J Comput Virol (2008) 4:335-345
DOI 10.1007/s11416-008-0087-z

ORIGINAL PAPER

A boosting ensemble for the recognition of code sharing in malware

Stanley J. Barr - Samuel J. Cardman -
David M. Martin Jr.

Received: 11 November 2007 / Revised: 29 March 2008 / Accepted: 6 April 2008 / Published online: 22 April 2008

© Springer-Verlag France 2008

Abstract Research and development efforts have recently
started to compare malware variants, as it is believed that mal-
ware authors are reusing code. A number of these projects
have focused on identifying functions through the use of sig-
nature-based classifiers. We introduce three new classifiers
that characterize a function’s use of global data. Experiments
on malware show that we can meaningfully correlate func-
tions on the basis of their global data references even when
their functions share little code. We also present an algorithm
that combines existing classifiers and our new ones into an
ensemble for correlating functions in two binary programs.
For testing, we developed a model for comparing our work
to previous signature based classifiers. We then used that
model to show how our new combined ensemble classifier
dominates the previously reported classifiers. The resulting
ensemble can be used by malware analysts when they are
comparing two binaries. This technique will allow them to
correlate both functions and global data references between
the two and will lead to a quick identification of any sharing
that is occurring.

S. J. Barr (X) - S. J. Cardman

Distributed Systems Center, The MITRE Corporation,
Bedford, MA 01730, USA

e-mail: sbarr@mitre.org

S.J. Cardman
e-mail: sc@mitre.org

D. M. Martin Jr.

Computer Science Department,
University of Massachusetts Lowell,
Lowell, MA 01854, USA

e-mail: dm@cs.uml.edu

1 Introduction

The benefits of reusing a software component are consid-
erable. The cost of the product may decrease because less
effort must be expended in development and the reliability
of the product may increase because the reused component
has already been tested. Thus, it comes as no surprise to learn
that writers of malware reuse old code and incorporate each
others’ designs and implementations into their programs. In
this context, there is an urgent need to be able to compare
two malware samples and identify commonality.

Researchers can reverse engineer a piece of malicious soft-
ware to understand its operation [1]. However, reverse engi-
neering is laborious. In cases such as the Bagle virus, new
versions keep appearing [2]. A new variant may appear before
the analysis of a previous version is complete. Leveraging the
analysis of common behavior preserved between generations
would be a great step in understanding and combating new
malware variants.

Global identifiers such as variable and function labels
allow for the correlation of functions between two binaries.
But malware is usually presented as a stripped binary, i.e.,
function and data labels have been removed and no source
code or other metadata is available. This makes it more dif-
ficult to analyze the binary or compare it to another binary.

Current techniques of comparing two binaries for similar-
ity rely on correlating functions by generating code based sig-
natures [3—10]. Some example features for these code based
signatures are comprised of instruction sequences, control
flow graphs, function call graphs, and DLL (dynamically
linked library) function calls. Thus, for example, binaries
can be compared when they reference external functions pro-
vided by the operating system through the use of DLLs,
because symbol names must be kept when external refer-
ences are used. A signature can be constructed for a function

@ Springer

336

S.J. Barr et al.

simply by enumerating the names of externally referenced
functions and the number of times each external function is
mentioned in the binary code. If two functions in different
binaries share such a signature and each signature is unique
within its own executable, then this would suggest that the
two functions are related.

Now the question naturally arises: can one improve the
comparison by including and correlating global data refer-
ences? Roughly speaking, any absolute address named by a
binary’s machine code is considered a global data reference
if it is read from, written to, or stored on the stack. Thus, no
distinction is made between scalars, arrays, or pointers.

To answer the question, we have combined several sig-
nature based classifiers into an ensemble. This ensemble
includes existing classifiers and introduces three new classi-
fiers. The first new classifier, GdrMatcher, associates a piece
of global data with the functions that refer to it. The second
classifier, AllLocallds, describes a function by listing its own
global data references. The third classifier, AllParentIds, de-
scribes a function f by listing the global datareferences of the
callers of f. This new ensemble can be used to correlate both
functions and global data references between two binaries.
We develop a model to compare the ensemble’s performance
before and after our new classifiers have been integrated and
demonstrate that the new ensemble is an improvement over
the former.

We also conduct an experiment to explore the concept of
correlating global data references in an attempt to answer
two basic questions:

1. Can we use these correlated data references to develop
more accurate function correlations?

2. Can we correlate global data references among entire
binaries known to be related and avoid spurious correla-
tions between unrelated binaries?

We conducted our experiments with malware for the fol-
lowing reasons.

— There are large data sets of hand-classified malware vari-
ants that we can compare with our algorithm’s output.

— When malware first appears, it must be analyzed in
order to understand the full extent of its behavior. How-
ever, reliable detection and identification even of bounded
length mutating viruses is NP-complete [11]. Alternate
approaches to malware identification are therefore quite
appropriate.

— Malware authors modify existing malware to improve
functionality and evade detection by antivirus products.
These modifications are accomplished both by modifying
source code and directly manipulating existing binaries.
While it is suspected that malware authors share code, no

@ Springer

one has an accurate assessment of the extent or scope of
this practice.

— In our sample set we found the average malware pro-
gram had 134 global data references, suggesting that at
least this subset of malware is amenable to correlation of
global data references.

Combined with the threats posed by malware, these reasons
make it a reasonable data set for analysis, comparison, and
exploration.

As previously stated, our current data set has on average
134 data references per executable. As malware programs
grow in complexity and size we believe more references
will appear in binaries. Provided that each data reference
has a unique usage pattern (see signature (10)), we currently
believe any number of them could be correlated between two
related samples.

It should be noted although we are analyzing malware,
we are not attempting to create an antivirus tool for detecting
malware variants. Antivirus tools may be able to detect that
two programs are variants even when we cannot identify any
shared functions: their goal is to use any distinctive portion of
the code or data to construct a signature for reliable detection.
We instead seek to correlate information in order to support
the reverse engineering process, and allow researchers to find
commonalities between binaries.

The paper is structured as follows. Section 2 describes
previous efforts from which we have drawn components.
Section 3 discusses desirable properties for our classifiers.
Section 4 describes our algorithm. In Sect. 5, we describe
our experiments. Section 6 offers our conclusions and some
possible future directions. More details can be found in an
extended version of this paper [12].

2 Related work

There are a number of techniques that have been shown to
help identify software variants. We have drawn heavily from
these works.

— Hashes: Cryptographic hashes have been used to identify
software clones in source and in binaries [4], although
they are overly sensitive to minor variations in the input.

— Sequence analysis: Sequence analysis algorithms [9,13]
have proven successful in the analysis of related bina-
ries. In fact, most antivirus tools are based on sequence
matching. These techniques usually do not require disas-
sembling binary code. This is appealing, since malicious
coders can employ a number of techniques to thwart dis-
assembly [14]. However, they are susceptible to certain
types of obfuscation such as the substitution of semanti-
cally equivalent instruction sequences.

A boosting ensemble for the recognition of code sharing in malware

337

In a recent paper [10], the author demonstrated some
interesting results based on Boolean function modeling.
The patterns he used to detect malware using this new
model allow for efficient detection. Also, the patterns are
robust to black-box analysis, making it difficult for mal-
ware authors to determine what portions of the executable
comprise the pattern being checked.

The author of [15] takes a completely different approach
for sequence analysis. This work uses the notion of nor-
malized compression distance, which is derived from
Kolmogorov complexity [16]. The idea put forth is that
if two strings are similar then the concatenation and sub-
sequent compression of the strings will result in a length
which is not that much larger than the length of com-
pressing the larger of the two by itself. And conversely,
the same operation on two strings which are not simi-
lar would result in an output length significantly larger
than the result of compressing either individually. The
difference of the resulting length’s is considered a dis-
tance between the two strings. The file contents of mal-
ware samples are used as input strings, and the resulting
distances between the samples are used to cluster them.

— Graph matching: We use the techniques given in [3],
which allow for the construction of hashes from control
flow graphs. Other research has offered novel techniques
for identifying variants of binaries by mapping program
control flow features into directed graphs and then using
graph theoretic techniques to determine the similarity of
the original code [5,8].

— Function signatures: The authors in [5,6] describe using
structural components of functions to create signatures.
Some of the structural components which have been used
to compare functions in different executables are: the
strings referenced, system calls made, and assembly lan-
guage opcodes used.

This research has focused on enhancing these approaches
to increase their detection of software variants. When we
have the ability to correlate functions between two binaries,
it is useful to have a metric that gives a numeric value to the
amount of code shared. We have incorporated the similarity
metric developed in [6] as our measure.

3 Desirable properties for binary code classifiers

In order to reliably detect variant binaries, it is important
to understand how changes can manifest themselves in the
binaries. The work done in [5,3] provides more information
on variability in compiled code bases. Simply put, traditional
compilers follow a deterministic process during code genera-
tion. Therefore, variants occur because a different compiler is
used, the source code is modified, or modifications are made

directly to the binary. Changing optimization levels to trade
computation time for program size can significantly change
the generated code. Different compilers or compiler versions
may generate different binaries for the same code. While in
general authors can make an infinite variety of modifications,
they often follow the ancient adage “If it ain’t broke, don’t
fix it!” By only altering code whose behavior they seek to
change, they may leave enough information intact to iden-
tify and correlate functions.

In this research we restrict ourselves to the following types
of variants: instances where functions or blocks have been
reordered, code where the compiler settings may have intro-
duced subtle changes, and cases where changes have left
the structure of the code relatively similar. These restrictions
allow for variability in the structure or functionality when
comparing functions. They also require some measurable
feature be preserved. This measurable feature becomes the
basis for the claim that two pieces of code being compared
are variants. To identify these variations our ensemble will be
insensitive to the following categories of code modifications,
as referenced in [5]:

— Function reordering

— Alternate register allocation schemes

— Locations and offset changes

— Branch inversion and block re-ordering

— Simple insertion, deletion, transposition, and substitution
of instructions

Instead of trying to accomplish the above objectives with
a single complex classifier, we use a number of simple clas-
sifiers. Each one focuses on identifying functions based on
different characteristics. The goal is to construct an ensem-
ble with classification ability better than the sum of each of
the classifiers working independently. Works such as [17,18]
have laid foundations showing that one can combine multiple
weak clustering and classification algorithms to produce a
single strong ensemble.

4 Boosting algorithm
4.1 High-level description

Our ensemble takes two binaries as input. Processing starts
by extracting features from both binaries. These features will
form the basis of our signature construction. Features are
provided primarily by parsing the C-like output of the REC
Reverse Engineering Compiler [19]. Each feature will be
introduced and developed as needed.

Once the features have been extracted the ensemble starts
an iterative matching process, during which it accumulates
@, a common set of equivalent functions, and I", a common

@ Springer

338

S.J. Barr et al.

set of equivalent global data references. Both sets are
initialized to the empty set and share the form {(ai, b1),
(a2, by),...}. In @ each a; and b; represent function ad-
dresses in binaries A and B respectively. Similarly, in I", a;
and b; represent global data reference pairs.

Pairs are matched and added to these sets using one of our
signature algorithms as follows. First, only currently unla-
beled objects are considered during each iteration. We then
focus on those objects that have a unique signature in the first
binary and search for that signature to be present uniquely
in the second binary. If found, the two items are paired and
labeled, the pair is inserted into the appropriate @ or I set,
and the two items are removed from the pool of unlabeled
objects. At the beginning of the next iteration, we reevaluate
the signatures previously ignored due to their non-unique-
ness: a signature that was previously non-unique in its binary
may later become unique again if all but one of its objects in
the same executable have since been successfully matched
between the executables. The algorithm terminates after a
cycle in which no new pairs are matched.

4.2 Signatures

Our ensemble classifier uses two types of signatures. Static
signatures depend only on the extracted features. Dynamic
signatures make use of matchings accumulated in @ and I
in addition to extracted features. This improves the quality
of subsequent signatures generated, although at the cost of
computing some signatures on the fly.

The following two lists describe our signature generation
algorithms. Each algorithm will be depicted as

Name : (argi[,arga, ..., arg,]) — Signature. (1)

Here Name is a short descriptive identifier. The first argument
argy will represent both the binary and either some extracted
feature of a function or the location of a global data reference
in that binary. Any other required features will be passed in
argy through argy,. Each algorithm will yield Signature, a
value which can be compared with others (generated by the
same algorithm) in linear time based on the length of the
signatures.

4.2.1 Statically constructed signatures

— Named symbol look up: Executables generally use DLLs
to invoke external functions by name, whether they are
implemented in the operating system or in other applica-
tion libraries. Compilers support this by generating wrap-
per stubs in the caller’s executable. Each stub is a simple
wrapper function used to call the desired target through
an import table that is populated at runtime. Our first sig-
nature labels each such stub address with the name (as
a string) of the function it is dynamically linked against.

@ Springer

Since not all functions are wrapper stubs, this signature
may be only partially defined. The partial signature

DIIName : (fn) — RealName 2)
takes fn, the location of a wrapper function, and yields

a text string RealName that denotes the name of the im-
ported function.

— MD?5 hash of binary function: The signature

MD5y,, @ (fn) — 128-bit hash 3)

takes as input a binary representation of the function fn
and yields its 128-bit hash. MDS5 was chosen due to its low
probability of collisions.! It exhibits very high precision
in determining exact matches, so there is almost no chance
of getting a false positive. However, a single bit change
causes an unrecoverable mismatch. Therefore, we would
like a more resilient approach that gives roughly the same
precision without being as sensitive to a single bit change.

— MDS5 hash of opcodes from a function: As suggested in

[4], we relax the MD5 hash to apply to the string form of
the opcodes that comprise a function. The signature

MDSopcode : (ﬁ’l) — 128-bit hash 4)

takes as input the sequence of opcodes that comprise the
function fn (e.g., “xor”, “inc”, “mov”, etc.) and yields its
128-bit hash. This feature is invariant to differences in
register assignment, immediate values, and other oper-
ands but still represents the sequence of instructions in
fn. It would seem that the opcode signature alone should
be sufficient to differentiate functions. However, during
our experiments we found many counterexamples to this
notion. It appeared that many functions were constructed
from template code, perhaps as a consequence of macro
expansion. Sometimes, the only differentiator was a sim-
ple constant value, or areference to a specific global mem-
ory location.

— Control flow graph: Control flow graphs allow us to com-

pare the control structure of two functions. Each function
can be depicted as a directed graph whose nodes repre-
sent the basic blocks of contiguous instructions where
control only passes directly from one instruction to the
next, and edges represent the flow of control connecting
the blocks of contiguous instructions. This allows us to
compare functions without being concerned about their
constituent instructions.

Since detecting graph isomorphism is GI-complete [20],
we relax the signature to make comparisons feasible. The

! Note that the specific MD35 collisions demonstrated in 2004 do not
appear to directly affect the probability of collisions on random inputs.

A boosting ensemble for the recognition of code sharing in malware

339

signature represents the graph in a way that captures some
of the edges in the graph, but also allow for linear time
complexity for comparison. This representation is safe:
it captures features necessary for detecting isomorphism,
although it does not capture all such features.

Our specific approach follows that of [3]. Kruegal et. al.
constructed adjacency matrices using all subsets of nodes
for a given fixed size k, and the edges that connected
those nodes in the function’s control flow graph. For our
research we arbitrarily set k = 4. The individual rows
of each 4-by-4 adjacency matrix were then concatenated
together to form a 16 bit value, each of which is labeled
h; in the following signature.” The list of 16 bit values
constructed for each function is sorted once during the
feature extraction phase. To compare two functions dur-
ing a run, we simply compare the sorted lists of values
for equality. This test can be done in time linear in the
number of features.

The signature

Cfg: (fn) — {h1,ha, ...} 4)

requires fn be the representation of the control flow graph
for the given function and yields a set of features {hy, 7,
...} representing that control flow graph.

— Parameter count: We also count the number of param-
eters passed at entry and total number of unique global
variables referenced by the function. The signature

Params : (fn) — (p, g7, 8a) (6)

yields a tuple for function fn where p is the number of
parameters that fi receives, g s is the number of pointers
to recognized functions that appear in fin, and g, counts
how many other global data references appear in fi. Each
of these values tends to be small, so the Params signature
is fairly coarse.

4.2.2 Dynamically constructed signatures

The preceding signatures do not depend on the greater con-
text in which the functions appear. We call them static, since
they only need to be computed once. The remaining sig-
natures depend both on the function itself and knowledge
deduced about the overall executable. Since this knowledge

2 1t is important to note that many 4-by-4 adjacency matrices are iso-
morphic to one another. As we were constructing a 16 bit value for
comparison we needed to make sure all isomorphic adjacency matrices
generated the same 16 bit value. As part of our experimental setup we
constructed a 4-by-4 adjacency matrix for each possible 16 bit value.
All isomorphic adjacency matrices were grouped together and for each
group a representative 16 bit value was chosen to be returned.

grows as the algorithm runs, we call these signatures
dynamic.

— Function call vector matchers: The function call vectors
we extract allow us to create a signature for each func-
tion fin depending only on the list of functions directly
invoked by fn. This signature is invariant under control
flow changes and other types of code modifications. We
limit this signature to enumerating the number of times
an unlabeled function makes calls to functions that are
already known to exist in both binaries.

The signature

CallRefs : (fin,) — {(n1,x1), ...} 7

takes as input fn’s entry from the call vector enumerating
all of the functions that fnn invokes along with the number
of times they are invoked. The result is a set of tuples of
the form (n;, x;), with each tuple indicating that fi calls
x; in n; different places, and each x; € @. The latter
condition means that this signature only considers those
functions called by fn that have already been matched.
We emphasize that this tuple results from a static analy-
sis of fn: the number n; indicates the number of different
instructions in fn that call x;, rather than the number of
times x; is called at run time. A simpler form of this sig-
nature was used in [6], wherein each n; is a Boolean value
rather than a call count.

Likewise, the signature

ParentRefs : (fn, @) — {(n1, x1), ...} (8)

takes as input fn’s entry from the call vector enumerat-
ing all of the functions that invoke fi and the number of
times fn is invoked by that function. The result is a set of
tuples of the form (n;, x;), with each tuple indicating that
x; calls fn in n; different places, and each x; € @.

— Duplicate signature combiner: We define a compound
signature

JoinSig : (fn, D) — {(t1, v1), (2, v2), ...} ©)

where D is a set of tuples (f;, i, v;) in which function
fi has a signature of type #; with value v;. The output
is those pairs (¢, v;) of signature types and values that
describe fn. In our algorithm, the set D will be popu-
lated with a list of signatures that are duplicates: they are
not unique in their functions’ own executables. By com-
bining duplicate signatures of different types, we may
be able to construct a unique signature. For example con-
sider aprogram A, where DA = {(f1, Params, (1, 1, 0)),
(f2, Params, (1, 1, 0)), (f2, Cfg, (x, y,2)), (f3,Cfg,

@ Springer

340

S.J. Barr et al.

(x, vy, 2))}. Note that none of the signature values in D A
is unique.
Then JoinSig(f;, DA) = {(Params, (1, 1, 0))}. Howe-
ver, this consists of a single signature type, and our algo-
rithm will separately use the Params (1, 1, 0) signature
to attempt to match functions in A and B. Therefore,
the JoinSig does not contribute any new information in
the attempt to match f] to a function in B. Similarly,
f3 does not benefit from JoinSig in this case. However,
JoinSig(f>, DA) = {(Params, (1, 1, 0)), (Cfg, (x,y,
z))}. Neither f; nor f3 share this JoinSig; it is therefore
unique and may be used to search for a matching function
in B.

— Global data reference matcher: This new signature makes
use of global data references contained in the binary pro-
gram. The signature

GdrMatcher : (gdr, ®) — {x1, x2, ...} (10)

takes a global data reference gdr and @, and yields a
set of functions where each x; € @ contains a refer-
ence to gdr. If the signature value is unique within a
program, then its global data reference gdr is uniquely
shared among the named subgroup of functions. Also,
this subgroup of functions is known to exist in both bina-
ries, because each x; € @ represents a matched func-
tion. If some global data reference from the other bi-
nary shares this unique signature, then our algorithm will
equate them. When two variables are equated during the
matching process, we insert the pair into a common set of
shared variables I, just as functions are placed into @.

— All labeled locations matchers: These two signatures for
matching functions make use of knowledge contained in
both @ and I". The signature

AllLocallds : (fn, @, I') — ({x1, ...}, {y1, ---}) (11)

takes as input a function fn, @, and I" and yields a pair
of sets. The x; € @ are the previously matched functions
that fn calls, and the y; € I are the previously matched
global data references that fn refers to.

Likewise, the signature

AllParentIds : (fn, @, I') — ({x1,...}, {y1,...}) (12)

takes as input a function fn, @, and I" and yields pair of
sets. The x; € @ are the previously matched functions
that call fin, and the y; € I" are the previously matched
global data references that are referred to by some x;.

@ Springer

4.3 Ensemble classifier algorithm

The ensemble classifier algorithm maintains two sets for each
binary; a set of unlabeled functions and a set of unlabeled
global data references. The function StaticSig(S, ItemSet)
takes a signature-generating function S to invoke and a set
ItemSet of unlabeled items of the type S takes as input. It
yields a pair of sets (Unigs, Dups) where Unigs ={(x, Sig),
(x2, Sigy), ...} with each item x; € ItemSet, S(x;) = Sig;,
and no Sig; is repeated in the list. The set Dups = {(Sig;, x1,
X2, ...), ...} where each signature Sig; associated with at least
two items from ItemSet. Every item in ItemSet appears either
in Unigs or Dups.

The function DynamicSig(S,A r,®, I') works the same
way as StaticSig except that it takes as arguments ¢ and
I', which as stated earlier are the sets of functions and glo-
bals, respectively, that have been deemed equivalent between
the two programs. Dynamic signatures use information pre-
viously accumulated in @ and I". Therefore, if @ and I
are empty then no new signatures will be generated by
DynamicSig.

The function EquateEquivs(Uniqs 4, Uniqsg, ItemSety4,
ItemSet 5, LabeledSet) processes Unigs sets. Any Sig; found
in both Unigs 4 and Unigs g describes an item that is consid-
ered equivalent in the two binaries. The items paired with
Sig; in their corresponding Unigs set are removed from their

Algorithm 1 Ensemble classifier

Require: Ay and B/ to be unlabeled function locations.
A, and By to be unlabeled global data references locations.
@ ={}
r={}

(Ua, DAgyis) = StaticSig(DlIName, A ¢)
(Up, DByjjs) = StaticSig(DlIName, B)
EquateEquivs(Us, U, Ay, By, @)
repeat
for S € {MD5pin, MDS5opcode, Cfg, Params} do
(Ua, DAg) = StaticSig(S, Ay)
(Up, DBg) = StaticSig(S, By)
EquateEquivs(Ua, Ug, Ay, By, @)
end for
for
S € {CallRefs, ParentRefs, AllLocallds, AllParentIds}
do
(Ua, DAg) = DynamicSig(S, Ay, @, I")
(Up, DBs) = DynamicSig(S, By, @, I")
EquateEquivs(Ua, Up, Ay, By, @)

end for
DA =|J DAsg
DB =] DBs

(Ua, Up) = JoinSigsOfDups(DA, DB)
EquateEquivs(Ua, U, Ay, By, @)
U = DynamicSig(GdrMatcher, A,, @, I')
Up = DynamicSig(GdrMatcher, Bg, @, I")
EquateEquivs(Ua, Up, Ag, Bg, I')

until @ stops growing

return &,I°

A boosting ensemble for the recognition of code sharing in malware

341

respective ItemSets and are paired together and appended to
LabeledSet: specifically, function pairs are appended to @
and global data references to I".

The algorithm starts by using DIIName (see (2)) to iden-
tify common imported functions. As all imported functions
are guaranteed to be unique this is done only once. It then
enters a repeat/until loop which iterates until no new func-
tion pairs are appended to @. At the start of each iteration the
algorithm executes each of the static signature classifiers to
equate functions. Although the static signatures themselves
do not change, their classification as unique or duplicate may
change, because the sets Ay and By shrink as functions
are equated. The algorithm then equates functions using our
dynamic signatures.

After all function based signatures are used individually
we call JoinSigsOfDups(D A, DB), where DA and DB are
the sets of all the Dups sets generated by all the individual
signature algorithms. This function uses the JoinSig (see (9))
and the supplied Dups sets to identify those JoinSigs that are
unique among the JoinSigs in their own binary. These unique
signatures are then used to match functions, if possible.

Finally, after all signatures primarily based on functions
have been used, we use that information in GdrMatcher to
correlate global data references into I". After all global data
references have been correlated this iteration is complete. If
@ had no new functions appended during this iteration the
loop is terminated.

Each iteration removes at least one function from A y and
By. Therefore, the maximum number of iterations for our
ensemble is bounded by the number of the unlabeled func-
tions in the input programs.

4.4 Measure of similarity

Upon termination the ensemble has computed a set of func-
tion matches @ and data reference matches I" for the given
pair of binaries. To represent the correlation of the binaries we
use the measure of similarity between two programs devel-
oped in [6]. In computing this measure let programs A and
B have a total of i and j compiled functions respectively
and let n = |@|, the number of functions deemed equiva-
lent between the two programs. The fraction n/i is in the
interval of [0, 1] and relates what percentage of the functions
in program A are in the common set. Similarly, n/j relates
information pertaining to program B. The metric

2
Sime = — (13)

tj
will also be in the interval [0, 1] and will be used to relate
the overall percentage of functions in the common set.
In a corresponding way we let n = |I'| and i, j represent
the global data references in the two programs. The same
computation with n, i, j will produce Sim . We use this to

relate the percentage of global data references in the common
set.

5 Experiment
5.1 Data set

We acquired the malware data set from [21] to conduct our
experiment. There were 4200 programs that were unpack-
able with RAR [22], UPX [23], or that required no unpack-
ing and appeared to be non-obfuscated. For the experiment
we selected the 638 programs that seemed UPX-unpackable
and unpacked them for analysis. The name-based taxon-
omy included with these binaries indicated that some were
already considered variants of each other while others were
not known to be related.

5.2 Performance model

To show that our new signatures (10), (11), and (12) offer
improvement, we need an improvement measure other than
a statistical test for accuracy. This is simply because no such
objective accuracy test exists.

The data set does contain labels indicating that certain
binaries are considered variants of each other. However, mal-
ware classification and taxonomy construction is an open
problem [24]. We cannot assume that the labeling in our
input data set is complete or even consistent. There is evi-
dence that malware authors reuse code, so if we discover
more matches among code than are reported in the provided
labels, we should not necessarily conclude that our matches
are incorrect. And although malware authors may rewrite
code merely in order to disguise it, they may also rewrite code
in order to change its functionality. In that situation, decreas-
ing the computed numerical correlation between two gener-
ations of the same program is appropriate. Therefore, there is
currently no objective way to prove that one classifier ensem-
ble is more accurate than another simply because it produces
more (or fewer) matches. More generally, there are no uni-
versally accepted quantifiable software engineering metrics
for measuring changes in binary code. Thus, developing a
statistical test for improvement of accuracy is not practical
when comparing classifiers in sets of compiled programs.

Instead of making a case for the improvement of accu-
racy, we demonstrate that by including our new signatures
we have created a new classifier that should be used in place
of another one. If our new classifier produces what we think
is a rational behavior at least as often as the original version,
following [25] we will say that the new classifier is dominant
for this classification task.

Given the following criteria, we claim our new ensemble
dominates the original. Let s; and s, be programs,

@ Springer

342

S.J. Barr et al.

LabeledVariants be a function that determines whether
they are labeled as variants in the input data set, and
Matches(classifier) be the number of functions matched by
classifier when comparing s and s,. Here classifier is either
C1, the old ensemble of signatures (2-9), or C», which also
includes our new signatures (10—12). The function VarsFound
returns true when C, finds s; and s, share at least one vari-
able. In (14) we simply accumulate votes for which classifier
does a better job based on the available information. The
classifier that accumulates the higher total of votes will be
considered the dominant classifier.

C| if not Labeled Variants(sy, s2) and
Matches(C1) < Matches(C»)

C if LabeledVariants(s,s2) and
Matches(C1) > Matches(C»)

C if not LabeledVariants(sy, s») and
Matches(C) = Matches(C»)
and VarsFound(sy, s2)

C if LabeledVariants(sy, s2) and
Matches(C) = Matches(C»)
and not VarsFound(sy, s7)

dom(sl, s2) = |

C, otherwise
(14)

For the remainder of the paper we will say the classifier with-
out our new signatures is the original ensemble classifier, and
the new ensemble classifier contains our new signatures.

5.3 Similarity results

Analysis of the 638 programs resulted in 203203 pair wise
program comparisons, each of which resulted in a vote for a
classifier as defined in (14). This number includes 800 pro-
gram pairs labeled as variants in the input data set and the
remaining 202403 not designated variants. This labeling was
done by the maintainers of the malware repository [21]. The
experiment resulted in a total of 149590 (74 %) votes in favor
of our new classifier. Note that the overwhelming majority of
pairs (99.6%) are not labeled as variants. When comparing
such pairs, equation (14) results in a vote cast for the old clas-
sifier if the new classifier matches more functions than the
old one does. Thus this result shows that on 74% of all pairs,
the new classifier is not finding any more function matches
than the old one did.

Of those pairs that were labeled variants in the input, there
were 610 (76%) votes for the new classifier. This means that
the new classifier was either able to match more functions
or it matched the same number and was also able to match a
global variable.

Together, these results indicate that the new classifier is
dominant for the classification task on this data set.

@ Springer

We also examined the individual changes in matchings
that come from incorporating global data references.

Figure 1 depicts the operation of the original ensemble in
relation to the new ensemble. Each point in the graph repre-
sents comparisons of two programs that are labeled as vari-
ants in our data set. The x-coordinate is the percentage Simg
for the original ensemble. The y-coordinate is the percentage
Simg for our new ensemble.

In the 800 pairings of programs labeled variants, sixty-
eight of them resulted in a higher Sim¢ value and nine pair-
ings resulted in a lower value. The decrease in Sim g in these
nine pairings was due to the new classifier matching twelve
fewer function pairs and constructing one different function
pairing. We manually reviewed these twelve function pairs.
In all but one case our manual review agreed there was reason
to remove each of the matchings; in the manual review of the
one different pairing, we agreed with the new ensemble.

We expected that programs that had been previously
labeled as variants of each other would have generally higher
degrees of similarity than unrelated ones. We believed this
would allow for a number of variables identified in one ver-
sion to be transferred to another. We took every pair of pro-
grams labeled variants and plotted Simg as a percent versus
the percentage of variables named in Fig. 2. As programs
share more functions in common, we are able to detect more
shared data references.

In general, we are able to correlate about 9% global data
references as computed by Sim - when two programs labeled
variants share 50% code as computed by Sim ¢ . The question
arises: what is the quality of the matches made by our ensem-
ble? We picked global data reference matches generated by
our ensemble at random and reviewed the code manually.
Program pairings that shared less than 25% code had many
variable matches in which our manual review disagreed with
our ensemble. But when programs exhibit function similarity

o
o

» D @
o o o
LA
y
e
*{Lji

Percentage of functions deemed equivalent
by improved classifier

N

o
i,

*,

*,
*,
.

ol L L L L
0 20 40 60 80 100

Percentage of functions deemed equivalent bypre-exsiting classifier

Fig. 1 Function matches in the original ensemble compared to the new
ensemble on binaries that are labeled variants

A boosting ensemble for the recognition of code sharing in malware

343

-
o
o

80

60

++

40 b

thay

+ . .

20 | PR
T

+ + F+ +

+ + +
. — LR, + é& 5 f Lﬁ}}it:*; frf

by e Al ety | et B

0 20 40 60 80 100
Percentage of functions deemed equivalent

+

+ o+ +

Percentage of global references deemed equivalent

o

Fig. 2 Named functions versus named global data references

metrics above 50%, the variables matched generally seemed
to have similar usage roles in the two executables.

Thus it appears that global variable matching is better used
for associating variables in executables that are suspected to
be related, and boosting confidence in that assessment, than
as a primary means for determining whether two executables
are in fact variants of each other. We revisit this question in
Sect. 5.4.

We next compare a subset of our results with those gen-
erated by Carrera et al. [6]. Carrera had access to a different
subset of samples than we did. Carrera split his results into
two tables, one for variants A, B, C, D, E, and F with another
for variants H, 1, J, L, and M. For space reasons we show only
the latter in Table 1, results for the former are similar. Each
filled entry represents the Simg x 100 value generated by
(C)arrera on the left, our (O)riginal ensemble in the middle,
and our (N)ew ensemble on the right. This table shows that
our results are generally consistent with Carrera’s.

The most interesting result was the discovery of programs,
which while unrelated by the taxonomy, still seemed to share
a large number of functions and global data references. No
analysis has been conducted yet to determine the nature of the
units of code shared among these executables. However, both
the percentage and sheer number of matched functions bet-

Table1 Carrera’s and our results for Email-Worm.Win32.Mimail sam-
plesH, L, J,L, and M

I J

c O N C O N C O N C O N

H 8 84 8 83 8 84 91 94 94 8 96 96

1 95 98 98 82 79 81 80 8 85
J 8 79 81 81 8 85
L 90 98 98

Table 2 Top five programs thought unrelated by name with percentage

of the functions and global data references shared

Fns Data
Program A Program B # % # %
Trojan-Spy.Banker.di ~ Trojan-Spy.Coiboa.b 520 89 28 19
Trojan.ZomJoiner.0l.a Trojan-PSW.Zombie.12 493 88 82 17
Backdoor.Fluxay.0473 HackTool.SmbCrack.4 560 74 78
Backdoor.DarkSky.b ~ Trojan.ZomJoiner.0l.a 479 76 56
Backdoor.DarkSky.b ~ Trojan-PSW.M2.147 490 71 81 14
Table 3 Statistics generated from votes cast
Total pairs 203203
Number of variants 800
Precision 1%
Recall 77%
Accuracy 73%
False negatives 22%
False positives 26%

ween the executables strongly suggests that the VxHeavens
names for these programs do not adequately reflect their
shared ancestry. Furthermore, the matched data references
provide important points of reference for an analyst trying to
discern the shared behaviors of the matched programs.

Table 2 shows our top five novel discoveries of this code
sharing. Columns one and two are the names of the programs,
columns three and four show the number and percentage of
functions shared according to Sime, and finally columns
five and six show the number and percentage of the total data
references shared as according to Sim .

5.4 Using global data references as a discriminator

We also considered using global data references to predict
whether two binaries are variants. For this experiment, we
regarded the input labels of executables as ground truth and
attempted to determine whether two executables are variants
of each other. If we detected at least one shared global data
reference, then we reported that the two programs are vari-
ants; otherwise we reported that they were unrelated.

From the votes tabulated we constructed five standard sta-
tistical measures, shown in Table 3. Precision indicates what
percentage of examples correctly classified as variants were
predicted to be variants. Recall shows what percentage of
actual variants are correctly classified. Accuracy shows the
percentage of correct classification decisions. False positives
show the percentage of negative examples incorrectly clas-
sified as positives. False negatives show the percentage of
positive examples incorrectly classified as negatives.

@ Springer

344

S.J. Barr et al.

The good recall and accuracy suggests that our new
ensemble makes reasonable assessments about whether two
programs may be variants. More analysis needs to be done to
understand the nature of the false negatives; it may simply be
that those variants do not share any correlatable data refer-
ences. The low precision and high false positive percentages
are not surprising: we found evidence of code sharing among
programs not designated as variants. We believe that the
results generated in Table 2 are not spurious, and instead
reveal commonality not designated by the current taxonomy.

6 Conclusion and future work

We have shown that several weak classifiers can be com-
bined to build a stronger ensemble classifier for use in reverse
engineering. The ensemble we presented can be used to cor-
relate global data references between binaries. Among bina-
ries known to be related, we can correlate roughly 9% of the
total data references using Sim as our measure.

Thus, we believe we can answer yes to both questions
posed in the introduction: correlating data references does
lead to better function correlations, and correlated data ref-
erences do usefully predict whether two binaries are related.

There is no standard quantitative measure for compar-
ing binaries. As stated earlier, we incorporated the similarity
metric used by [6] to produce an overall correlation met-
ric between two programs. While the quantitative metrics of
Simp and Sim¢ do not adequately describe the correlations
found, they at least allow us a standard measure for com-
parison. A robust quantitative metric for comparing binaries
would allow researchers to compare results in a standardized
way. We believe quantitative change metrics is an important
area for future investigation.

We stated that when executables shared 50% of a common
code base most data references matched were almost always
corroborated by the manual review whereas with fewer than
25% sharing the matches were often error prone. We plan
to conduct a more thorough review to plot the decline in the
quality of matches with the decrease in the shared code base.
Such a curve would potentially allow us to know how much
confidence can be placed in the matches generated.

The modular construction of this ensemble classifier
allows for new signatures to be added quickly. We plan on
extending our data reference signatures. We plan to correlate
data references based on how they are accessed in functions.
And we plan on incorporating the roles of variables [26] into
our framework as fine grain signatures on global data ref-
erences. Lastly, except for the MDS5 checksum signatures,
this type of analysis is independent of microprocessor, so
another line of analysis would be to analyze variants com-
piled for different microprocessors.

@ Springer

Acknowledgments We thank Dr. Richard Greene and Dr. Desiree
Beck of The MITRE Corporation, and Dr. Karen Daniels of The Uni-
versity of Massachusetts at Lowell for taking an interest in this research
and providing valuable insights. We also thank Stacey Arnold as well
as the anonymous reviewers for their time and thoughtful suggestions.

References

1. Rozinov, K.: Reverse code engineering: an in-depth analysis of
the Bagle virus. In: Systems, Man and Cybernetics (SMC) Infor-
mation Assurance Workshop, 2005. Proceedings from the Sixth
Annual IEEE, pp. 380-387 (2005)

2. Gordon, J.: Lessons from virus developers: The beagle worm his-
tory through April 24 (2004)

3. Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.:
Polymorphic Worm Detection Using Structural Information of
Executables. In: Rapid Advances in Intrusion Detection (RAID),
pp. 207-226 (2005)

4. Schulman, A.: Finding binary clones with opstrings and function
digests. Dr. Dobbs 374, 375, 376, 69-73, 56-61, 64-70 (2005)

5. Dullien, T., Rolles, R.: Graph-based comparison of executable
objects. In: Proceedings of the Symposium sur la Sécurité des
Technologies de linformation et des Communications (SSTIC),
pp. 421-433 (2005). http://www.sstic.org/

6. Carrera, E., Erdélyi, G.: Digital genome mapping—advanced
binary malware analysis. Virus Bulletin Conference, pp. 187-197
(2004)

7. Flake, H.: Structural comparison of executable objects. In: Pro-
ceedings of the Conference on Detection of Intrusions and Malware
& Vulnerability Assessment, pp. 161-174 (2004)

8. Sabin, T.: Comparing binaries using bindview. Technical report,
Sabre (2004)

9. Karim, E., Walenstein, A., Lakhotia, A., Parida, L.: Malware phy-
logeny generation using permutations of code. J. Comput. Virol.
1(1-2), 13-23 (2005)

10. Filiol, E.: Malware pattern scanning schemes secure against black-
box analysis. J. Comput. Virol. 2(1), 35-50 (2006) EICAR 2006
Special Issue

11. Spinellis, D.: Reliable identification of bounded length viruses is
NP-complete. IEEE Transactions on Information Theory, pp. 280—
284 (2003)

12. Matching global data references in related executables (2007)

13. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically gener-
ating signatures for polymorphic worms. In: SP’05: Proceedings of
the 2005 IEEE Symposium on Security and Privacy, Washington,
DC, USA, IEEE Computer Society, pp. 226-241 (2005)

14. Linn, C., Debray, S.: Obfuscation of executable code to improve
resistance to static disassembly. In: Proceedings of the 10th ACM
Conference on Computer and Communication Security, pp. 290—
299 (2003)

15. Wehner, S.: Analyzing worms and network traffic using compres-
sion. J. Comput. Secur. 15(3), 303-320 (2007)

16. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity
and Its Applications. Springer, Berlin (1997)

17. Freund, Y., Schapire, R.E.: Experiments with a new boosting algo-
rithm. In: International Conference on Machine Learning, pp. 148—
156 (1996)

18. Topchy, A., Jain, A.K., Punch, W.: Clustering ensembles: Models
of consensus and weak partitions. IEEE Trans. Pattern Anal. Mach.
Intell. 27(12), 1866-1881 (2005)

19. Capriono, G.: REC Reverse Engineering Compiler, Version 1.6
(2000)

20. Toran, J.: On the hardness of graph isomorphism. SIAM J. Com-
put. 33(5), 1093-1108 (2004)

http://www.sstic.org/

A boosting ensemble for the recognition of code sharing in malware

345

21.
22.
23.
24.

25.

Vx heavens website (2006)

Labs, R.: Rar Compression Homepage (2006)

UPX: Upx Homepage (2007)

Filiol, E., Helenius, M., Zanero, S.: Open problems in computer
virology. J. Comput. Virol. 1(3-4), 55-66 (2006)

Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy
estimation for comparing induction algorithms. In: Proceedings
of the Fifteenth International Conference on Machine Learning,
pp. 445-453 (1998)

26.

Kuittinen, M., Sajaniemi, J.: Teaching roles of variables in elemen-
tary programming courses. In: ITICSE’04: Proceedings of the 9th
annual SIGCSE conference on Innovation and technology in com-
puter science education, New York, NY, USA, pp. 57-61. ACM
Press, New York (2004)

@ Springer

	0pt A boosting ensemble for the recognition of code sharing in malware
	Abstract
	1 Introduction
	2 Related work
	3 Desirable properties for binary code classifiers
	4 Boosting algorithm
	4.1 High-level description
	4.2 Signatures
	4.3 Ensemble classifier algorithm
	4.4 Measure of similarity

	5 Experiment
	5.1 Data set
	5.2 Performance model
	5.3 Similarity results
	5.4 Using global data references as a discriminator

	6 Conclusion and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

