
J Comput Virol (2008) 4:221–234
DOI 10.1007/s11416-007-0077-6

ORIGINAL PAPER

Characterization of virus replication

Jose Andre Morales · Peter J. Clarke · Yi Deng ·
B. M. Golam Kibria

Received: 6 June 2007 / Revised: 27 October 2007 / Accepted: 27 November 2007 / Published online: 18 December 2007
© Springer-Verlag France 2007

Abstract New viruses spread faster than ever and current
signature based detection do not protect against these
unknown viruses. Behavior based detection is the currently
preferred defense against unknown viruses. The drawback of
behavior based detection is the ability only to detect specific
classes of viruses or have successful detection under certain
conditions plus false positives. This paper presents a charac-
terization of virus replication which is the only virus charac-
teristic guaranteed to be consistently present in all viruses.
Two detection models based on virus replication are devel-
oped, one using operation sequence matching and the other
using frequency measures. Regression analysis was gener-
ated for both models. A safe list is used to minimize false
positives. In our testing using operation sequence matching,
over 250 viruses were detected with 43 subsequences. There
were minimal false negatives. The replication sequence of
just one virus detected 130 viruses, 45% of all tested viruses.
Our testing using frequency measures detected all test viruses
with no false negatives. The paper shows that virus replica-
tion can be identified and used to detect known and unknown
viruses.

J. A. Morales (B) · P. J. Clarke · Y. Deng
School of Computing and Information Sciences,
University Park, Miami, FL 33199, USA
e-mail: jmora009@cis.fiu.edu

P. J. Clarke
e-mail: clarkep@cis.fiu.edu

Y. Deng
e-mail: deng@cis.fiu.edu

B. M. G. Kibria
Department of Statistics, Florida International University,
University Park, Miami, FL 33199, USA
e-mail: kibriag@fiu.edu

1 Introduction

In 2006, an FBI survey reported computer viruses as the
number one cause of financial loss for American companies
[8]. For the same year Kaspersky Labs reported a strong rise
in the number of new viruses and more momentum in the
second half of the year with email worms topping the list
[11]. Kaspersky also forecasts that viruses will increasingly
appear, helping to spread other forms of malware and use
more sophisticated techniques to avoid detection. Despite
this growing problem antivirus companies continue to use
signature databases as their primary tool for virus detection.
In 2006 Kaspersky labs averaged 10,000 new record updates
to its signature database per month and 200 new malware
samples per day [14]. Antivirus companies still average 6 h
to release a solution to newly discovered viruses [2,15].
Using signature databases results in slow responses to pro-
tect systems from these new viruses. A possible solution to
this is behavior based detection [23].

Behavior based detection monitors process execution. A
process is flagged as a possible virus if the behavior of the
process is similar to known viruses. This approach has the
advantage of being able to detect new undiscovered viruses.
The main drawback to this approach is it can also flag benign
processes as being a possible virus which result in false
positives. Several detection methods have been proposed
where each one uses a specific aspect of viruses to base
their detection methodology. These methodologies usually
rely on virus characteristics that are not consistently found
in all viruses. The result is the methodologies are limited
to detecting specific classes of viruses or detection under
specific conditions. In this paper we characterize virus repli-
cation, which is the fundamental characteristic present in all
viruses, with a finite state machine (FSM). A malware classi-
fied as a virus under the accepted definitions implies the virus

123

222 J. A. Morales et al.

has the ability to replicate. We assume the process used by a
virus to replicate itself is relatively similar across all viruses.
We present two virus replication detection models. The first
model uses strings representing an ordered sequence of exe-
cution of operations from the replication process of known
viruses. These sequences are searched in other processes to
determine if the process is a possible virus or benign. A fit-
ted linear regression model was also generated. The second
model uses frequency metrics of operations used in the rep-
lication process of known viruses. Frequency measurements
are recorded for other processes and compared to these met-
rics to determine if the process is a possible virus or benign.
Fitted regression models are also given for both detection
models to predict if the processes of the test sets are a virus
or benign.

The contributions of this research are:

1. Showing that virus replication can be detected. The
ability to detect virus replication leads to stopping virus
distribution under multiple virus classes and in several
different conditions.

2. Using replication to detect unknown viruses. An
unknown virus can be detected when it attempts to rep-
licate. Detecting replication is not specific to any virus.
This allows unknown viruses to be detected without the
need for any prior information about the specific virus.

The remainder of this paper is organized as follows: Sect. 2
present review of the current literature. In Sect. 3 a formal
characterization of virus replication is built using an FSM
and based on Cohen’s formal definition [4] of a virus. Sec-
tion 4 presents two detection models for virus replication
using the characterization. Section 5 details our experiments
and statistical analysis conducted on the detection models
with a discussion of the results. Conclusions and future work
are presented in Sect. 6.

2 Literature review

An early formal model of abstract replication is presented in
[24]. Formal models of viruses have been presented in [4,1].
Each of these seminal works describe virus replication in
some form. Von Neumann created a self reproducing auto-
mata showing that replication can be defined formally with
computational models. Cohen provides the foundational
results using Turing Machines to illustrate the replication
process of a virus as symbols on a tape transferred from
one segment of the tape to another segment of the same
tape. Adleman defined infection as the replication aspect of a
virus using recursive functions. Many detection models, both
signature and behavior based have been created using these

seminal papers, an excellent summary of these is found in
[9,23]. Using sequences of execution of operations to detect
malware has been proposed in [7,10,12,16,18,20,22,26]. In
each research, the detection is based on anomalous detec-
tion or misuse detection [18]. The two approaches record the
complete behavior via sequence of operations of a benign or
malicious process. Detection is achieved by identifying dif-
ferences in executing processes and the recorded sequences.

In [10], anomalous intrusion detection was performed via
system call monitoring. A database was trained to recognize
the normal behavior of benign processes in a system. The sys-
tem calls made by a process were compared to the database,
if the process made system calls not matching the database,
the process was marked as anomalous. The main drawback to
this approach is determining how much exhaustive training
must be performed to cover all cases of a benign process. If
a sequence is left out, this can lead to false positives by iden-
tifying normal behavior as anomalous. Our research takes a
similar approach of monitoring sequences of executed oper-
ations to detect viruses. The difference between the work
presented in [10] and our approach is the training is done
on sequences of executions of operations representing the
replication of the virus. Since replication is the fundamental
characteristic of a virus, retraining of the database is reduced
since the behavior may not vary. This is an improvement on
the approach in [10] where training must be repeated for each
new program.

In [5], Ellis presented a method to detect worms in a
computer network using behavioral signatures. The approach
taken to detect worms relied on behavioral patterns of worms
reflective of the network communications typical of worms.
These behaviors were developed from the definition of a
worm. The method was shown capable of detecting classes
of worms without a priori knowledge of any specific worm.
Our research is similar since it uses the definition of a virus
for detection. We use the fundamental characteristic of rep-
lication for detecting a virus. Our research uses a singular
characteristic of a virus as opposed to Ellis which uses mul-
tiple characteristics of a worm. Using a singular characteristic
results a more focused detection which may be faster than a
detection using multiple characteristics.

3 Characterizing replication

The strict definition of a virus is a program that infects other
programs by modifying them to include a possibly evolved
version of itself [4]. A less strict definition of a virus is a pro-
gram that recursively and explicitly copies a possibly evolved
version of itself [23]. Both of these definitions express repli-
cation as the qualifying fundamental characteristic of a virus.
Under these definitions, a malware program is classified as
a virus if and only if it has the ability to replicate. It can be

123

Characterization of virus replication 223

inferred that replication is the only characteristic of a virus
consistently present in all viruses. Cohen’s formal definition
of a viral set using a Turing machine (TM) illustrates virus
replication as symbols on a tape being read and written to
another area further down the tape [4, p.164]. Cohen’s defi-
nition is explained with the following steps:

1. For all M and V, the pair (M,V) ∈ V iff
2. V is a set of TM sequences and M is a TM where
3. M’s tape head is at a cell j at time t and the tape cells

starting at j hold the virus v
4. At a time t’ > t tape cells starting at cell j’, far enough

away from v hold the virus v’ such that
5. At time t < t” < t’, v’ is written by M to tape cells starting

at j’

Steps 1 and 2 setup the Turing machine M for processing
the tape with the virus. Steps 3 through 5 illustrate the read
and write operations of the virus. Replication starts with the
interpretation of the virus beginning at cell j to cause M to
read and write the virus to a sequence of cells further down
the tape beginning at cell j’. The symbols defining the virus
starting at cell j are read and written one at a time to a new
location further down the tape starting at cell j’. Between each
read and write, M’s tape head has to search up and down the
tape for the next symbol of the virus to read and the next cell
to write. The definition shows read, search and write oper-
ations as essential for virus replication to occur. In addition
the strict definition of a virus implies the use of open and
close operations. To infect a program, a virus may have to
first gain access to the program, which may require an open
operation. To read and write the symbols of the virus, the
tape head must first move to it and be allowed to access
the individual symbol, this implies an open operation. When
the tape head moves away from a cell, the symbol in that cell
is left in an idle state ready for use at some future point. The
act of the tape head moving away from a symbol and leaving
it ready for future use is implicitly a close operation. Once
infection is completed, a newly infected program may have
to be closed to become usable by a system. Cohen’s defini-
tion also shows that a virus will have M read and write the
virus itself to some other location of the tape by instructing
M to read the virus starting at j and write one symbol at a
time starting at j’. The entire replication process in Cohen’s
definition illustrates the virus instructing M to read and write
the virus itself. The virus refers to itself as the source of the
whole replication process. Referring to itself in this manner is
essential for the virus to successfully replicate. Cohen states
that any element of a viral set can produce any number of
other elements of the set depending on the remaining tape
[4, p. 165]. This implies that a virus may attempt to replicate
several times during one execution which results in a high
frequency use of certain operations.

When replication of a virus occurs, some of the operations
contain references to the virus itself. For the virus to suc-
cessfully replicate, it will refer to itself in some of the open,
close, read, write, search operations. For example a replica-
tion sequence of a virus referring to itself could be: search(a)
open(a) read(a) write(a,b) close(a) close(b), with virus a and
infection target b. When a virus has completed replication
a subset of the operations performed will have referred to
the virus itself. It is these operations with a self reference to
the virus that distinguish a virus from a benign process. We
can now state that virus replication consists of a sequence
of execution of some combinations of the following general
operations: open, read, write, search and close. We assume
some of the operations in this sequence will self reference
the virus itself indicating the occurrence of virus replication.
The frequency of execution of this sequence can be one or
more times during one execution of a virus. A virus may also
execute several different sequences of execution one or more
times to attempt replication. Each general operation causes
the virus to transition into a new state during the replica-
tion process. Each virus executes specific operations during
replication that can be classified under one of the general
operations stated above. A characterization of virus replica-
tion can be stated as a sequence of executions E known as a
replication sequence with a set of specific operations p ∈ P
and a set of replication states Q = {o, r, w, s, c}. The mem-
bers of Q are the replication states a virus transitions into
when one of the above general operations is executed. The
replication states are defined as follows: o = opened, r =
read, w = written, s = searched, c = closed. The members
of P , the replication set, are the specific operations executed
by the virus that produce a transition into a replication state in
Q. A replication sequence Ei is written as e1, e2, e3, . . . , en

with n being the total number of executed operations. The
function length(Ei) returns the total number of events e for
the sequence Ei , therefore length(Ei) = n. The subscript i
initialized to 1 uniquely identifies each replication sequence,
the i th sequence. Each e ∈ E is one execution of a spe-
cific operation p resulting in a new replication state q ∈ Q.
This characterization is formally defined with a finite state
machine (FSM) in Fig. 1.

The members of
∑

must solely consist of the specific
operations p which when executed individually, transition E
to a replication state q. There is no specific start and final
replication states for s and f . When a virus attempts repli-
cation it may start in any replication state q. A virus may
also exit replication from any state q. No specific p needs
to be executed first to start replication and executed last to
exit, it can commence and finish with the execution of any
operation p. Thus all the replication states of Q are valid
for s and f of E . A virus executes many operations dur-
ing one complete execution of itself. Only a subset of these
operations belong to the replication set P , namely those that

123

224 J. A. Morales et al.

Fig. 1 Virus replication
sequence FSM

Fig. 2 Abstract complete replication sequence Ei

transition the virus to a replication state q. FSM E is meant
to capture only the ordered sequence of executions of oper-
ations p. It does not capture other executed operations not
belonging to P even if those operations were executed in
between operations that do belong to the replication set P .
FSM E captures strictly the replication process of a virus
and nothing else. A replication sequence Ei comes from a
process that is already known to be a virus or from a process
that is being examined for possible exhibition of virus repli-
cation behavior. If FSM E produces a replication sequence
belonging to a benign process it is not labeled and discarded
as invalid. FSM E only accepts replication sequences belong-
ing to a virus. A replication sequence Ei can hold either 1. a
complete replication sequence, which is the sequence of all
the operations p executed by a virus in one complete execu-
tion, or 2. a subsequence of a complete replication sequence
which is defined in Fig. 4. A sample production of FSM E
abstractly showing a complete replication sequence of spe-
cific operations p and the corresponding replication state q
is in Figure 2.

The subscripts assigned to the operations p and the states
q in Fig. 2 were added only to show correspondence with
the operations p. They are not part of FSM E and are not
required.

4 Replication detection models

Two models for detecting virus replication are presented in
this section. Both are based on the characterization and FSM
presented in Sect. 3. The characterization defines virus rep-
lication as a replication sequence consisting of operations p
and cause a transition to a replication state q. A replication
sequence can occur many times in one execution of a virus. A
virus can also execute many different replication sequences.
Detecting frequency of use and replication sequences may
be used to identify virus replication and differentiate from
benign replication. In the detection models presented here
FSM E records the replication sequence of a process. When
the detection starts it is not known if a process is a virus

Table 1 Operation to state mapping

Replication state Operation name

opened openfilex

read readfilex

setfilepointer

wri t ten copytofile

createfilenew

writefilex

searched finddir

getfileattrib

closed closefile

or benign. If the sequence is detected as a virus or exhibit-
ing virus replication behavior it is accepted by E as a valid
replication sequence and labeled Ei . If the sequence is not
detected as a virus it is assumed benign, not labeled and not
used any further in the detection.

4.1 Operation sequence detection model

This model searches for an encoded string of the operations
p of a virus replication sequence. The alphabet

∑
is com-

posed of all specific operations executed by a virus during the
replication process. As an example, assume

∑ = {openfi-
lex, readfilex, copytofile, createfilenew, finddir, getfileattrib,
closefile, writefilex, setfilepointer}. All the members of

∑

result in a transition to a replication state q. This is illustrated
with the mapping of operations to states in Table 1.

We encode the string by assigning one unique character
for each specific operation. The character can be a single let-
ter or a single digit. The encoding for our example alphabet
is in Table 2.

A complete replication sequence for a specific virus could
be: openfilex, readfilex, setfilepointer, writefilex, writefilex,
readfilex, finddir, copytofile. The encoded string would be
ORSWWRFC. Based on Table 1, FSM E would produce the
complete replication sequence in Fig. 3.

This model is implemented in four steps:

1. Build a training set of random virus samples
2. Record the complete replication sequence of each virus
3. Extract replication subsequences

123

Characterization of virus replication 225

Fig. 3 Complete replication
sequence E1

Table 2 Operation encoding

Operation name Encoded character

openfilex O

readfilex R

setfilepointer S

copytofile C

createfilenew T

writefilex W

finddir F

getfileattrib G

closefile L

4. Match replication subsequences in a process to detect
virus replication behavior

Steps 1-3 is the training session, step 4 is the detection ses-
sion.

Build a training set of random virus samples. A set of
virus binaries of an arbitrary sample size needs to be built
to train the detection model. The set should meet any estab-
lished criteria such as detecting a specific class or family of
virus. If you are detecting a specific class of virus, for exam-
ple Win32 viruses, then your training set should consist of
random samples of only Win32 viruses.

Record the complete replication sequence of each virus.
Each virus is run once and the specific operations used in the
replication process are recorded in the order of execution.
Analyzing the execution of a virus can be done at varying
degrees of granularity. Each degree can reveal more or less
detailed information about the operations being used. A very
abstract granularity level may reveal less information about
the execution. It may only provide high level calls made by
the virus. These calls may group more specific calls together
making it difficult to classify them as part of a replication
process. This could result in false negative production due
to poorly recorded replication sequences. A very detailed
granularity level may provide too much information such
as system call arguments and hardware level information,
which is not used in our recording. This extra information
could slow down the recording due to the overhead of pars-
ing out the unneeded information. A choice must be made of
the desired level of granularity for analyzing and recording
the replication process of a virus. With the granularity cho-
sen a comprehensive review of the operations used must be
done to populate the replication set P . This involves possibly
reviewing specifications on the operating system, hardware

Fig. 4 Abstract replication subsequence E ji

and applications to derive a complete list of operations, an
expert may be required to ensure a correct analysis. The
specific operations p are those used at the chosen granularity
that transition the virus into a replication state q. The repli-
cation set P must contain only those specific operations that
cause a transition to a replication state. This will ensure cor-
rect recording of the replication process and avoid recording
operations not belonging to the replication set P . FSM E will
run with

∑ = replication set P and Q = replication states
{o, r, w, s, c}. As the virus executes, E will transition on each
executed operation in

∑
to a replication state in Q. When

the virus is done executing, E will have produced a complete
replication sequence Ei for the specific virus, which is shown
in Fig. 3. The sequence of operations p1 . . . pn are extracted
from Ei , encoded, converted to a string and recorded.

Extract replication subsequences. This step identifies
replication subsequences that occur in multiple viruses of
the training set. The goal of this step is to create a set of
replication subsequences that are found in more than one
training set virus. A replication subsequence found in more
than one virus in the training set may indicate a high proba-
bility of being found in other viruses outside of the training
set. Subsequences not found in more than one virus of the
training set are discarded. For each replication sequence, cre-
ate all possible subsequences between an arbitrary minimum
and maximum size and attempt to match them in at least one
other training set virus. If a match is made the subsequence
is recorded. The resulting set contains replication sequences
E1 . . . Ei where i is the last subsequence and the total number
recorded subsequences.

If a sequence E j is a subsequence of a sequence Ei , it
is labeled E ji , where j is j th subsequence of i and i is the
i th complete replication sequence. An abstract subsequence
is defined in Fig. 4. Recall that a replication sequence Ei is
an ordered sequence of executions where each e ∈ E is an
execution of a specific operation p. Subsequences contain-
ing the last executed operation pn of a sequence Ei should
always have pn as the last operation in the subsequence. As
an example, Fig. 5 has two valid and invalid subsequences
of the replication sequence E1 shown in Fig. 3.

Both subsequences E41 and E51 are invalid for placing
operations O1, R2 after operation C8. Since p8 was the last

123

226 J. A. Morales et al.

Fig. 5 Valid and invalid subsequences of E1

executed operation, it is not correct to build subsequences
with operations appearing after it that never executed after it.

Match replication subsequences in a process to detect
virus replication behavior. The set of replication sequences
created in the training session is used to detect virus repli-
cation behavior in other processes by replication sequence
matching. Processes are monitored at the same degree of
granularity and with the same replication set P used dur-
ing the training session. When a process starts execution an
FSM E is initialized. As the process executes operations p,
E transitions to a new replication state. After each transition
the current replication sequence is extracted as a string and
compared for a match with the replication sequences set. If a
match occurs the process is stopped or suspended and flagged
as suspicious for exhibiting virus replication behavior.

4.2 Replication state frequency model

This model uses the percentage of replication states occur-
ring in known viruses to detect replication behavior. The basis
of the model is a high frequency of execution of replication
sequences during one execution of a virus. We expect this
would lead to a significantly higher percentage of replica-
tion states in a viral process than in benign processes. This
model is implemented in three steps:

1. Build a training set of random virus samples
2. Calculate percentage of occurrence for each replication

state
3. Match occurrence percentage in a process to detect virus

replication behavior

Steps 1–2 is the training session, step 3 is the detection ses-
sion. Note that the training session uses only complete repli-
cation sequences Ei and not subsequences E ji . Step 1 is the
same as in Sect. 5.1 and will be omitted here.

Calculate percentage of occurrence for each replication
state. The alphabet

∑
and the level of granularity is used

the same here as in step 2 of Sect. 5.1. Each training set
virus is executed once and as the transitions occur each dis-
tinct replication state is counted. This process is done for
each virus in the training set. One counter T SC is used to
count the total number of replication states occurring in the

viruses of the training set. Once all viruses have been exe-
cuted, the count for each replication state is divided by T SC ,
the result is the percentage of occurrence for the specific
state. FSM E will run with

∑ = replication set P and Q
= replication states {o, r, w, s, c}. As each training set virus
executes, E will transition on each executed operation p to
a replication state q. The counter for q and T SC are incre-
mented by one. The counter for each replication state is:
T o, T r, T w, T s, T c where the subscript represents a repli-
cation state. Each counter is initialized to zero. At the end
of executing all training set viruses, the five replication state
counters are each divided by T SC and the results recorded.
These results are the occurrence percentage of each replica-
tion state compared to all replication states for the training
set.

Match occurrence percentage in a process to detect virus
replication behavior. The occurrence percentages calculated
in the training session are assigned to the following vari-
ables: Po, Pr, Pw, Ps, Pc where each subscript represents
a replication state. Processes are monitored with the same
replication set P and at the same degree of granularity used
in the training session. When a process starts execution an
FSM E is initialized. As the process executes operations p,
E transitions to a new replication state. After each transi-
tion, the occurrence percentage for the current replication
state q is calculated for E and compared to Pq. If the occur-
rence percentage of the current replication state q surpasses
or equals Pq the process should be suspended or terminated
and flagged as suspicious for exhibiting virus replication
behavior. This comparison can be extended to two or more
replication states. In this extended case, the process is flagged
suspicious when two or more occurrence percentages for E
equal or surpass their respective Pq.

As an example of using this model, consider the two sets
of replication sequences in Fig. 6. These sequences are built
using the mapping of Table 1 and the encoding of Table 2. The
first set contains complete replication sequences from a train-
ing session. The second set contains replication sequences
being monitored during the detection session for viral repli-
cation behavior.

The occurrence percentage for Fig. 6 are listed in Table 3.
The table has two sections: one for the training session and
one for the detection session. For both sections, the number
of occurrences of each state is listed along with its occur-
rence percentage. Note in the training session the percent-
ages are calculated based on all the complete replication
sequences E1 . . . E4. In the detection session the occurrence
percentage is calculated for each individual replication seq-
uence E1, E2, E3. Also note the replication sequences in the
detection session are not necessarily complete replication
sequences. Since comparisons are made after each transi-
tion, these sequences could represent any point during the

123

Characterization of virus replication 227

Fig. 6 Replication sequences
of testing and detection sessions

Table 3 Occurrence percentage results

Number of Occurrence
occurrences percentage

Training session
E1 . . . E4, T SC = 29

opened = 3 10

read = 8 27

written = 10 34

searched = 4 14

closed = 4 14

Detection session

E1, T SC = 4

opened = 1 25

read = 0 0

written = 2 50

searched = 0 0

closed = 1 25

E2, T SC = 8

opened = 1 12

read = 1 12

written = 3 38

searched = 2 25

closed = 1 12

E3, T SC = 4

opened = 1 25

read = 1 25

written = 1 25

searched = 0 0

closed = 1 25

replication process. Assume we are using two replication
states: opened and wri t ten to detect virus replication behav-
ior in the detection session. From Table 3 we see the occur-
rence percentage in the training session for opened was 10%
and for written 34%. In the detection session E1 and E2

would be flagged as suspicious but not E3.

5 Experiments

In this section we present two sets of experiments each for
the models described in Sect. 4. We first describe the setup

and environment in which the experiments were performed
identifying the type of hardware and software used to
support the experiments. The virus set used in the training,
and evaluation are also described. Each detection model is
tested first by following the model as described in Sect. 4 and
is then tested using regression analysis.

5.1 Experiment setup

A sample set of 84 virus binaries was created from mal-
ware repositories on the Internet [19,25]. The names of the
84 viruses belonging to the sample set are listed in Appen-
dix Table 12. The set consisted of 4 groups of 21 viruses
each. The four groups were of the following four types of
viruses: email worms, peer to peer worms, network worms
and Win32 viruses. This sample set was used to create 3 test
sets of the following sizes: 28, 56 and 84. These 3 test sets
also had equal number of viruses of each group stated above.
The members of each test set were randomly chosen from the
four groups. The virtual machine software VMware Work-
station with Windows XP SP2 installed was used to executed
the viruses. The replication sequences were recorded using
the Process Monitor utility from Microsoft Windows Sysin-
ternals. The level of granularity was at the I/O request packet
(IRP) function code level [13]. Table 4 lists the IRP oper-
ations used in the testing. Next to each operation name is
the encoded character used and the replication state result-
ing from the operationć6s execution. The encoded characters
were assigned first in numerical order starting with 0 then in
alphabetical order. The operation names are the actual IRP
function code names. The grouping of operation name to rep-
lication state was done based on each functions description
in [13].

5.2 Operation sequence testing

For the training session, three test sets were executed in the
virtual machine. The complete replication sequence of each
virus was recorded, encoded and saved to a database and sub-
sequences were created. The minimum size was 30 and the
maximum size 1000 respectively. If a subsequence matched
in any of the other recorded operation sequences of the test

123

228 J. A. Morales et al.

Table 4 IRP operations

Operation Encoded Replication
name character state

IRP_MJ_CREATE 0

IRP_MJ_FILE_SYSTEM_CONTROL a opened

FASTIO_NETWORK_QUERY_OPEN g

IRP_MJ_READ 1

FASTIO_CHECK_IF_POSSIBLE e read

FASTIO_READ i

IRP_MJ_WRITE 2

IRP_MJ_FLUSH_BUFFERS 5

IRP_MJ_SET_INFORMATION 7

FASTIO_ACQUIRE

_FOR_CC_FLUSH b wri t ten

FASTIO_WRITE k

FASTIO_ACQUIRE

_FOR_MOD_WRITE m

IRP_MJ_DIRECTORY_CONTROL 3

IRP_MJ_QUERY

_VOLUME_INFORMATION 4

IRP_MJ_QUERY_INFORMATION 6 searched

FASTIO_QUERY_INFORMATION h

IRP_MJ_CLEANUP 8

IRP_MJ_CLOSE 9 closed

set, the name of the matching virus was saved along with
the subsequence and the name of the virus it was created
from. Testing of the training session produced a database of
subsequences of known viruses that matched in one or more
recorded operation sequences of the other known viruses in
the test set.

For the detection session, a set of 200 viruses was created,
executed and the complete replication sequence recorded,
encoded and saved to a database. The names of the 200
viruses are listed in Appendix Table 13.The viruses in this set
were not related to any family of viruses used for the train-
ing session. The purpose of this was to search for the sub-
sequences produced from the training session in unknown
viruses. This was a simulation detection of virus behavior in
currently executing processes. The 200 viruses were not used
in training and therefore can be considered to be unknown
viruses that detected based only on their exhibition of virus
replication behavior. Testing of the detection session pro-
duced a database of subsequences that occurred in one or
more viruses of the training and detection sessions.

Test results from the training and detection sessions are in
Table 5. The first column is the reported test results. The next
three columns are the three tests sets. Total subsequences
is the total number of matches for each operation subse-
quence of the test set. The training session produced a high

Table 5 Operation sequence testing results

Training session
28 vx 56 vx 84 vx

Total subsequences 154,659 1,089,647 2,218,129

Unique subsequences 104,977 573,789 876,554

Smallest subsequence

match size 30 30 30

Longest subsequence

match size 231 596 596

Smallest match set 8 11 19

Detection session

28 vx 56 vx 84 vx

Total subsequences 903,832 2,721,137 4,816,314

Unique subsequences 75,389 258,375 486,064

Smallest subsequence

match size 30 30 30

Longest subsequence

match size 194 255 255

False negatives 17 12 10

Smallest match set 19 23 24

amount of subsequences with at least one match. The total
for unique subsequences represents the number of unique
operation subsequences with at least one match. The results
show the number of unique subsequences decreased as the
test set size increased. The set of 28 viruses had 70% unique
subsequences, the set of 56 had 50% unique and the set of 84
had only 40% unique. The decrease in unique subsequences
resulted in smaller number of subsequences appearing in a
larger number of viruses.

Many subsequences appeared in multiple viruses with at
least one appearing in 87 viruses. There was no match with
a subsequence longer than 596. Our testing created subse-
quences up to length 1000, the results showed only subse-
quences of half that size were needed. The smallest match
set is the minimum number of sequences needed to detect all
the viruses in a test set. The set of 28 was detectable with 8
subsequences; the set of 56 with 11 and the set of 84 with
only 19 subsequences. In the testing of the detection session
with the set of 200 viruses, 8% of the subsequences were
unique for the set of 28 viruses, and 10% for both sets of 56
and 84 viruses. The set of 28 produced 17 false negatives,
the set of 56 decreased that amount to 12 and the set of 84
further decreased to 10. With testing completed, 10, or 2.5%
of the set of 200, viruses were still undetected.

Further analysis of the operation sequence testing revealed
viruses whose complete replication sequences had a large
number of matched subsequences. Table 6 lists some of these
viruses. The first column contains the name of the virus
whose complete replication sequence contains multiple
matched subsequences. The column for number of sequences

123

Characterization of virus replication 229

Table 6 Viruses containing multiple sequences

Virus Number of Detected
name subsequences viruses

Bagle.a 11 130

Eyeveg.m 7 96

Plexus.a 6 62

is the amount of matched subsequences contained in the com-
plete replication sequence of the virus. The last column is the
matching viruses, the number of viruses detected during our
testing with one of the subsequences found in the virus listed
in the first column.

Consider the virus Bagle.a. The number of subsequen-
ces for this virus is 11. This means the complete replica-
tion sequence of Bagle.a contains 11 subsequences that
successfully detected one or more viruses during testing.
The number of matching viruses is 130. Out of 284 tested
viruses, 130 were detected with virus behavior because they
contained at least one of the 11 subsequences belonging to
the complete replication sequence of the Bagle.a virus.
The subsequences produced from the complete replication
sequence of this one virus detected 130 viruses, 45% of the
total number of viruses used in our testing. This observation
suggests that many viruses can be detected based on the virus
replication of a small number of known viruses. This can be
used to possibly show that virus replication is relatively con-
sistent in all viruses due the limited number of ways that
replication can occur in a virus.

Statistical analysis was performed on the results of the
operation sequence testing. The results are in Table 7.

From Table 7, most of the detected viruses are Email
worms followed by Network worms, peer to peer worms and
Win32 Viruses. The 95% confidence interval for the mean
number of detection by all groups is between 40.34138 and
51.82528.

*** Linear Model ***

Call: lm(formula $=$ Detection ˜ Sequence, data $=$ Ancova, na.action $=$ na.exclude)
Residuals:

Min 1Q Median 3Q Max
-37.78 -13.97 0.7393 11.04 47.98

Coefficients:
Value Std. Error t value Pr(>|t|)

(Intercept) 11.4994 3.9041 2.9455 0.0042
Sequence 11.7613 1.1542 10.1897 0.0000

Residual standard error: 17.68 on 82 degrees of freedom
Multiple R-Squared: 0.5587
F-statistic: 103.8 on 1 and 82 degrees of freedom, the p-value is 3.331e-016

Analysis of variance (ANOVA). The statistical model is

yi j = µ + τi + ei j

We want to test the hypothesis that the average number of
detection by all groups (four groups) are the same. That is

H0 : τ1 = τ2 = τ3 = τ4 = 0

vs

Ha : τi �= 0 for some i

Using Splus [21], we have the following analysis of variance
table [17]:

Source Df Sum of Sq. Mean Sq. F Value P value

Treatment 3 4272.89 1424.298 2.116596 0.1046218

Residuals 80 53833.52 672.919

From the above table, the P-value indicates that the means
are not statistically different at 5% level of significance. How-
ever, they are statistically different at 11% level of signifi-
cance.

Regression analysis. We assume that yi is the observed value
of the random variable Yi , which depends on xi according to
the following model [6],

Yi = β0 + β1xi + ei , i = 1, . . . , n, (1)

where yi = Detection of the viruses which are responses of
the model and xi = replication sequence, β0 is the intercept,
the value of Y when x equals zero. The slope β1, the regres-
sion coefficient, is the rate of change in detection for a unit
change in sequence, ei ’s are random errors and are indepen-
dently and identically distributed normal random variable
with E(ei) = 0, V (ei) = σ 2. Using Splus, we have the
following regression analysis

123

230 J. A. Morales et al.

Table 7 Operation sequence
statistical analysis Statistics Email worms Peer to peer worms Network worms Win32 Viruses

Minimum 2.00000 7.000000 4.000000 2.000000

1st Quartile 46.00000 13.000000 29.000000 8.000000

Mean 57.38095 43.095238 45.952381 37.904762

Median 59.00000 52.000000 47.000000 46.000000

3rd Quartile 68.00000 70.000000 59.000000 62.000000

Maximum 130.00000 89.000000 83.000000 76.000000

Std Deviation 27.60340 28.607525 20.920029 25.955548

Total: 1205.00000 905.000000 965.000000 796.000000

95% LCL for mean: 44.81604 30.073249 36.429698 26.089938

05% UCL for mean: 69.94587 56.117227 55.475064 49.719586

Fitted : Sequence

D
et

ec
tio

n

20 40 60 80 100 120 140

12
0

40
60

80
20

0
10

0

Fig. 7 Detection of viruses vs fitted values

Since the p value is 0.0000, we can reject the null hypothesis,
H0 : β1 = 0 at 1% or less significance level. Therefore, we
might conclude that the sequence has significant effect on the
detection of viruses. On the other hand, detection of viruses
can be predicted from the regressor sequence.

The fitted regression model is

ŷ = 11.4994 + 11.7613 × Sequence

From the above fitted model we will be able to predict the
number of detection of the viruses for known sequences.

The plots of response vs fitted values and normal prob-
ability plot of residuals are given in Figs. 7 and 8, respec-
tively. From these figures we observed that the assumptions
of the linear regression model are satisfied. The R2 = 0.56,
which indicates that about 56% of the total variation has been
explained by the regressor sequence.

5.3 Replication state frequency testing

The complete replication sequence of each virus in the three
sets was created in the same manner as the operation sequence

Quantiles of Standard Normal

R
es

id
ua

ls

-2 0 1 2-1

-4
0

-2
0

20
40

0

55
37

56

Fig. 8 Normal probability plot of ordinary least squares residuals
which is detection of viruses minus fitted values of virus detection

detection model training session testing. The Po, Pr, Pw,

Ps, Pc values for each replication state over the entire com-
plete replication sequences set was calculated and recorded.
This was repeated for each test set.

The detection session was performed using all the rep-
lication states. The set of 200 viruses was executed and the
complete replication sequences recorded, encoded and saved
to a database. The occurrence percentage for each replication
state was calculated for each individual virus and compared
to the Po, Pr, Pw, Ps, Pc values from the training session.
If the amounts equaled or surpassed these values from the
training session, then the sequence was recorded for exhib-
iting virus replication behavior.

Test results for both sessions are listed in Table 8. In the
training session the results list the values of Po, Pr, Pw, Ps,
Pc for each test set. All of these values decreased as the test
set size increased not including written and searched. This
increase may imply that these two states are the most fre-
quently occurring of all the replication states in a virus. For
the detection session, only false negative amounts are listed.
A process was flagged as a virus if all process’s replication

123

Characterization of virus replication 231

Table 8 Frequency testing results

Training session

28 vx 56 vx 84 vx

Occurrence percentage

Read 6% 5% 4%

Written 8% 15% 20%

Open 35% 27% 25%

Closed 31% 30% 26%

Searched 18% 23% 24%

Detection Session

28 vx 56 vx 84 vx

False negatives 200 0 0

Table 9 Classification table with a cut value of 0.500

Predicted

Response Percentage Correct

Observed 0.00 1.00

Step 1 Response 0.00 23 5 82.1

1.00 3 25 89.3

Overall percentage 85.7

states matched or exceeded the corresponding occurrence
percentages from the training session.

The set of 28 had no detections. All 200 viruses were false
negatives. For each virus, only the occurrence percentage of
some replication states matched or exceeded the occurrence
percentages from the training session. In the set of 56 and
84, all 200 viruses were detected. For each virus, all replica-
tion state occurrence percentages matched or exceeded the
occurrence percentages from the training session. No false
negatives occurred.

A fitted logistic regression model [6] was created for the
set of 28 viruses along with a set of 28 benign processes. The
occurrence percentages were calculated for the 28 benign
processes. Fitting of the model was done using all possible
permutations of written, read, closed, opened and searched
replication states. The model was fitted using the occurrence

percentage of written, read, opened and closed which detected
the highest number of viruses and benign processes.
The details of the model without using a safe list are in
Tables 9 and 10. Values for Hosmer and Lemeshow test were:
Chi-square = 2.547, DF = 7 and Significance = 0.924. The
summary of the model: −2 log likelihood = 7.535(a), Cox
and Snell R square = 0.714 and Nagelkerke R Square =
0.952. Note that the estimation was terminated at iteration
number 18 because parameter estimates changed by less than
0.001.

The variables, written and read are significant at 10% level
of significance. Cox R-square = 0.714, that means roughly
71% of the total variations have been explained by the regres-
sors, write, read, open, close. The p-value of Hosmer and
Lemeshow test is 0.924, which indicates a very good fit.

The fitted logistic regression model is

ln
π̂i

1 − π̂1
= 2.581 − 0.004x1 − 0.017x2

+ 0.015x3 − 0.029x4 (2)

where x1 = Pw, x2 = Pr , x3 = Po and x4 = Pc. The
predicted probability model is

π̂ = e2.581−0.004x1−0.017x2+0.015x3−0.029x4

1 + e2.581−0.004x1−0.017x2+0.015x3−0.029x4
(3)

A logistic regression model was also fitted for the set of
56 and 84 viruses along with the set of 28 benign processes
using the Po, Pr, Pw, Ps, Pc values of write, read, open
and close. All three models were validated using the set of
200 viruses and a set of 60 benign viruses. The detection
results for the fitting and validation of the three sets using the
safe list are listed in Table 11.

5.4 Discussion

Testing the operation sequence model produced 10 false
negatives in the detection session. To eliminate the false neg-
atives two options can be used. First, analyzing each false
negative to create an replication subsequence that can be used
to detect it. This would add an additional 10 subsequences to
the smallest match set. The disadvantage of this option is the
increase in size of the match set. The advantage is the newly

Table 10 Variables used in the classification model shown in Table 9

B S.E. Wald df Sig. Exp(B) 95.0% C.I. for EXP(B)
Lower Upper Lower Upper Lower Upper Lower Upper

Step 1(a) Written −0.004 0.002 2.741 1 0.098 0.996 0.991 1.001

Read −0.017 0.009 3.720 1 0.054 0.983 0.967 1.000

Opened 0.015 0.015 0.958 1 0.328 1.015 0.986 1.045

Closed −0.029 0.020 2.116 1 0.146 0.972 0.935 1.010

Constant 2.581 0.826 9.772 1 0.002 13.211

123

232 J. A. Morales et al.

Table 11 Logistic regression detection with WROC

Model fitting

28 vx 56 vx 84 vx

Detected viruses 25/28 56/56 82/84

Detected benign 28/28 28/28 28/28

Model validation

28 vx 56 vx 84 vx

Detected viruses 115/191 117/191 145/191

Detected benign 60/60 60/60 60/60

added subsequences may detect an unknown virus at some
future point that is not detected by the other subsequences
in the set. This advantage prevents false negatives and elim-
inates the need to add more subsequences to the set. The
second option is to combine the operation sequence model
with other replication detection models which is a previously
researched approach [3, Chap. 9]. The test results for the
frequency model did not produce any false negatives. Even
though no false negatives occurred in the frequency model,
false negatives are possible in cases where a virus has very
few replications. In these cases the frequency of use of certain
operations may not be high enough for our detection model
to identify the virus. Combining these two models together
could eliminate the false negatives produced in our testing.
A process would be flagged as viral if it satisfies one of the
two detection models and is not on the safe list.

The two detection models and two regression models pro-
duced no false positives during testing. This resulted from
using a safe list to avoid flagging processes that were prede-
termined to be benign. The safe list works on the assumption
that a process name is added to the list after determining
the process to be benign. To keep a safe list accurate, the
process name of newly installed programs should be added
to the list before running the program. If a false positive is
produced, the process may be seldom used and overlooked
when updating the list. A false negative can occur if a newly
installed process name is added to the safe list believed to
be benign when in fact it is infected with a virus. The safe
list was built by recording the names of processes running
on three computers: a residential desktop, an office work-
station and an enterprize server. The three computers were
monitored for a 24 h period where the name of all the pro-
cesses that ran during that period were recorded. The process
names were later checked manually to assure they were of
known user/server/system programs. The resulting list con-
tained 117 process names.

An outside source was asked to record the complete
replication sequences of 28 and 60 processes running on an
enterprize server and an office workstation. This was done by
the person without knowledge of which processes were on
our safe list. The 60 processes were added to the set of 200

viruses. We repeated the testing of the detection session. This
time a process would be flagged as viral only if it matched
the criteria of the detection model being used and the process
name did not appear on the safe list. These same steps were
applied with the set of 28 benign processes used for the fitted
logistic regression for the replication state frequency model.
The results were the same with no false positives.

The two detection models and regression models were
tested without using the safe list. The detection models pro-
duced no false negatives but a high number of false positives.
This may be due to the fact that replication is a general pro-
cess that can occur in both benign processes and viruses. The
regression models produced almost no false positives but a
high amount of false negatives. This research is focused on
minimizing false negative and increasing true positive pro-
duction. The safe list component easily removes all false
positives and produces very effective detection when used
with a model producing little or no false negatives. The trade
off is a slight overhead increase in using the safe list in return
for little or no false positives. The alternative is using a model
that algorithmically produces minimal false positives but at
the possible cost of high false negatives. A combination of
the models presented here could lead to a new hybrid model
that algorithmically produces little or no false negatives and
false positives. Another option would be to inspect the oper-
ation arguments and use that information to aide in detection
improvement.

The viruses used for our testing were executed in a vir-
tual machine. The virtual machine ran with Windows XP
SP2 installed and no network or Internet access. These con-
ditions may have been sub-optimal for some of the viruses.
This may have resulted in some viruses to have executed less
replication attempts than the virus would normally execute in
more optimal conditions. Creating more optimal conditions
for virus execution could possibly have produced better data
resulting in a reduction in the amount of false negatives pro-
duced by our testing.

6 Conclusion and future work

We have presented a formal characterization of virus replica-
tion. The characterization is based on Cohen’s formal model
of computer viruses. Two detection models were developed
using the characterization. The first model searches for
matches of sequence of executed operations to detect a pro-
cess as viral. The second uses a frequency percentage of
replication state occurrence to detect if a process is possi-
bly a virus. Testing was performed for both detection models
and statistical analysis conducted including regression mod-
els. The operation sequences detected over 250 viruses with
43 subsequences. Detection of 130 virus which is 45% of
all tested viruses were detected with the complete replication

123

Characterization of virus replication 233

sequence of just one virus. The frequency testing also detected
all the viruses used in testing. Our testing showed both rep-
lication sequences and frequency can be plausibly used to
detect known and unknown viruses. The testing also showed
a relative consistency in the replication process of different
viruses. This consistency may suggest a limited number of
ways that a virus can replicate. Our testing results show both
detection models to be effective in detecting both known and
unknown viruses producing minimal false negatives. We also
controlled false positives through the addition of a safe list.
Our future work includes testing the algorithms with training
sets based on just one family of viruses. Creating a hybrid
detection model from the models presented here to minimize
false negatives and false positives. Adding information gath-
ered from system call arguments to our detection models to
attempt further reduction of false negatives and false posi-
tives.

Acknowledgments This was supported in part by the National Sci-
ence Foundation under Grant No. HRD-0317692. The views and con-
clusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorse-
ments either expressed or implied by the above agencies.

Appendix

Table 12 Set of 84 viruses

Email Peer to Peer Network Win32
Worms Worms Worms Viruses
Badtrans.aAgobot.a Afire.b Cabanas.e
Bagle.a Agobot.b Afire.c DarkSide.1371
Bagle.j Agobot.c Afire.d Elkern.a
Bagle.k Agobot.d Bozori.b Enumiacs-6656
Bagle.m Backterra.aBozori.e Levi-2961
Bagle.n Banuris.a Bozori.j Mental
Bagle.o Bereb.a Dabber.a Mental-10000
Dumaru.r Bereb.b Dabber.b Neshta.a
Eyeveg.m Gedza.b Dabber.c Parite.a
Klez.a Gedza.c Domwoot.c Parite-b
Klez.e Habaku.b Doomjuice.bSeppuku.6834
Klez.i Kifie.a Kidala.a Small.a
Merkur.b Kifie.c Kidala.b Small.b
Mimail.j Kifie.f Lebreat.a Tapan-3882
Mydoom.ax Niklas.b Muma.b Thorin.11932
Mydoom.b Niklas.c Muma.c Thorin.b
Plexus.a Opex.a Opasoft.a Thorin.c
Sircam.a Polip.a Padobot.m Xorala
Sircam.d Zaka.a Sasser.b Younga.4434
Sober.a Zaka.f Theals.c ZMist
Sober.f Zaka.m Vesser.a ZPerm.b

Table 13 Set of 200 viruses

Email Peer to Peer Network Win32
Worms Worms Worms Viruses
Abotus Abuva 3DStars Aidlot
Actem Adil CodeGreen.a Andras.7300
Agist.a Alcan.a Cycle.a Apathy.5378
Alanis AntiFizz Ezio.a Apoc.a
Aliz Aplich Francette.a Arch.a
Altice Apsiv Francette.b Aris
Amus.a Aritim Francette.c Artelad.2173
Anarch Ariver Francette.d Bacros.a
Android Blaxe Francette.e Banaw.2157
Anel Cabby Francette.g Barum.1536
Animan Cake Hiberium.b Basket.a
Anpir.a Carfin Maslan.a Bayan.a
Antiax Cassidy Maslan.b BCB.a
Antites Cayen.a Mytob.q Bee
Aplore Cocker Protoride.aaBeef.2110
Apost Compatex Protoride.aiBender.1363
Assarm Compux.a Protoride.alBika.1906
Atirus Cozit Protoride.arBlateroz
Avoner Dafly.b Protoride.b Bluback.1376
Babuin Dani Protoride.bkBlueballs.4117
BabyBearDelf.a Protoride.e Bogus.4096
Badass Druagz Protoride.f Bondage.968.a
Bandet.aErdam Protoride.g Butter
Banza Flocker Raleka.b CabInfector
Bater.a Franvir Rega.a Cecile
Benny Furby Salie.a Civut.a
Bimoco.aGagse SdBoter.a Cloz.a
Black Gotorm SdBoter.b Cmay.1222
Blare Grompo SdBoter.c Cornad
Blitzy Halfint SdBoter.g Crosser
Bonorm Huntox SdBoter.k Delfer.a
Bormex Ident Shelp.a Devir
BorzellaInsta.a Spoder.a Dictator.2304
Botter.aInter Stap.b Dislex
Bumper Irkaz Stap.e Gipiras.a
Burnox Kabak.a Stap.f Hezhi
Calil Kamadina Syner.a Jlok
Calposa Kamafe Webdav.a Kenfa.a
Carfrin Kanyak.a Welchia.a Netlip
CervivecKapucen.bWelchia.b Niya.a
CWS.a Kazeus Welchia.c Porad.a
Happy Kenfo Welchia.e Sinco
Yoxec Kevor Xatch.a Spreder
Zar.a Kovirz Zan Sugin
Zhangpo Krepper Zusha.a TeddyBear
Zircon Lamerx Zusha.b VChain
Zoek Lemb.b Zusha.c Watcher.a
Zoher Vagas.a Zusha.e Zevity
Zush Walrain Zusha.f Zorg.a
Zwur.a Weakas Zusha.h Zori.a

123

234 J. A. Morales et al.

References

1. Adleman, L.M.: An abstract theory of computer viruses. In:
CRYPTO ’88: Advances in Cryptology, pp. 354–374. Springer,
Heidelberg (1988)

2. Bradley, T.: The new virus fighters. Datamation, January 2006.
http://www.pcworld.com/article/id,124163-page,4/article.html

3. Christodorescu, M., Jha, S., Maughan, D., Song, D., Wang, C.,
(eds.) Malware Detection. Springer, Heidelberg (2007)

4. Cohen, F.: A Short Course on Computer Viruses. Wiley Profes-
sional Computing, 1994. ISBN 0-471-00769-2

5. Daniel R. Ellis, John G. Aiken, Kira S. Attwood, Scott D.
Tenaglia.: A behavioral approach to worm detection. In: WORM
’04: Proceedings of the 2004 ACM workshop on Rapid malcode,
pp. 43–53. ACM Press, New York, (2004)

6. Draper, N.R., Smith, H.: Applied Regression Analysis. 3rd
edn. Wiley, New York (1998)

7. Eskin, E.: Anomaly detection over noisy data using learned prob-
ability distributions. In: Proceedings of 17th International Confer-
ence on Machine Learning, pp. 255–262. Morgan Kaufmann, San
Francisco (2000)

8. Evers, J.: Computer crimes cost 67 billion, fbi says. CNET
News.com, January 2006

9. Filiol, E.: Computer Viruses: from Theory to Applications. IRIS
International series, Springer, Heidelberg (2005). ISBN 2-287-
23939-1

10. Forrest, S., Hofmeyr, S.A., Somayaji, A., Longstaff, T.A.: A sense
of self for unix processes. In: Proceedings of 1996 IEEE Sympo-
sium on Computer Security and Privacy (1996)

11. Gostev, A.: Kaspersky security bulletin 2006: Malware evolution.
Viruslist.com, February (2007)

12. Hofmeyr, S., Forrest, S., Somayaji, A.: Intrusion detection using
sequences of system calls. J. Comput. Security 6, 151–180 (1998)

13. Irp function codes. http://msdn2.microsoft.com/en-us/library/
ms796136.aspx

14. Kaspersky, E.: Problems for av vendors: some thoughts. Virus Bull.
April 2006. http://www.virusbtn.com/virusbulletin/archive/2006/
04/vb200604-comment

15. Livingston, B.: How long must you wait for an anti-virus fix? Dat-
amation, February 2004. http://itmanagement.earthweb.com/

16. Lee, W., Stolfo, S., Chan, P.: Learning patterns from unix pro-
cess execution traces for intrusion detection. In: Proceedings of the
AAAI97 workshop on AI Approaches to Fraud Detection and Risk
Management, pp. 50–56. AAAI Press, New York (1997)

17. Montgomery, D.C. : Design and Analysis of Experi-
ments. Wiley, New York (2001)

18. Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalous system
call detection. ACM Trans. Inf. Syst. Secur. 9(1), 61–93 (2006)

19. Offensive computing malware repository. http://www.
offensivecomputing.net

20. Sekar, R., Bendre, M., Dhurjati, D., Bollineni, P.: A fast automa-
ton-based method for detecting anomalous program behaviors. In:
SP ’01: Proceedings of the 2001 IEEE Symposium on Security and
Privacy, pp. 144. IEEE Computer Society, Washington, DC (2001)

21. S-plus statistics sofware package. http://en.wikipedia.org/wiki/
S-PLUS

22. Stolfo, S., Apap, F., Heller, K., Eskin, E., Hershkop, S., Honig, A,
Svore, K.: A comparative evaluation of two algorithms for windows
registry anomaly detection. J. Comput. Security, 13(4), (2005)

23. Szor, P.: The Art of Computer Virus Research and Defense. Sy-
mantec Press and Addison-Wesley, 2005. ISBN 9-780321-304544

24. Von Neumann, J.: Theory of self-reproducing automata. Technical
report, University of Illinois (1966)

25. Vx heavens. http://vx.netlux.org/
26. Warrender, C., Forrest, S., Pearlmutter, B.A.: Detecting intrusions

using system calls: Alternative data models. In: IEEE Symposium
on Security and Privacy, pp. 133–145 (1999)

123

http://www.pcworld.com/article/id,124163-page,4/article.html
http://msdn2.microsoft.com/en-us/library/ms796136.aspx
http://msdn2.microsoft.com/en-us/library/ms796136.aspx
http://www.virusbtn.com/virusbulletin/archive/2006/04/vb200604-comment
http://www.virusbtn.com/virusbulletin/archive/2006/04/vb200604-comment
http://itmanagement.earthweb.com/
http://www.offensivecomputing.net
http://www.offensivecomputing.net
http://en.wikipedia.org/wiki/S-PLUS
http://en.wikipedia.org/wiki/S-PLUS
http://vx.netlux.org/

	Characterization of virus replication
	Abstract
	1 Introduction
	2 Literature review
	3 Characterizing replication
	4 Replication detection models
	4.1 Operation sequence detection model
	4.2 Replication state frequency model

	5 Experiments
	5.1 Experiment setup
	5.2 Operation sequence testing
	5.3 Replication state frequency testing
	5.4 Discussion

	6 Conclusion and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

