IE’s primary extension mechanism is through
Browser Helper Objects (BHO). BHOs are different from
Firefox extensions, as they are primarily implemented using
native x86 code. This makes them difficult to analyze due
to well known problems with x86 machine code disassem-
bly (e.g., distinguishing code instructions from data). Firefox
supports extensions containing native, platform-dependent
program code in what are termed components, although the
vast majority of extensions shun the feature to facilitate porta-
bility. Another difference between platforms is BHOs share
a common address space with the browser, providing BHO-
based spyware greater access to browser resources by enabling
direct reading of browser memory. In contrast, Firefox exten-
sions are mostly implemented using interpreted JavaScript
code that can not directly address the browser’s memory.
Their primary access to browser resources is via a managed
JavaScript API. Furthermore, the JavaScript source code used
in Firefox extensions is available for analysis, thus they are
not subject to the disassembly problem.

The PestPatrol malware detection website lists hundreds
of malware implemented as BHOs [1]. Despite being a main-
stream browser and very little spyware presence, our brow-
serSpy extension and the FormSpy extension [6] (discussed
in Sect. 3.2) demonstrate that the problem for Firefox is
equally significant and needs further study.

The problem of safely running extensions in a browser
is in many ways similar to the problem of executing down-
loaded, untrusted code in an operating system. This is a well
known problem and has propelled the research of ideas such
as signed code, static analysis, proof-carrying code (PCC),
model-carrying code and several execution monitoring
approaches. Below, we discuss the applicability of these
solutions to the browser extension problem, highlighting sev-
eral technical and practical issues that arise.

Signed code The Firefox browser provides support for
signed extensions. This is hardly used in practice, however.
A search of extensions in the Firefox extensions repository,
http://addons.mozilla.org, revealed several thousand unsig-
ned extensions and only two that were signed. In addition, we
note that signed extensions merely offer a first level of secu-
rity. A valid signature only guarantees an extension is from
the browser distribution site and was unmodified in transit;
no assurance is provided regarding the security implications
of running the extension.

Static analysis A very desirable approach for enforcing
policies on extension code is by use of static analysis. Static
analysis has been employed in several past efforts in identify-
ing vulnerabilities and malicious intent. The primary advan-
tages of using static analysis are the absence of execution
overhead and runtime aborts, which are typical of dynamic
analysis-based solutions.

JavaScript is a very flexible and dynamic language, and
thereby contains features that make static analysis difficult.
The difficulty stems from its prototype-based inheritance
model, which borrows heavily from the Self language descri-
bed in [17]. The model has a very loose type system, where
little can be inferred about the properties of an object without
complete knowledge of the object’s history since instanti-
ation. For instance, although a programmer may define a
JavaScript “class”, instances of this class can have individual
methods reimplemented at run time, effectively subclassing
the original type. To build an accurate control flow graph
for the purpose of behavior modeling, tracking these dynam-
ically created types is of critical importance. Without such
information, we can not determine method invocation targets
with certainty.

It is difficult to employ static analysis for JavaScript code
without making conservative assumptions, however. Table 2
gives some more concrete scenarios where a technique based
on purely static analysis mechanisms will have difficulty. The
first example illustrates the difficulty in tracing the flow of
object references in a prototype-based, object-oriented lan-
guage such as JavaScript. For instance, variable assignment
to or from an array element or object property (when the
object is indexed as an associative array) can decisively ham-
per the tracking of object reference flow as references are
stored or retrieved. A second example involves use of run-
time values that pose a difficulty for any static analysis mech-
anism. Another example (not shown) is the eval statement in
JavaScript that allows a string to be interpreted as executable
code. Without knowing the runtime values of the arguments
to the eval statement, it is extremely difficult—if not impos-
sible—to determine the runtime actions of the script.

Consequently, recent efforts that trace JavaScript code
[12,18] use runtime approaches to track references. How-
ever, static analysis is additionally employed in [18] to detect
cross-site scripting (XSS) attacks in cases where dynamic
analysis alone is insufficient. They avoid the static analy-
sis pitfalls using a conservative form of tainting. Typical
scripts in web pages may not always employ complex Java-
Script constructs such as eval, and therefore this conservative
approach works for the purpose of preventing XSS attacks. If
scripts from web pages perform a complex series of actions
(such as involving the use of the result of a JavaScript eval
construct), static analysis is likely to produce false positives.
This makes it unsuitable for analyzing browser extension
code in JavaScript, as almost half of the extensions that we
tested make heavy use of complex eval constructs, and all
frequently use objects as associative arrays.

PCC and MCC The difficulties surrounding static analysis
make frameworks such as PCC [11] unsuitable for this prob-
lem. It will be difficult to produce proofs for extensions that
make heavy use of constructs such as eval as part of their

123

http://addons.mozilla.org

182 M. Ter Louw et al.

Table 2 Some JavaScript statements that make static analysis difficult

Statement category Example(s) Problems

Variable assignment var object1 = {}; We don’t know what

to or from an object … object references are

property or array var object2 = object1["property"]; being assigned to variables

element object1["property"] = object2; object2 and object4.

var array2 = []; We don’t know what

var object3 = {}; property of object1 is

… being assigned the

var object4 = array2[i]; reference to object2.

array2[i] = object3;

We don’t know what

element of array2 is

being assigned the

reference to object3.

Object property or var array3 = []; We don’t know which

array element var object5 = {}; element of array3 is

deletion … being deleted.

delete array3[i];

delete object3["property"]; We don’t know which

with (object3) delete "property"; property of object3 is

being deleted.

An analyzer would need to track object references in detail along with complex type information for each object. This task becomes difficult when
the value of i and “property” are dependent on expressions that can only be evaluated at runtime

code. The typical approach to employ PCC in scenarios that
require runtime data is to: (a) transform the original script
with runtime checks that enforce the desired security prop-
erty, and (b) produce a proof that the transformed program
respects this property. The proof in this case is primarily used
to demonstrate the correctness of runtime check placement.

In the browser situation, transformation needs to be made
before all eval statements. Policy enforcement would still
be carried out by runtime checks, and therefore we did not
adopt this route of using PCC. Another solution is model-
carrying code [13] which employs runtime techniques to
learn the behavior of code that will be downloaded. The diffi-
culty in using this approach is in obtaining test suites to guar-
antee exhaustive code coverage, a requirement of approaches
based on runtime learning of behavior models.

Execution monitoring Several execution monitoring tech-
niques [19,3,4] have previously looked at the problem of
safely executing malicious code. A closely related work is
by Hallaraker and Vigna [4]. This was one of the first efforts
that looked at the security issues of executing malicious code
in a large mainstream browser. Their focus is on protection
against web pages with malicious content rather than the
ensuring the integrity of a browser’s internal operations. For

them it is not necessary to address the problem of brow-
ser code integrity, as scripts from web pages are already
prevented from performing sensitive actions by execution
in a constrained environment (i.e., sandbox). In contrast we
address the extension installation integrity problem, as exten-
sion code is unmonitored and unrestrained from performing
many sensitive operations.

To effectively regulate extension behavior, a runtime
monitor must be able to determine the particular extension
responsible for each operation. A direct adaptation of their
execution monitoring approach does not provide this ability,
and is therefore not suited for runtime supervision of exten-
sions. To fill this void we describe two new action attribution
mechanisms making use of browser facilities and JavaScript
interposition in Sect. 5.

Kirda et al. [5] present a detection technique for spyware
that hook into IE through its BHO interface. Their technique
is based on monitoring the runtime behavior of BHOs in a
controlled environment using a series of test inputs. Indi-
vidual behavior patterns are identified at the level of IE and
Windows APIs using a combination of dynamic and static
analysis techniques. Their approach does not address threats
from BHOs that read from the IE address space directly,
however.

123

Enhancing web browser security against malware extensions 183

Fig. 1 Two views of the browserSpy extension in operation: a extension hiding from the browser, and b data collector receiving sensitive
information

Spyshield [8] prevents threats from extensions that can
directly read browser memory by running extensions in a sep-
arate address space. Spyshield’s policy enforcement mech-
anism is based on blocking potentially malicious behavior,
and is similar to the technique we describe in Sect. 5 with the
difference that they are implemented for separate browser
architectures. Theirs is for IE, while our solution is for the
web browser Firefox.

Behavior-based detection is a complimentary technique
to an effort that is based on blocking suspected malicious
behavior on interfaces. Behavior-based detection can be more
powerful in identifying certain non-malicious behavior pat-
terns than plain behavior blocking. However, behavior-based
detection is crucially dependent on triggering malicious
behavior with the right test inputs to a browser extension—
a challenging task. Malicious behavior blocking avoids this
challenge at the risk of denying certain legitimate behavior,
but is considerably simpler to integrate in a browser.

3 Attacking the browser

To gain a better understanding of the threat posed by malware
extensions, we engaged in the task of actually writing one.
The motivations for creating the malicious software were to:
(a) help us identify the scope of threats malicious extensions
pose by understanding the facilities available to an extension
in a browser, (b) increase our understanding of architecture-
level and implementation-level weaknesses in the browser’s
extension manager, (c) develop a practical understanding of
the ease with which malware writers may be able to craft
such extensions, and (d) provide a concrete implementation
of a malicious Firefox extension to serve as a benchmark for
malware analysis.

3.1 A malware extension

The extension we authored, browserSpy, is capable of har-
vesting every piece of form data (e.g., passwords) submitted
by the user, including those transmitted over encrypted con-
nections. Furthermore, once the extension enters the system,
it hides and remains undetectable by users (Fig. 1a) as it
operates.

Capabilities and behavior Once browserSpy is installed,
it begins collecting personal data that will ultimately fall into
the hands of an attacker. As a user navigates the Internet,
browserSpy harvests the URLs comprising their navigation
history and stores them in a cache. Username and password
pairs that are stored in Firefox’s built-in password manager
are retrieved, along with the URL of their associated website.
Form data that the user submits finds its way into the exten-
sion’s cache as well. All of this information is stored and
periodically sent over the network to an awaiting adversary
at a remote host.

Given enough data the spy can effectively steal the iden-
tity of the person using the browser. Intercepted form fields
can give an attacker credit card numbers, street addresses,
Social Security Numbers, and other highly sensitive infor-
mation. The username-password pairs can readily provide
access to the user’s accounts on external sites. The naviga-
tion history can give the attacker a profile of the victim’s
browsing patterns, and serve as candidate sites for further
break-in attempts using the retrieved usernames and pass-
words. Figure 1b shows a remote window collecting sensitive
information about the user.

To mimic a spyware attack more closely, browserSpy
employs stealth to prevent the user from knowing that any-
thing unusual is being conducted. The extension uses two

123

184 M. Ter Louw et al.

Table 3 The malware extension
exploits the use of these
XPCOM interfaces to perform
attacks

XPCOM interface Usefulness in performing malicious behavior

nsIHistoryListener By attaching an event listener of this type to each
open document, the browser notifies the malware
when a new document is opened

nsIHttpChannel By attaching an event listener to this interface, the
browser grants the malware a chance to inspect query
parameters before submission

nsIPasswordManager The malware invokes a method provided by this interface
which reveals all of the user’s stored passwords

nsIRDFDataSource This interface provides the malware with write access to
one of the extension manager’s critical internal data objects

techniques to shroud itself from Firefox’s installed exten-
sions list. First, the extension simply removes itself from the
list so that the user won’t see it. Second, it injects itself into
a (presumably benign) extension, Google Toolbar (Fig. 1a).
The latter method serves as a technique to guard the extension
from being discovered should the user inspect the files on her
system. The injection process is even successful at infecting
code-signed browser extensions (case in point: the code in
the Google Toolbar extension is signed by Google, Inc.) as
the browser does not check the integrity of these extensions
following installation.

A common technique practiced by malware is covert infor-
mation flow mechanisms for transmission [7]. To mimic this
behavior, our final stealth tactic deliberately delays delivery
of sensitive data to the remote host. We cache the informa-
tion and send it out in periodic bursts to offset the network
activity from the event that triggers it, making it harder for
an observant user to correlate the added traffic with security
sensitive operations. Thus, the composite effect of some rela-
tively easy measures employed by our extension is alarming.

Extension entry vectors The typical process of extension
installation requires the user to download and install the
extension through a browser interface window. Though
browserSpy can be installed this way, it is not the only route
by which this malicious extension can be delivered to a brow-
ser. It can be injected by preexisting malware on the system
without involving the browser. It can also be delivered outside
the browser given user account access for a short duration.
These entry vectors are all too common with unpatched sys-
tems, public terminals, and naive users who do not suspect
such attacks.

Extension development effort Very little effort was
required to create this extension. The lack of security in
Firefox’s Extension Manager module assisted in its speedy
creation. It only took one graduate student (who had no prior
experience in developing extensions) 3 weeks, working part
time, to complete this extension. We present this information

merely to argue the ease with which this task can be accom-
plished. We note that this period of 3 weeks is only an upper
bound of effort for creating malicious extensions. Malware
writers have more resources, experience and time to create
extensions that could be more virulent and stealthy, perhaps
employing increasingly sophisticated steganographic tech-
niques for covert information transmission.

Our implementation techniques We started by studying the
procedure of how extensions are created, installed and exe-
cuted in the system. Firefox extensions make use of the
Cross-Platform Component Object Model (XPCOM) frame-
work, which provides a variety of services within the browser
such as file access abstraction. We carefully studied interfaces
to the XPCOM framework available for use by an extension,
and discerned that one could easily program event observers
for various operations performed by the browser. We imple-
mented the spying features based on four of these interfaces
as itemized in Table 3.

We make unconventional use of the XPCOM framework
to achieve hiding mechanisms in our spyware implementa-
tion. To simply disappear from the browser user interface,
we use a standard interface (nsIRDFDataSource) to manip-
ulate an internal data object belonging to Firefox’s extension
manager. This exposes a flaw in the browser implementation:
full access to an object is exported where it should remain at
best read-only to the extension code base.

Injecting the browserSpy extension into another exten-
sion requires copying a file into the target’s directory and
then appending some text to the target’s chrome.manifest
(a file containing declarations instructing the browser how
to load an extension). The absence of file access restrictions
on extension code easily allow this injection attack. There is
actually a more subtle and fundamental flaw in the implemen-
tation of Firefox that allows similar attacks to be carried out
with ease. Instead of storing user preferences in a data file and
reading them for later use, the browser generates JavaScript
code every time the user changes her preferences, and exe-
cutes this file on startup. This is poor design from a security

123

Enhancing web browser security against malware extensions 185

Fig. 2 Overview of Firefox’s
extensible architecture
(hexagons represent
functionality added to improve
security). Extensions must be
user authorized and uncorrupted
to get loaded into the browser.
Extension access to XPCOM is
controlled by policies defined in
the runtime monitor

Extension
Loading
Phase

Extension
Installation
Phase

Extension Manager

User
Authorization

Authorization
and Integrity

Check

Firefox Web
Browser

Runtime
Monitor

 XPCOM
 Framework

Network
Services

Sensitive
User Data

An Installed
Extension

A Loaded &
Executing
Extension

A New
Extension

1 *

perspective. If the integrity of this file is compromised the
browser can easily be attacked. Our browserSpy extension
precisely exploits such implementation weaknesses.

3.2 Related developments

Through mostly normal use of the services Firefox provides
to extensions, we have been able to concretely demonstrate
much cause for concern. browserSpy demonstrates a clear
void in the browser’s protection against unauthorized exten-
sion installation, via its injection attack, allowing it to violate
the browser code base integrity. Inadequate protection against
malicious extension behavior is also exhibited by browser-
Spy with its snooping attacks, resulting in violations of user
data confidentiality and integrity.

As further testimony of the inherent danger, a recent and
similar attack was launched on the Firefox browser using a
malware extension known as FormSpy [6], eliciting wide-
spread media coverage and concern about naive users.

A different type of remote vulnerability exploit, brought
to media attention by Soghoian [14], is characteristic of a
man-in-the-middle attack. This attack targets the Firefox
upgrade mechanism, and works whenever an extension
upgrades from a server that is not SSL-enabled, thereby pro-
viding a vector for the man-in-the-middle attack. By this
vector, the user will be open to spoofing attacks and could
potentially receive maliciously crafted code. Preventing such
man-in-the-middle attacks has a well known solution through
the use of authenticated SSL channels for downloading
extensions.

The variety and ease of attack vectors on extensible
browsers has been shown to be a great risk to the people

who rely on them. The situation grows more perilous for
users who process greater amounts of sensitive information
with their browser.

4 Extension installation and loading enhancements

Firefox’s vulnerabilities can be strengthened to make all of
the browserSpy extension’s attacks, and therefore attacks
by similar threats, unsuccessful. As mentioned in the intro-
duction section, this requires us to enforce the following
requirements:

Requirement 1 Ensure the integrity of the browser’s code
base.

Requirement 2 Protect sensitive user data from being
accessed or modified by the extension code
base.

A browser that adheres to Requirement 1 prevents brow-
serSpy from injecting itself into the browser’s code base.
Implicitly, this first requirement also disallows unauthorized
extensions access to sensitive data, contributing to the ful-
fillment of Requirement 2.

A high level architecture of our solution is presented in
Fig. 2. Browser code base integrity is addressed in our appro-
ach by a mechanism of user authorization which we describe
in the remainder of this section. The topic is presented
as discussions of security principles (Sect. 4.1), implemen-
tation techniques (Sect. 4.2), security analysis (Sect. 4.3)
and performance evaluation (Sect. 4.4). Protection of sen-
sitive information is addressed in Sect. 5 with monitoring

123

186 M. Ter Louw et al.

mechanisms to govern extensions’ access to the XPCOM
framework.

4.1 Security principles

It is important to refine the idea of a browser’s code base to
clarify the issues surrounding its integrity. Firefox and other
extensible browsers, when installed in a fairly secure manner,
have at least two components to their code base:

1. Browser core the code directly loaded by invoking the
browser executable.

2. User code base additional program code loaded from
among the user’s files as the browser starts up.

We analyze the browser core and user code base to determine
how the concepts of code authorization apply to each.

By default the code in the browser core must be granted
full privileges within the browser. We say that the user has
authorized this by the basic act of installing the browser.
This authorization is typically enforced by making the brow-
ser core not modifiable by an ordinary (unprivileged) user
account. That is, the files that constitute the browser core are
owned by the superuser, and are read-only to all other users
and groups. Therefore the browser core is well protected from
user-based threats as its files can not be modified by malware
(or other ordinary users) possessing only user-level access.

In addition to the code directly loaded by invoking the
browser executable, there can be extensions installed as part
of the browser core. For the purposes of this paper we include
them in the browser core portion of the code base, as they
share authorization properties with it.

The code that makes up the user code base is also autho-
rized by the act of installation. This typically takes the form
of the user confirming the install of an extension via the
browser’s graphical user interface. As the browser runs with
the privileges of the user who invoked it, it is capable of
installing extensions into the user code base on behalf of the
user. The files that constitute the user code base are not stored
in the file system with protection against user modification,
which makes the user code base vulnerable to malware pos-
sessing only user-level access.

A critical aspect to browser security is integrity of the user
code base, given that the browser core is well protected. If
the user code base of the web browser is compromised, the
user can be subjected to attacks such as those employed by
browserSpy. The following two principles are fundamental
to the user code base integrity:

Principle 1 Code should not be introduced into the user code
base of the browser without the user’s authori-
zation.

Principle 2 Code that is part of the user code base of the
browser should not be modified without the
user’s authorization.

It is necessary that browsers with an extensible architec-
ture enforce these principles. (We note that even though this
threat exists for other programs present in a user’s account,
the threat on the browser is especially critical due to the highly
sensitive information it processes.) Integrity of the user code
base can not be guaranteed unless both are upheld.

As indicated in Sect. 3, the Firefox web browser is vulner-
able to attack against both principles. Installing an extension
outside of a browser session by emulating Firefox’s installa-
tion routine is one way of introducing code into the user code
base. This can be done without the user’s knowledge or con-
sent, betraying Principle 1. Furthermore, modification of the
user code base of the browser can be realized by conducting
an injection attack on a trusted extension, as the browser-
Spy extension does. The injection is performed without the
authorization of the user, which violates Principle 2.

Code signing One potential solution to this problem is to
require all extensions be delivered to the user’s browser with
their code signed by a trusted entity. In this scenario, the
user code base can be validated at any time to determine if
its integrity has been undermined. However, Firefox has a
design flaw in its current implementation of signed exten-
sions that precludes the effectiveness of this solution. It only
validates code at the time an extension is installed; when the
browser loads an extension for execution, no integrity check
is performed. This makes it easy for browserSpy to inject
code into signed extensions. Firefox can not uphold Princi-
ple 2 without a fix to maintain code integrity.

A way to detect the addition of code to the user code base
is required to enforce Principle 1, even when the added code
has been signed by a trusted provider. The detection mech-
anism must implement an indicator of what extensions are
currently part of the user code base so that it can differenti-
ate them from new extensions yet to be authorized. Further-
more, this indicator needs to be secure against tampering by
an agent other than the user, as the user is the sole autho-
rizing agent with respect to what extensions are part of the
user code base. A system based simply on remotely signed
extensions does not provide these facilities, and thus can not
ensure that all additions to the user code base are authorized
by the user.

User-signed extensions A solution aimed at providing a bet-
ter protection layer for the browser code base must certainly
allow for unsigned extensions in order for it to offer any
practical benefit. As previously mentioned, an extension dis-
tributor such as Mozilla may not be willing to provide assur-
ances with regard to third-party code by signing extensions

123

Enhancing web browser security against malware extensions 187

on their behalf. Yet, users still want to allow such extensions
into their user code base, as indicated by the popularity of
unsigned extension downloads. This poses a dilemma.

Our solution to this dilemma is to empower the user with
the ability to sign extensions that are included in her user code
base. Once the user has indicated approval for the unsigned
code to become integrated into the user code base, we pro-
vide tools for the user to sign and suitably transform the
code so that at any point its integrity can be verified. After
the conversion to a user-signed extension is accomplished,
we augment the browser with support for maintaining assur-
ance of its user code base integrity. This thwarts injection
attacks by malicious code (e.g., browserSpy). User-signed
extensions thus enhance resiliency of the browser code base
to unauthorized modification.

User-signed extensions also enable a convenient mecha-
nism for the user to tightly control what is allowed into the
user code base: extensions can be allowed execution based on
whether or not they have been signed by the user. For added
protection, they may be monitored at run time for adherence
to additional security policies as described in Sect. 5.

4.2 Implementation techniques

To prevent malicious extensions from tainting the trusted
code base of Firefox, we have developed a prototype imple-
mentation of user-signed extensions. The default behavior of
the browser core has been augmented in two places:

1. Extension installation performed once each time an
extension is installed or updated to a more recent ver-
sion, and

2. Extension loading occurring each time a new browser
session begins.

During extension installation, our solution assists the user
in signing extension code so that it can be safely incorporated
into the user code base. During extension loading, each exten-
sion loaded from the user code base is tested for code integrity
before allowing it to be introduced into the browser session.
If an extension has not been signed by the user, Firefox will
not load it. Loading will also be denied to any extension for
which integrity verification has failed. Figure 2 displays these
steps as an extension makes its way into a browser session
for execution.

Extension certificates User extension signing is performed
by generating a certificate (Fig. 3) for each installed exten-
sion which can be used for the purposes of authorization and
integrity checking. These certificates are composed of two
sections:

FILESPEC FILEHASH

CERTSIG

FILESPEC FILEHASH

Absolute file paths File hashes (SHA-256)

File signatures block
(one row per file)

Certificate signature
(RSA signature of file signatures block)

FILESIGS

Fig. 3 A user-signed extension certificate, employed to verify
authorization and integrity of untrusted code

1. FileSigs, used to verify the integrity of the extension’s
files, and

2. CertSig, used to verify the integrity of FileSigs.

Every file comprised by the extension is represented as a
signature in the FileSigs section of the certificate. Each file’s
signature is composed of its absolute path (FileSpec) and a
SHA-256 content hash (FileHash). By comparing the list of
files present in the extension at load time with FileSigs, the
browser detects if a file has been added to or removed from
the user code base without authorization. Through compari-
son of each file’s hash value at load time with its respective
FileHash, the browser notices if one of the authorized files
has been illicitly modified. Firefox will refuse to load any
extension that is revealed by these detection mechanisms to
have violated user code base integrity.

The certificate signature CertSig is the RSA signed MD5
hash value of FileSigs. RSA was chosen over better encryp-
tion algorithms such as elliptical curve cryptography (ECC)
because a mature implementation of RSA already exists
within the browser; MD5 was chosen because the hash length
is small enough for our implementation to sign it using a
512-bit RSA key. SHA-256, while a more robust crypto-
graphic hash algorithm, generated hashes that were too long.
More discussion about the chosen encryption key lengths is
presented in Sect. 4.4.

As an extension is loaded, the browser generates another
FileSigs corresponding to the load-time state of the exten-
sion’s root directory. The browser is then able to determine
whether the file signatures represented in the certificate are
valid by computing a hash of the extension’s load-time File-
Sigs and comparing it to the hash stored in CertSig. This
check will fail if any of the following events occur subsequent
to installation.

1. A file is added to or removed from the extension.
2. A file signature is added to or removed from FileSigs.
3. The content of a file belonging to the extension is modi-

fied.
4. One of the file signatures’ FileHash is modified.

Upon detection of these forms of corruption, the browser will
rule not to load the extension.

123

188 M. Ter Louw et al.

The integrity of a certificate signature is protected by
having the user sign it via RSA public-key cryptography. This
signing by the user is what explicitly authorizes the exten-
sion to become part of the user code base. If the signature is
tampered with, the browser will not be able to derive the hash
value of FileSigs, which must be decoded from CertSig to
validate the certificate. In such a case, the browser will refuse
to load the extension.

4.3 Security analysis

We examine the security properties of our implementation in
the areas of private and public key protection, file integrity
assurance race conditions, and overall usability.

Key safeguarding Protecting the user from unauthorized
modification of trusted extensions requires maintaining the
integrity of the extension certificate. The integrity of an
authorized extension’s files is assured by FileSigs. The integ-
rity of FileSigs is assured by CertSig, which is in turn
assured by the protection of the keys used in signing and ver-
ification. Therefore it is necessary to protect these encryption
keys, as they are the root of the security provided by user-
signed extension certificates.

An attacker can circumvent authorization if he gains access
to the private key. He can modify user-signed extensions and
sign them himself by emulating the browser’s certificate gen-
eration process. Since we expect extension-based browser
attacks to be launched by a malicious agent with user-level
access, and the user’s private key is likely to be stored in local
file space under user control, additional security is needed to
protect the private key.

The enhanced protection is provided by encoding the pri-
vate key using AES encryption. This encoded private key
is made available to the browser, which prompts the user
for her AES passphrase whenever the RSA private key is
needed for extension installation. As only the user knows the
passphrase, the private key is not accessible to attackers. The
user is expected to chose a sufficiently strong passphrase such
that brute force attacks are unlikely to succeed at breaking
the encryption.

A different exploit is possible if an attacker is able to over-
write the user’s public key with one of his own. In this sce-
nario the browser is fooled into accepting extensions that are
signed by the attacker and refusing those that are signed by
the user. This privilege swap attack is possible because only
the public key is used in the certificate validation process
(private key safeguards do not come into play).

To protect the public key from this attack, our solution
stores the key file as part of the browser core. Writing to
the key file requires administrative (root) privileges, though
reading can still be performed by the user. This makes the key
invulnerable to attack by an agent with only user-level access.

The cost is a one-time need to authenticate as a privileged
user to add this key protection when a user’s browser config-
uration “profile” is created.

Race conditions It is important to ensure that the files whose
signatures have been verified during the loading process are
the actual ones that are loaded. Otherwise, this opens the
possibility for a local race condition attack that would, for
instance, replace a verified extension file with a different ver-
sion before it is loaded, but after the verification step. To fix
this problem, the browser extension loader can be augmented
to use a mandatory locking mechanism (facilities for manda-
tory locking are available under Windows Vista or Linux) or
use a solution that provides transactional semantics for file
operations [16].

Usability It is well understood that a security solution that is
invasive or difficult to use will face resistance in user adop-
tion. If users decide they would rather not use the security
solution then the benefits it provides can not be realized. With
this concept in mind, the solution presented here is imple-
mented in the least intrusive way possible. Recall that the
user must provide a passphrase in order to decrypt the pri-
vate key needed for code signing. The browser prompts the
user for this passphrase during installation. This step and the
one-time authentication step when the user’s browser pro-
file is created, constitute the minimal burden our integrity
mechanism imposes on the user.

The browser could require the user to authorize each exten-
sion when it is loaded, which would require the user to
authenticate every time the browser starts up. Instead, autho-
rization is performed only during extension installation. This
way the user has to authenticate only on rare occasion: when
installing or upgrading an extension. The system is just as
secure as one which performs load-time authentication, and
exhibits greater usability.

Another usability concern is apparent during the certifi-
cate generation phase of extension installation. As the user is
performing the infrequent activity of adding a new extension,
she may decide to add more than one. This multiple instal-
lation situation is especially likely when a periodic software
update is triggered by the browser. Considering that each
certificate generated requires the user to authenticate, install-
ing several extensions could frustrate the user by repeatedly
prompting for her password.

The obvious solution is to authenticate the user once, and
then perform the certificate generation in bulk. Our imple-
mentation takes this approach. Once the user has decrypted
the private key needed for signing, it is used to sign all the
necessary certificates before being zeroed and deallocated.

Care must be taken when performing multiple installation
based on a single authentication. It is highly important that the
user always know what code they are authorizing into their

123

Enhancing web browser security against malware extensions 189

Table 4 Top 20 most popular extensions from http://addons.mozilla.org tested with our implementation

1. Download Statusbar 6. Forecastfox 11. Web Developer 16. Map+

2. FlashGot 7. Tab Mix Plus 12. Cooliris Previews 17. StumbleUpon

3. NoScript 8. VideoDownloader 13. DownThemAll! 18. Foxmarks

4. Adblock Plus 9. FoxyTunes 14. FireBug 19. Clipmarks

5. FireFTP 10. Fasterfox 15. Torrent Search 20. Answers

Drawn from the top 23 as we elected to skip platform dependent and non-English language extensions

user code base when they authenticate. If this concern is not
addressed, a malicious extension could be injected among
the other extensions to be installed without the user’s knowl-
edge. To defend against this attack, our implementation dis-
plays a list of all extensions that will be signed on the user’s
behalf before authentication is required. The user can decide
to generate certificates for all extensions that are pending
installation, or for none of them. Additionally, authorization
decisions can be made per-extension. Screen captures of our
changes to the installation mechanism can be found on the
project website [2].

Another aspect of usability is the integrity checking mech-
anism performance. We discuss this aspect in the next part
of this section.

4.4 Performance evaluation

Our installation integrity assurance solution was tested to
determine its compatibility with popular browser extensions
and its impact on Firefox’s speed. The 20 most popular exten-
sions for Firefox were used as a basis for our performance
evaluation (listed in Table 4).

Compatibility testing Determining compatibility was done
by running the extensions in the test environment and exer-
cising their core functionality while looking for errors. As
some extensions provide a large and nuanced feature set, it
would have been difficult to exercise their total functionality.
In our tests, 18 out of 20 extensions performed flawlessly.
One failure occurred in the Forecastfox extension. It elected
to force registration of its XPCOM components using an
.autoreg file, which the browser deletes following registra-
tion. The other error occurred in the FoxyTunes extension,
which renamed its platform-specific shared library to remove
the platform identifier. These two user code base integrity
violations are the result of actions taken that other exten-
sions were able to avoid through different approaches to the
same task. We also note that in general it is not possible for
automated mechanisms to reason about the safety of these
file manipulation operations, and hence the only option is to
disallow them.

Performance overheads To evaluate performance in terms of
speed, we benchmarked the extension loading and installa-
tion phases under five conditions. For each test, we installed
from one to five extensions and measured:

1. the time needed to generate the user-signed certificates
during installation,

2. the time needed to validate the certificates during load-
ing, and

3. the time spent performing RSA cryptography during
items 1 and 2.

The cryptography implemented uses 128-bit passphrases for
AES, 512-bit keys for RSA, and SHA-256 for file hashing.
MD5 is used to hash FileSigs for use in generating CertSig.

The results of our speed tests are shown in Table 5. It takes
the implementation about 17.6 s on average to generate a cer-
tificate. The benchmarks indicate over 99.4% of that time is
spent signing the certificate using RSA.

Extension loading takes a little longer than a stock installa-
tion of Firefox. It takes about 808 ms for each certificate to be
validated, of which there is one per extension. For validation
of the certificate signature, we again observe that, on average,
over 92% of the time is spent applying RSA cryptography.
It is apparent that the performance impact of the AES and
SHA-256 cryptography routines was insignificant compared
to RSA. If a faster RSA implementation were employed, the
significance of the other two cryptographic functions would
likely increase.

Faster integrity checking Our original implementation of
the integrity checking mechanism used a JavaScript-based
implementation of RSA. We chose RSA in JavaScript as it
is the easiest drop-in solution for our purpose of generat-
ing a stand-alone patch for the browser. Due to its nature as
an interpreted language, JavaScript is slow running for the
computationally intensive algorithms present in RSA. Thus,
this implementation suffers performance (and by extension,
usability) concerns as explained below.

For a scenario that involves three extensions, note (from
Table 5) that the time spent generating certificates is 52.5 s
and the time spent on validation is 2.37 s. The certificate
generation cost, although it is a one-time cost, is still high

123

http://addons.mozilla.org

190 M. Ter Louw et al.

Table 5 Extension authorization and integrity system benchmarks using JavaScript RSA cryptography

Installation/loading performance benchmark Number of extensions installed

1 2 3 4 5

Total time spent generating certificates (s) 17.9 35.2 52.5 70.7 87.0

Average time spent per certificate generated (s) 17.9 17.6 17.5 17.7 17.4

Percent of generation time spent signing certificates 99.4% 99.7% 99.4% 99.6% 99.7%

Total time spent validating certificates (s) 0.85 1.52 2.37 3.14 4.28

Average time spent per certificate validated (ms) 849 760 790 785 856

Percent of validation time spent verifying signatures 87.0% 94.5% 93.6% 94.1% 94.8%

A large percentage of the time was spent performing RSA operations. The test platform was a modified version of Firefox 3.0a5, running on Ubuntu
7.04, on an AMD Athlon 64 X2 3800+ (2 GHz), 2 GB RAM. The extensions evaluated were the top five from Table 4

for this typical scenario to the point where its impact on the
user can be clearly perceived when extensions are installed.
The main contributing factor to the overhead is the RSA cryp-
tography as quantified in Table 5: over 90% of the overhead
is consumed performing RSA cryptography.

To address these performance and usability concerns, we
have constructed a second implementation of the crypto-
graphic algorithms needed for signing certificates. This
implementation makes use of the Netscape Security Services
(NSS) software, part of Firefox’s existing code base, to han-
dle the authentication and signature generation/verification
tasks. NSS is written in C and compiled into native code for
the browser’s target platform. Native performance can result
in much higher speeds and therefore can increase the usabil-
ity of our implementation. The primary disadvantage of using
a native solution is that it requires a modified distribution of
the Firefox browser which contains the integrity checking
patches to native code.

We tested our new implementation on the same set of
extensions. Resultingly our user code base integrity solution
achieved overheads that are almost imperceptible to the end-
user, as shown in Table 6.

Browser startup on our test system (using the native cryp-
tography) has an additional delay of about 1/10 s for four
simultaneously installed extensions, due to the time spent
generating certificates. We contrast this with our JavaScript
implementation which required 70.7 additional seconds to
start up under the same conditions. With five extensions
installed, our native implementation induced around a 1/3 s
delay in browser startup due to integrity verification. The
JavaScript implementation required an extra 4.28 s to per-
form the same task.

In Table 7 we compare the performance of the JavaScript
implementation against the natively compiled solution. Over-
all our system functions in excess of 500× faster using the
native code. The improvement in time required for signing

and validation of certificates also allowed us to double the
RSA key length to 1,024 bits, increasing the browser’s resil-
ience to attack. This size was infeasible in the JavaScript
implementation for performance reasons. At the longer key
length, the native solution is still able to sign certificates
2,930× faster. Certificate signing had been the part of our
system with the most noticeable overhead, as mentioned pre-
viously. The longer key also makes possible an implementa-
tion of our solution utilizing a more robust algorithm (e.g.,
SHA-256) for hashing FileSigs.

5 Monitoring extension execution

User-signed extensions enable comprehensive protection of
the user code base from unauthorized changes, such as instal-
lation of a malicious extension without the knowledge or con-
sent of the end-user. With this threat mitigated, the best way
to ensure confidentiality and integrity of the user’s data is to
only allow extensions from highly trusted sources to execute
within the browser.

A nefarious extension could, if allowed to run, corrupt the
integrity of the user code base or even the browser core by
making changes to the browser’s runtime state. For exam-
ple, our browserSpy extension alters the runtime state of
the extension manager, a portion of the browser core, to
manipulate the displayed list of installed extensions. As noted
already, it is a hard problem to statically analyze and
understand the actions that will be performed by untrusted
JavaScript code in order to take appropriate steps to prevent
malicious behavior.

The second phase of our solution therefore endeavors to
control an extension’s access to critical browser services
(XPCOM) via runtime monitoring. (The XPCOM services
are discussed in length along with many useful references

123

Enhancing web browser security against malware extensions 191

Table 6 Extension authorization and integrity system benchmarks using RSA cryptography implemented in C (i.e., native)

Installation/loading performance benchmark Number of extensions installed

1 2 3 4 5

Total time spent generating certificates (ms) 22 47 69 95 182

Average time spent per certificate generated (ms) 22.0 23.5 23.0 23.8 36.4

Percent of generation time spent signing certificates 22.7% 23.4% 23.2% 23.2% 23.6%

Total time spent validating certificates (ms) 50 94 184 242 291

Average time spent per certificate validated (ms) 50 47 61.3 60.5 58.2

Percent of validation time spent verifying signatures 4.0% 3.2% 2.7% 1.2% 2.4%

The overhead is barely perceptible to the end-user. The same test platform and extensions described in Table 5 were used

Table 7 Comparison of two implementations of the extension authorization and integrity system

Installation/loading performance benchmark JavaScript crypto C crypto Improvement factor

Average time spent per certificate generated 17, 620 ms 25.73 ms 685×
Average time spent signing each certificate 17, 540 ms 5.99 ms 2,930×
Percent of generation time spent signing certificates 99.2% 23.3% 4.3×

Average time spent per certificate validated 808 ms 55.4 ms 14.6×
Average time spent verifying each signature 749 ms 1.46 ms 512×
Percent of validation time spent verifying signatures 92.7% 2.6% 35.1×
A JavaScript solution can retrofit existing Firefox installations, though a native, C solution is up to three orders of magnitude faster. The data was
drawn from Tables 5 and 6

in [4].) Ordinarily, extensions enjoy unrestricted access to
every interface of this framework. Our focus in this section
is primarily on the mechanisms and infrastructure needed
to implement a runtime monitoring solution that governs all
access to the XPCOM interface.

One of the major challenges in implementing a runtime
monitor for extensions is described in Sect. 5.1. Implementa-
tion techniques are covered in Sect. 5.2, followed by a secu-
rity analysis of the implementation in Sect. 5.3. Finally the
runtime monitor performance is analyzed in Sect. 5.4.

5.1 Problem context

Firefox’s default access control security manager for
JavaScript implements the same-origin and signed-script
policies. The browser enforces these policies for web
content pages, however does not enforce them on internal
JavaScript operations. An obstacle in applying web content
policies to extension code is browser overlays (explained
below), another feature regularly present in extensions.
Therefore, a straightforward adaptation of existent enforce-
ment techniques for these policies to protect extensions is not
suitable.

The action attribution problem To enforce policies on a per-
extension basis, it is necessary to identify the extension
requesting each XPCOM service or resource. Unfortunately,
Firefox does not have sufficient mechanism in place to estab-
lish the requester’s identity at each intercepted XPCOM
request due to the presence of file overlays. Extensions can
provide these overlays to core portions of the web browser,
which may extend and selectively mask the browser core.
This integration is handled by Firefox in a way that does
not retain the information necessary to identify which exten-
sion applied the overlay. Through malicious use of the over-
lay process, an extension can anonymously inject harmful
program code into the base functionality of the browser.

5.2 Implementation techniques

To adequately address the action attribution problem, our
runtime monitor implementation has two parts. One portion
handles policy enforcement for non-overlaid files and the
other handles files that are subject to the overlay process.
Additionally, a policy specification framework is provided
to allow mediation of requests for XPCOM services and
resources.

123

192 M. Ter Louw et al.

Browser
script

Extension
script

Spidermonkey

Chrome
Registry

Script
type check

Extension
Security
Manager

Extension
Manager

Extension
Policy

Service

XPCOM

Default
Security
Manager

P

E

R

R
 P R

P = allow

 T := browser

T = extension

 P = deny

T = browser

 T := extension

R

T

U

U

E

 S

Policy
enforcement

R

 S

E: Extension ID

XPConnect

 U

 S S
Request

U: Script URIT: Script typeS: ResponseR: Resource IDP: Policy

Fig. 4 Policy enforcement using the file name look-up technique: JavaScript programs executing in the Spidermonkey interpreter must access
XPCOM resources through a policy-enforcing intermediary, XPConnect

Handling non-overlaid files Policy enforcement mechani-
sms are simpler for non-overlaid files, as the executable state-
ments they contain can be traced back to the extension that
issued them. This data is compiled into the set of extensions
contributing to any specific operation and used as a basis for
policy decisions. The procedure of tracing the origin of a sin-
gle XPCOM request is shown in Fig. 4, and its performance
is discussed later in this section.

Each script loaded into the browser is assigned a type T .
A JavaScript statement submits a request 〈R, T, U 〉 to XPCon-
nect for an XPCOM service or resource. If the script type
indicates an extension script, a special Extension Security
Manager is consulted instead of the default security man-
ager. A unique extension identifier E is deduced by looking
up the script file name U . If the global and per-extension
policies defined in our Extension Policy Service allow exten-
sion E to access resource R, then the request is forwarded to
XPCOM; otherwise a denial response is returned.

Handling overlaid files JavaScript statements present in over-
laid files require special handling. When a command is exe-
cuted from one of these files, the script file name U given
to the runtime monitor is the name of the overlay substrate
file. This file is usually part of the browser core—not part of
the extension that the code originated from—resulting in the
action attribution problem explained earlier.

We have devised a way to provide the means of associating
actions of overlaid files with their extension of origin. Our
approach is based on automatic interposition of delimiting
statements around blocks of code that qualify as entry and exit
points. These statements enable us to identify the executing
extension for all code evaluated within the enclosed block.

The opening statements that we interpose manipulate
a stack (maintained in the browser core) by pushing an

extension identifier onto it. The interposed closing statements
subsequently access the stack to pop the identifier off. An
indicator of which extension is issuing the bracketed code
is then found at the top of the stack. A try-finally construct
wraps the interposed section to ensure that we pop the stack
in the event of a return statement or thrown exception.

Spidermonkey is adapted to perform the interposition. Out
of the box it provides us with an API capable of compiling
JavaScript statements into bytecode (in preparation for exe-
cution), and another interface to decompile bytecode back
into its original JavaScript. Specifically, support was added
to the decompiler so that it can do the needed interposition.

The technique employed is to compile JavaScript into
bytecode, then feed the bytecode into the interposing de-
compiler. This procedure is conducted once per extension, at
the time the extension is installed. The performance of this
operation is comparable to the rewriting technique in [12]
with the advantage that it does not have to run every time the
browser application is launched.

The above infrastructure is sufficient to handle overlaid
code. However, a total solution to the overlay problem requi-
res stripping the JavaScript code from overlay files, trans-
forming it using interposition, and stitching the file back
together. We are currently adding support to our infrastruc-
ture to handle this straightforward operation, and therefore
report the performance of this interposition mechanism on
non-overlaid files later in this section.

Policies With policy enforcement infrastructure in place, we
have implemented six policies on non-overlaid extension
code (summarized in Table 8). Complex policies can be com-
posed of these rules to allow only the level of access an exten-
sion needs to function. They are representative of the types of
policies enforceable using this solution—not an exhaustive

123

Enhancing web browser security against malware extensions 193

Table 8 The example policies
that were created and tested with
the runtime monitoring solution

Policy name What it does Granularity

Xpcom- Allow Allow all access to a single XPCOM interface Per extension

Xpcom- Deny Deny all access to a single XPCOM interface Per extension

Same- Origin Allow network access to same-origin domains Per extension

Xpcom- Safe Deny all access to XPCOM while SSL is in use Per extension

Pass- Restrict Deny access to the password manager All extensions

History- Flow Prevent URL history leaks via output streams All extensions

list providing complete coverage of all forms of malicious
behavior that extensions are capable of.

The first four policies are extension specific. Xpcom-
Safe and Pass- Restrict are conservative policies that dis-
allow access to sensitive data. The policies Pass- Restrict
and History- Flow are enforced globally. The History-
Flow policy is unique in that it is stateful: if any exten-
sion is detected accessing Firefox’s history listener interface
(nsIHistoryListener), that extension will be disallowed
further access to nsIOutputStream interfaces and their sub-
classes. This protects writes to files and network sockets over
a single session.

5.3 Security analysis

Interposition mechanism defense In cases where the inter-
position technique is used to trace actions in overlay files, a
malicious extension may attempt manipulation of the active
extension stack. For instance, it may try to spoof its extension
ID, allowing access to XPCOM with elevated privileges and
circumvention of stateful policies. Although this attack is the-
oretically possible, significant effort is required to mount it
in our environment where user code base integrity is assured.
Completely assuring a segment of code will not exploit this
deficiency is difficult, stemming from the challenges in static
analysis of JavaScript code.

Protection against this attack can be provided by an addi-
tional security layer that uses randomization. A signed, exten-
sion-specific magic number is given as an argument to the
interposed stack manipulation code. This makes it harder
for a generic attack to be constructed that is successful for
more than a single targeted user. To achieve generality, the
extension must self-modify by discovering and incorporat-
ing the magic number into its attack code. This is hard to do
in our environment where extension integrity is continually
enforced, as the malware must morph prior to installation.

Policy specification limits A common characteristic of the
policies we defined is that they are not stateful beyond a
single browser session. Consider an extension that collects
and stores sensitive data in one session, after which the user

terminates the browser process. Later, the user starts up
Firefox, upon which the extension retrieves the stored, pri-
vate information and transmits it over the network. For a pol-
icy mechanism to prevent this attack, it must preserve state
across browser sessions. The policy state must be stored in
a tamper-resistant way such that it can not be manipulated
by existing malware on the system. An application of user
data signing is one possible solution to this problem which
we relegate to future efforts.

5.4 Performance evaluation

We evaluated the performance of our runtime monitor by
testing it on browserSpy with policies designed to close the
attack vectors it exploits. The implications of this approach
are discussed along with the results obtained. Performance
overheads were measured to determine the usability impact
of policy-based mediation of XPCOM services.

Policy enforcement results We were able to successfully
block every surveillance attack employed by browserSpy
by implementing the policies Pass- Restrict, History-
Flow and Xpcom- Deny over the XPCOM interfaces it
exploited.

In this instance the policy enforcement mechanism proves
capable of protecting the user even when a malicious exten-
sion is explicitly authorized for inclusion in the user code
base. To protect against a wider range of attacks, it is straight-
forward to apply policies to the complete set of XPCOM
interfaces that provide access to sensitive data. Either a black-
list or whitelist approach can be taken to generating the policy
rule set.

Doing so may impair normal operation of benign exten-
sions, however. For instance, the FireFTP extension retrieves
login credentials from the password manager and commu-
nicate that information over the network—a violation of
Pass- Restrict. More conservatively, a rule set could be
implemented that disallows network access to all extensions.
This would successfully thwart all surveillance attempts but
would conflict with certain extensions’ benign network oper-
ations. For instance, 12 extensions of the 20 we tested have at

123

194 M. Ter Louw et al.

Table 9 Performance micro-benchmarks for the default browser behavior and two different action attribution methods

Extension Function Stock File look-up Overhead Interposition Overhead
(ms) (ms) (%) (ms) (%)

Adblock Plus abp_init() 14.1 14.5 2.8 15.4 9.2

Download Statusbar init() 4.5 4.7 4.4 5.0 11.1

FireFTP changeDir() 26.4 29.4 11.4 32.6 23.5

FlashGot getLinks() 4.2 4.4 4.8 4.6 9.5

NoScript nso_save() 14.2 16.7 17.6 18.7 31.7

Average 8.2 17.0

The execution time of selected functions within the top five most popular extensions is measured over 1,000 runs. The same test platform described
at Table 5 was used

least one feature that requires network connectivity. While it
is certainly possible to use these extensions without network
access, the particular features that require network access
may be unusable if we enforce a policy that denies network
access for all of the 20 evaluated extensions. For these rea-
sons it is best to tailor policies on a per-extension basis.

Performance overheads To evaluate the performance of our
approach to action attribution, we wrapped functions within
the five most popular Firefox extensions with benchmarking
code. One thousand iterations of each function were per-
formed in: (a) an unmodified browser, (b) a browser using
the file name look-up mechanism and (c) a browser using
the interposition technique. The results are summarized in
Table 9.

We observed a modest overhead of 8.2% on average to
apply our policies using file name look-up. The interposi-
tion mechanism was slightly slower, imposing an overhead
of 17.0% on average. The additional impact is not detrimen-
tal considering that overlay code is typically short and sparse,
thus causing minimal difference in the overall user experi-
ence. Our experience in operating the browser with active
runtime monitoring and policy enforcement did not indicate
perceivable overhead.

6 Conclusion

We authored a malicious extension as proof-of-concept that
security concerns exist in modern extensible web browsers.
We selected the open source browser Firefox as our target
platform because it suffers many of these flaws.

The threat of malicious extensions was addressed using
two mechanisms: (1) a mechanism by which the installation
integrity of extensions is validated at load-time, and (2) infra-
structure for runtime monitoring and policy enforcement of

extensions to further prevent attacks on browser code base
integrity and sensitive data confidentiality.

Our changes to Firefox insure that the browser allows only
extensions installed by the user to be loaded, and detects
unauthorized changes made to installed extensions. This
modification seals the outside installation vector for mali-
cious extensions by disallowing standard and injection-type
installations external to a browser session. We enabled the
browser to monitor a significant portion of extension code at
runtime and effect policy on a per-extension basis. The mon-
itoring infrastructure and the set of policies that we have cre-
ated represent only a starting point. More research is needed
for designing a comprehensive suite of policies that can be
enforced on extensions with acceptable overheads on
usability.

We have integrated our extension integrity checking pro-
totype into a build of Firefox that is currently under review
for inclusion in the official release of the browser. Our mali-
cious extension browserSpy is available through private
circulation for malware researchers.

Acknowledgments This work was partially supported by National
Science Foundation grants CNS-0716584 and CNS-0551660. The first
author was partially supported by a Summer of Code internship at the
Mozilla Corporation, to work toward incorporating our integrity assur-
ance prototype into the Firefox web browser. The views and conclusions
contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements of the
Mozilla Corporation or the U.S. Government.

References

1. eTrust PestPatrol. Pests detected by PestPatrol and clas-
sified as browser helper object. http://www.pestpatrol.com/
pestinfo%5Cbrowser_helper_object.asp, March 2005

2. Firefox extension security project website. http://alcazar.sisl.rites.
uic.edu/wiki/view/Main/ExtensibleWebBrowserSecurity

3. Goldberg, I., Wagner, D., Thomas, R., Brewer, E.A.: A secure
environment for untrusted helper applications: Confining the wily

123

http://www.pestpatrol.com/pestinfo%5Cbrowser_helper_object.asp
http://www.pestpatrol.com/pestinfo%5Cbrowser_helper_object.asp
http://alcazar.sisl.rites.uic.edu/wiki/view/Main/ExtensibleWebBrowserSecurity
http://alcazar.sisl.rites.uic.edu/wiki/view/Main/ExtensibleWebBrowserSecurity

Enhancing web browser security against malware extensions 195

hacker. In: Sixth USENIX Security Symposium, San Jose, CA,
USA (1996)

4. Hallaraker, O., Vigna, G.: Detecting malicious JavaScript code
in Mozilla. In: 10th IEEE International Conference on Engineer-
ing of Complex Computer Systems (ICECCS), Shanghai, China
(2005)

5. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.A.:
Behavior-based spyware detection. In: 15th USENIX Security
Symposium, Vancouver, BC, Canada (2006)

6. Kirk, J.: Trojan cloaks itself as Firefox extension. Infoworld mag-
azine, July 2006

7. Lampson, B.W.: A note on the confinement problem. Commun.
ACM 16(10), 613–615 (1973)

8. Li, Z., Wang, X., Choi, J.Y.: SpyShield: Preserving privacy
from spy add-ons. In: 10th International Symposium on Recent
Advances in Intrusion Detection (RAID), Gold Coast, QLD, Aus-
tralia (2007)

9. Information from http://addons.mozilla.org
10. Mozilla Firefox at Wikipedia http://en.wikipedia.org/wiki/

Mozilla_Firefox
11. Necula, G.C.: Proof-carrying code. In: 24th Annual ACM SIG-

PLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), Paris, France (1997)

12. Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O., Esmeir, S.:
BrowserShield: Vulnerability-driven filtering of dynamic HTML.
In: 7th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Seattle, WA, USA (2006)

13. Sekar, R., Venkatakrishnan, V.N., Basu, S., Bhatkar, S., DuVarney,
D.C.: Model carrying code: a practical approach for safe execution
of untrusted applications. In: 19th ACM Symposium on Operating
Systems Principles (SOSP), Bolton Landing, NY, USA (2003)

14. Soghoian, C.: A remote vulnerability in Firefox extensions. http://
paranoia.dubfire.net/2007/05/remote-vulnerability-in-firefox.
html (2007)

15. Ter Louw, M., Lim, J.S., Venkatakrishnan, V.N.: Extensible web
browser security. In: 4th GI International Conference on Detection
of Intrusions & Malware, and Vulnerability Assesment (DIMVA),
Lucerne, Switzerland (2007)

16. Tsyrklevich, E., Yee, B.: Dynamic detection and prevention of
race conditions in file accesses. In: 12th USENIX Security Sym-
posium, Washington, D.C., USA (2003)

17. Ungar, D., Smith, R.B.: Self: The power of simplicity. ACM
SIGPLAN Notices 22(12), 227–242 (1987)

18. Vogt, P., Nentwich, F., Jovanovic, N., Kirda, E., Kruegel, C.,
Vigna, G.: Cross-site scripting prevention with dynamic data
tainting and static analysis. In: 14th Annual Network & Distrib-
uted System Security Symposium (NDSS), San Diego, CA, USA
(2007)

19. Wahbe, R., Lucco, S., Anderson, T., Graham, S.: Efficient soft-
ware-based fault isolation. In: 14th ACM Symposium on Operat-
ing System Principles (SOSP), Asheville, NC, USA (1993)

123

http://addons.mozilla.org
http://en.wikipedia.org/wiki/Mozilla_Firefox
http://en.wikipedia.org/wiki/Mozilla_Firefox
http://paranoia.dubfire.net/2007/05/remote-vulnerability-in-firefox.html
http://paranoia.dubfire.net/2007/05/remote-vulnerability-in-firefox.html
http://paranoia.dubfire.net/2007/05/remote-vulnerability-in-firefox.html

	Enhancing web browser security against malware extensions
	Abstract
	1 Introduction
	2 Related work
	3 Attacking the browser
	3.1 A malware extension
	3.2 Related developments

	4 Extension installation and loading enhancements
	4.1 Security principles
	4.2 Implementation techniques
	4.3 Security analysis
	4.4 Performance evaluation

	5 Monitoring extension execution
	5.1 Problem context
	5.2 Implementation techniques
	5.3 Security analysis
	5.4 Performance evaluation

	6 Conclusion
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

