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1 Introduction

1.1 Motivation

Life in copious forms abounds on Earth. Some lifeforms have
remained unchanged over millennia, while others have died
out. Differences in fate and appearance non-withstanding,
they are all made up of highly complex biochemical units
called cells which are the building blocks of life. The first cell,
the starting point of biological evolution, was itself a product
of Earth’s preceding chemical evolution. How the cell came
to be in the first place is an interesting question that ultimately
can be answered probabilistically in vitro [11]. Furthermore,
the existence and evolution of life itself may be the inevita-
ble consequence of the complex conditions of Earth’s early
years. If this is true—if complexity gives rise to life—then it
may be possible for other complex “worlds” to bear life,1 or
at the very least offer a real possibility to support certain life
forms.

Computer technology has made immense strides in the last
two decades. Newer and ever-more-powerful electronic ele-
ments enable the construction of digital mainframes whose
capabilities would have been considered utopian just a few
years ago. These mainframe capabilities can be further aug-
mented by clustering and local to wide-area networking [21],
yielding a system that is barely tractable for the user; in fact,
helper computers have been proposed to administer these
networks. Hence, there exist computing systems today that
resemble a universe, comprised of integrated circuits and
bits, whose complexity is reminiscent of the conditions in
Earth’s early years. Again, if complexity gives rise to life,
it is possible to speculate about life existing on and/or aris-
ing from computer systems. The only guideline we have as
to how this kind of life would look like is biological life,

1 The definition of “Life” is contentious and will be discussed thor-
oughly in Chap. 7.

so far the only known life. Earlier on, we introduced the
cell as life’s building block. Without foreshadowing Chap. 7
too much, we shall highlight two distinctive characteristics
of a living cell: autoreproduction and mutation, the former
denoting autonomous flawless cell reproduction; the latter,
error-prone cell reproduction. The electronic cell-equivalent
in computer systems are self-reproducing programs, which
we define in Sect. 1.2 as programs which can modify their
code autonomously at runtime, without any external “blue-
prints”. Since computer systems exhibit a small but non-zero
error rate, there inherently exists the possibility of faulty
reproduction, i.e. mutations. Hence, we consider self-repro-
ducing programs to be contenders for the existence of life-
forms on computer systems.

The purpose of this thesis is not only to offer an exis-
tence proof of self-reproducing programs (see Chap. 2), but
to construct concrete examples in various programming lan-
guages (Chaps. 3 and 6) and study their properties (Chaps. 4
and 5). Reproduction and mutation are two key evolution-
ary traits. Selection constitutes the third component enabling
evolution. The magnificent cornucopia of species on Earth
emanates from evolutionary processes; applied to self-
reproducing programs, we should expect to encounter new
programs with wildly different properties. Prior to intro-
ducing some models to evolve self-reproducing programs
in Chaps. 8 and 9, however, we shall examine in Chap. 7
how apt the analogy between self-reproducing programs in a
“computing” environment and biological living cells truly is.

1.2 Towards a definition of self-reproducing programs

Since this thesis strives to analyze programs and the pro-
gramming languages in which they are written, it behooves
us to give a precise definition of program syntax, the rules
of writing a program, and program semantics, its concrete
interpretation on a concrete computer system [9,14]. An
in-depth discussion is surely outside the scope of this text,
yet we shall give at least a rudimentary exposition using the
abstract programming language PL in Chap. 2. We shall list
the appropriate syntax references when we present concrete
programming languages. Furthermore, for the case of pro-
gram semantics, we shall prove as sufficient to refer to the
program’s realized function (see Sect. 5.1). Lastly, we
pre-suppose an adequate familiarity with standard computer
science programming languages and constructs.

Concrete programming languages may be categorized as
either assembly or high-level languages. In the context of our
discussion of self-reproducing programs, we list the relevant
characteristics.

Assembly languages Assembly languages are machine-
architecture dependent. Hence, several architectural elements
are implied by its concomitant assembly language, among
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Table 1 Language differences

them the memory layout, accessible by the program. Since
executable assembly code also resides in memory, assembly
programs can refer to and interpret their constitutive machine
code.

High-level languages These languages are removed from the
machine architecture, and as such architecture-independent.
As a corollary, programs written in high level languages can-
not directly access memory. As such, they lack the ability to
read from or interpret their memory-resident machine code.

We shall equivalently refer to programs and their realized
functions. In the context of this thesis, we emphasize an addi-
tional aspect: Programs are finite character strings, i.e. texts.
Throughout its interpretative lifetime in the computer system,
the same program may take the form of different texts over
various alphabets. The textual representation of an assem-
bly language program differs from its translated machine
code: While assembly languages use an alphanumeric rep-
resentation, machine code is restricted to 16 hexadecimal
(0-F) characters. High-level languages are similar in that
they potentially introduce one or more additional intermedi-
ate text representations between the source and the machine
code.

The differences between assembly and high-level
languages are reflected in the definition of self-reproducing
programs in the respective languages.

Let S be a high level programming language. Then

Definition 1.1 Let π be a syntactically correct program
in S.

1. If there is no input to π , we denote π as (strictly) self-
reproducing if π reproduces (exactly) its program text
in S.

2. If there is input to π , we denote π as (strictly) self-
reproducing if, given any input, π reproduces (exactly)
its program text in S.

Hence, Definition 1.1 allows self-reproducing programs to
receive input. However, it stipulates that no input informa-
tion may be used for reproduction; in fact, self-reproduction
requires input independence.

Let M be a architecture-dependent assembly language.
The following definition is informed by the ability of assem-
bly language to read its own machine code.

Definition 1.2 Let π be a syntactically correct program
in M .

1. If there is no input to π , we denote π as (strictly) self-
reproducing ifπ can reproduce its machine code (exactly)
or copy its machine code (exactly) in memory.

2. If there is input to π , we denote π as (strictly) self-
reproducing if, given any input, π can reproduce its
machine code (exactly) or copy its machine code
(exactly) in memory.

In contrast to higher-level languages, the copies of self-
reproducing assembly language programs do not have to be
translated into machine code prior to execution. Table 1 sum-
marizes the differences in this self-reproducing context.

Since assembly programs can read their own machine
code, it is relatively straightforward - given some basic assem-
bly language knowledge—to posit the existence of self-
reproducing programs and to subsequently construct concrete
examples (see Sect. 3.4). In higher-level languages, how-
ever, both existence of and construction procedures for self-
reproducing programs are far from intuitive. In Chap. 2, we
shall offer a rigorous theoretical existence proof. Concrete
examples pose a challenge, as well; in general, circumstances
are more dire in higher-level languages. As such, we shall
almost exclusively focus on self-reproducing programs in
high-level languages in Chaps. 3, 4 and 5.

2 Existence of self-reproducing programs

2.1 Introduction

In this chapter, we set out to prove the theoretical existence
of self-reproducing programs written in high level program-
ming languages. However, we will not base our argument
on the many features of real programming languages such
as pascal, simula, algol, and the like. Rather, we will
define and use – as far as it is possible in this context – our own
simple programming language. Its distinguishing features are
particularly simple data types, as well as the implementation
of programming constructs usually found in any high level
programming languages. We will call this programming
language the PL language. Its seeming simplicity will not
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vitiate its power; PL will boast the same “computability
capabilities” as any other common programming language.
PL will prove its worth as a very suitable entry-level tool
to the theory of “computable functions”. We emphasize that
we shall draw from aforementioned theory only insofar it is
necessary and useful to prove the existence of self-reproduc-
ing PL programs.

Since other common programming languages have the
same “computability capabilities” as the PL language, the
existence of self-reproducing programs written in PL implies
the existence of self-reproducing programs in other common
programming languages—high level languages, as well as
assembly languages.

2.2 Definition of the programming language PL(A)

In the first instance, we lay the foundation through an arbi-
trary, but fixed alphabet A = {a1, a2, . . . , an} with n ∈ N.
The set A∗ of all words built on A represents the data space
of the PL language. We consider the empty word ε ∈ A∗ a
datum, as well.

Definition 2.1 (Expressions)

1. The constants in PL are the elements of A∗.
2. The variables X1, X2, . . . ,Y, Z ,W are the elements of

a fixed set V R. Any variable may take any value in A∗.
3. The operations are Xa and ρ(X) with X ∈ V R and

a ∈ A.
Meaning: Xa equals xa whenever x ∈ A∗ equals X .
ρ(X) equals x ∈ A∗, whenever X equals xa for a given
element a ∈ A. Otherwise ρ(X) = ε.

4. The conditions are of the form ω(X) = a or X = ε with
X ∈ V R and a ∈ A.
Meaning: ω(X) = a is true whenever the ending letter
of the word value of X is the letter a. X = ε is true
whenever X equals ε.

Definition 2.2 (Basic instructions)

The basic instructions of the PL language are

• The void instruction γ1 : ε̄,
• and the assignations :

– γ2 : X := ε,
– γ3 : X := Xa,
– γ4 : X := Y ,
– γ5 : X := ρ(X),
for all variables X and Y in V R and a ∈ A.

Definition 2.3 (Structures of control)
The control structures in the PL language are

• X1 : P; Q.
Meaning: Sequential execution of instructions. Similar to
common programming languages.

• X2 : if p then goto L .
Meaning: X2 represents a conditional jump where p is
a (logical) condition (see Definition 2.1, item 4). L is a
label (see Definition 2.4). Otherwise similar to common
programming languages.

• X3 : if p then P else Q fi.
Meaning: if branch. p is a (logical) condition. Instruc-
tions p and Q represent the two alternatives. Compare to
common programming languages.

• X4 : while X = ε do P od.
Meaning: while loop; the instructions of the formω(X) =
a, X ∈ V R, a ∈ A are not allowed. P is an instruction.
The rest is similar to common programming languages.

•
X5 : loop Xcase a1 → P1

...
...

an → Pn

end
Meaning: X5 represents a case branch with a selection
of different cases. First, variable X is copied internally.
Then, the value of X is read from the left to right. For
every possible letter a j (i.e. elements in A) correspond-
ing to the value of X , the corresponding instruction Pj is
run. Should, for some letter a j , the directive a j → Pj be
missing, we proceed with a j → ε̄, for any j ∈ [n].

Definition 2.4 (Labels)
Labels are elements of a fixed set M = {L1, L2, . . .}. A label
may reference any instruction P in the following way L : P .

Definition 2.5 (Instructions)
An instruction in PL is either a base instruction or is com-
posed of base instructions linked by control structures X1

to X5.

Definition 2.6 (PL programs)
A PL program π has the form of

π = input X1, . . . , Xr

Instructionπ ;
output Z1, . . . , Zs

where r ≥ 0, s ≥ 0 and where Instructionπ is an instruc-
tion. The pairwise distinct variables X1, . . . , Xr in V R are
the input variables. The pairwise distinct variables Z1, . . ., Zs

in V R are the output variables.

Should control structure X2 : if p then goto L occur in
Instructionπ , then label L may only appear once under the
form L : P in Instructionπ ; in other words, we proceed to
label L and run instruction P again.
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Definition 2.7 (Execution of a PL program)
The execution of a PL program π begins by creating and ini-
tializing the input variables X1, . . . , Xr with their input val-
ues. Any other internal variable is set to ε. Then Instructionπ
is executed and program execution results are put into the
output variables Z1, . . . , Zs . Should the program never stop,
the result of π is undefined.

As a matter of principle, we did not so much define a
specific programming language PL as much as a class of
programming languages. This is because we have retained
the freedom of choice with respect to the sets V R and L , as
well as and especially to the alphabet A. While the elements
from V R and M describe the internal states of programs
only, the alphabet A represents the data set on which a PL
program operates. Depending on the choice of finite alphabet
A, we will denote our programming language PL(A), using
our Definitions 2.1 to 2.7.

Remark Strictly speaking, we have not formally defined
PL(A). Errors of interpretation are possible. If our definition
had been exact, we would have had to formally detail both
the syntax as well as the semantics of PL(A). The descrip-
tion of the semantics is particularly tedious, and moreover
would have been beyond the scope of our framework. We
shall define at least the syntax of PL(A) by a context-free
(formal) grammar.

2.3 A context-free grammar for PL(A)

The following context-free grammar G(A)=(VT , VN , S0, P)
generates all valid PL(A) programs for a fixed alphabet A.
Unfortunately, the grammar may generate valid, as well as
invalid PL programs. This follows from Definition 2.6 which
lists various colloquial rules such as “label L may only appear
once under the form L : P in Instructionπ”. Such rules can-
not be conceived by context-free grammars, but prove to be
useful in differentiating valid from invalid programs gen-
erated by G(A). ‘Real’ programming languages generated
from context-free grammars share this limitation, since col-
loquial natural language rules are bound to be formulated
there, as well.

Example 2.1 In simula: “Jumps into the body of a while
loop are forbidden” [7,17].

2.3.1 Description of the G(A) = (VT , VN , S0, P) grammar

The set of terminal symbols VT is given by

VT = A ∪ M ∪ V R ∪ {input, output, if, then, goto, else,fi,

while, do, od, loop, case, end, :,=,→, ; , , ,�, (, ),
ρ, ω, ε, ε̄}

The last set in the previous union set is made of the base
symbols.

The set of non-terminal symbols VN is

VN ={<program>,<statement>,<simple statement>,

< identifier >,< label >,< identifier list >,

< condition >}
The starting symbol S0 is < program >.

The set P contains the following production rules:

1.
< program >→ input < identifier list >;

< statement >;
output < identifier list >;

2. < identifier list >→< identifier list >,< identifier >
3. < identifier list >→< identifier >
4. < identifier >→ X for all X ∈ V R
5. < identifier >→ ε

6. < statement >→< label >;< statement >
7. < statement >→< statement >;< statement >
8. < statement >→ if < condition > then goto

< label >.

9.
<statement>→ if <condition> then <statement>

<statement> else <statement>
fi

10.
< statement >→ while < identifier >= ε do

< statement >
od

11.

< statement >→ loop < identifier > case
a1 → < statement >,
...

an → < statement >,
end

12. < statement >→< simple statement >
13. < label >→ L , for all L ∈ M
14. < condition >→ ω(X) = a for all a ∈ A, X ∈ V R
15. < condition >→ X = ε for all X ∈ V R
16. < simple statement >→ ε̄

17. < simple statement >→ X := ε for all X ∈ V R
18. < simple statement >→ X := Xa for all X ∈ V R,

a ∈ A
19. < simple statement >→ X := X ′ for all X, X ′ ∈ V R
20. < simple statement >→ X := ρ(X) for all X ∈ V R

We can establish the followings correspondence between
these production rules and the previous definitions:

• Productions 1–5 =̂ Definition 2.6.
• Production 6 =̂ Definition 2.4.
• Production 7–13 =̂ Definition 2.3 and 2.5.
• Production 14–20 =̂ Definition 2.1 and 2.2.
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The afore-mentioned limitations of colloquial human lan-
guage rules remain unaddressed by G(A).

2.4 PL(A)-computable functions—Church’s thesis

Let us now consider a finite alphabet A and a program π ∈
P L(A). The program π contains r ≥ 0 input variables
and s ≥ 0 output variables. During the program execu-
tion, input variables assignment yields the assignment of
output variables, provided the program terminates. If the lat-
ter indeed halts—which cannot be pre-supposed—the pro-
gram results represent the final output variable assignments.
Should the program never halt, the results are undefined. In
both cases, we do not care about any possible intermediate
variable assignment during program execution. This view-
point corresponds to Definition 2.8.

Definition 2.8 Let π ∈ P L(A) be a program. The func-
tion computed by π is ϕπ : (A∗)r → (A∗)s , with s ≥ 0 and
r ≥ 0.ϕπ assigns to every starting initialization (x1, . . . , xr ),

xi ∈ A∗, i ∈ [r ]2 a result (z1, . . . , zs) = ϕπ(x1, . . . , xr ),

z j ∈ A∗, j ∈ [s], provided the program π indeed halts. If it
does not halt, ϕπ(x1, . . . , xr ) is undefined.

Remark From Definition 2.8, it follows that:

1. ϕπ is generally a partial function.
2. The special cases r = 0 and s = 0 are implicitly accep-

ted. Their meaning has however to be clarified. It
describes the null t-uple ( ):

(a) ϕπ : (A∗)r → (A∗)0, r ≥ 1 assigns the null
t-uple ( ) to every r -uple (x1, . . . , xr ) ∈ (A∗)r , pro-
vided that the program π halts on the initial r -uple
(x1, . . . , xr ).

ϕπ(x1, . . . , xr ) =
{

( ) if π halts
undefined otherwise

(b) ϕπ : (A∗)0 → (A∗)s, s ≥ 1 associates the null
t-uple ( ) to a s-uple (z1, . . . , zs) ∈ (A∗)s provided
that the program π halts.

ϕπ( ) =
{

(z1, . . . , zs) if π halts
undefined otherwise

(c) ϕπ : (A∗)0 → (A∗)0 associates the null t-uple ( )
to the the null t-uple ( ), provided that the program
π halts.

ϕπ( ) =
{

( ) if π halts
undefined otherwise

Definition 2.9 Let be A a fixed alphabet.

2 Notation: [r ] = {1, . . . , r} for any n ∈ N. This notation is not to be
mistaken with a bibliographical reference.

1. A word function f : (A∗)r → (A∗)s, r, s ≥ 0 is said
P L(A)-computable (or computable for short) if there
exists a program π f ∈ P L(A) with ϕπ f = f .

2. The set P(A) = {ϕπ |π ∈ P L(A)} is called the
set of P L(A)-computable functions.

Again and again, attempts have been made to define classes of
computable functions to refine the intuitive notion of comput-
ability. In the end, all these attempts produced the same sets
of “computable functions”. For example, the set of “Turing
machines computable” functions has been proven identical to
the set of “partial recursive” functions. In our case, for a fixed
alphabet A, the set P(A) is also identical to both previous
sets. These set similarities gave birth to Church’s thesis.

Definition 2.10 (Church’s thesis)
Every intuitively computable function is P L(A)-computable
and conversely.

From Definition 2.10 it follows that if A1 and A2 are two pair-
wise distinct finite alphabets, we can obviously differentiate
the sets P(A1) and P(A2) from one another. Consequently
we will abandon the differentiation based on the alphabet and
will simply use P to describe the set of computable or partial
recursive functions (see also Definition 2.12). The following
extension to the Church’s thesis is essential, as well.

Definition 2.11 (Extension to the Church’s thesis)
To every computable function f and for any finite alphabet
A, we can effectively associate a program π ∈ P L(A) with
f = ϕπ .

Definition 2.12 1. Pr
s = { f ∈ P| f : (A∗)r → (A∗)s, r,

s ≥ 0}.
2. R = { f ∈ P| f is total} is the set of the total recursive

functions.
3. Rr

s = R ∩ Pr
s , r, s ≥ 0.

2.5 Coding and “Gödel Numbering” of P

Definition 2.13 Let A be a finite alphabet. A set B ⊆ (A∗)r ,
r ≥ 0 is said to be decidable or equivalently to be recursive
if there exists a function χB : (A∗)r → A∗ such that

χB(x1, . . . , xr ) = ε ⇔ (x1, . . . , xr ) ∈ B.

Definition 2.14 Let A1 and A2 be two finite alphabet. A
function ξ : A∗1 → A∗2 is called a coding of A∗1 with respect
to A∗2 if

1. ξ ∈ R,
2. ξ is an injective function,
3. ξ(A∗1) is decidable,
4. ξ−1 ∈ P .
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On self-reproducing computer programs 15

Let A0 = {1}. Then we can identify A∗0 with the natural
numbers including the null element – this set being denoted
N0 – in the following way:

ε =̂ 0

1111 . . . 111
︸ ︷︷ ︸

n ones
=̂ n ∈ N

Definition 2.15 A coding ξ : A∗ → A∗0 = {1}∗ =̂ N0 is
called a Gödel numbering. ξ(ω) is called the Gödel number
of ω for all ω ∈ A∗0.

In the rest of this work, we will specify the associate alpha-
bet to any Gödel numbering of a P L(A) program. We will
at the same time give a Gödel numbering of P . Let A =
{a1, . . . , an} be a fixed alphabet. Let set B list all special
symbols as well as constitutive letters of the word symbols
“input, if, fi...” of P L(A).

B = {:,=, ε, ε̄,→, ; , ,,�, ω, ρ, (, ),
a, c, d, e, f, g, h, i, l, n, o, p, s, t, u, w}.

The set of labels and variables in P L(A) programs are M =
{L1, L2, . . .} and V R = {V1, V2, . . .}, respectively. Let
Li , i ≥ 1 (Vj , j ≥ 1, respectively) be arbitrary names for
labels or variables, respectively. It is worth mentioning the
fact we hitherto did not need to restrict the choice of these
names. However, we have to make sure in our forthcoming
consideration that we work on a finite alphabet. Thus, we are
going to standardize the naming as follows:

• The name L1 is textually the same as “L1”.
• The name L2 is textually the same as “L2” and so on...
• And in a similar way, the name V1 is textually the same

as “V1” and so on...

Hence we have

M ⊂ {L , 0, 1, . . . , 9}∗, V R ⊂ {V, 0, 1, . . . , 9}∗.

Let us now consider the set C = A ∪ B ∪ {V, 0, 1, . . . , 9}.
Every programπ ∈ P L(A) can be interpreted as a word from
the set C∗ and P L(A) itself, as well as a subset of C∗. We then
extensively define an injective mapping H : C → {1}∗ =̂ N0

as follows:

:
−→ 0 c 
−→ 13 u 
−→ 26
=
−→ 1 d 
−→ 14 w 
−→ 27
; 
−→ 2 e 
−→ 15 L 
−→ 28
, 
−→ 3 f 
−→ 16 V 
−→ 29
( 
−→ 4 g 
−→ 17 0 
−→ 30
) 
−→ 5 h 
−→ 18 . . .

� 
−→ 6 i 
−→ 19 . . .

→
−→ 7 l 
−→ 20 0 
−→ 39
ε 
−→ 8 n 
−→ 21 a1 
−→ 40
ε̄ 
−→ 9 o 
−→ 22 . . .

ρ 
−→ 10 p 
−→ 23 . . .

ω 
−→ 11 s 
−→ 24 an 
−→ 39+ n
a 
−→ 12 t 
−→ 25

The injective mapping H can also be extended to the injective
mapping H∗ : C∗ → N

∗
0:

H∗(ε) 
−→ ε

H∗(x̄ y) 
−→ H∗(x̄)H(y),∀y ∈ C,∀x̄ ∈ C∗

Lemma 2.1 H∗ is a coding of C∗ with respect to N∗0.

Proof 1. From the definition of H and H∗, H∗ is intui-
tively computable, and according to Church’s thesis, it is
decidable, as well. H∗ is defined for every element from
C∗. H∗ is also total and totally from R.

2. H∗ is trivially injective.
3. Let us consider D : H∗(C∗). D is a subset of N∗0. Let

ī ∈ N∗0. ī has a finite size3 l(ī), ī = m1m2 . . .ml(ī) with

m j ∈ N0 for j ∈ [l(ī)]. ī is precisely from set D when
every m j has an antecedent in C , with respect to H . In
order to determine whether ī ∈ D or not, we need to
perform l(ī)∗|C | tests at most. There also exists a total
recursive function

χD : N∗0 → N
∗
0,

with

χD(ī) = ε
⇐⇒ (Every element of ī has an antecedent in C

with respect to H)

⇐⇒ ī ∈ D.

Then D = H∗(C∗) is decidable.
4. In item 3, it has been shown that for every ī ∈ H∗(C∗)

we can effectively identify an antecedent in C∗. Hence
(H∗)−1 is computable for every element in which it is
defined and thus (H∗)−1 ∈ P .

From all of this, it follows that H∗ is a coding. ��
We now consider the total recursive function f : N∗0 → N0

with

ī 
−→
{

0 if ī = ε
Pm1

1 . . . P
ml(ī)+1

l(ī)
− 1 if ī = m1 . . .ml(ī)

where Pj is the j-th prime integer.

3 The notation l describes with respect to a base alphabet B the length
function of elements from B∗.
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16 J. Kraus

Proposition 2.1 f is a bijective function.

Proof 1. f is injective due to the unicity of factorization
into prime numbers.

2. f is surjective since every number m ∈ N such that
m > 1 can be factored into prime numbers. ��

When coding C∗ with H∗ with respect toN∗0, and when con-
sidering f ∈ R as a bijective function from N

∗
0 to N0, we

can establish Lemma 2.2.

Lemma 2.2 The function g := f ◦ H∗ : C∗ → N0 is a
Gödel numbering of C∗ with respect to N0.

Proof With every word w from C∗ and thus every program
from P L(A) an integer f ◦ H∗(w) from N0 is is unequivo-
cally associated. Since H∗ is injective and f is bijective, g
is a Gödel numbering of C∗. ��
Lemma 2.3 The set T = {g(x)|x ∈ P L(A)} ⊂ N0 is decid-
able.

Proof 1. i = 0 is not in T since the null (void) word is not
a program.

2. Let be i ∈ N. We thus can represent it as follows:

i = Pm1
1 . . . Pmk+1

k − 1, k ≥ 1.

There is at least one m j , j ∈ [k] which does not have an
antecedent with respect to H . This i is not in the image set
of g and thus is not in T . Let us now consider every m j

from the image space of H . Then, there exists a word
w ∈ C∗ with g(w) = i . By considering the grammar
defined in Sect. 2.3 and colloquial human language rules
such as “The input variables are pairwise distinct”, we
can design a program (compare “formal languages” with
“compiler design”), which halts on every input w ∈ C∗
and precisely outputs ε whenever w ∈ P L(A). There
also exists a total recursive function whose result is also
ε whenever the antecedent of an element in N0, if any, is
a valid P L(A) program. Then T is decidable. ��

Definition 2.16 If the set B is the domain of a partial
recursive function, then B ⊂ (A∗)q , q ≥ 0 is said to be
enumerable.

Lemma 2.4 B ⊂ (A∗)q , q ≥ 0 decidable ⇒ B is enumer-
able.

Proof Let us suppose that B ⊂ (A∗)q , q ≥ 0 is decidable.
From Definition 2.13, there exists a total recursive function

χB : (A∗)q → A∗ such that χB(x1, . . . , xq) = ε
⇔ (x1, . . . , xq) ∈ B.

From χB we can draw a partial recursive application

fB : (A∗)q → A∗,

such that

fB(x1, . . . , xq)

=
{

ε if χB(x1, . . . , xq) = ε
is undefined otherwise

.

Then, the application gB : (A∗)q → (A∗)q with4 gB(x̄) =
∏2

1(x̄, fB(x̄)), x̄ ∈ (A∗)q , is thus a partial recursive function
and its image set is precisely the set B. ��
Corollary 2.1 The set T is enumerable.

Proof Consequence from Lemma 2.4 since T is decidable.
��

Similar to the proof of Lemma 2.3, we can prove that for
every m, k ≥ 0, the set

Tm,k = {g(π)|π ∈ P L(A),

π has exactly m input variables and k

output variables} ⊂ N0

is decidable. We need to consider the decision algorithm used
in the proof of Lemma 2.3 to determine whether a program
v ∈ P L(A) has exactly m input variables and k output vari-
ables. From the decidability of the set Tm,k , it follows that
Tm,k is enumerable as well, and thus that there exists a partial
recursive function from N0 to N0, whose image space is the
set Tm,k . Since Tm,k �= ∅, it follows that there even exists a
total recursive function (see [5, p. 82]) given by

tm,k : N0 → N0, with tm,k(N0) = Tm,k .

It makes also sense to speak of the i-th element of Tm,k . For
every m, k ≥ 0, we can generate the set {π0, π1, π2, . . .}of all
programs having m input variables and k output variables. We
have with π j a P L(A) program such that tm,k( j) = g(π j ).

In general, there also exists for every m, k ≥ 0 a total
recursive function

γm,k : N0 → {π |π ∈ P L(A),

π has exactly m input variables and k

output variables} =: W,
with the inverse function γ̄m,k : W → N0 such that

γ̄m,k(π) = min{ j |γm,k( j) = π}.
Along with the set Tm,k , of course the set Pm

k for every m, k ≥
0 is decidable and thus enumerable. We also can write the set
Pm

k under the form { f0, f1, f2, . . .}, where for every f j we
have f j = ϕπ j . The Gödel number of π j also relates to f j .
In the above-mentioned enumeration of Pm

k , every function
of Pm

k is counted several times. This means that more than
one Gödel number correspond to these functions. Thus we
have the following Lemma.

4 The notation
∏n

i generally describes the projection onto the i th com-
ponent when considering a n-tuple.
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Lemma 2.5 For every f ∈ Pm
k ,m, k ≥ 0, f has more than

one Gödel number, with respect to the Gödel numbering g.

Proof Let be m, k ≥ 0, f ∈ Pm
k . f is computed through the

following program:

π0 = input X1, . . . , Xm;
AWπ0;

output Z1, . . . , Zk

We have ϕπ0 = f . But f can also be computed with the
programs π1, π2, π3, . . . defined by

πi = input X1, . . . , Xm;
AWπ0;
ε̄; . . . ; ε̄;
︸ ︷︷ ︸

i times
output Z1, . . . , Zk

We thus have f = ϕπ1 = ϕπ2 = ϕπ3 = . . .
Since g(π1) �= g(π2) �= g(π3) �= . . ., hence f has an

infinite number of Gödel numbers. ��
Definition 2.17 Let F be a set of word functions and let be

Fr
s = { f : (A∗)r → (A∗)s | f ∈ F}, r, s ≥ 0.

A function ψ ∈ Fr+1
s is called universal for Fr

s when5

Fr
s = {λȳ[ψ(x, ȳ)]|x ∈ A∗, ȳ ∈ (A∗)r }.

Proposition 2.2 For every m, k ≥ 0, there exists an univer-
sal function ψm,k ∈ Pm+1

k for Pm
k .

Proof (By using Church’s thesis)
The set of all program having m input variables and k output
variables exists under an enumerated form, say by using γm,k :

π0, π1, π2, . . .

Then the function

ψm,k = λx, ȳ[ϕπγ̄m,k (x)
(ȳ)], ȳ ∈ (A∗)m

is universal for Pm
k , andψm,k is intuitively computable. From

the Church’s thesis, there exists πm,k
u ∈ P L(A) with m + 1

input variables and k output variables such that ψm,k =
ϕ
π

m,k
u

. ��
Remark We can also prove Proposition 2.2 by constructing
π

m,k
u directly. The proof is, however, more complex.

2.6 Lexicographic order of A∗

At this point, we want to introduce a broader Gödel number-
ing of A∗. to this end, we will first explain what we mean by
lexicographic order of A∗.

5 For the Lambda notation, refer to [20, p. 13].

Definition 2.18 Let be A = {a1, . . . , an}. The successor
function ν : A∗ → A∗ is defined as follows:

• ν(ε) = a1,
• ν(xai ) = xai+1,
• ν(xan) = ν(x)a1, for i ∈ [n − 1], x ∈ A∗, ai ∈ A.

Lemma 2.6 The successor function ν : A∗ → A∗ is bijec-
tive.

Proof On the one hand, ν is injective since two elements of
A∗ can have the same successor only if they are themselves
equal. On the other hand, ν is surjective since by successively
applying the function ν, every word from A∗ can be reduced
to the null (void) word. Thus, {νi (ε)| ∈ N} = A∗. ��
Since wi = νi (ε) for every element wi from A∗, we obtain
an order on A∗ [5].

Definition 2.19 Let wi = νi (ε) and w j = ν j (ε) two ele-
ments from A∗. Then wi ≤ w j whenever i ≤ j . This order
is called the lexicographic order on A∗.

We can also list all the words from A∗ in a unique lexico-
graphic sequence:

ε = w0 < w1 < w2 . . .

Proposition 2.3 Let be A = {a1, . . . , an} and A0 = {1}. Let
be C p : A∗ → N0=̂{1}∗ the application which lists, for every
x ∈ A∗, the number of x in a sequence of lexicographical
ordering:

x 
−→ i with νi (ε) = x .

Then C p is a bijective Gödel numbering.

Proof 1. C p is total since C p is defined on the whole set A∗.
For every x , we can effectively obtain C p(x) by applying
the definition of ν a finite number of times. So Co ∈ R.

2. C p is injective since no two elements of A∗ have the
same location (index) in the sequence in lexicographic
order.

3. Since C p(A∗) = N0, then C p(A∗) is naturally decidable.
4. Starting from the void word, we can for every i ∈ N0

effectively generate by means of ν all the words from A∗
up to the i-th word in the lexicographic order sequence.
This i-th word is the antecedent of i . So C−1

p is com-
putable and since C p(A∗) = N0, it is also total. Hence
C−1

p ∈ R.
It follows from these four points that C p is a Gödel number-
ing. From the second point and from the fact that C p(A∗) =
N0, C p is bijective. ��
Lemma 2.7 let A = {a1, . . . , an} and B = {b1, . . . , bn} be
two alphabets. The function
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18 J. Kraus

ξm,n = C−1
m ◦ Cn : A∗ → B∗

is a coding of A∗ with respect to B∗.

Proof Obvious. ��

2.7 Reduction with respect to input and output variables

We would like to show that it is possible to transform every
programπ ∈ P L(A)with r input variables and s output vari-
ables into an equivalent program π ′ having only one input
variable and only one output variable. Due to the equivalence
between P and P L(A), it actually suffices to just consider
the functions from P1

1 to treat the whole set P . The universal
function with respect to P1

1 is then also universal with respect
the whole set P .

Let π ∈ P L(A) be a program with r input variables and
s output variables, r, s ≥ 1. Then π has the following struc-
ture:

π = input X1, . . . , Xr ;
AWπ ;

output Z1, . . . , Zs

Every element x̄ = (x1, . . . , xr ) from (A∗)r can be an ins-
tance of π . In other words, x̄ can also be represented by

x̄ = x1|x2| . . . |xr ∈ (A ∪ {|})∗, where | �∈ A.

Under this form, x̄ is treated as an input to a program π ′
(equivalent to π ) having only one input and only one output
variable.

π ′ = input X;
[X1 := x1; . . . ; Xr := xr ];
AWπ ;
[Z1 := z1| . . . |zs];
output Z

The part of the program between the square brackets can be
made explicit in the following way. The first part [X1 :=
x1; . . . ; Xr := xr ]; is realized by:

X1 := ε; . . . ; Xr := ε
loop Xcase a1 → Xr := Xr a1,

.

.

.
.
.
.

an → Xr := Xr an,

| → X1 := X2;
X2 := X3;
.
.
.

Xr−1 := Xr ;
Xr := ε;

end

and the second part [Z1 := z1| . . . |zs]; is realized by:

Z := ε;
loop Z1 case a1 → Z := Za1,

.

.

.
.
.
.

an → Z := Zan,

end;
Z := Z |;
loop Z2 case a1 → Z := Za1,

.

.

.
.
.
.

an → Z := Zan,

end;
Z := Z |;
.
.
.

Z := Z |;
loop Zs case a1 → Z := Za1,

.

.

.
.
.
.

an → Z := Zan,

end;

π ′ is not an element from P L(A), since the working alpha-
bet is not A but A ∪ {|} �= A. But one can obtain from π ′ a
program π ′′ ∈ P L(A) (equivalent to π and containing only
one input and only one output variable) by coding the set
(A ∪ {|})∗ with respect to A∗. For coding, we can consider
the function

ξn+1,n = C−1
n ◦ Cn+1

where the function C−1
n and Cn+1 have been defined in

Sect. 2.6.
Essentially, all programs from P L(A) can be reduced to

only one input and only one output variable (should such vari-
ables exists). It follows from Church’s thesis that it suffices to
consider the set P1

1 instead of the set P . The universal func-
tion ψ1,1 with respect to P1

1 is in this context universal for
the whole set P , as well. In order to illustrate this point more
clearly, we are going to introduce the following notation.

Definition 2.20 Letψ1,1 be a universal function with respect
to P1

1 .

ϕk
x = λy1, . . . , yk[ψ1,1(x), ξn+1,n(y1| . . . |yk)],

with x, y1, . . . , yk ∈ A∗. When then have

ϕk
x : (A∗)k → A∗.

2.8 Recursion Theorem - s-m-n-Theorem

In this section, we are going to prove the recursion theorem
which will enable us to demonstrate the existence of self-
reproducing P L(A) programs. Let us fix an alphabet A such
that every P L(A) program lies in A∗.
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Proposition 2.4 (s-m-n-Theorem)
For every m, n ∈ N there exists a function sm

n ∈ Rm+1
1 ,

which for every x ∈ A∗, ȳ ∈ (A∗)m, z̄ ∈ (A∗)n satisfies the
following equation:

ϕm+n
x (x̄, ȳ) = ϕn

sm
n (x,ȳ)

(z̄).

Proof Let us fix m, n ∈ N.

Case 1. x is not a valid program text. Then ϕm+n
x is unde-

fined. In this case, ϕn
sm
n (x,ȳ)

must be also undefined.
Thus, we set sm

n (x, ȳ) = ε. Now sm
n (x, ȳ) is not a

valid program text as well, and so

ϕm+n
x (x̄, ȳ) = ϕn

sm
n (x,ȳ)

(z̄) = undefined.

Case 2. x is a valid program text, so x ∈ P L(A). Then x
has the following structure:

x = input Y1, . . . ,Ym, Z1, . . . , Zn;
AWx ;

output W

When setting ȳ = (y1, y2, . . . , ym), we have

sm
n (x, ȳ) = input Z1, . . . , Zn;

[Y1 := y1]; . . . ; [Ym := ym];
AWx ;
outputW

The parts of the program between the square brack-
ets can be easily realized. This can be shown, for
instance, with [Y1 := y1]:
y1 is an element from A∗ and thus has a finite size
l(y1) ∈ N0

y1 = a11 . . . a1l(y1)
, with a1 j ∈ A∗.

Therefore [Y1 := y1] will be realized as follows:

Y1 := ε;
Y1 := Y1a11;

...

Y1 := Y1a1l(y1)
;

From Church’s thesis, we have sm
n ∈ Rm+1

1 . ��

Corollary 2.2 There exists a h ∈ Rm
1 such that for every

f ∈ Pm+n
1 we have:

f (x̄, ȳ) = ϕn
h(ȳ)(x̄), ∀x̄ ∈ (A∗)m, ∀ȳ ∈ (A∗)n .

Proof Since f is a computable function, there exists a pro-
gramπ0 ∈ A∗, with f = ϕm+n

π0
. From Proposition 2.4, hence

we have

f (x̄, ȳ) = ϕm+n
π0

(x̄, ȳ) = ϕn
sm
n (π0,ȳ)

(x̄).

Hence the corollary follows by setting h = λȳ[sm
n (π0, ȳ)].

��
Remark Let be g ∈ Pk+1

1 . Then there exists a program x ∈
A∗ with

g = ϕk+1
x .

Let us introduce the following notation:

gx = ϕk
s1
k (x,y)

.

With this notation, we have:

gx (ȳ) = g(x, ȳ),∀ȳ ∈ (A∗)k .
Let be h ∈ Pr

1 and suppose that h(x̄) in undefined for a
x̄ ∈ (A∗)r . According to our notation, the function gh(x̄) is
undefined everywhere.

We can now prove the following formulation of Kleene’s
recursion theorem:

Proposition 2.5 (Recursion theorem as formulated in [5])
For every function f ∈ P1

1 there exists a program text x ∈ A∗
which satisfies

ϕx = ϕ f (x).

Proof The function g = λy, x[ϕϕy(y)(x)] lies in P2
1 with

x, y ∈ A∗. We have proved in Corollary 2.2 that there exists
a h ∈ R1

1 such that

ϕh(y) = gy = ϕϕy(y)∀y ∈ A∗. (1)

Let us now consider f ∈ P1
1 . Since h ∈ R1

1 we can apply
one after the another the function f and h: f ◦ h lies in P1

1
as well. From Church’s thesis we can effectively associate a
program π ∈ P L(A) to f ◦ h with

ϕπ = f ◦ h. (2)

From Eqs. (1) and (2), hence we have:

ϕh(π)
(1)= ϕϕπ (π)

(2)= ϕ f (h(π)).

We have the value of x we were looking for:

x = h(π).

��
Definition 2.21 Let be f ∈ P1

1 . An element x ∈ A∗ is called
a fixed point value if we have

ϕx = ϕ f (x).
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Corollary 2.3 For every function g ∈ P2
1 , there exists a pro-

gram x0 ∈ A∗ such that

ϕx0 = gx0 .

Proof From Corollary 2.2, there exists a function h ∈ R1
1

with ϕh(y) = gy , for every y ∈ A∗. The function h has a
fixed point value x0 from the recursion theorem, with

ϕx0 = ϕh(x0) = gx0 .

Hence the result. ��
Proposition 2.6 There exists in P1

1 a function with a pro-
gram source x0 ∈ A∗, which produces on every input y ∈ A∗
its own source code x0.

Proof The function g ∈ ∏2
1 : (A∗)2 → A∗ with g(x, y) =

x ,
for every x, y ∈ A∗ is trivially in P2

1 .
From Corollary 2.3, it follows that the equation ϕx = gx

has a solution x0. Hence, there exists a x0 ∈ A∗ such that

ϕx0 = gx0 = λy[x0] ⇒ ϕx0(y) = x0, ∀y ∈ A∗.
ϕx0 is thus a function which produces its own source code
x0 for every input y ∈ A∗. By considering that ϕx0 ∈ P1

1
(obvious), we conclude the proof of the proposition. ��
The next proposition is a generalization of Proposition 2.6.

Proposition 2.7 Let f : A∗ → A∗ from P1
1 . Then there

exists a function in P1
1 , whose program source x0 ∈ A∗ pro-

duces the value f (x0) on every input.

Proof Let be f ∈ P1
1 . The function g : (A∗)2 → A∗ such

that

g(x, y) =
2

∏

1

( f (x), y) = f (x), x, y ∈ A∗,

lies in P1
2 . This follows from the completeness of P with

respect to the functional substitution and composition (see
[5]). From Corollary 2.3 it follows that the equation ϕx = gx

has a solution x0. Thus, there exists a x0 ∈ A∗ such that

ϕx0 = gx0 = λy[ f (x0)] ⇒ ϕx0(y) = f (x0), ∀y ∈ A∗.
Since ϕx0 is a constant function, it is obvious trivial that ϕx0

lies in P1
1 . Hence, ϕx0 is the solution we were looking for.

��
From Proposition 2.7, it follows that there exist P L(A) pro-
grams which do not just reproduce their own source code
once, but many times.

Corollary 2.4 For every i ∈ N there exists a function with
a program source xi0 ∈ A∗, which on every input y ∈ A∗
produces it own source code xi0 successively i times.

Proof Let be i ∈ N. Then the proof follows from the proof
of Proposition 2.7 by considering that f = fi : A∗ → A∗
and

fi (x) := xi ( = x . . . x
︸ ︷︷ ︸

i times

).

��
Remark Proposition 2.6 is established as a special case of
Proposition 2.7 by considering that f = id.

With the previous propositions, we have proved the
theoretical existence of self-reproducing P L(A) programs.
Though we offered constructive proofs, effective construc-
tion of such programs is not straightforward. As such, these
proofs cannot be used directly to generate actual self-
reproducing P L(A) programs. In Sect. 2.5, we have seen
that the set of P L(A) programs is enumerable. When
enumerating this set lexicographically, Proposition 2.6 guar-
antees the existence of a number i0 ∈ N0 such that πi0 is a
self-reproducing program. However, the magnitude of num-
ber i0 all but precludes using exhaustive enumeration as a
way to find self-reproducing P L(A) programs.

We reiterate the purpose of Chap. 2: The quest for self-
reproducing programs in high level programming languages
is not futile. Such programs do indeed exist, and can be con-
structed.

Remark Section 4.3 deals with cyclically self-reproducing
programs (see Definition 4.4). The existence of cyclically
self-reproducing programs can likely be deduced from
Kleene’s recursion theorem, as well.

3 Self-reproducing program examples in high-level
and assembly languages

3.1 Introduction

Chapter 2 offered concrete self-reproducing program exam-
ples in the fictitious PL(A) language. Since concrete pro-
gramming languages match PL(A)’s expressive power, such
self-reproducing examples must exist in those languages,
as well. We shall offer some practical parsimonious speci-
mens in simula and pascal. Some such self-reproducing
programs can be implemented easily on concrete computer
systems; others, despite their syntactic correctness, cannot
for a variety of reasons. Whenever possible, we shall dis-
till implementable examples from the later set. Section 3.4
offers some machine-dependent examples in the SIEMENS
assembly language.

3.2 Self-reproducing programs in simula [19]

This chapter develops self-reproducing programs in the
simula language. We chose simula as an example of a
block-oriented language; in Sect. 3.3 we contrast examples
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Table 2 Naive π0

Table 3 Recursive expansion of π0

in pascal, which is not block-oriented. For our purposes,
however, the availability of text variables proves to be the
more important differentiating characteristic: while pascal
just recognizes simple text constants, simula in contrast
allows for real text variables. Hence, in conjunction with
simula’s class concept, we fruitfully leverage this difference
in Sect. 3.2.5 by processing variables of type text.

3.2.1 Naive approach

We motivate the difficulties writing a self-reproducing
simula program π through the following naive approach:

x = begin OUTTEXT("x") end (3)

In essence, π contains an output instruction which consti-
tutes π ’s complete program text. We express this approach in
π0 (Table 2). We can expand the recursion into an equivalent
program (see Table 3). Of course, since π0 isn’t finite, it is
no longer a program. The insolvability of Eq. 3 also dem-
onstrates the “impossibility” of π0: Since text x and the two
constants begin OUTTEXT(" and )"end have unequal
lengths, they cannot be equal!

3.2.2 Text decomposition algorithm

It follows from Sect. 3.2.1 that a self-reproducing program π

written in simula cannot simply print out its own text en bloc
with a simple output instruction. Hence, π has to somehow
build its text step-wise from partial strings. We have to

(i) decompose π

Since we are unaware of a specific procedure, we shall at
first decompose π completely into constitutive single char-
acters. The result is shown in Table 4. Since π1 represents an
infinite text, it too cannot constitute a program: If a text con-
sisting of 13 characters is required to output one character,

Table 4 π1: Decomposition of π in single characters

Table 5 π2: Char array C

π1 cannot be finite. As such, a purely sequential (character-
by-character) decomposition is not possible. Thus, for our
purposes, we have to chose a structured

(ii) algorithm

in order to construct concrete examples of self-reproducing
programs. (i) and (ii) represent the two most important aspects
of self-reproducing programs. The subsequent construction
challenges will depend on the artful decomposition of the
program and finding a suitable output algorithm.

3.2.3 An array-based approach

π2 picks up on Sect. 3.2.2’s full decomposition of π into
single characters, the difference being π2’s implicit algorith-
mic—rather thanπ1’s explicitly accessible—decomposition.
Algorithmically, we constructπ ’s text through single charac-
ters. Valid characters for this algorithm are accessible through
an array character array C[0 : maxchar] The
array C (Table 5) contains sufficient elements to match every
character used to construct simula programs. The algorithm
construct the program text π2 from successive array C ele-
ments (see Table 6). We rewrite program π2 (Table 7) as
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Table 6 π2: Sketch of algorithm

Table 7 π2: Decomposition into 4 parts

a decomposition into four parts: The prologue and epilogue
(Ia,Ib), the character array initialization (II) and the algo-
rithm that realizes the construction (III). Implementation
of (Ia, Ib, II) is straightforward, even the algorithm
(III) looks manageable. All that remains to be written is
the simula equivalent of <compute new I> and <set
p >, where the former will prove to be the harder task. As
a start, we want to examine further what is expected in gen-
eral of the algorithm in III and of <compute new I> in
particular.

Definition 3.1 Let D be the set of all valid characters in
simula programs:

D ∈ {a, b, . . . , z, 0, 1, . . . , 9, ; , :, . . . , ∗}
Then ∀α ∈ D, let iα ∈ N0 be the index of char α ∈ D in
array C:

α = C[iα]
Lemma 3.1 D∗ is encoded by N∗0 through the mapping δ :
D∗ → N

∗
0, where δ(ε) = ε, δ(wα) = δ(w)iα ∀w ∈ D∗,

α ∈ D.

Proof (i) δ(x) is defined for every x ∈ D∗; hence, δ is
total. δ is trivially computable.

(ii) δ is injective since every character in D is stored exac-
tly once in array C.

(iii) Let j = j1 . . . jn ∈ N∗0. Then j is in δ(D∗)when every
jk, k ∈ [n] is from {0, . . . ,maxchar}. Hence δ(D∗)
is decidable.

(iv) Let j = j1 . . . jn ∈ δ(D∗). For every jk, k ∈ [n], the
character in D can be selected through jk and charac-
ter array C. A maximum of n ∗maxchar comparisons

Table 8 π2: Generate i j

are necessary to recover the inverse image of j under
δ. Hence, the inverse δ−1 is computable.
It follows from (i) to (iv) that δ is an encoding (see
Definition 2.14). ��

Remark Every simula program π , as a finite string in D∗,
has an encoding δ(π) in N∗0.

A new value for I is calculated in every iteration of π2’s
while loop. Hence, during execution, I takes on a series of
values. These values can be represented as a string in N∗0:

I = i1, i2, . . . , il(π2), i j ∈ N0 for all j ∈ [l (π2)] . (4)

In order for π2 to output its own text, the following equality
must hold:

C[i1] C[i2] . . .C[il(π2)] != π2. (5)

Thus, we state that

• <compute new I> computes the incremental encod-
ing of π2 through δ,

• the purpose of the entire π2 algorithm is the decoding of
the encoding, i.e. the realization of δ−1

We are still left with the problem of computing i j , j ∈
[l(π2)], which has to be done iteratively through a function
F : N0 → N0 (Table 8):

Function F can be written as a procedure and merged into
partIa ofπ2. The statement<compute new I> is rewrit-
ten as I := F(I ).

Since we strive to implement a self-reproducing simula
program on a concrete computer systems, we required the
following from function F:

a) F has to be computable in reasonable time.
b) The intermediate computation results ofF cannot exceed

the numerical range of the computer system.

It is possible for a given F to be independent of I.

3.2.4 Choosing iteration function F

This section discusses two viable candidate functions for F.

A modulo-based iteration function

We extend encoding δ through “Gödelization” (see Defini-
tion 2.15). We define the mapping fδ .
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Table 9 π2: Procedure F

Table 10 π2: Specifying iteration step r

Definition 3.2 Define the mapping fδ : N∗0 → N0 as
follows:

fδ(ī) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if ī = ε
k
∑

j=1
i j (maxchar + 1) j−1, if ī = i1 . . . ik

(6)

If ī ∈ δ(D∗), then each i j , j ∈ [k] is smaller or equal to
(maxchar + 1). Hence, the injective restriction of fδ on
δ(D∗) maps the elements of δ(D∗) to N0. We have:

Lemma 3.2 Given f := fδ ◦ δ, the mapping f : D∗ → N0

represents the Gödelization of D∗.

Proof Self-evident. ��
Of interest to us is the fact that f (x) ∀x ∈ D∗ can be effec-
tively used to recover δ(x). This is a fortiori the case for
f (π2). Table 9 sketches an iteration procedure for δ(π2)’s

construction, provided X’s starting point is chosen as f (π2).
// denotes integer division. Since we disallowed reading in
X’s starting value of f (π2) from an external source, π2 has
to contain the assignment X := f (π2). As a whole num-
ber, π2 can contain f (π2) in its program text. It is albeit
unknown at construction time of π2, but can be subsequently
computed. At construction time, we omit listing f (π2) in
the statement X := f (π2);. Only after construction can we
compute q := f (“π2 without string f (π2)”). With number
q as starting value for X, π2 can only reproduce its program
text without q. We remedy this by altering π2.
We can pinpoint with relative ease at which step the algorithm
has to output f (π2). Let this be the r th iteration step, and the
number r becomes part of the program. The new algorithm
for π2, as well as the final π2 is given in Tables 10 and 11.

ArrayC need not contain any characters that do not appear
in π2, as to keep its size as small as possible. Values for r, q,
and l("π2 without string q") are computed after
construction of the program. It is easy to see that π2 is self-
reproducing.
Although syntactically correct, π2 cannot be implemented
on a concrete computer. The value of q is too large to be
represented on common computer systems. We show this
by calculating a lower bound: At a minimum, π2 contains
at least 32 characters, i.e. maxchar ≥ 32. The minimum
length of π2 including the necessary blank spaces as delim-
iters amounts to

l("π2 without string q") > 700

It follows from Definition 3.2 and the definition of q that
q > 32700−1. From the raw estimate, it is apparent that q’s
size exceeds the numerical range of common computers.

Table 11 π2: Amended with C,
F and r
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A Gödelization-based iteration function

Section 2.5 introduced the Gödelization g : C∗ → N0. Sim-
ilarly, gD : D∗ → N0 can be constructed by substituting D
for C and the mapping HD : D → N0 for H : C → N0,
with HD(α) := iα,∀α ∈ D. Since for every Gödel number
g(w),w ∈ C∗, we can effectively specify the inverse image
w, this is applicable for every Gödel number gD(v), v ∈ D∗,
as well. Along the lines of Sect. 3.2.4, we can construct
a procedure F ′ to iteratively compute δ(π ′2), with q ′ :=
gd(“π ′2 without number gD(π

′
2)”) as the iteration’s starting

value. Subsequently, we obtain π ′2, a self-reproducing
program along the lines of Sect. 3.2.4, with the identical
reservation that despite its syntactic correctness, it is not
implementable because of the magnitude of q ′. Again, we
show this by calculating a lower bound. The minimum length
of π ′2 is 650 characters. Then

q > piB
1 piE

2 piG
3 piI

4 piN
5 . . . piα+1

588 − 1, α ∈ D

Since the fifth prime number 11 is already greater than 10,
and character a with ia = 0 occurs rarely in π ′2, we surely
have q ′ > 10600, which again exceeds the numerical range
of common computers.

3.2.5 A string-based simula program π3

Section 3.2.4 introduced syntactically correct, albeit unre-
alizable, self-reproducing programs π2 and π ′2. We move
from constructing realizable iterator functions and concomi-
tant start values to focussing our attention on the programs’s
text decomposition and algorithm. We change π2 to π3 as
follows:

(i) Decomposition: In contrast to π2, the decomposition
units inπ3 are partial strings, not individual characters.
We substitute text array C[1:maxtext] for
character array C[1:maxchar]. This intro-
duces the simula text concept for our purposes.

(ii) Algorithm: The algorithm of π3 strives to reconstruct
the program text of π3 from partial strings stored in
field C. Every field component is referred to by its
index. Hence, π3 can be encoded by successive
indices:

π3 
→ i1, . . . , ik , i j ∈ {1, . . . ,maxtext}

The index series is written into text variable X. We can
access individual i j ’s inX through the standard6 text
procedures SUB and GETINT. Hence π3’s algorithm
needs merely to iterate sequentially through text X and
output the text C[i j ] for every i j .

6 See [19].

Table 12 π3: Specifying iteration step r

By leveraging simula’s text concept for π3, we avoid the
integer representation difficulties of q and q ′ that plagued π2

and π ′2, respectively. X does not contain its own encoding,
however; for this reason, output of text X is handled sepa-
rately. Taking our cue from Sect. 3.2.4.1—where the number
X caused us similar grief—we use an easily computable num-
ber r to output X. Tables 12 and 13 illustrate this extension.
The whitespace in line 19) serves human readability, it does
not affect program behavior. Lines 21) and 23) induce the
scanning of text X.

Verifying π3

The algorithmic section of π3 sequentially works through
exactly 105 numbers stored in X. Each number j is used to
output a text C[j]. At first, C[1] and C[2] are printed,
which represent the first two program lines. Lines 3)–18)
are printed by the next 96 numbers, which consist of 16
groups. Each group is delimited by the pair 21,. . .,23
which denotes exactly one program line. The group makeup
is given in Table 14. This makeup corresponds exactly to
the general program line makeup of lines 3)–18). Hence, it
can be seen in conjunction with the program’s encoding that
these numeric groups will print lines 3)–18).

After these 96 numbers have been parsed, we process the
number 3 which prints x:=copy(". Concurrently, the for
loop variable I takes on the value 99, since we have printed
out 99 numbers so far. For this reason, it is now the turn of
text X to be printed. Processing number 23, results in print-
ing line 19); lines 20)–24) are outputted with the numbers
4,11,12,13 and 14. The loop variable has then reached 105
and the algorithm terminates.

Improving π3

(i) Text variablesC[1]. . .C[33] as well asX contain the
partial strings of the program. Recurring strings are of
particular importance; we list them in Table 15. These
strings in their entirety constitute the structural ‘build-
ing units’ of π3. The strings in Table 15 are essential
and cannot be done without, but the composition of the
other strings seems a bit arbitrary. It is not clear, for
instance, why C[1] and C[2] cannot be combined.
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Table 13 π3: Partial strings
construction

Table 14 π3: Group makeup

In general, we specify the largest partial strings that do
not contain a ". For instance, xxx"xxx would have
to be specified as

k) C[j] := copy("xxx""xxx");

Table 15 π3: Recurring strings

To be sure, the number j in text X prints xxx"xxx,
but no sequence of numbers can be specified to print
line k).

21, . . . , 22, j, 23
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Table 16 π ′3: Logical
improvements

prints

C[j] := copy("xxx"xxx");

There is a " missing in the middle of "xxx"xxx".
It cannot be inserted by printing C[24] since it is
missing in the middle of C[j]’s text. A successful
insertion of number 24 into X is only possible if the
single quote appears at the beginning or at the end of
C[j] (compare lines 12)–14) and the corresponding
numeric groups on text X).

(ii) π3 makes use of a text array C and a text X,
both of which only contain text constants. Hence, there
is no justifying special treatment for X. We subse-
quently extend fieldCwith componentC[x].C[x] is
assigned X and hence we jettison the extraneous algo-
rithmic special case for X (the if condition in the for
loop). C[x] is printed when number x is processed;
x is itself an element of C[x].

(iii) Points (i) and (ii) hint at a parsimonious makeup of C.
Fewer components require fewer digits to address them
unambiguously. We may even eliminate line 18), since
digit 4 is not used for addressing.
Program π ′3 (Table 16) incorporates the changes listed
in points i)-iii). Component C[1] and C[31] are

particularly conspicuous examples of largest partial
strings alluded to in i). From a logical functionality
point of view, there are no more improvements to be
made in π3. However, “textually” we can shorten the
program further with the following changes:

(iv) C components can be addressed in such a way that
commonly recurring addresses in C[23] are as short
as possible (Table 17). In order to minimize length,
the three shorter, one-digit addresses should be used
most frequently. This is not the case: Address 1 occurs
just twice, whereas double-digit address 11 occurs ten
times. We optimize our addressing scheme by inter-
changing the contents of C[1] and C[11] and by
reflecting this change in C[23]. We thus save 8 char-
acters.

3.2.6 Implementing π3

Program π3 dumps its program text into the standard stream
SYSOUT. Since the program text is transmitted in one sin-
gle uninterrupted string, we have to increase the size of the
SYSOUT buffer, lest we incur a runtime exception during
execution. We augment π3 with the following statement

SYSOUT.IMAGE := BLANKS(200);

123



On self-reproducing computer programs 27

Table 17 π ′3: Length improvements

and adjust the text constant C[31] accordingly (see
Appendix A.1 in Electronic Supplementary Material). Our
SIMULA compiler’s input length is capped at 72 characters.
The output of π3 and π ′3 would thus have to be subdivided
into blocks of 72 characters to be compilable, which is not
the case for either program. Appendix A.2 in ESM presents
a version π ′′3 of π3 whose output is blocked into 72-character
lines through a complicated assignment set. π ′′3 ’s output is
compilable and constitutes an executable SIMULA program
equivalent to π ′′3 .

3.2.7 A procedure-based program π4

Section 3.2.5 introduced a self-reproducing program π3 con-
taining its own text stored in the form of partial strings,

which then had to be printed out in the right order. The self-
reproducing simula program π4 combines the storage and
printing of said partial strings. Instead of π3’s

C[address] := copy("text");
π4 contains

procedure name;OUTTEXT("text");
The decomposition of the program text remains the same, but
the algorithm in π4 consists of consecutive procedure calls.
Thus, we no longer need to use the simula programming
language’s text concept: We merely need the ability to use
text constants as print statement arguments (Table 18).

Verifying π4

The first statement of π4 (AA) prints out the first program
line. The subsequent nine program lines are printed by lines
12)–20) which can easily be checked by tracing the visually
ordered procedure calls in π4. The last statement AB induces
the output of lines 11)–22), since procedure AB’s text con-
stant contains the procedure calls—the algorithmic part–of
π4. With the execution of AB, the output of π4 catches up
with the execution of π4.

Remark The self-reproducing simula program π4 requires
the use of string constants as data, and structurally the abil-
ity to consecutively execute procedures. These aren’t just

Table 18 π4: Procedural
decomposition
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simula-specific idioms, but available in most higher-level
languages. As such, self-reproducing programs similar to π4

must exist in almost all other high level languages.

3.2.8 Implementing π4

The buffer size limitation of the simula compiler (Sect. 3.2.6)
has to be taken into account here, as well. An executable pro-
gram π ′4 can be built from π4 by including the assignment

SYSOUT.IMAGE := BLANKS(200);
into the text constant of procedure AB. We proceed—analo-
gous to Sect. 3.2.6—to derive an executable program π ′′4 by
again taking into account the compiler output restrictions.
We do this by

• adding procedure procedure Q; OUTIMAGE;
• decomposing the text constant of procedure AB into pro-

cedures AB, CA, CB, CC, AAA and AAB.

We incur some statement bloat in π ′′4 to accommodate the
output of procedures CA to AAB. Appendices A.3 and A.4
present π4’s derived programs π ′4 and π ′′4 , respectively.

3.3 Self-reproducing programs in pascal [10]

This section introduces self-reproducing programs in pas-
cal, a non-block oriented language that recognizes text con-
stants, but not text variables. As such, it is not self-evident
how to adapt the simula program π3 into an equivalent, self-
reproducing pascal program. However, keeping previous
remarks in mind, we will have no problems implementing a
pascal version of π4 (Sect. 3.2.6).

3.3.1 A string-based pascal program π5

Despite the lack of text variables, we shall try to port pro-
gram π3 into a self-reproducing pascal program π5. There
are several ways to overcome this language restriction, of
which we present two:

(i) We use character arrays to store the π3 strings. Field
C becomes two-dimensional

var C : array[1..maxtext,1..maxlength]
of char;

where maxlength denotes the length of the largest
partial string that arises during the decomposition of
π5. Every row in C contains exactly one string from the
decomposition ofπ5. Having successfully approached
the issue of string storage, we turn our attention to

Table 19 π5: Mapping ‘strings’ to letters

Table 20 π5: Algorithm for C[maxtext,...]

Table 21 π5: Improved algorithm with ORD

the algorithmic part of π5. Since we have no strings
and therefore no GETINT-equivalent procedure, we
introduce a mapping from every “string” C[j,...]
to a letter in the alphabet (Table 19). Using C’s rows,
we can construct and therefore describe π5’s program
text with a finite sequence of letters. This sequence is
stored in C[maxtext,...], the content of which
merely has to be processed for printing by π5’s algo-
rithm (Table 20). Unfortunately, we find the left hand
side of the case structure rife with single quotes ’.
The single quote ’ in pascal is equivalent to the sim-
ula double quote ". This has structural ramifications
in that the algorithm would have to be decomposed
into a lot of partial strings (see Sect. 3.2.5), resulting
in a unwieldy program. Fortunately, we can negotiate
this problem with pascal procedure ORDwhich maps
char to integer (Table 21). There remain a few more
obstacles towards the realization of π5.

• π5 needs to contain a special output procedure
to handle statements of the type <length of
C[I,...]>

• The rows of C contain in general many blanks, the
output of which we try to avoid, if possible.

All in all, we could construct a syntactically correct,
albeit unmanageable program π5.
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Table 22 π5: ORD letter map-
ping

Table 23 π5: Mapping proce-
dures to letters

(ii) In order to circumvent the difficulties presented in (i),
we abandon the idea of storing π5’s partial strings in a
two-dimensional character array. We turn to a scheme
similar to Sect. 3.2.7’s simula program π4 in that
we implicitly store the strings in output procedures.
π5’s algorithm’s, given in (i), is modified in that now,
we map the procedure instead of the “strings” to the
alphabet. These changes makeπ5 much more manage-
able. The specific pascal compiler-implementation
dependent ORD letter values and procedure mapping
are given in Tables 22 and 23. The revised π5 is pre-
sented in Table 24.

Verifying π5

We discussed the purpose of thefor loop. Every character in
Xmaps to one alternative in the case statement which prints
out a partial string of π5’s program text. Through parsing of
X, it is easy to verify (akin to π3’s verification) that π5 does
reproduce itself.

3.3.2 Implementing π5

We implement π5 such that the number of characters per
printed line is limited to 132 characters. Thus, we insert the
procedure

procedure Q;begin WRITELN end;

into π5. Procedure A and B’s longish text constants warrant
their breaking up into multiple procedures which lengthen
the program text for π5, forcing procedure CB to be broken
up, as well (Table 25).

Variable X contains π5’s encoding; the added procedures,
however, exceed the variable’s holding capacity (an arti-
fact of the specific pascal implementation used here). We
introduce another variable Y: array [1 .. 68] of
char; to handle the space requirements of π5’s procedural
extensions, which in turn necessitate the generation of pro-
cedure CCA. Appendix A.5 in ESM show the changes to π5

algorithm in detail. The new procedure encodings are given in
Table 26.

3.3.3 A procedure-based PASCAL program π6

Since all the languages elements used in Sect. 3.2.7’s are
present in pascal, we can translate π4 into a self-reproduc-
ing pascal program π6 (Table 27).

Verifying π6

Verification follows directly from π4’s verification in
Sect. 3.2.7.

3.3.4 Implementing π6

π6 writes its program text in one go without blocking into file
OUTPUT. Again, the string’s length exceeds the buffer capac-
ities of both the SIEMENS printer and the pascal compiler.
As such, it can be neither printed nor compiled. We nego-
tiate this limitation by blocking the output into chunks of
132 characters (which corresponds to the SIEMENS printer
buffer). Hence, we have to repeatedly include the WRITELN
procedure into π6. We shorten it as such

procedure Q : begin WRITELN end;
This change affects the procedural definition part of π6 with
ramifications for procedure AA. In order to break up AB’s
long text constant into two procedures, we need to implement
yet another procedure CA. Appendix A.6 in ESM shows π6

implementing these changes.

3.4 Self-reproducing program in the SIEMENS assembly
language

This section gives a few examples of self-reproducing pro-
grams written in an assembly language (here SIEMENS
assembler). Since assembly programs may directly access
and read the memory areas in which they are situated, our
task becomes somewhat easier. Self-reproducing programs
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Table 24 π5: Procedural
decomposition

Table 25 π5: Breaking up A, B
and CB

needn’t output their program text in assembly code; rather,
they may write the machine code directly into memory (see
Sect. 1.2). All addressing in the subsequent examples are rel-
ative to the program counter PCR which guarantees that the
copies’ functionality as well as their self-reproductive capa-
bility are preserved. We explain the programs in as much
detail as the scope of this thesis allows. For details on the
SIEMENS assembler, the interested reader is referred
to [22,23].

Table 26 π5: New procedure mappings
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Table 27 π6: Procedural decomposition

Table 28 PROG1:
Self-reproducing SIEMENS
assembly

Example 3.1 The self-reproducing assembly program
PROG1 (Table 28) copies its machine code to the 64th byte
relative to PROG1’s first statement. Assembly instructions
START and END are not assembled into machine code and
can be ignored for copying purposes. The programs’s first
executable statement is

BALR 1,00

which loads the current program counter PCR into instruc-
tion register R1. Since the program counter is incremented
by the length of the statement to be executed before actual
execution, R1 contains after execution the starting address
of PROG1 plus the length of BALR statement. Since BALR
is RR, the length is 2. Statement

LA 2,2(0,0)

loads the literal2 into registerR2. TheSR (Subtract Register)
command

SR 1,2

subtracts the content’s of R2 from R1. Hence, after execu-
tion,R1 contains the program’s starting address, and we shall
use R1 subsequently as a base register. Line 5 denotes a LM
(load multiple) command

LM 4,8,0(1)

which loads consecutive words in memory into consecutive
multi-purpose registers (as such, 16 is the limit). The first
two operands denote the first and last register, respectively;
and the last operand gives the starting address of the mem-
ory location to be copied. In our case it is PROG1’s starting
address which explains the composition of the third operand:
R1 as base address plus an offset of 0. Program PROG1’s
length is 18 bytes. Since memory word length is 4 bytes, five
multi-purpose registers (R4–R8) are sufficient to contain the
entire program. The next statement

STM 4,8,64(1)
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Table 29 PROG2:
Self-reproducing SIEMENS
assembly

Table 30 PROG2: Template for
copying

is a STM (multiple store) command and serves as the storage
counterpart of the LM command. It stores the contents of reg-
isters R4 to R8 consecutively at the address specified by the
third operand. Again, we use register R1 as a base address
and an offset of 64. After execution of STM a copy of PROG1
will be resident in memory, 64 bytes from the base address
of the original. The last command

SVC X′5B′

simply serves to properly terminate PROG1. Appendix B.1
in ESM gives an expansive discussion on PROG1.

The next example PROG2 is 2 bytes shorter than PROG1.
These savings are realized by replacing theLM andSTM com-
mands by a MVC (move character) statement. In addition to
copying itself, PROG2 is also able to copy a certain memory
section that follows the program (Table 29).

Example 3.2 Lines 1)–4) are identical to PROG1 in that they
load the program base address into register R1. Line 5)’s
MVC induces the copying of 60 consecutive bytes, starting at
base address R1 plus offset 0 (2nd operand), to the memory
address specified by R1 plus offset 64 (1st operand). Since
PROG2 is merely 16 bytes long, 44 additional bytes are cop-
ied by the MVC statement. Up to 28 bytes can be copied using
MVC, provided once specifies the range in the appropriate
field (60 in our example). PROG2’s last two lines 6)–7) cor-
respond to PROG1’s lines 7)–8).

PROG2’s lines 2)–5) introduces a code snippet that can inte-
grate other assembly code regions or augment entire pro-

grams into a self-reproduction format. Table 30 illustrates
how to use the program text section length in bytes as an oper-
and for the MVC statement. This way, it is possible to copy
up to 28−16 bytes’ worth of program text into memory. The
copy’s location offset must be chosen according to the length
of the text region to be copied. Our next example PROG3 is a
self-reproducing assembly program which hands off control
to its copy after execution (Table 31). This is achieved by
an unconditional jump to the copy’s base address. Since we
faithfully copiedPROG3, upon execution this process repeats
itself; the system’s memory is hence iteratively suffused with
copies of PROG3. The distance between consecutive copies
is constant.

Lines 1)–5) are identical to PROG2 and induce the copy-
ing of PROG3 to the 64th byte offset following PROG3’s first
statement. Line 6)’s LA (load address) command

LA 2,64(0,0)

loads 64 into R2. The subsequent AR statement

AR 1,2

serves to increase the contents of base registerR1by 64. After
execution of the AR statement, R1 thus contains the starting
address of PROG3’s copy, control to which is handed off by
the BR (uncondition branch) statement

BR 1

The copy is executed and the process repeats itself
with the new copy. Appendix B.3 in ESM illustrates the
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Table 31 PROG3: One copy
after another

Table 32 PROG4: 4 byte
chunks

implementation of PROG3. Since PROG3 never stops, even-
tually memory exhaustion will lead to abnormal program
termination.

The previous examples copied programs en bloc using the
MVC, or theLM andSTM commands, respectively. The follow-
ing code example (Table 32) presents a program that copies
its code in chunks of 4 bytes, increasing its algorithmic com-
plexity somewhat as well as its program length compared to
the previous examples.

Example 3.4 Lines 2)–4) load PROG4’s starting address into
register R1, which is subsequently used as the base address
register. The multipurpose registers R3, R4, and R10 are
assigned values of 4, 48, and 22 (lines 5)–7)), respectively;
48 being the number of bytes to be copied into memory by
PROG4. The statement

AR 10,1

adds the start address of PROG4 to the value in register
R10. After command AR is executed, R10 holds the branch

address used by BRP (branch if positive) in line 12), which
corresponds to the address of statement

MVC 64(4,1),0(1)

in line 9). The MVC statement uses base address register R1
to copy the first 4 bytes of PROG4’s machine code into the
64th memory location after PROG4’s first statement. R1’s
value is subsequently increased with statement

AR 1,3

which adds the content of R3 (which is 4) to R1. The follow-
ing statement

SR 4,3

subtracts 4 from registerR4, which holds the remaining num-
ber of bytes to be copied. Provided the number is positive,
some of the 48 bytes remain to be copied, and statement

BRP 10

branches back to the MVC command in line 9), which in turn
copies the next 4 bytes of PROG4, since R1 had already been
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Table 33 PROG4: Template for
copying

increased by 4. The program terminates after 48 bytes have
been copied. Since PROG4’s length adds up to a mere 36
bytes, 12 consecutive follow-up bytes are copied, as well. As
before, statement

SVC X′5B′

ends the program; for a demonstration, see Appendix B.4 in
ESM. Similarly to Example 3.2’s PROG2 , lines 1)–12) can
be used to integrate large code regions and/or augment entire
assembly programs into a self-reproducing program format
(see Table 33). In contrast to PROG2’s mechanism, however,
the region to be copied is no longer limited to 28− 16 bytes.

4 Variants of self-reproducing programs

Let S in this chapter be a fixed high level language in the
usual sense (see Sect. 1.2).

4.1 Motivation

In Sect. 1.2, we gave a definition of self-reproducing pro-
grams. The gist of it is: Let be π ∈ S. π is said to be self-
reproducing if it outputs its own source code without the help
of any input. If we probe this definition further, the output
of any self-reproducing program π in S must satisfy the fol-
lowing requirements:

1. The output of π must contain a syntactically correct pro-
gram π ′ in the programming language S.

2. π ′ must be identical to π .

If we choose to ignore the second condition, then the pro-
gram generally is no longer self-reproducing; it can at best
be called “reproducing”.

If π is “reproducing”, following possibilities arise:

1. The program π outputs the program π ′. The program π ′
itself produces the program π ′′ such as π ′′ = π . Pro-
grams π and π ′′ are certainly not self-reproducing per
se. However, a certain kind of self-reproduction - one
with some intermediary step - is indeed evinced here.

2. The program π = π0 outputs the program π1, while π1

itself outputs the program π2, and so on... From a gen-
eral point of view, we have π i outputs π i+1, i ≥ 0. For
every i, j ≥ 0, we have π i �= π j whenever i �= j .

On the other hand, we can tighten our previous definition of
self-reproduction by adding additional constraints. All in all,
some interesting variants of self-reproduction are conceiv-
able. We will present and study some of them in this chapter.
We will also illustrate them by means of examples using real
programming languages as simula and pascal.

4.2 Infinitively reproducing programs

Definition 4.1 Let π be a (syntactically correct) program
in S.
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1. a) If π does not consider any input, then π is called
(strongly) reproducing, if π precisely outputs a syn-
tactically correct program π ′ in S.

b) If π considers input, then π is called (strongly)
reproducing, if π precisely outputs a syntactically
correct program π ′ in S for every valid input value.

2. R(S) describes the set of all reproducing programs in S.

Remark Every (strongly) self-reproducing program is obvi-
ously (strongly) reproducing.

Consequently, there exist reproducing programs in the
simula and pascal programming languages, since there
also exist self-reproducing programs in these languages.

Lemma 4.1 There exist infinitely many reproducing
programs which are not self-reproducing in simula and
pascal programming languages.

Proof 1. For every k ∈ N, the following simula program:

πSIM(k) = begin
OUTTEXT("BEGIN INTEGER I;

I := k;
OUTINT(k,< arity of k >)
END")

end

is reproducing, since the text constant, produced by
πSIM(k) represents a valid simula program.

2. A similar program can be given in pascal programming
language:

πPAS(k) = program T (OUTPUT);
begin
WRITE(‘PROGRAMT (OUTPUT);

BEGIN
WRITE(k)
END.’)

end

��
Definition 4.2 Let (πi )i∈N0 = π0, π1, π2, . . . be an (infi-
nite) sequence of programs in programming language S.
Then, (πi )i∈N0 is called a reproduction sequence if

π j reproduces π j+1, for every j ∈ N0.

From Definition 4.2 it follows that every program in a repro-
duction sequence can itself be used as the starting program
of a new reproduction sequence. We merely need to con-
struct the corresponding subsequence. This fact justifies the
following definition.

Definition 4.3 Let (πi )i∈N0 be a reproduction sequence in
the programming language S. Let π j , j ∈ N0 be an element
in this sequence.

1. π j is said to be infinitely reproducing.

2. The tail sequence (πk)
j
k∈N0

from (πi )i∈N0 with πk =
π j+k for every k∈N0 is called the reproduction sequence
of π j .

3. The set U (S) describes the set of all infinitely reproduc-
ing programs in S.

Reproduction sequence of π0

π0 → . . .→ π j−1 → π j → π j+1 → . . .

Reproduction sequence of π j

π j → π j+1 → . . .

Remark Every self-reproducing programs π is infinitely
reproducing. The reproduction sequence of π is constant.

Proposition 4.1 There exists an infinitely reproducing pro-
gram in pascal whose reproduction sequence does not con-
tain any program more than once.

Proposition 4.1 will be proved by means of the following

program example
∞
π 0 which satisfies the conditions of the

proposition.

Example 4.1

∞
π 0 = program U R(OUTPUT);

var I, K : integer;

procedure Z(J : integer); begin WRITE(J + 1) end;

procedure AA; begin WRITE(‘PROGRAM UR(OUTPUT); VA

RI, K : INTEGER; PROCEDURE Z(J : INTEGER): BEG

IN WRITE(J + 1) END; PROCEDURE AA; BEGIN

WRITE(’ ’ ’) end;

procedure C; begin WRITE(‘PROCEDURE’) end;

procedure A; begin WRITE(‘;BEGIN WRITE(’ ’ ’) end;

procedure B; begin WRITE(’ ’ ’) END;’) end;

procedure AC; begin WRITE(’ ’ ’ ’) end;

procedure B A; begin WRITE(‘ A ’) end;

procedure B B; begin WRITE(‘ B ’) end;

procedure BC; begin WRITE(‘ C ’) end;

procedure C A; begin WRITE(‘BEGIN K:=’) end;

procedure AB; begin WRITE(‘;FOR I := 1 TO K DO BEGI

N WRITELN(I, I*I, I*I*I) END; AA;AA;AC;B;C;BC;A;C

;B;C;BA;A;A;AC;B;C;BB;A;AC;B;B;C;BA;BC;A;AC;AC

;B;C;BB;BA;A;BA;B;C;BB;BB;A;BB;B;C;BB;BC;A;BC;

B;C;BC;BA;A;CA;B;C;BA;BB;A;AB;B;CA;Z(K);AB;WRI

TELN END.’) end;

begin

K := 0;
for I := 1 to K do

begin WRITELN(I,I*I,I*I*I) end;

AA;AA:AC;B

C;BC; A; C; B;

C;BA; A; A;AC; B;
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C;BB; A;AC; B; B;

C;BA;BC; A;AC;AC; B;

C;BB;BA; A; BA; B;

C;BB;BB; A; BB; B;

C;BB;BC; A; BC; B;

C;BC;BA; A; CA; B;

C;BA;BB; A; AB; B;CA;Z(K);AB;

WRITELN

end.

The program
∞
π 0 is an infinitely reproducing program whose

reproduction sequence does not contain any program more
than once.

Proof The program
∞
π 0 corresponds essentially to the self-

reproducing programs π6 presented in Sect. 3.3.4. In order to

prevent
∞
π 0 from being self-reproducing, we increment by 1

the max value of the internal variable I in the copy
∞
π 1 of

∞
π 0.

Incrementing is done by means of procedure Z , whose source

code is positioned at the program head. Thus the copy of
∞
π 0

is not only formally but also semantically different from
∞
π 0. Since the copy differs merely in an integer constant of
∞
π 0, it remains able to reproduce. Similarly the copy

∞
π 2 of

∞
π 1 differs from

∞
π 1. The internal variable I in

∞
π 2 is increased

by 2 compared
∞
π 0. We thus conclude:

∞
π 0 is an infinitely reproducing program. In every element
∞
π j , in the reproduction sequence generated from

∞
π 0, the

internal variable I equals j (Fig. 1). ��

Remark 1. Programs
∞
π j , j ∈ N0 are reproducing but not

strongly reproducing. However, by deleting the instruc-
tion

WRITELN(I, I*I, I*I*I)

we obtain strongly reproducing programs. Proposition 4.1
could be tightened in this respect.

2. The programs of the reproduction sequence generated

from
∞
π 0 contain the complete self-reproduction mecha-

nisms of program π6 from Sect. 3.3.4. However, we only

Fig. 1 Cyclically self-reproducing programs

asked for the more lenient reproductive property. In order
to obtain only reproduction we have weakened the self-
reproduction mechanism by adding the following piece
of code:

for I := 1 to . . . do
begin . . . end

This method appears to be absurd at first glance. It seems,
though, that the programs in the reproduction sequence

(
∞
π i )i∈N0 need a self-reproduction mechanism to gener-

ate infinitely many pairwise different, syntactically
correct programs. It would be desirable to have a repro-
duction sequence whose programs exhibit mechanisms
weaker than self-reproduction. The difficulty in find-
ing such a sequence may be indicative of the necessity
of a strong property requirement: Infinitely many suc-
cessive programs—generated one from the other—must
somehow lie densely packed close together. This den-
sity seems so important that “quasi self-reproduction”
mechanisms may be necessary in order to generate such
sequences.

3. Programs
∞
π 0 only contains language constructs that are

also found in the simula programming language. Con-
sequently, Proposition 4.1 extends to this programming
language.

4. The first line of Proposition 4.1 has a theoretical mean-
ing. From a practical point of view, there are indeed an
infinity of reproducing programs but not the correspond-
ing sequences. Also, when considering a finite memory
size, we can only hope to represent finitely many pro-
grams only.

4.2.1 Implementing
∞
π 0 programs

The program
∞
π 0 writes its outputs totally unformatted as a

single line text. This line is too long not only for the printer
buffer but also for the internal buffer of the pascal compiler.

In order to get a working example for the program
∞
π 0, it is

desirable to interpret the output from program
∞
π 0, namely

the program
∞
π 1, before executing it. For that purpose, we will

proceed as in Sect. 3.3.4 and thus introduce the formatting
of the input by means of the procedure Q:

procedure Q; begin WRITELN end;

The relatively long text constant in procedure AB will be
divided into four procedures. For that purpose, we will addi-
tionally define procedures AAA, CB and CC in the program.

Appendix A.7 in ESM gives the modified program
∞
π 0.
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4.3 Cyclically self-reproducing programs

Definition 4.4 Let π0 be an infinitely reproducing program
in the programming language S. Let (πi )i∈N0 be the repro-
duction sequence of π0.

1. If there exists j ≥ 1 such that π j = π0, then the program
π0 is said to be cyclically reproducing.

2. Ifπ0 is cyclically reproducing, the smallest integer j ≥ 1
such that π j = π0 is called the cycle length (period) of
π j = π0.

3. The set of all cyclically reproducing programs in S is
denoted Z(S).

Remark Every program π j in the reproduction sequence of
any cyclically self-reproducing program π0 is itself a cycli-
cally self-reproducing program which has the same cycle
length as π0.

Proposition 4.2 For every k ≥ 1 there exists a cyclically

self-reproducing program
k
π with a cycle length of k for the

pascal programming language.

Proof The pascal program
∞
π 0 given in Sect. 1 is infinitely

reproducing. But we can very easily deduce from
∞
π 0 a cycli-

cally self-reproducing program
k
π0 with a cycle length of k

by replacing the procedure

procedure Z(J : integer); begin
WRITE(J + 1) end;

with the procedure hereafter:

procedure Z(J : integer); begin
WRITE((J + 1) mod k) end;

The programs in the reproduction sequence generated from
∞
π 0 distinguish themselves directly by means of the values
taken by Z . The modified procedure Z ensures that for every

k ≥ 1 we have
k
π0 = k

πk .

By taking
k
π0 in place of

k
π we have proved the proposition.

��
We want to give one more example of cyclically self-repro-
ducing programs.

Example 4.2 The following program π
cyc
0 is a variant of π6

presented in Sect. 3.3.2, aside from some renaming. This
program should only self-reproduce after a cycle of length
N = 9 steps. This outcome is obtained by slightly changing
the sequence of internal procedures in π

cyc
0 . The resulting

program π
cyc
1 proceeds analogously . Only after nine steps

do we obtain the “initial constellation” of the procedures, and
thus finally the program π

cyc
0 again.

Program π
cyc
0 differ from program π6 in that it extends

its compatibility section:

(i) integer I,K;
procedure Z(J : integer); begin WRITE(J) end;

(ii) The division of the printing procedure of the program
π

cyc
0 into two different procedures BC and CA.

π
cyc
0 ’s instruction block must be constructed such that its

direct copy π
cyc
1 differs from π

cyc
0 . The latter must be pro-

duced again after nine steps only. The instruction block of
π

cyc
0 must be almost—but not quite—identical in all sub-

sequent copies. Since the instruction block cannot be copied
wholesale, the program division formulated in the point (ii) is
justified. We specify the π

cyc
0 algorithm and its copies with

the following procedure calls:

BC;Z((
︸ ︷︷ ︸

constant

k+2) mod 9); CA
︸ ︷︷ ︸

constant

Only k is varying.

π
cyc
0 = program CYCLE(OUTPUT);

varI, K : integer;
procedure Z(J : integer); begin WRITE(J ) end;
procedure A; begin WRITE(‘PROGRAM
CYCLE(OUTPUT); VAR I, K : INTEGER; PROCEDURE

Z(J : INTEGER): BEGIN WRITE(J) END; PRO
CEDURE A; BEGIN WRITE(”) end;

procedure B; begin WRITE(‘PROCEDURE’) end;
procedure C; begin WRITE(‘;BEGIN WRITE(’ ’ ’) end;
procedure AA; begin WRITE(’ ’ ’) END;’) end;
procedure AB; begin WRITE(’ ’ ’ ’) end;
procedure AC; begin WRITE(‘ A ’) end;
procedure B A; begin WRITE(‘ B ’) end;
procedure B B; begin WRITE(‘ C ’) end;
procedure BC; begin WRITE(‘BEGIN A;A;AB;AA;K:=’) end;
procedure C A; begin WRITE(‘;FOR I := 1 TO 9 DO BEGIN B;

CASE K OF 0:BEGIN BA;C;B END;1:BEGIN BB;C;C;
BA END;2:BEGIN AC;AC;C;AB;AA END;3:BEGIN AC;BA;C;
AB;AB END;4:BEGIN AC;BB;C;AC END;5:BEGIN BA;
AC;C;BA END;6:BEGIN BA;BA;C;BB END;7:BE GIN BA;
BB;C;BC END;8:BEGIN BB;AC;C;CA END END;AA;K:=
(K+1) MOD 9 END;BC;Z((K + 1) MOD 9);

CA;WRITELN END.’)end;
begin
A; A; AB; AA;

K := 1;
for I := 1 to 9 do

begin B;

case K of

0 : begin BA;C;B end;

1 : begin BB;C;C;AB end;

2 : begin AC;AC;C;AB;AA end;

3 : begin AC;BA;C;AB;AB end;

4 : begin AC;BB;C;AC end;

5 : begin BA;AC;C;BA end;

6 : begin BA;BA;C;BB end;

7 : begin BA;BB;C;BC end;

8 : begin BB;AC;C;CA end
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Table 34 Table of values of the
variables controlling the cyclic
self-reproduction. The first
column contains the start value
of K in π

cyc
i , the second

column (*) describes the
spanning sequence of K values
while the last column (**)
contains the start value of K in
π

cyc
i to produce π

cyc
i+1 .

end;

AA;
K := (K + 1) mod 9

end;

BC;Z((K + 1) mod 9);CA;

WRITELN

end.

Verification
Programs π

cyc
0 , π

cyc
1 , . . . , π

cyc
8 differ only in the call order

of procedures B, . . . ,C A and the start value K. The output
sequence of these procedures is controlled through the vari-
able K . Let us view Table 34: Each row of this Table lists a
value from 0 to 8 in the division “I = 1” to “I = 8” exactly
once. Due to the case instruction, every π

cyc
i produces all

procedures B til C A. The last column of the table list a dif-
ferent the start value of K in every copy π

cyc
i , i = 0, . . . , 8.

Similarly, K ’s initial value in the last column of π
cyc
8 is the

same π
cyc
0 ’s initial K value. Since the instruction block of

π
cyc
i differs only by the initial value of K , we have:

π
cyc
9 = πcyc

0 .

Remark I. Essentially, point II of Remark 4.2 for infi-

nitely reproducing programs
∞
π 0 still holds in the case

of cyclic self-reproducing programs π
cyc
0 . In any

event, however, our examples of infinitely reproducing
programs and cyclic self-reproducing programs have
not simplified the self-reproduction mechanism of the
program π6.

II. Proposition 4.2 obviously holds for simula programs.

Example 4.3 As an example of cyclic self-reproducing pro-
grams in simula programming language, a simula version
of the program π

cyc
0 follows.

begin

integer I, K ;
procedure Z(J ); integer J ; OUTINT(J, 1);
procedure A; OUTTEXT("BEGIN INTEGER I, K ; PROCEDURE

Z(J ); INTEGER J ;OUTINT(J, 1); PROCEDURE A; OUTTE

XT(" " ");

procedure B; OUTTEXT("PROCEDURE");

procedure C; OUTTEXT(";OUTTEXT(" " ");

procedure AA; OUTTEXT(" " ");");

procedure AB; OUTTEXT(" " ");

procedure AC; OUTTEXT(" A ");

procedure B A; OUTTEXT(" B ");

procedure B B; OUTTEXT(" C ");

procedure BC; OUTTEXT(" A; A; AB; AA; K :=");

procedure C A; CA; OUTTEXT("; FOR I:= 1 STEP 1 UNTIL 9 DO

BEGIN B; IF K = 0 THEN BEGIN BA; C; B END ELSE IF K = 1

THEN BEGIN BB; C; C; AB END ELSE IF K = 2 THEN BEGIN

AC; AC; C; AB; AA END ELSE IF K = 3 THEN BEGIN AC; BA; C

AB; AB END ELSE IF K = 4 THEN BEGIN AC; BB; C; AC END

ELSE IF K = 5 THEN BEGIN BA; AC; C; BA END ELSE IF K =

6 THEN BEGIN BA; BB; C; BC END ELSE IF K = 7 THEN BEG
IN BA; BB; C; BC END ELSE BEGIN BB; AC; C; CA END AA;K
:= (K + 1) MOD 9; END; BC; Z((K + 2) MOD 9); CA END;");

A; A; AB; AA;
K := 1;
for I := 1 step 1 until 9 do
begin B;

if K = 0 then begin BA; C; B end
else if K = 1 then begin BB; C; C; AB end
else if K = 2 then begin AC; AC; C; AB; AA end
else if K = 3 then begin AC; BA; C; AB; AB end
else if K = 4 then begin AC; BB; C; AC end
else if K = 5 then begin BA; AC; C; BA end
else if K = 6 then begin BA; BA; C; BB end
else if K = 7 then begin BA; BB; C; BC end

then begin BB; AC; C; CA end;
AA;
K := (K + 1) mod 9;
end;
BC; Z((K + 1) mod 9); CA
end;

Verification
The verification of this simula program is the same as for
the pascal program π

cyc
0 .

4.3.1 Implementing the program
k
π0

The same remarks made in Sect. 4.2.1 with respect to the

implementation of
∞
π 0 hold for the implementation of

k
π0, as

well. Appendix A.8 in ESM provides more details.
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4.3.2 Implementing the program π
cyc
0

Similarly, the remarks of Sect. 4.2.1 hold for the implemen-
tation of π

cyc
0 . The text constant which represents the algo-

rithm of π
cyc
0 , though, has to be divided into even more

procedures than was the case for
∞
π 0, for formatting reasons.

More details are provided in Appendix A.9 in ESM.

4.4 Cyclic self-reproduction with programming language
change

We introduce cyclic self-reproduction as a special case of
infinite reproduction in Sect. 4.3. Infinitely reproducing pro-
grams are themselves reproducing programs. According to
Definition 4.1, a reproducing program π produces a pro-
gram π ′. Moreover, programs π and π ′ are written in the
same programming language S. We could have also defined
reproducing programs in a different way by allowing pro-
gram π ′ to be expressed in a different programming lan-
guages S′ �= S. Such a definition would have been broader
and more general than Definition 4.1. Corresponding defi-
nitions of infinitely reproducing and cyclic self-reproducing
programs would have consequently been more general as
well. We will show by means of our next example that such
a generalization is eminently reasonable. Example 4.4 intro-
duces a program which not only produces another program in
a different programming language but also cyclically repro-
duces itself.

Example 4.4 We consider the simula program π4 from
Sect. 3.2.6 and the pascal programπ6 from Sect. 3.3.2. Both
programs are nearly identical, since each effectively repre-
sents the translation of the other. We will combine a pascal
program πPAS and a simula program πSIM such that πPAS
generates πSIM and conversely πSIM outputs πPAS. Both
programs πPAS and πSIM are cyclic self-reproducing pro-
grams changing their programming language.

πPAS = program X(OUTPUT);

var T, F : boolean;

procedure A(Z : boolean); begin if Z

then WRITE(‘BEGIN BOOLEAN T, F;’)

else WRITE(‘PROGRAM X(OUTPUT); VAR T, F: BOOLEAN;’) end;

procedure B(Z : boolean); begin if Z

then WRITE(‘PROCEDURE’)

else WRITE(‘PROCEDURE’) end;

procedure C(Z : boolean); begin if Z

then WRITE(‘(Z); BOOLEAN Z; IF Z THEN OUTTEXT("’)

else WRITE(‘(Z: BOOLEAN); BEGIN IF Z THEN WRITE(’ ’ ’) end;

procedure AA(Z : boolean); begin if Z

then WRITE(’ ") ELSE OUTTEXT(" ’)

else WRITE(’ ’ ’) end;

procedure AB(Z : boolean); begin if Z

then WRITE(’ ");’)

else WRITE(’ ’ ’) END; ’) end;

procedure C B(Z : boolean); begin if Z

then WRITE(’ " ’)

else WRITE(’ ’ ’ ’) end;

procedure B A(Z : boolean); begin if Z

then WRITE(‘ A ’)

else WRITE(‘ A ’) end;

procedure B B(Z : boolean); begin if Z

then WRITE(‘ B ’)

else WRITE(‘ B ’) end;

procedure BC(Z : boolean); begin if Z

then WRITE(‘ C ’)

else WRITE(‘ C ’) end;

procedure AC(Z : boolean); begin if Z

then WRITE(‘T := TRUE; F:= FALSE;
⊗

END’)

else WRITE(‘BEGIN T := TRUE; F := FALSE;
⊗

WRITELN END.’) end;

Where the program part denoted by
⊗

is:

begin T := true; F := false;
A(T );
B(T ); B A(T ); C(T ); A(F); AA(T ); A(T ); AB(T );
B(T ); B B(T ); C(T ); B(T ); AA(T ); B(T ); AB(T );
B(T ); BC(T ); C(T ); C(F); AA(T ); C(T ); C B(T ); AB(T );
B(T ); B A(T ); B A(T ); C(T ); AA(F); AA(T ); C B(T ); AA(T ); C B(T ); AB(T );
B(T ); B A(T ); B B(T ); C(T ); AB(F); AA(T ); C B(T ); AB(T ); AB(T );
B(T ); BC(T ); B B(T ); C(T ); C B(F); AA(T ); C B(T ); C B(T ); AB(T );
B(T ); B B(T ); AB(T ); C(T ); B A(T ); AA(T ); B A(T ); AB(T );
B(T ); B B(T ); B B(T ); C(T ); B B(T ); AA(T ); B B(T ); AB(T );
B(T ); B B(T ); BC(T ); C(T ); BC(T ); AA(T ); BC(T ); AB(T );
B(T ); B A(T ); BC(T ); C(T ); AC(F); AA(T ); AC(T ); AB(T );
AC(T );
;WRITELN

end.

The program πPAS outputs the following simula program
πSIM:

πSIM = begin

boolean T, F;
procedure A(Z); boolean Z; if Z then

OUTTEXT("PROGRAM X(OUTPUT); VAR T, F: BOOLEAN;")

else OUTTEXT("BEGIN BOOLEAN T, F;");

procedure B(Z); boolean Z; if Z

then OUTTEXT("PROCEDURE")

else OUTTEXT("PROCEDURE")

procedure C(Z); boolean Z; if Z

then OUTTEXT("(Z: BOOLEAN); BEGIN IF Z THEN WRITE(’ ")

else OUTTEXT("(Z); BOOLEAN Z; IF Z THEN OUTTEXT(" " ");

procedure AA(Z); boolean Z; if Z

then OUTTEXT(" ’) ELSE WRITE(’ ")

else OUTTEXT(" " ") ELSE OUTTEXT(" " ");

procedure AB(Z); boolean Z; if Z

then OUTTEXT(" ’) END;")

else OUTTEXT(" " "); ");

procedure C B(Z); boolean Z; if Z

then OUTTEXT(" ’ ")

else OUTTEXT(" " " ");

procedure B A(Z); boolean Z; if Z

then OUTTEXT(" A ")
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else OUTTEXT(" A ");

procedure B B(Z); boolean Z; if Z

then OUTTEXT(" B ")

else OUTTEXT(" B ");

procedure BC(Z); boolean Z; if Z

then OUTTEXT(" C ")

else OUTTEXT(" C ");

procedure AC(Z); boolean Z; if Z

then OUTTEXT("BEGIN T := TRUE; F := FALSE;
⊗

;

WRITELN END.")

else OUTTEXT("T := TRUE; F := FALSE;
⊗

END");

T := true; F := false;
⊗

end

Verification
Programs πPAS and πSIM contain respectively every string
part – the division of both programs – in the procedures A
til AC . Since there is a one to one mapping between the dif-
ferent parts of the code division for both programs, we can
alternatively replace these strings in the procedures. Every
procedure of πPAS has thus the following general structure:

procedure < name > (Z : boolean);
begin if Z then WRITE(‘< string s from πSIM >’)

else WRITE(‘< string s’ from πPAS
corresponding to the string s>’)

end;

Some string parts of πPAS are identical to their counterpart
in πSIM. The procedures which manage those string parts
obviously contain some redundancy as shown in the follow-
ing example:

procedure B A(Z : boolean);
begin if Z then WRITE(‘A’)

else WRITE(‘A’)
end;

This redundancy is acceptable since it provides a unified
procedure structure. The parameter passed to the procedure
call decides on the choice of alternatives. The pascal pro-
gram contains the simula string parts always into the “then”
branch of the procedure while the pascal string parts are
always located into the “else” branch and conversely in the
simula programs. We thus achieve the following: A pro-
cedure within a pascal program called with the value true
can be called with the value true in the simula program, as
well. From that, it follows that the instruction part in πSIM
and in πPAS are essentially the same. From the aforemen-
tioned reasoning and the fact that πSIM and πPAS differ
only in their respective procedures in π4 and π6, it follows
that πPAS reproduces πSIM and conversely.

π

π

π

π

π

π

π

k−times

k−times

k−times

Fig. 2 K -times self-reproduction

4.5 K -times self-reproducing programs

We described program reproduction as a weaker form of
self-reproduction in Sect. 4.2. At this point, we would like
to introduce the concept of k-times self-reproduction as a
strengthening of the simple self-reproduction concept.

Definition 4.5 Let k > 1 and π be a program in S which is
syntactically correct.

1. a) If π does not consider any input, then π is said
k-times self-reproducing, if π precisely outputs its
program source in S, k times.

b) If π considers inputs, then π is said k-times self-
reproducing, if π precisely outputs its program
source in S, for every valid input value.

2. S Rk(S) describes the set of all k-times self-reproducing
programs in S.

The existence of k-times self-reproducing programs follows
directly from Corollary 2.4 (Fig. 2).

Proposition 4.3 There is a k-times self-reproducing
program π(k) for the programming language pascal, for
every k > 1.

We now give for every k > 1 an example of k-times self-
reproducing program. This example represents a proof of
Proposition 4.3.

Example 4.5

π(k) = program PIK(OUTPUT);
var I : integer;
procedure AA; begin WRITE(‘PROGRAM PIK(OUTPUT); VAR I:

INTEGER;PROCEDURE AA;BEGIN WRITE(’ ’ ’) end;
procedure C; begin WRITE(‘PROCEDURE’) end;
procedure A; begin WRITE(‘;BEGIN WRITE(’ ’ ’) end;
procedure B; begin WRITE( ’ ’ ’) END;’) end;
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procedure AC; begin WRITE(’ ’ ’ ’) end;
procedure B A; begin WRITE(‘ A ’) end;
procedure B B; begin WRITE(‘ B ’) end;
procedure BC; begin WRITE(‘ C ’) end;
procedure AB; begin WRITE(‘BEGIN FOR I := 1 TO 5 DO BEGIN AA;A

A;AC;B;C;BC;A;C;B;C;BA;A;A;AC;B;C;BB;A;AC;B;B;C;BA;BC;A;
AC;AC;B;C;BB;BA;A;BA;B;C;BB;BB;A;BB;B;C;BB;BC;A;BC;B;C;B
A;BB;A;AB;B;AB;WRITELN END END.’) end;

begin
for I := 1 to 5 do
beginAA; AA; AC; B;

C; BC; A; C; B;
C; BA; A; A; AC; B;
C; BB; A; AC; B; B;
C; BA; BC; A; AC; AC; B;
C; BB; BA; A; BA; B;
C; BB; BB; A; BB; B;
C; BB; BC; A; BC; B;
C; BA; BB; A; AB; B;AB;WRITELN

end
end.

Verification
The verification of π(k) follows directly from the verifica-
tion of the program π6 in Sect. 3.3.2. The difference between
π(k) and π6 is essentially the for loop:

for I := 1 to k do
begin . . . end;

which is located in the output algorithm. The output algo-
rithm of π6 will be output k-times in π(k) as well. Hence
π(k) is a k-times reproducing program.

Remark I. Every k-times self-reproducing program π is
of course self-reproducing but not strongly self-repro-
ducing. Moreover, a k-times self-reproducing program
is cyclically self-reproducing with a cycle length of 1.

II. Proposition 4.3 still holds for simula programs. As a
proof, we translate the program π(k) into the corre-
sponding simula program. This is done without any
difficulty sinceπ(k) does not contain any pascal-spe-
cific structure.

4.5.1 Implementing π(k)

As to the implementation of the program π(k), we refer to
the remarks made in Sect. 3.3.3. The Appendix A.10 in ESM
implements π(k) with k = 5.

4.6 Hierarchy of self-reproduction

In the previous sections, we have defined the following sets
with respect to a fixed programming language S:

R(S),U (S), Z(S) and S Rk(S).

For this sets, we have

S Rk(S) ⊂ S R(S) ⊂ Z(S) ⊂ U (S) ⊂ R(S), (7)

where S R(S) denotes the set of self-reproducing programs in
S. Generally speaking, we are dealing with proper inclusions

Z(PASCAL)

U(PASCAL)

R(PASCAL)

SR(PASCAL)

SR  (PASCAL)k

Fig. 3 Reproduction hierarchy of S

as shown by means of the pascal program example given
before. To be more precise, we have:

• πPAS(k) given in the proof of Lemma 4.1 is reproducing
but not infinitely reproducing.

• ∞
π 0 given Sect. 4.2 is infinitely reproducing but not cycli-
cally self-reproducing.

• π
cyc
0 given in Sect. 4.3 is cyclically self-reproducing but

not self-reproducing.
• π6 from Sect. 3.3.2 is self-reproducing but not k-self-

reproducing for a k > 1.

We thus conclude:

S Rk(pascal) � S R(pascal) � Z(pascal)

� U (pascal) � R(pascal).

Figure 3 graphically summarizes this result.

Definition 4.6 For every programming language S the seq-
uence of inclusions given in Eq. 7 is called the reproduction
hierarchy of S.

5 Additional properties of self-reproducing programs

5.1 Introduction

In Chap. 3, we presented some examples of self-reproduc-
ing programs. These programs have in common that beyond
outputting their own source code, they do not execute any
other function. Consequently, we may consider the follow-
ing interesting questions:

1. “Are there programs written in programming language S
which do more than simply self-reproduce?” Concretely,
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we may ask: “Do self-reproducing programs exist in S
which can additionally perform search functions, or fac-
tor integers into prime numbers or manage a database,
or more?”

2. Let us suppose that for the given programming language
S, we can answer question 1 in the affirmative. We may
then generalize thusly: “Does a self-reproducing pro-
gram π̃ exist in S which, for a program π̃ written in S,
computes the same function as π?” Should the last ques-
tion be answered in the affirmative, then intuitively, the
complexity and scope of a self-reproducing program π̃

(which computes a given function) must be greater than
that of a non self-reproducing program, which computes
the same function.

3. It follows from the last observation that in order to find
program π̃ , it would perhaps be simpler to first develop
a non self-reproducing program π and then transform
it into a self-reproducing version π̃ . In this context, the
following question arises: “Does an algorithm in a given
programming language S exist which, for every program
π in S, yields a self-reproducing program π̃ in S which
computes the same function as π?”

In order to answer questions 1 to 3, we first have to define
what precisely we mean by “a function computed by a pro-
gram π in S”. Alas, because of the diversity of commonly
used programming languages which operate on different data
types and compute different results on different computing
devices, it is quite impossible to specify a formally exact
and universally applicable definition. Nevertheless, for our
purposes, we will use the definitions and properties given
hereafter.

Programs written in common programming languages,
executing on real computing devices, generally work on data
provided by several input files and produce results stored
in several output files. These files contain strings—symbol
sequences—which are interpreted by a program π in S as
integers, real numbers, text, and so on. Naturally, successful
interpretation of these symbols by π can only be effected if
they are part of a valid, finite alphabet AS . The content of a
file may be viewed as a word in A∗S . This point of view is
reflected in the following definition, which in addition allows
program π the freedom to use at runtime certain files both as
in- and output files.

Definition 5.1 Let π be a program in S with p ≥ 0 in- and
output files, of which q files are used as output files (with
0 ≤ q ≤ p). The function fπ computed by π is a partial
function from (Ap

S )
∗ into (Aq

S)
∗ which, for every assignment

of words in (AS)
∗ to p (input, output) files, gives exactly one

assignment of words in (AS)
∗ to the q output files.

Example 5.1 Let us consider the following pascal program.

π0 = programX (INPUT,OUTPUT);
var I : integer;

Y : real;
begin
for I:= 1 to 10 do
begin READ(Y); WRITELN(SQRT(Y)) end
end.

Program π0 reads ten real numbers from input file (in input)
and outputs their respective square root into output. Let
Apas be the set of all symbols which a pascal program is
able to process. From Definition 5.1, we have

fπ0 : A∗pas −→ A∗pas
x 
−→ fπ0(x), x ∈ A∗pas

If the start sequence of x cannot be interpreted as a sequence
of ten real numbers, then the value fπ0(x) is undefined. Oth-
erwise, fπ0(x) is a word in A∗pas, whose beginning can be
interpreted as a sequence of ten real numbers, as well. The
latter sequence list the square roots of the ten input values
in x .

Exactly describing fπ0(x) would require stating the
explicit conversion function from R to A∗pas and conversely
from A∗pas to R.

Remark 5.1 1. Definition 5.1 is obviously not formally
exact, but defined ‘pragmatically’.

2. Definition 5.1 in essence corresponds to the definition
of functions computed by PL(A) programs, given in
Sect. 2.4. When p and/or q are equal to zero, we pro-
ceed according to the remark succeeding Definition 2.8.

It follows from Definition 5.1 that a self-reproducing pro-
gram π̃ in S which without any additional input data com-
putes the “same” function as a different, non self-reproducing
program π in S must indeed be computing a totally differ-
ent function since the output data produced by π and by π̃
are different. In order to sidestep this confusing nomencla-
ture, let us consider Definition 5.2, while noting that we can
interpret every function F : Mn → Mn with m, n ∈ N∗
as a m-tuple F = (F1, . . . , Fm) of functions Fi : Mn →
M, i = 1, . . . ,m, for any set M and thus we have F(x) =
(F1(x), . . . , Fm(x)) for any x ∈ Mn .

Definition 5.2 Let π be a program in S. A program π̃ in S
is called a self-reproducing version of π if for the functions
computed by π and π̃ respectively and given by

fπ : (A∗S)p1 → (A∗S)q1 and fπ̃ : (A∗S)p2 → (A∗S)q2 ,

we have
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1. either p1 = p2 and q1 = q2 and there exists exactly one
j ∈ {1, . . . , q2} with

( fπ̃ )i (x̄) = ( fπ )i (x̄) for i �= j,

( fπ̃ ) j (x̄) = ( fπ ) j (x̄) ◦ α ◦ π̃ ◦ β

where x̄ ∈ (A∗S)p1 and α, β ∈ A∗S ;
2. or p1 = p2 and q2 = q1 + 1 and

( fπ̃ )i (x̄) = ( fπ ) j (x̄) for i ∈ {1, . . . , q1},
( fπ̃ )q2(x̄) = α ◦ π̃ ◦ β,

where x̄ ∈ (A∗S)p1 and α, β ∈ A∗S .

The symbol ◦ describes the concatenation of “words”, here
from A∗S .

Definition 5.2 ensures that π̃ outputs its own source code
independently of its input. Program π̃ allocates its code either
to an output word outputted by π , as well (case 1), or to an
additional word (case 2).

Remark 5.2 The self-reproducing version π̃ of a program π

in S is generally not unique.

With the help of Definition 5.2 we now can formulate ques-
tions 2 and 3 in a more precise fashion:

1. “For every program π written in a given programming
language S, does a self-reproducing version exist?”

2. “For a given programming language S, does an algo-
rithm exist which, for every program in S, produces a
self-reproducing version π̃ of π?”

We will proceed to explicitly answer questions 1 to 3 for the
simula and pascal programming languages in the sections
to come.

5.2 Self-reproducing principles with respect to the pascal
programming language

As far as the pascal programming language is concerned,
question 1 in Sect. 5.1 can be answered by the following
example.

Example 5.2 We specify a self-reproducing version π̃0 of the
program π0 given in Example 5.1. We shall use as a starting
point program π6 given in Sect. 3.3.3 and then try to combine
programs π6 and π0 into a self-reproducing version π̃0. To
this end, let us briefly recall what program π6 exactly does.
Program π6 contains its own source code inside procedures
A, . . . , AC in the form of partial strings. Of course, strings
that appears several times are stored only once. Concatena-
tion of these partial strings yields the code of π6. The first

partial string s1 ofπ6 contains the program head until the first
symbol ’. The last partial string in procedure AB contains
the partial string s9 which stores the entire code instruction
block of π6. Let us summarizes all this by means of the fol-
lowing code:

π6 = program PI6(OUTPUT);
procedure AA; begin WRITE(’ s1

′′)end;

procedure C; begin.................... end;
...

...

procedure BC; begin.................... end;
procedure AB; begin WRITE(‘ s9 ’) end;

where the two strings s1 and s9 are given by:

s1 = program PI6(OUTPUT);
procedure AA; begin WRITE(’

and

s9 =

begin
AA; AA; AC; B;
.................

AB;WRITELN
end
end.

respectively.
We insert the π0 program header

programX (INPUT,OUTPUT);
var I : integer;

Y : real;
into the string s1, while we insert the code instruction block
of π0

for I:= 1 to 10 do
begin READ(Y); WRITELN(SQRT(Y)) end;

into the string s9. We thus obtain the resulting partial strings
s′1 and s′9 respectively, given by

s′1 = program P I 6X (INPUT,OUTPUT);
var I : integer; Y : real; procedure AA;
begin WRITE(’

and

s′9 = begin
for I:= 1 to 10 do
begin READ(Y); WRITELN(SQRT(Y)) end;
AA; AA; AC; B; …AB; WRITELN
end end.

It is obvious that replacing strings s1 and s9 with strings s′1
and s′9, respectively, in program π6 gives again a syntacti-
cally correct, self-reproducing program π̃0. Program π̃0 first
computes the for loop of π0 and then self-reproduces. We
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thus have for the function fπ̃0 : A∗pas → A∗pas, computed
by π̃0:

fπ̃0(x) = fπ0(x) ◦ π0,

for every x ∈ A∗pas. By using case 1 in Definition 5.2, we
conclude that π̃0 is a self-reproducing version of π0. Appen-
dix A.11 in ESM gives an implementation of Program π ′6,
which has been derived from the implementation of Program
π6 itself.

The construction of π̃0 from Programs π0 and π6 exhibits
no particular aspects that depend on any special properties of
π0. This construction ought to be generalizable to any given
pascal-program. In order to facilitate this generalization, we
first need to adopt two additional conventions:

A context-free grammar Gpas (as far as that is possi-
ble, refer to Sect. 2.3) is given for the pascal programming
language in [10]. Our deliberation will be guided by that
grammar.

Convention 5.1 Let ν be a non terminal symbol in Gpas
and π a valid pascal program. We denote by νπ the partial
string of the source code π which can be derived from the
non terminal symbol ν. Should the symbol ν not be contained
in the derivation tree of π , we set the string νπ to the empty
word.

The partial string νπ is of course dependent on the position of
ν in the derivation tree of π . However, for our purposes, this
is of minor importance. With this formalism, we may now
derive equations from the productions (rules) of the grammar
Gpas.

Example 5.3 Gpas contains the production given by

< program >::=< program heading >< block >.

For every valid pascal program π the following equation
holds true

π = < program > π

= < program heading > π < block > π

Combining programs π6 and π0 into program π̃0 did not
result in any conflict. Putting it differently, all procedures
names of program π6 differed from the variable names in π0

though in general, this cannot be supposed. In order to sim-
plify testing a pascal program π with respect to this point
(i.e guessing whether some labels are identical to a procedure
name inπ6 nor not), we will standardize the procedure names
in π6 by deciding to use only the capital letter ‘A’ to label
every of them. All π6 procedures are hence elements of the
set7 {A}+ and differ only in their respective length. We will

7 {A}+ denotes the set all words composed of a finite number of times
of the letter A.

see later on that it is necessary for some programs to gener-
ate new procedures. The name of those latter procedures will
be defined over {A}+, as well. Through this standardization
of the procedure names, it is obvious that some names are
likely to be very long. Thus, in order to spare our pen, we
will consider a second convention.

Convention 5.2 1. Let A . . . A
︸ ︷︷ ︸

k times

an element in {A}+. We will

then note it shortly with Ak.
2. We abbreviate the r successive call of functions A j , usu-

ally denoted A j ; . . . ; A j ;
︸ ︷︷ ︸

r times

, by using the notation (A j )r .

With the help of Convention 5.2, we can thus rename proce-
dure names in program π6 as follows:

π6 = program PI6(OUTPUT);
procedure A; beginWRITE(‘PROGRAM PI6(OUTPUT);PROCEDURE A;

BEG GIN WRITE(’ ’ ’) end;
procedureA2; begin WRITE(‘ PROCEDURE ’) end;

procedureA3; begin WRITE(’ ; BEGIN WRITE(’ ’ ’) end;

procedureA4; begin WRITE(’ ’ ’) END; ’) end;

procedureA5; begin WRITE(’ ’ ’ ’) end;

procedureA6; begin WRITE(‘ A ’) end;

procedureA7; begin WRITE(’ BEGIN A; A; A5; A4; A2; (A6; )2 A3; A2; A4

; A2(A6; )3 A3; A3; A5; A4; A2; (A6; )4 A3; A5; A4; A4; A2; (A6; )5 A3; A5

; A5; A4; A2; (A6; )6 A3; A6; A4; A2; (A6; )7 A3; A7; A4; A7;WRITELN E

ND.’) end;

begin

A; A; A5; A4;
A2; (A6; )2 A3; A2; A4;
A2(A6; )3 A3; A3; A5; A4;
A2; (A6; )4 A3; A5; A4; A4;
A2; (A6; )5 A3; A5; A5; A4;
A2; (A6; )6 A3; A6; A4;
A2; (A6; )7 A3; A7; A4; A7;
WRITELN

end.

After these preliminary remarks we now are able to establish
and prove the principles of self-reproduction with respect to
pascal programs.

Proposition 5.1 (Self-reproduction with respect to pascal
programs) For every syntactically valid pascal program π ,
there exists a self-reproducing version π̃ of π .

Proof The proof is divided into two parts A and B. In Part
A, we will first present a construction of a program π̃ with
respect to an arbitrary program π . In Part B, we will then
show that π̃ is indeed a self-reproducing version of π . More-
over, the proof assumes the grammar Gpas.

Let us now consider any valid pascal program π . If it
contains labels from {A}+, we replace them with labels that
are not elements of {A}+. Thus, we obtain a new program
π ′ which is formally different from π . If π does not contain
labels from {A}+, we state that π ′ = π .
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Part A:

From the properties of Gpas, the program π ′ has the fol-
lowing structure:

π ′ =< program heading > π ′ < block > π ′,

where < program heading > π ′ and < block > π ′ are
different from the empty word. As far as programs π6 and
π̃ are concerned, we thus have:

π6 = < program heading > π6 < block > π6

π̃ = < program heading > π̃ < block > π̃.

We obtain the program π̃ by combining < program
heading > π̃ (given by both < program heading > π6

and < program heading > π ′) and < block > π̃ (given
by both < block > π6 and < block > π ′).

a) Combining < program heading > π̃ .
It follows from the definition of Gpas, that we have
the general relation for < program heading > π ′

< program heading > π ′ = programµ(µ1, . . . , µr );
whereµ1, . . . , µr with r ≥ 0, are valid pascal labels.
The program name itself is represented by the word µ
whereas the words µi describes the files used by the
programπ ′. As for the standard OUTPUT file, without
loss of generality we set µr = OUTPUT.
For program π6, we have:

< program heading > π6 = program PI6(OUTPUT);

We then combine

< program heading > π̃ = program P(µ1, . . . , µk,

OUTPUT);
with

k =
{

r − 1 if ur = OUTPUT,
r otherwise.

b) Combining < block > π̃ .
It follows from the definition of Gpas that

< block > π ′ = < label declaration part > π ′

= < constant declaration part > π ′

= < type definition part > π ′

= < variable declaration part > π ′

= < procedure and function

declaration part > π ′

= < statement part > π ′

All strings until< statement part > π ′ may be empty.
Programs π ′ and π̃ have a similar structure. Since

strings < label declaration part > π6, . . . ,
< variable declaration part > π6 are equal to the
empty word, we thus write:

< label declaration part> π̃ :=< label declaration part> π ′
<constant declaration part> π̃ :=<constant declaration part> π ′
< type definition part> π̃ :=< type definition part> π ′
<variable declaration part> π̃ :=<variable declaration part> π ′

We observed in Sect. 3.2.5 that it was impossible to print
simula code en bloc which contained the symbol ". We
have to face up to the same difficulty with the symbol ’ in
pascal. When the program π ′ contains one or more sym-
bols ’ the source code of π ′ must be divided accordingly.
We thus set:

S = < label declaration part > π ′

= < constant declaration part > π ′

= < type definition part > π ′

= < variable declaration part > π ′

and

T = (< statement part > π ′without the external labels

begin and end.)

By using strings S and T , we can then represent the π ′
source code as follows:

π ′ =< program heading > π ′ ◦ begin ◦ T end.

First case: S is different from the empty word (in other
words π has a non empty declaration part). The divi-
sion of S into a series of n ≥ 1 partial strings si gives:

(i) si = ‘ or si �� ’ , i ∈ [n]
(ii) si �� ‘ ⇒ si+1 = ’ , i ∈ [n − 1]
(iii) s1 ◦ s2 ◦ . . . ◦ sn = S

Let p be the number of partial strings of S not equal to ’.
We have 1 ≤ p < n. For every partial string different
from ’, except for s1, we generate a procedure

procedureA7+ j−1; begin WRITE(‘si ’) end;
j = 2, . . . , p,

where si is the j-th partial string which is different from
’. Let now AP be the set of names of the procedures
previously generated. Then we have:

AP = {A7+1, A7+2, . . . , A7+p−1}.
Let S = {s1, . . . , sn} be the set of the partial strings in
the division of S. Let us introduce the two functions G
and G̃:
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G : [p] → S
j 
→ sk, where sk is the j-th partial string �=′

G̃ : [n] → AP ∪ {A5}

j 
→
⎧

⎨

⎩

⊥ if j = 1
A7+i−1 if s j is the j-th partial string in S �=′
A5 if s j =′

where the symbol ⊥ means that the function is unde-
fined. Let us recall that A5 is the procedure in π6 which
produces the symbol ’. Since

neither < label declaration part > π ′

nor < constant declaration part > π ′

nor < type definition part > π ′

nor < procedure and function declaration part > π ′

can begin or end with the symbol ’, we have

G(1) = s1 and G(p) = sn .

A string T will be transformed into a string T ′ by sim-
ply appending symbol ; to it; T ′ := T ;. Similarly, the
string T ′ will be broken down into m ≥ 1 partial strings
ti . With respect to this decomposition we have:

(i) ti = ‘ or ti �� ’ , i ∈ [m]
(ii) ti �� ‘ ⇒ ti+1 = ’ , i ∈ [m − 1]
(iii) t1 ◦ t2 ◦ . . . ◦ tm = T ′

Let q be the number of the partial strings of T ′ differing
from string’. We thus have 1 ≤ q < m. For every partial
string ti different from ’, except for tm , we generate a
procedure

procedureA7+ j+p−1; begin WRITE(‘ti ’) end;
for j = 2, . . . , q − 1 and where ti is the j-th partial
string which is not equal to ’ or equivalently

procedureA7+p; begin WRITE(‘BEGIN t j ’) end;

for j = 1. Moreover, t j is the j-th partial string of T ′
different from ’. In a similar way, AP,S,G and G̃ will
define AQ, T , τ, τ̃ as follows:

AQ = {A7+p, . . . , A7+p+q−1}
T := {t1, . . . , tm}
τ : [q] → {ti }, i ∈ [n]

j 
→ tk, where tk is the j-th partial string of T ′ �=′
τ̃ : [m] → AQ ∪ {A5}

j 
→

⎧

⎪

⎨

⎪

⎩

⊥ if j = q

A7+p+i−1 if t j is the i-th partial string �=′
A5 if t j =′

The first symbol right after the initial begin label in the
string< statement > π ′ cannot be equal to the symbol’.
Thus we have from the definition of T ′ : τ(1) = t1. The
last symbol in T ′ is the symbol ;. Consequently, it fol-
lows that τ(q) = tm . It is now possible to give the two
missing program parts of π̃ , in other words:

< procedure and function declaration part > π̃ and

< statement part > π̃.
< procedure and function declaration part > π̃

= < procedure and function declaration part > π ′
procedureA7+1; begin …end;

...

procedureA7+p+q+1; begin …end;
procedure A; begin WRITE(‘<program heading>
π̃ G(1) ′)end;

...

procedureA7; begin WRITE(‘τ(q)� END.’) end;
< statement part > π̃

= begin t1, . . . , tm � end.

The part of the program described by the symbol � rep-
resents the abbreviate sequence of calls of procedures
A to Ap+q+2, which produces the code of π̃ . The total
result is thus given by:

π̃ = program P(µ1, . . . , µk ,OUTPUT);
s1 . . . sn

procedureA7+1; begin WRITE(‘G(2)’) end;
procedureA7+2; begin WRITE(‘G(3)’) end;

.

.

.

procedureA7+p−1; begin WRITE(‘G(p)’) end;
procedureA7+p; begin WRITE(‘BEGIN τ(1)’) end;
procedureA7+p+1; begin WRITE(‘τ(2)’) end;

.

.

.

procedureA7+p+q−2; begin WRITE(‘τ(q − 1)’) end;
procedureA; beginWRITE(‘PROGRAMP(µ1, . . . , µk ,

OUTPUT);G(1)’) end;

procedureA2; begin WRITE(‘PROCEDURE’) end;

procedureA3; begin WRITE(‘;BEGIN WRITE(’ ’ ’) end;

procedureA4; begin WRITE(’ ’ ’) END;’) end;

procedureA5; begin WRITE(’ ’ ’ ’) end;

procedureA6; begin WRITE(‘ A ’) end;

procedureA7; begin WRITE(‘τ(q)� END.’) end;

begin

t1 . . . tm

A; ∗line numbering

G̃(2); . . . ; G̃(n); ∗ ↓
A2; (A6; )7+1 A3; A7+1; A4; ∗k7+1

A2; (A6; )7+2 A3; A7+2; A4; ∗k7+2

. . . ∗ . . .
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A2; (A6; )7+p−1 A3; A7+p−1; A4; ∗k7+p−1

A2; (A6; )7+p A3; A7+p; A4; ∗k7+p

A2; (A6; )7+p+1 A3; A7+p+1; A4; ∗k7+p+1

. . . ∗ . . .
A2; (A6; )7+p+q−2 A3; A7+p+q−2; A4; ∗k7+p+q−2

A2; A6; A3; A; A4; ∗k1

A2; (A6; )2 A3; A2; A4; ∗ . . .
A2; (A6; )3 A3; A3; A5; A4; ∗ . . .
A2; (A6; )4 A3; A5; A4; A4; ∗ . . .
A2; (A6; )5 A3; A5; A5; A4; ∗ . . .
A2; (A6; )6 A3; A6; A4; ∗ . . .
A2; (A6; )7 A3; A7; A4; ∗k7

τ̃ (1); . . . ; τ̃ (m − 1); ∗
A7;WRITELN ∗
end.

where all the lines including the symbol * denotes the
abbreviated program part �.

Second case: S is equal to the empty word (in other words
π has an empty declaration part). This is a special case
of the previous one. We obtain the required program by
removing the string S in the previous program π̃ . To be
more precise:
• we remove procedures A7+1 to A7+p−1;
• we modify the procedure A in

procedure A; begin WRITE(‘PROGRAM

P(µ1, . . . , µk,OUTPUT); ’) end;
• we remove the program line G̃(2); . . . ; G̃(n);
• we remove the program lines k7+1 to k7+p−1.

Part B:

First case: S is different from the empty word. The
construction in Part A produces a syntactically correct
pascal program π̃ . We just have to prove that π̃ is a
self-reproducing version of π .
Program π is computing a function

fπ : (A∗pas)
r → (A∗pas)

u with 0 ≤ u ≤ r.

The declaration part of π will be integrated unmodified
in program π̃ in the form S = s1 . . . sn . In the instruction
(code) part of π̃ , we start by executing the instruction
part from π which has the form T ′ = t1 . . . tm . Other
instructions are just calls to procedures not declared in S.
Every call of these procedures will write a constant code
text to the output file. Since π contains a finite number
of procedures, a finite-length source code text is writ-
ten to the output file, which is also a word y ∈ A∗pas.
Calls to these output procedures take place only after
the instruction part T ′ has been executed. Hence π̃ is

computing the following function:

fπ̃ : (A∗pas)
r → (A∗pas)

u, 0 ≤ u ≤ r,

with

( fπ̃ )i (x̄) =
{

( fπ )i (x̄) if i ∈ [r − 1]
( fπ )i ◦ y if i = r

}

x̄ ∈ (A∗pas)
r ,

if µr = output, in other words π̃ writes y to an output
file used by π , as well. That is to say

fπ̃ :(A∗pas)
r+1→(A∗pas)

u, 0≤u≤r+1,

with

( fπ̃ )i (x̄) =
{

( fπ )i (x̄) if i ∈ [r ]
y if i = r + 1

}

x̄ ∈ (A∗pas)
r+1,

ifµr �= output, in other words π̃ writes y to output file
output, which is not used by π as output file. Program
π̃ complies with Definition 5.2 when the source code
of π̃ is a partial string of y. But we even have y = π̃ ,
because:
After having worked on t1 . . . tm , program π̃ first pro-
duces its own program header< program heading > π̃

and s1 by calling procedure A. The next procedure call

G̃(2); . . . to . . . ; G̃(n);
results in the output of

s2 . . . to . . . sn .

The procedure calls of lines k7+1 until k7+p+q−2 and k1

until k7 result in outputting the declaration of procedures
A7+1 to A7+p+q−2, in other words of A to A7. Only
< statement part > π̃ remains, and is effected through
the series τ̃ (1); . . . ; τ̃ (m − 1); A7;. The next writeln
instruction just clears the buffer of the output file. We
also have y = π̃ . Consequently, π̃ is a self-reproducing
version of π .

Second case: S is equal to the empty word. It is just a special
case of the previous one. The program π̃ is a self-repro-
ducing version of π as well.

Hence the proposition is proved. ��

We can derive an algorithm directly from the proof of Prop-
osition 5.1, which yields a self-reproducing version π̃ for a
given pascal program π .

Algorithm 5.1 Input: A pascal program π .

Step 1: Testing of labels or names inπ which does not belong
to {A}+. If any, perform the renaming.
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Step 2: Formulation of < program heading > π̃ from
< program heading > π using the standard output
file.

Step 3: Decomposition of

S = < label declaration part > π

= < constant declaration part > π

= < type definition part > π

= < variable declaration part > π

into partial strings s1, . . . , sn and look for the number p
of partial strings s j different from ’. Then, express the
p − 1 procedures A7+1 to A7+p−1 and create the value
table for G and G̃.

Step 4: Set T ′ := T if the last symbol of T =< statement
part > π (without the begin and end. surrounding labels)
is equal to ; . Otherwise, set T ′ := T ;.
Decompose T ′ into t1 . . . tm and establish the number q.
Then, formulate the q−1 procedures A7+p to A7+p+q−2

and create the value table for τ and τ̃ .
Step 5: Put the function values we have obtained, as well as

procedures and partial strings s1, . . . , sn, t1, . . . tm in the
program skeleton given in the proof.

Complexity Analysis: This algorithm has a linear complexity
O(l(π)) in the size l(π) of the program π .

Example 5.4 Let us consider the program presented in
[28, p. 17].

π = program CONVERT(OUTPUT);

const ADDIN=32; MULBY=1.3; LOW=0; HIGH=39;

SEPARATOR=‘____________’;

var DEGREE : LOW . . HIGH;

begin

WRITELN(SEPARATOR);

for DEGREE := LOW to HIGH do

begin WRITE(DEGREE,‘C’,

ROUND(DEGREE*MULBY+ADDIN),‘F’);

if ODD(DEGREE) then WRITELN

end;

WRITELN;

WRITELN(SEPARATOR)

end.

Let us now apply Algorithm 5.1.

Step 1: π does not contain any labels from {A}+. Thus we
do not need to rename.

Step 2: < program heading > π̃ is set as program
CONVERTX(OUTPUT);.

Step 3: S = s1 s2 s3 s4 s5 with

s1 = const ADDIN=32; MULBY=1.3; LOW=0;

HIGH=39;SEPARATOR=

s2 = ’

s3 = ____________

s4 = ’

s5 = ;var DEGREE : LOW . . HIGH;

We thus have n = 5 and p = 3. The resulting procedure
consequently is:

procedureA8; begin WRITE(‘____________’) end;
procedureA9; begin WRITE(‘;VAR DEGREE:

LOW . . HIGH;’) end;

The values for G and G̃ are then:

G(1) = s1

G(2) = s3

G(3) = s5

G̃(1) = ⊥
G̃(2) = A5

G̃(3) = A8

G̃(4) = A5

G̃(5) = A9

Step 4: we have T = t1 t2 t3 t4 t5 t6 t7 t8 t9 with

t1 = WRITELN(SEPARATOR); FOR DEGREE := LOW TO HIGH

DO BEGIN WRITE(’DEGREE,

t2 = ’

t3 = C

t4 = ’

t5 = ,ROUND(DEGREE*MULBY+ADDIN)’

t6 = ’

t7 = F

t8 = ’

t9 = ); IF ODD(DEGREE) THEN WRITELN END;

WRITELN;WRITELN(SEPARATOR);

We have m = 9 and q = 5. As a consequence, the result-
ing procedures are:

procedureA10; begin WRITE(‘BEGIN WRITELN(SEPARATOR);
FOR DEGREE:= LOW TO HIGH DO BEGIN WRITE(DEGREE),’) end;

procedureA11; begin WRITE(‘C’) end;
procedureA12; begin WRITE(‘ROUND(DEGREE*MULBY+ADDIN),’) end;
procedureA13; begin WRITE(‘F’) end;
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The values for τ and τ̃ are then:

τ(1) = t1 τ̃ (1) = A10 τ̃ (1) = A5

τ(2) = t3 τ̃ (2) = A5 τ̃ (7) = A13

τ(3) = t5 τ̃ (3) = A11 τ̃ (8) = A5

τ(4) = t7 τ̃ (4) = A5 τ̃ (9) = ⊥
τ(5) = t9 τ̃ (5) = A12

Step 5: Finally, we have:

π̃ = program CONVERTX(OUTPUT);
const ADDIN=32;MULBY=1.3; LOW=0; HIGH=39;
const SEPARATOR=‘____________’;
var DEGREE: LOW . . HIGH;
procedureA8; begin WRITE(‘____________’) end;
procedureA9; begin WRITE(‘;VAR DEGREE: LOW . . HIGH;’) end;
procedureA10; begin WRITE(‘BEGIN WRITELN(SEPARATOR); FOR

DEGREE := LOW TO HIGH DO BEGIN WRITE(DEGREE)’) end;
procedureA11; begin WRITE(‘C’) end;
procedureA12; begin WRITE(‘,ROUND(DEGREE*MULBY+ADDIN),’) end;
procedureA13; begin WRITE(‘F’) end;
procedureA; begin WRITE(‘PROGRAM CONVERTX(OUTPUT); CONST

ADDIN=32;MULBY=1.3; LOW=0; HIGH=39;SEPARATOR=’) end;
procedureA2; begin WRITE(‘PROCEDURE’) end;
procedureA3; begin WRITE(‘;BEGIN WRITE(’ ’ ’) end;
procedureA4; begin WRITE(’ ’ ’) END;’) end;
procedureA5; begin WRITE(’ ’ ’ ’) end;
procedureA6; begin WRITE(‘ A ’) end;
procedureA7; begin WRITE(’); IF ODD(DEGREE) THEN WRITELN END;

WRITELN;WRITELN(SEPARATOR); � END.’) end;
begin
WRITELN(SEPARATOR);
for DEGREE:= LOW to HIGH do
begin WRITE(DEGREE,‘C’, ROUND(DEGREE*MULBY+ADDIN),‘F’);

if ODD(DEGREE) then WRITELN
end;
WRITELN;
WRITELN(SEPARATOR);
�

where the program part denoted by � is given by:

A;
A5; A8; A5; A9;
A2; (A6; )8 A3; A8; A4;
A2; (A6; )9 A3; A9; A4;
A2; (A6; )10 A3; A10; A4;
A2; (A6; )11 A3; A11; A4;
A2; (A6; )12 A3; A12; A4;
A2; (A6; )13 A3; A13; A4;
A2; A6; A3; A; A4;
A2; (A6; )2 A3; A2; A4;
A2; (A6; )3 A3; A5; A3; A4;
A2; (A6; )4 A3; A5; A4; A4;
A2; (A6; )5 A3; A5; A5; A4;
A2; (A6; )6 A3; A6; A4;
A2; (A6; )7 A3; A7; A4;
A10; A5; A11; A5; A12; A5; A13; A5; A7;
WRITELN
end.

We stress that the significance of Proposition 5.1 is of the-
oretical nature only. Proposition 5.1 indeed proves the exis-
tence of a self-reproducing version π̃ for every valid pascal
program π and even gives a construction of a syntactically
correct program π̃ . However, it still does not guarantee its
realization on a real computer. The practical implementation
of Algorithm 5.1 to produce a program π̃ can lead to the
following difficulties:

1. The longest procedure name of π̃ is A7+p+q−2. This
procedure is p+ q + 5 characters long. Every character
is significant, since the procedure name A7+p+q−3 of
length p+q+ 4 appears in π̃ as well. The pascal com-
piler, however, imposes a practical limit on the number of
significant label symbols. The number p and q are finite,
which consequently implies that, given large values for
p and q, some procedures could not be differentiated.

2. The length of the constant parts of the code in procedures
A j for j ∈ [p+q−2], as determined by Algorithm 5.1,
is not constrained for all pascal programs π̃ . As such,
neither is the length of a program line. In practice, how-
ever, the length of a program line is limited by the size
of the input buffer used by the pascal compiler.

Difficulties (1) and (2) can generally be avoided in most real-
life programs if we add two additional, practical steps to
Algorithm 5.1.

Step 6: Let g be the number of significant label symbols
for a given pascal compiler. Let a = 7+ p + q − 2 =
p+q+5 be the length of the procedure name Ap+ q + 5.
At the same time, a is also the number of procedure names
having the same type as A j , for j ∈ [a] have. Then we
choose two natural numbers c ≤ 26 and b ≤ g such that

b
∑

k=1

ck ≥ a.

Now we can replace procedure names A1 to
A7+p+q−2 with new procedure names which have at most
b characters taken from the first c symbols of the alpha-
bet. Besides character ‘A’, we can also use c − 1 other
character in order to create procedure names. But c− 1
new procedures must be generated for every one of those
c− 1 characters, with each of those procedures printing
a new character:

c − 1

⎧

⎪

⎨

⎪

⎩

procedure ...; begin WRITE(‘B’) end;
procedure ...; begin WRITE(‘C’) end;
...

...
...
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For those procedures we will also need names. Conse-
quently, the number c and b must satisfy the following
equation:

b
∑

k=1

ck ≥ a + c − 1.

Step 7: Let d be a buffer length used by a given pascal com-
piler. Let vi for i ∈ [p + q + 2] be the text constants of
procedures Ai (these procedures may have possibly been
renamed in the previous step). For every i ∈ [p = q−2],
we must perform the following computation:
If l(WRITE(‘v′i )) ≤ d then Ai remains unmodified.8 Oth-
erwise, vi will be decomposed into ki partial
strings vi j through l(WRITE(‘v′i j )) ≤ d,∀ j ∈ [k j ]. For
that purpose, the ki are chosen as small as possible.
The procedure Ai will be replaced by ki new procedures:

procedure ...; begin WRITE(‘v′i1
)end;

...
...
...

procedure ...; begin WRITE(‘v′iki
)end;

Complying with the newly introduced procedures, we
amend the procedures call sequence which effect the out-
put of π̃ .

Steps 6 and 7, however, are still insufficient to reach our
goal. If the input buffer length d of the pascal compiler is
relatively small, step 7 will then generally generate a large
number of new procedures. The constant parts of the source
code in procedure A7—possibly renamed in step 6; this pro-
cedure contains the output algorithm for π̃—will also surely
be split in a number of new procedures.

New procedures necessitate a longer output algorithm
should π̃ remain self-reproducing. This, however, means that
still more procedures are necessary for the design of the out-
put algorithm. But as a consequence, additional procedures
will effect another increase in this algorithm, which in turn
will produce still more procedures and so on. Now if d is rela-
tively small, this general process may not converge to a stable
state and step 7 will result in an infinitely long program. This
case will arise precisely when the constant parts of the pro-
cedures containing the output algorithm contain themselves
fewer procedure calls (on average) than required for the con-
struction of an output procedure. The rapid increase in the
number of output procedures can lead to repeated execution
of step 6. The situation is even more dire when the output of
π̃ has to be formatted.

8 The notation l describes with respect to a base alphabet B the length
function of elements from B∗.

Example 5.5 Let us consider the implementation of program
π̃ presented in Example 5.4.

Step 6: The program π̃ contains 13 procedure names in
the form of Ai . The given pascal compiler considers
as significant only the first 8 characters of a label. A
few of the Ai must be renamed as well. Coinciden-
tally, procedures A11 and A13 make the characters
‘C’ and ‘F’ available. As for the renaming of proce-
dures A1, . . . A13 we must use four letters (characters)
in total. That is why we thus consider the following
additional procedure

procedure BB; begin WRITE(‘B’) end;

in program π̃ . With the four characters A, B, C and F,
we can then build:

• 4 different names of length 1,
• 16 different names of length 2 and,
• 64 different names of length 3.

Moreover, should step 7 produce additional proce-
dures, we may assume that with a = 4 and b = 3
we have enough names at our disposal. We will try to
make do with names of length 1 and 2.
The procedures Ai , i ∈ [13] will be renamed as fol-
lows:

A1 renamed as AA A8 renamed as AF
A2 renamed as A A9 renamed as CB
A3 renamed as B A10 renamed as CC
A4 renamed as C A11 renamed as BC
A5 renamed as F A12 renamed as CF
A6 renamed as BA A13 renamed as BF
A7 renamed as AC

Step 7: Let the length of a program line be limited to 132
characters. Hence, we will have to split the constant
parts of procedure AC into additional procedures. The
induced administrative effort requires the additional
introduction of four new procedures FA, FB, FC and
FF. Appendix A.12 in ESM gives the modified program
π̃ once steps 6 and 7 have been applied. Procedure Q,
which was introduced in Sect. 3.3.4, is used to format
the output.

5.3 Self-reproducing principles with respect to the simula
programming language

The pascal and simula example programs presented in
Chaps. 3 and 4 are roughly equivalent. Hence, as a pendant to
the self-reproducing pascal program π6 in Sect. 3.3.2 there
exists a near-identical simula program π4 in Sect. 3.2.7.
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Since the proof of Proposition 5.1 is mostly based on the
existence of program π6, we can assume that there exist a
similar proposition with respect to the simula programming
language. The proof of the latter proposition will be divided
in two parts A and B, just as we proceeded to do for Propo-
sition 5.1.

In part A, we will first consider the design of a self-repro-
ducing version π̃ of an arbitrary simula program π . Despite
the correspondence between π4 and π6, this construction
must be explicitly given, since unlike pascal, simula is
not a block-oriented language. However, the resulting pro-
gram π̃ will to a great extent match the program built for
the proof of Proposition 5.1. Since π̃ is the self-reproducing
version of π , we will refer to part B of the proof of Propo-
sition 5.1 when we present part B of our current proof. Our
proof will adopt the simula grammar given in [19] and will
be denoted by Gsim. Additionally for Gsim, we will adopt
the convention 5.1. Lastly, we will adopt Convention 5.2 for
the procedure names of π4. Hence, program π4 will have the
following form:

π4 = begin

procedure A; OUTTEXT("BEGIN PROCEDURE A;

OUTTEXT(""");

procedureA2;OUTTEXT("PROCEDURE ");

procedureA3;OUTTEXT(" ; OUTTEXT(""");

procedureA4;OUTTEXT(""");");

procedureA5;OUTTEXT("""");

procedureA6;OUTTEXT("A");

procedureA7;OUTTEXT("A; A; A5; A4; A2; (A6; )2
A3; A2; A4; A2(A6; )3 A3; A3; A5; A4; A2; (A6; )4
A3; A5; A4; A4; A2; (A6; )5 A3; A5; A5; A4; A2;
(A6; )6 A3; A6; A4; A2; (A6; )7 A3; A7; A4; A7

END");

A; A; A5; A4;
A2; (A6; )2 A3; A2; A4;
A2(A6; )3 A3; A3; A5; A4;
A2; (A6; )4 A3; A5; A4; A4;
A2; (A6; )5 A3; A5; A5; A4;
A2; (A6; )6 A3; A6; A4;
A2; (A6; )7 A3; A7; A4; A7;
end

Proposition 5.2 For every syntactically valid simula pro-
gram π , there exists a self-reproducing version π̃ of π .

Proof Part A:
The programπ4 has the following structure from the gram-
mar Gsim:

π4 = begin < declaration part of > π4

< instruction part of > π4 end

Let π be any simula program. Then, π has the following
structure:

π = < class description > π

< optional parameter part of > π

begin < declaration part of > π

< instruction part of > π end

The parts< class description > π,< optional parameter
part of > π and< declarationpart of > π can be empty
(compare with π4). If program π is composed of

begin < instruction part of > πend,

only, thenπ is called an assembly instruction. Otherwiseπ
is a block. Not only assembly instructions but also blocks
are allowed at any position within< instruction part of >
π . We will use this later on.

Combination of π̃ from π4 and π
Whenever < class description > π is not empty, we have
then to test whether< class description > π is an element
in {A}+. In this case, we will rename the
< class description > π . As a result, we get the program
π ′ which realizes the same functions asπ does. Otherwise,
we set π ′ := π . The concept of local variables obviates
the need to rename variables in< declaration part of > π

and < instruction part of > π .

π̃ = begin

procedure A; . . . ;

(additional declaration)

procedure A2; . . . ;
.
.
.

procedure A7; . . . ;
}←−{with modified procedure A7 from π4

π ′;
(additional instructions)

< sequence of instructions from π4 >

end

We need now just define the “additional declaration” and
“additional instructions” parts or the program.
Let T be program π ′ with the additional ; character. In
other words, we have T = π ′;. The character string T will
be split into m ≥ 1 partial strings ti , just as the string T ′
was split in the proof of Proposition 5.1. Hence, we have
for the decomposition of T :

a) ti = " or " �∈ ti , i ∈ [m]
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b) " �∈ ti ⇒ ti+1 = " , i ∈ [m − 1]
c) t1 ◦ t2 ◦ . . . ◦ tm = T

Let q be the number of partial strings t j from T not equal
to the string ". We have 1 ≤ q ≤ m. For each partial string
t j not equal to " with exception of partial string tm , we
generate a procedure of the following form:

procedureA7+ j ;OUTTEXT("ti "); j ∈ [q − 1]

where ti is the j-th partial string from T not equal to ".
The set of the procedures we have produced is AQ =
{A7+1, . . . , A7+q−1}. Let T be the set {t1, . . . , tm}. As in
the proof of Proposition 5.1, we define the functions τ and
τ̃ as follows:

τ : [q] → T
j 
→ tk, where tk is the j-th partial string �= "

τ̃ : [m] → AQ ∪ {A5}

j 
→
⎧

⎨

⎩

⊥ if j = q
A7+i if t j is the i-th partial string �= "
A5 if t j = "

The partial string t1 is different from " since π cannot
begin with the " character. Since the last character of T
is equal to ;, then tm = tq is different from string ". The
string tm will be merged into procedure A7.
The part of the program “additional declarations” contains
the q − 1 declarations of procedures A7+1 to A7+q−1. As
for the part of the program “additional instructions”, it con-
tains the sequence of procedure calls which are necessary
to produce the q−1 additional procedure declarations. The
procedure A7 will be developed accordingly.

π̃ = begin
procedure A; OUTTEXT("BEGIN PROCEDURE A;

OUTTEXT(""");
procedureA7+1;OUTTEXT("τ(1)");
. . .

procedureA7+q−1;OUTTEXT("τ(q − 1)");
procedureA2;OUTTEXT("PROCEDURE");
procedureA3;OUTTEXT(" ; OUTTEXT(""");
procedureA4;OUTTEXT(""");");
procedureA5;OUTTEXT("""");
procedureA6;OUTTEXT("A");
procedureA7;OUTTEXT("τ(m); A; A; A5; A4; A2;
(A6; )7+1 A3; A7+1; A4

; . . . A2; (A6; )7+q−1 A3; A7+q−1 A4; A2; (A6; )2
A3; A2; A4; A2;
(A6; )3 A3; A3; A5; A4; A2; (A6; )4 A3; A5; A4; A4;

A2; (A6; )5 A3; A5; A5; A4; A2;
(A6; )6 A3; A6; A4; A2; (A6; )7 A3; A7; A4; τ̃ (1);

. . . ; τ̃ (m − 1); A7 END");
t1 . . . tm

A; A; A5; A4;
A2; (A6; )7+1 A3; A7+1; A4;
. . .

A2(A6; )7+q−1 A3; A7+q−1; A4;
A2; (A6; )2 A3; A2; A4;
A2; (A6; )3 A3; A3; A5; A4;
A2; (A6; )4 A3; A5; A4; A4;
A2; (A6; )5 A3; A5; A5; A4;
A2; (A6; )6 A3; A6; A4;
A2; (A6; )7 A3; A7; A4;
τ̃ (1); . . . ; τ̃ (m − 1); A7

end

Part B:

The construction of π̃ in Part A leads to a new syntactically
correct simula program. Because of the close correspon-
dence between the simula program π4 and the pascal
program π6, the program π̃ easily corresponds to the pas-
cal program given in the proof of Proposition 5.1. To prove
that π̃ is really the self-reproducing version of π , it is suf-
ficient to refer to Case 2 of the proof of the Proposition 5.1.

��
From the proof of Proposition 5.2, we directly obtain an algo-
rithm which produces for a valid simula program π a self-
reproducing version π̃ .

Algorithm 5.2 Input: A simula program π .

Step 1: Test whether< class description > π – if any – is a
label from {A}+. Rename if need be;

Step 2: Split T := π; into partial strings t1, . . . , tm and
determine the number q of partial strings t j which are
different from "; then express the q−1 procedures A7+1

to A7+q−1 and build the value table of τ and τ̃ ;
Step 3: Insert the obtained procedures, the function values

and the program π into the program skeleton given in the
previous proof;

Complexity: The complexity of this algorithm is linear in the
length l(π) of the program π .

Due to the analogy with Algorithm 5.1, we will not give
a working example of that algorithm. We shall note, how-
ever, that a practically implementable self-reproducing ver-
sion requires the extension of Algorithm 5.1 by two more
practical steps, as was the case with Algorithm 5.2.

In conclusion, Chap. 5 has show that questions (1), (2)
and (3) posed at the beginning can be answered affirmatively
with respect to simula and pascal programming languages.
Those answer did not involved any specific characteristic
or element of those two languages. We conclude that ques-
tions (1), (2) and (3) can be fruitfully and constructively
addressed in any high level programming language, provided
the concepts of procedures and code constants are available.
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As far as the siemens Assembly language in Sect. 3.4
is concerned, Example 3.1 gives the answer to the previ-
ous questions. Only a few assembly code lines are neces-
sary in order to transform a given assembly program part
into a self-reproducing segment. The lines which enable self-
reproduction are essentially always the same.

6 Self-reproduction with loop-programs

6.1 Introduction

In Chaps. 3, 4 and 5, we presented examples of self-repro-
ducing programs in high level programming languages. From
an algorithmic point of view, these examples generally were
not resource intensive. In addition, the corresponding control
flow of each of those programs was rather simple. It would
be interesting to investigate just how simple programming
language structures could be made while still enabling self-
reproducing programs. The following considerations will pri-
marily apply to standard control structures of programming
languages in general and will not refer to a particular real
programming language. We shall hence break away from
real programming languages by concentrating on the ficti-
tious programming language P L(A) presented in Chap. 2.

In Chap. 2, the set of functions implemented by P L(A)
programs was denoted by P . By reducing available base
instructions and control structures in P L(A) to

γ1, γ2, γ3, γ5 · · · x1 : P; Q

x2 : if p then goto L

or to

γ1, γ2, γ3, γ5 · · · x1 : P; Q

x3 : if p then P else Q fi

x4 : whileX = ε do P od

we obtain programming languages which only allow “goto”
programs ((respectively “while” programs). However, theory
showed that (compare with [5]) the set of functions imple-
mented with while programs is equivalent to the set of the
functions implemented with goto programs and thus is equiv-
alent to the set P (our examples for self-reproducing pro-
grams in simula and pascal require procedures. If we want
to transform those programs into P L(A) programs, then
we have to consider “goto” programs.) Only if we reduced
P L(A) further to

γ1, γ2, γ3, γ5 · · · x1 : P; Q
x5 : loopX case a1 → P1,

...
...

an → Pn,

end,

this is to say, to pure “loop” program, we are not longer able
to write programs that realize all functions from P . Thus, we
shall proceed to determine the necessary requirements for
self-reproducing loop programs.

6.2 Definition of the Programming Language L P(A)

Definition 6.1 Let A = {a1, . . . , an} be a finite alphabet.
Let P L(A) be the programming language defined in Sect. 2.2
belonging to A. We obtain the programming language L P(A)
by eliminating all programs from P L(A)which contain base
instructions of the form γ5 : X := ρ(X), X ∈ V R or one
of the control structures given by:

x2 : if p then goto L ,

x3 : if p then P else Q fi

or x4 : while X = ε do P od

Remark 6.1 1. Besides sequential instruction execution,
the x5 loop structure represents the sole construction ele-
ment for programs in L P(A). Thus, programs in P L(A)
will be described as loop programs, as well.

2. The set of computable functions implemented through
programs in L P(A)

f : (A∗)r → (A∗)s, r, s ≥ 0,

is denoted L. The set L is also called the set of the prim-
itive recursive functions [5].

It follows from Definition 6.1 that L P(A) is a proper subset
of P L(A). In addition, loop programs always halt, indicat-
ing that the set L is a proper subset of P , as well; hence the
functions realized by loop programs are total functions. We
can also see that L is a proper subset of R (compare with
Definition 2.12) by proving the existence of a total recursive
function which is not a primitive recursive function (compare
with [5, p. 41]).

6.3 A Context-free Grammar for L P(A)

For completeness’ sake, let us now specify a context free
grammar G ′(A) for L P(A). G ′(A) derives from the reduc-
tion of the grammar G(A) for P L(A) programs in Sect. 2.3.

6.3.1 Specification of the Grammar G ′(A) = (V ′T , V ′N ,
s0, P ′)

The set of terminal symbols is given by

V ′T = A ∪ V R ∪ {input, output, loop, case, end,→, ; , , ,
< space >, ε, ε̄, :,=},

where V R is the set of valid variable names.
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The set of non terminal symbols is given by

V ′N = {<program>,<statement>,<simple statement>,

< identifier >,< identifier list >}.
The start symbol s0 is < program >.
The set P ′ of productions is equivalent to the production

set P of grammar G(A) without productions rules 6, 8, 9,
10, 13, 14, 15 and 20.

6.4 Extending the L P(A) Language

We proved the theoretical existence of self-reproducing pro-
grams in P L(A) in Chap. 2 . A similar proof for the existence
of self-reproducing programs in L P(A) will fail, since there
is no universal function in L (refer to [5, p. 47]). Hence, we
will tackle the problem of the existence of self-reproducing
programs in L P(A) from a practical angle. We stress, how-
ever, that it is not essentially impossible to theoretically prove
the existence of self-reproducing L P(A) programs.

In order to facilitate writing self-reproducing L P(A) pro-
grams, we are going to extend the L P(A) programming lan-
guage by an additional base instruction. Again, we are not
claiming that without this extension it would be essentially
impossible to write self-reproducing L P(A) programs.

I Let A be a finite alphabet. In the programming language
L P(A) with respect to A, we must have the capability
to initialize variables with any value from A∗ and not
only with ε. Thus, we introduce the base instruction γ6:

γ6 : X :=′ ai1 . . . a
′
ik

k ≥ 1, X ∈ V R, ai j ∈ A

for j ∈ [k].

We cannot exclude the fact that ′ ∈ A. Thus it is also
valid to have ai j =′ for any j ∈ [k].
In high-level programming language it is common to
write the text hyphenation symbol twice when it occurs
inside a program text constant. This unfortunate con-
vention complicated the writing of pascal and sim-
ula self-reproducing programs in Chaps. 3 and 5 more
complex. We thus introduce an alternative convention:
A γ6 base instruction must always be followed by a
semicolon. The end of a text constant will be then
denoted by ′;. For simplicity’s sake, we will disallow
string ′; as part of a text constant. In order illustrate this
text constant-semicolon concatenation, we include the
semicolon in the definition of γ6.

γ6 : X :=′ ai1 . . . a
′
ik
; k ≥ 1, X ∈ V R, ai j ∈ A

for j ∈ [k].

II If X ∈ V R, then the following instruction of type γ4 is
possible:

X := X

According to the previous convention, a semicolon will
follow such an instruction:

. . . X := X; . . .

Since we cannot exclude that fact that the semicolon is
an element from A, the string

X := X;

can be interpreted also as an instruction of type γ3. In
order to avoid ambiguity,9 we replace γ3 by the follow-
ing base instruction γ ′3:

γ ′3 : X := X |a ∀X ∈ V R, a ∈ A.

The meaning of γ ′3 is the same as for γ3.

Definition 6.2 Let A be a finite alphabet. L P(A) is the pro-
gramming language which is obtained by extending L P(A)
with the base instruction γ6 and by replacing the base instruc-
tion γ3 with γ ′3.

Hence we can derive from the grammar G ′(A) of L P(A)
a context-free grammar G ′(A) for the language L P(A), as
follows:

• The set of terminal symbols V ′T will be extended with the
symbols ’ and |.

• The production

< simple statement >→ X :=′ ai1 . . . a
′
ik
;

for every X ∈ V R, ai j ∈ A will be added to the set P ′.
• The production

< simple statement >→ X := Xa,

for every X ∈ V R, a ∈ A will be replaced by

< simple statement >→ X := X |a,

for every X ∈ V R, a ∈ A.

9 Which can come from the concrete choice of A and thus were not
considered in the content of Chap. 2.
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Definition 6.3 (loop-hierarchy of L P(A)-programs)
Let A be a finite alphabet.

1. L0(A) is the class of L P(A)-programs

π = input X1, . . . , Xr ;
AWπ ;
output Y1, . . . ,Ys;

with r, s ≥ 0, whose instruction part AWπ originates
from the successive writings of instructions of typeγ1, γ2,

γ ′3, γ4 and γ6.
2. The class Li+1(A) contains all programs π whose

instruction part AWπ is obtained through successive writ-
ings of instruction parts from programs in Li (A) and of
instruction parts of the form:

loop X case a1 → AWπ1 ,
...

...

an → AWπn ,

end

with a j ∈ A for every j ∈ [n] and where AWπ1 , . . . ,

AWπn are instruction parts of programs from Li (A) (i ≥
0).

6.5 Self-reproducing programs in L P(A)

Letπrep be a self-reproducing L P(A) program (if any exist).
Its code must be constructed step by step in the instruction
part of πrep. The single letters in πrep must appear on the
right side of assignation values. On the right side of assig-
nation values, however, only characters from A and variable
names appear. We thus must have: πrep ∈ A∗. In order to
guarantee this, we adopt the following postulate for the alpha-
bet A.

Postulate 6.1 For every program π ∈ L P(A), we have
π ∈ A∗.

Any alphabet which fulfils Postulate 6.1 must contain all
valid symbols necessary to construct L P(A) programs. The
smallest alphabet which complies with Postulate 6.1 is given
by

Amin = {a, c, d, e, i, l, n, o, p, s, t, u, ε, ε̄,

< space >, :, ; , , ,→, |,′ }.
The definition of L P(A) does not constrain the choice of
variable set VR in any way. From Postulate 6.1, it follows
however that only characters from A can be considered for
variable names of a self-reproducing programπrep∈ L P(A).

Postulate 6.2 V R ⊆ {A\B}∗\{case, loop, end, input,
output}\{ε}. Moreover, we have B := {< space>, :,=,→
, , , ; , ε, ε̄,′ , |} as the set of special symbols.

In a L P(A) program which fulfils Postulate 6.2, we must
strictly differentiate between variable name x and symbol
x , where x is a character in A. However, the definition of
L P(A) avoids these interpretation errors.

Proposition 6.1 Let A be a finite alphabet such that Amin⊂
A.
Then there exists a self-reproducing program in L2(A), pro-
vided that the L P(A) Postulate 6.2 is met.

Proof Consider the following program π2
rep:

input;
a :=′ input;a :=′; ;
c :=′:= ’ ’; ;
d := ’ ’ ’; ;
e :=′ lnlnoocppnoodpnnooepsnooipunoou’; ;
i :=′ loop e case l → loop a case i → t := t |i,

n→ t := t |n,
p→ t := t |p,
u → t := t |u,
t → t := t |t,
;→ t := t |; ,
a→ t := t |a,
:→ t := t | :,
=→ t := t | =,

end,
n→ loop d case ′ → t := t |′,

end,
o→ t := t |; ,
c→ t := t |c,
p→ loop c case :→ t := t | :,

=→ t := t | =,
′ → t := t |′,

end,
d → t := t |d,
e→ t := t |e,
s → loop e case l → t := t |l,

n→ t := t |n,
o→ t := t |o,
c→ t := t |c,
p→ t := t |p,
d → t := t |d,
e→ t := t |e,
s → t := t |s,
i → t := t |i,
u → t := t |u,

end,
i → t := t |i,
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u → loop i case a→ t := t |a,
c→ t := t |c,
d → t := t |d,
e→ t := t |e,
i → t := t |i,
l → t := t |l,
n→ t := t |n,
o→ t := t |o,
p→ t := t |p,
s → t := t |s,
t → t := t |t,
u → t := t |u,
:→ t := t | :,
=→ t := t | =,
′ → t := t |′,
;→ t := t |; ,
,→ t := t |, ,
→→ t := t | →,

< space >→ t := t | < space >,
end,

end;
output t ′; ;
loop e case l → loop a case i → t := t |i,

n→ t := t |n,
p→ t := t |p,
u → t := t |u,
t → t := t |t,
;→ t := t |; ,
a→ t := t |a,
:→ t := t | :,
=→ t := t | =,

end,
n→ loop d case ′ → t := t |′,

end,
o→ t := t |; ,
c→ t := t |c,
p→ loop c case :→ t := t | :,

=→ t := t | =,
′ → t := t |′,

end,
d → t := t |d,
e→ t := t |e,
s → loop e case l → t := t |l,

n→ t := t |n,
o→ t := t |o,
c→ t := t |c,
p→ t := t |p,
d → t := t |d,
e→ t := t |e,
s → t := t |s,
i → t := t |i,
u → t := t |u,

end,

i → t := t |i,
u → loop i case a→ t := t |a,

c→ t := t |c,
d → t := t |d,
e→ t := t |e,
i → t := t |i,
l → t := t |l,
n→ t := t |n,
o→ t := t |o,
p→ t := t |p,
s → t := t |s,
t → t := t |t,
u → t := t |u,
:→ t := t | :,
=→ t := t | =,
′ → t := t |′,
;→ t := t |; ,
,→ t := t |, ,
→→ t := t | →,

< space >→ t := t | < space >,
end,

end;
output t

π2
rep is obviously a valid L P(A) program. We must now

prove that π2
rep is self-reproducing.

Since π2
rep has no input, claiming that π2

rep is self-repro-
ducing is equivalent to stating that the content of variable t
is equal to π2

rep at the last instruction execution “output t”.

I. In the rest of the proof, [x] will denote the content of
variable whose name is x , with x ∈ {a, c, d, e, i, t} ⊂
Amin.

II. From the definition of the loop instruction, it is clear
that the 4 internal loop instructions add the value of
their respective step variable to [t], and as such extend
[t]. Let us adopt the following abbreviated notation:

([t] := [t][y]) :=

⎧

⎪

⎨

⎪

⎩

loop y case . . .→ . . .
...

end

with y∈{a, c, d, e, i}. The abbreviated notation [t] :=
[t]x conversely denotes the fact that the symbol x ∈ A
is attached to the content of [t].

III. With the help of the previous abbreviated notation, we
can now formulate π2

rep as follows:

input;
a :=′ input;a :=′; ;
c :=′:= ’ ’; ;
d := ’ ’ ’; ;
e :=′ lnlnoocppnoodpnnooepsnooipunoou’; ;
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i :=′ loop e case l → [t] := [t][a],
n→ [t] := [t][d],
o→ [t] := [t]; ,
c→ [t] := [t]c,
p→ [t] := [t][c],
d → [t] := [t]d,
e→ [t] := [t]e,
s → [t] := [t][e],
i → [t] := [t]i,
u → [t] := [t][i],

end; output t ′; ;
[i]

The external loop instruction now processes the running var-
iable e. This variable contains the stringwise coding of π2

rep.
The coding process is performed through the recording of
the list of Alternatives. The external loop instruction
self-decodes [e] and generates successively π2

rep. Only sym-

bols from Amin can appear in π2
rep. Hence π2

rep ∈ L P(A)

for every Amin ⊂ A, provided that L P(A) satisfies Postu-
late 6.2.

Since the embedding (interlacing) depth of the loop
instructions in π2

rep is equal to 2, we finally get the prop-
osition. ��
From the program π2

rep in the previous proof, we can derive

a program π1
rep with a loop embedding (interlacing) depth

of only 1. We build π1
rep from π2

rep by eliminating the exter-
nal loop instruction. The latter loop processes the variable e
whose content is 31 symbols long. We now list the instruction
part of the list of Alternatives for every one of those 31
symbols. Since e contains its own coding and since e will no
longer be useful once the external loop has been eliminated,
the number of instruction in this part is reduced to 25. Given
now a total of 25 symbols and 10 alternatives, it is clear that
a few alternatives must be written several times. It will be
also clear that the external loop in π2

rep is used only for code
reduction purposes.

π1
rep = input;

a :=′ input;a :=′; ;
c :=′:= ’ ’; ;

d := ’ ’ ’; ;

i :=′< alternative for l >;
< alternative for n >;
< alternative for l >;
< alternative for n >;
< alternative for o >;
< alternative for o >;
< alternative for c >;
< alternative for p >;

< alternative for p >;
< alternative for n >;
< alternative for o >;
< alternative for o >;
< alternative for d >;
< alternative for p >;
< alternative for n >;
< alternative for n >;
< alternative for o >;
< alternative for o >;
< alternative for i >;
< alternative for p >;
< alternative for u >;
< alternative for n >;
< alternative for o >;
< alternative for o >;
< alternative for u >;
output t ′; ;

< alternative for l >;
< alternative for n >;
< alternative for l >;
< alternative for n >;
< alternative for o >;
< alternative for o >;
< alternative for c >;
< alternative for p >;
< alternative for p >;
< alternative for n >;
< alternative for o >;
< alternative for o >;
< alternative for d >;
< alternative for p >;
< alternative for n >;
< alternative for n >;
< alternative for o >;
< alternative for o >;
< alternative for i >;
< alternative for p >;
< alternative for u >;
< alternative for n >;
< alternative for o >;
< alternative for o >;
< alternative for u >;
output t
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The parts between square brackets must be replaced as fol-
lows:

• < alternative for l > is replaced by

loop a case i → t := t |i,
n → t := t |n,
p → t := t |p,
u → t := t |u,
t → t := t |t,
; → t := t |; ,
a → t := t |a,
: → t := t | :,
= → t := t | =,

end

• < alternative for n > is replaced by

loop d case ′ → t := t |′,
end

• < alternative for o > is replaced by t := t |;.
• < alternative for c > is replaced by t := t |c.
• < alternative for p > is replaced by

loop c case : → t := t | :,
= → t := t | =,
′ → t := t |′,

end

• < alternative for d > is replaced by t := t |d.
• < alternative for i > is replaced by t := t |i .
• < alternative for u > is replaced by

loop i case a → t := t |a,
c→ t := t |c,
d → t := t |d,
e→ t := t |e,
i → t := t |i,
l → t := t |l,
n → t := t |n,
o→ t := t |o,
p → t := t |p,
s → t := t |s,
t → t := t |t,
u → t := t |u,
: → t := t | :,
= → t := t | =,
′ → t := t |′,
; → t := t |; ,
,→ t := t |, ,
→→ t := t | →,

< space >→ t := t | < space >,
end

Obviously we have: π1
rep is self-reproducing. Since π1

rep ∈
A∗min, we can give the following proposition.

Proposition 6.2 Let A be a finite alphabet with Amin ⊂ A.
Then there exists a self-reproducing program in L P1(A), pro-
vided that Postulate 6.2 is satisfied.

From the relatively simple construction of π1
rep from π2

rep,

we can now try to derive a program π0
rep from π1

rep which no

longer uses loop instructions. To this end, we must in π1
rep

eliminate the still remaining loop instructions

< alternative for l >;
< alternative for n >;
< alternative for p >;
< alternative for u >;

The first of those loop instructions can easily be divided into
a sequence of base instructions, since its purpose is code
reduction, similar to the external loop instruction in π2

rep.
Difficulties arise with the< alternative for n >; instruction.
It can be written without any loop instruction as follows:

t := t |′

Since a semi-colon follows < alternative for n >, the con-
stant text of i (and hence the forbidden text combination ′;)
will contain the partial string t := t |′; (compare with
Sect. 6.1). We are thus unable to replace the < alternative
for n >; instruction with a sequential program part. How-
ever, this is only due to the definition of the text constants
in L P(A) programs given in 6.4. We likely can avoid this
situation by considering an alternative definition. The same
reasoning applies to < alternative for p >, as well.

The situation is different, though, when it come to <
alternative for u >. This loop instruction is used to add the
content of variable i to the content of variable t . Now <

alternative for u > is itself a textual part of the content of the
variable i :

i :=′ · · · < alternative for u > · · ·′

We cannot replace < alternative for u > with a sequence of
base instructions. No self-reproducing program without any
loop instruction can be obtained from π1

rep. Thus we have:

Proposition 6.3 For every finite alphabet A, no self-repro-
ducing programs in L P0(A) exists.

Proof Let L P(A) be defined on a finite alphabet A. Let us
suppose that Postulate 6.2 is satisfied. Let us suppose that
there exists a self-reproducing program π0 ∈ L P0(A) (ab
absurdo proof). Then π0 has the following structure:

π0 = input; AWπ0; output t
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In AWπ0 , we have to build the code of π0. Since no loop
instruction is available, only two possible cases are able to
generate the code of π0 in AWπ0 .

Case 1. The code of π0 will be generated block by block
through the help of base instructions of type γ6. Then we
have the following equation for π0:

π0 = input; t := ‘π0’; output

This equation can however not be realized from any finite
code π0. Hence we have a contradiction.

Case 2. The code π0 is build one symbol at a time in AWπ0 ,
by means of instructions of type γ ′3. Since π0 must be
different from the empty word, the instruction t := t |x;,
with x ∈ A, must appear at least once in AWπ0 . This
instruction contains 7 symbols. Interpreted as a string, it
represents a constitutive part of π0. The instruction can
attached at most one of its 7 symbols to the output vari-
able. Hence, at least 6 symbols will remain unprocessed.
For those 6 symbols, 6 additional instructions of type γ ′3
are necessary. Those 6 instructions themselves produce
36 unused symbols which remain unprocessed, and so
on…
In order to generate a code of length k ≥ 0 with instruc-
tions of typeγ ′3, we need a program of length at least equal
to 7k. Hence there is no finite program of length k which
can generate a finite code of length k from the empty
word just with instructions of type γ ′3; a fortiori not its
own code. Consequently π0 is itself not finite and hence
it is not a program. Again, there is a contradiction. ��

Remark 6.2 In Chap. 2, the existence of self-reproducing
PL(A)-programs was proved (Proposition 2.6). Besides the
Recursion Theorem (Proposition 2.5), the proof rested on the
existence of a universal function for the function class P1

1 .
The class of all word functions

ϕ : (A∗)r → (A∗)s, r, s ≥ 0,

which can be computed by means of L P(A) programs, is a
function class which contains total functions only; L P(A)
programs always halt. In [5, p. 47], it has been shown that no
universal L P(A) computable function can exist for L P(A)
computable functions. However there exist self-reproducing
programs in L P(Amin). Let us note, then, that universality
is not a necessary condition for self-reproduction. There are
other, more direct way, as in Chap. 2, to theoretically prove
the existence of self-reproducing programs.

6.6 Self-reproduction principle of L P(A) programs

In Chap. 5, Propositions 5.1 and 5.2 proved the existence of
self-reproducing versions for any given simula (respectively

pascal) programs. A similar proposition can be proved for
L P(A) programs. By replacing once more the terms “input
file” and “output file” introduced in Sect. 5.1 with “input var-
iable” (respectively “output variable”), the self-reproducing
version of L P(A) programs is made more obvious.

Let A be any finite alphabet and π ∈ L P(A). No self-
reproducing version π̃ of π may exist in L P(A) (maybe
because the variable names used in L P(A) do not belong to
A∗), but only in the language L P(B) with a corresponding
larger alphabet B ⊃ A. From Definition 5.2, such a program
π̃ ∈ L P(B) would not be a self-reproducing version of π ,
since it works on a different data domain. Definition 5.2 is
satisfied, however, by considering π also a program from
L P(B), which is reasonable since A ⊂ B: The function
realized by π ∈ L P(A) is equivalent to the restriction of
the function on (A∗)r , r ≥ 0 realized by π as L P(B) pro-
grams (compare with Definition 5.1). This view corresponds
to Proposition 6.4.

Proposition 6.4 (Self-reproduction of L P(A)programs)Let
A be a finite alphabet and π ∈ L P(A). Then there exists a
finite alphabet B, such that A ⊂ B and such that

1. there exists a self-reproducing version π̃ ∈ L P(B) of π
(where π is considered an element of L P(B)).

2. and

π̃ ∈
{

L P2(B) if π ∈ L Pj (A) for j = 0, 1
L Pi (B) if π ∈ L Pi (A) for i ≥ 2.

Proof Let A be any finite alphabet and π ∈ L P(A). Without
loss of generality, let all variables in π not be in {c, d, e, i, t}.

Construction of the self-reproducing version π̃
π has the following structure:

π = input y1, . . . , yr ;
AWπ ;
output z1, . . . , zw; r, w ≥ 0

Let Aπ be the set of all symbols from which the program
π has been assembled. Let the string S ∈ A∗π be defined as
follows:

S := input y1, . . . , yr ; AWπ ;
(where AWπ of course describes the code of the instruction
part of π ). We thus have

π = S ◦ output z1, . . . , zw.

S will be divided into a sequence of n ≥ 1 partial strings si

with

1. si =′; or ’; is not contained in si ,
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2. si does not contain ’;⇒ si+1 =′; i < n,
3. s1 ◦ s2 ◦ . . . ◦ sn = S.

Let us recall that ’; is used as an end marker for text (code)
constants and must not itself be a partial string of a text con-
stant.

Let us consider additional settings:

• S := {s1, . . . , sn} is the set of partial strings.
• Let q be the number of partial strings S which are differ-

ent from ’;. We have 1 ≤ q ≤ n.
• Let x1, . . . , x2q be symbols which are neither in {c, d, e,

i, t} nor appear as variables in π .
• B := A∪Aπ∪Amin∪{x1, . . . , x2q}. B is a finite alphabet

and can thus be formally denoted as B := {b1, . . . , bα},
where α is the cardinality of B.

• Definition of functions G and G̃:

G : [q] → S
i 
→ s j

where s j is the i-th partial string which is different from
’;,

G̃ :→ B∗

i 
→
{

no if si =′;
x j if s j is the i-th partial string different from ’;

• Let v be an additional variable and let us abbreviate the
instruction

loop v case b1 → t := t |b1,

. . . . . .

bα → t := t |bα,
end

by the reduced instruction loop v.

Given the additional notation and settings, the program π̃ ∈
L P(B) can now be given:

π̃ =
s1 . . . sn = input y1, . . . , yn; AWπ ;
x1 :=′ G(1)′; ;
x2 :=′ G(2)′; ;

. . . . . . . . .

xq :=′ G(q)′; ;
c := ’ := ’ ’;;
d := ’ ’ ’;;
e :=′ G̃(1) . . . G̃(n)

x1 pxq+1noo
. . .

xq pxq+qnoo
cppnoodpnnooepsnooipunoou’; ;

i :=′ loop e case x1 → t := t |x1,

x2 → t := t |x2,

. . .

xq → t := t |xq ,

c→ t := t |c,
d → t := t |d,
e→ t := t |e,
i → t := t |i,
xq+1 → loop x1,

xq+2 → loop x2,

. . .

xq+q → loop xq ,

n→ loop d case ′ → t := t |′,
end,

o→ t := t |; ,
p→ loop c case :′→ t := t | :,

=→ t := t | =,
′ → t := t |′,

end,
s → loop e,
u → loop i,

end; output z1, . . . zw, t ′; ;
loop e case x1 → t := t |x1,

x2 → t := t |x2,

. . .

xq → t := t |xq ,

c→ t := t |c,
d → t := t |d,
e→ t := t |e,
i → t := t |i,
xq+1 → loop x1,

xq+2 → loop x2,

. . .

xq+q → loop xq ,

n→ loop d case ′ → t := t |′,
end,
o→ t := t |; ,
p→ loop c case :→ t := t | :,

=→ t := t | =,
′ → t := t |′,

end ,
s → loop e,
u → loop i,

end;
output z1, . . . , zw, t

Claim: π̃ is a self-reproducing version of π .
The program π̃ begins with the input of the input vari-

ables of π and the processing of the whole instruction part
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of program π . At the end of π̃ , the output variables of π
will be produced. These output variables z1, . . . , zw will not
be modified by instructions beyond the instruction part of π .
Program π̃ additionally produces the variable t . To prove that
π̃ is a self-reproducing version of π , it is sufficient to show
that at the end of the program execution, the content of t is
equal to π̃ .

Variables x1, . . . , xq , c, d, e and i contain—except for a
few single symbols—the code of program π̃ under a split
form. The purpose of π̃ ’s loop instruction is to assemble the
partial strings stored in those variables back into π̃ code. The
external loop instruction

loop e case . . . end;

will be driven by variable e, which contains the code of π̃ in
an encoded form. This coding is straightforward by consid-
ering the list of Alternatives. For every symbol of the
code constant e, exactly one partial string of program π̃ will
be added to the content of variable t . The constant code e is
divided into three parts:

Part I: G̃(1) . . . G̃(n)
Part II:

x1 pxq+1noo

. . .

xq pxq+qnoo

Part III: cppnoodpnnooepsnooipunoou.

Part I results in the fact that

input y1, . . . , yr ; AWπ ;
is added to the content of the initially empty variable t .

Part II extends the content of t by the program lines

x1 := ′G(1)′; ; to
xq := ′G(q)′; ;

Part III causes the remaining program code of π̃ to be
added to the content of t . This follows, wholly analogous to
π2

rep, from the proof of Proposition 6.1.
Part III processes the variable e completely, and the exe-

cution of the external loop instruction stops. Consequently,
the whole program stops, as well, and π̃ will output the con-
tent of t . π̃ satisfies the Definition 5.2(2) and therefore is the
self-reproducing version of π .

The “reproducing” loop instruction in π̃ is of depth 2 and
is located near the instruction part of π . Thus, the depth of
loop instruction of π̃ is at least 2, but constrained by depth
of the loop instruction of π . Consequently, the second claim
of the proposition is satisfied. ��

Remark 6.3 I. From the proof of Proposition 6.4 we can
directly derive an algorithm to search for a self-repro-
ducing version for a given program in L P(A). This
algorithm can, however, be vastly improved. As exam-
ples:

• We can choose alphabet B more judiciously. A
proof could be given with a “smaller” alphabet B
then used in the given proof.

• The loop instruction of type

loop v

contains many unused Alternatives, which
where included in the proof for the sake of a uni-
form presentation.

II. The construction given in proof of Proposition 6.4
closely follows program π2

rep from Sect. 6.5. A con-

struction by means of the L P1(Amin) program π1
rep

would result in self-reproducing versions π̃ with

π̃ ∈
{

L P1(B), if π ∈ L P0(A)
L Pi (B), if π ∈ L Pi (A), i ≥ 1.

This construction, though, would be even more diffi-
cult to grok than the construction by means of π2

rep.

7 Living programs?

7.1 Introduction

The preceding sections illustrated and implemented self-
reproducing programs in higher-level programming langua-
ges, as well as lower-level assembly languages. Chapter 5
in particular showed that not only do an infinite number of
self-reproducing programs exist, but that any programming
task can be handled by a self-reproducing program within the
physical limitations of concrete computing systems. Systems
do not exhibit 100% fidelity; small, but non-zero error rates
for switching and transmission errors remain an (unlikely)
possibility.

Example 7.1 For the sake of efficiency and higher hardware
utilization rates, computing systems are clustered into larger
networks [21]. It is not unheard of the distance between indi-
vidual computing components to exceed hundreds of kilome-
ters; as such, vexing data transmission problems pop up and
have to be tackled. Depending on the physical medium, trans-
mission error rates range from 10−4 to 10−7 bits/sec, with an
error rate of 10−4 bits/sec for POTS [12,21]. Through error
handling such as error correction codes [13] and appropriate
communication protocols [21] the rate can be lowered: The
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US ARPA network exhibits a bit transmission error rate of
10−12 bits/sec [12].

For instance, faulty self-reproduction of program π is possi-
ble during the memory copying process, resulting in repro-
ducing a different program π ′ �= π . If syntactically correct,
π ′ could amount to another self-reproducing program which
realizes a different function than π . We can detect a strong
analogy to the reproduction and mutation processes of living
cells, two fundamental biological characteristics for life. Are
there additional traits attributable to programs that are char-
acteristic of life? In our quest for answers to this question,
there are a couple of problems, some of them serious, that
have to be addressed.

• There are no universally agreed-upon definitions of, or
characteristics for, life in modern biology (see Sect. 7.2).

• Biological life is based on a complex interplay of bio-
chemical reactions. Key roles are played by certain macro-
molecules, chiefly among them nucleic- and amino acids
[11], the interaction of which constitute the basis of all
earthly life. Biology hinges the answer to the question
of alternative life forms on replacing nucleic and amino
acids with functional equivalent macro-molecules [11].
This, in turn, presupposes a sine qua non chemical basis
for life, which would rule out living computer programs.

Thus, the quest for ‘living’ programs is surely beset with
philosophical and theoretical biology difficulties. It is not
the purpose of this and the two subsequent sections to define
‘living’ programs; we understand it as a first stab, an attempt
to grapple with and discuss the aforementioned problems.

7.2 Biological life

Modern biology still has not come up with a uniform defini-
tion for life. By studying existing and extinct life forms, it is
possible to extract a couple of communalities of all life. We
list

• Metabolism and metabolic regulation,
• Cell reproduction and mutation,

as the key life processes. These processes are responsible for
sustaining the individual entities, reproduction and genetic
changes (see [11, p. 24ff]). Additional views include irrita-
bility and mobility as distinctive aspects of life (see [15, p.
335]).

Metabolism

The cell is the fundamental building ‘block’ of life - all life.
Cells as well as living beings constitute finite material sys-

A
1

An

B
1

Bm

C1

C s

Fig. 4 A cell: Sketch of a chemical thermodynamic flow system

tems. A cell constantly absorbs matter from its surround-
ings, internally alters it, and expels it into the environment
in changed form. Since matter is constantly flowing through
cells, we denote the ‘cell’ system as a “thermodynamic flow
system” [11], more precisely an open thermodynamic sys-
tem [2]. Metabolic catalysis follows known, ordered path-
ways and the system settles into a flow equilibrium; some
researchers maintain that all communalities of living organ-
isms directly follow from this tendency towards equilibrium
[2, p. 158]. Open thermodynamic systems in flow equilib-
rium move towards a constant state, independent of initial
starting conditions. This state is denoted as a stationary state.
Materially similar flow systems in an identical environment
strive to reach the same stationary state, regardless of initial
conditions. This hints at the existence of a metabolic control
system for living organisms.

Figure 4 sketches a chemical flow system in which mat-
ter Ai flow into the system, are transformed within to matter
Bi with the (junk) by-products Ci expelled into the environ-
ment. Metabolism is often purely heuristically divided into
catabolism, in which complex molecules are broken to yield
energy, and anabolism, in which energy is used to construct
complex molecules.

Reproduction and Mutation

Living organisms reproduce by cell division in which the
daughter cells inherit the same cell structure and the same
metabolic flow scheme (from one parent cell in mitotic, from
both in meiotic reproduction). Again, these materially simi-
lar flow systems (the daughter cells) will strive to reach the
same stationary state as the parent cells, regardless of initial
conditions, provided the environment does not change after
cell division. Put another way, the daughter cells “inherit” the
state of the parent cells. Cell structure and concomitant meta-
bolic reactions are governed by proteins; thus, for a daughter
cell to reach the same stationary state as her parents (given
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identical environments), two conditions have to be met dur-
ing cell reproduction:

• the daughter cells must share the protein makeup of the
parents,

• protein formation must follow the same time ordering.

A cell contains the necessary information to perform protein
synthesis in the form of specially structured nucleic acid mol-
ecules. These molecules are collectively denoted as DNA,
locatable molecular section as genes, respectively [27]. In
order for the daughter cells to be able to synthesize the same
proteins, an identical copy of the parent cell DNA is passed
on; in the case of meiotic reproduction, it is a combination of
the DNA of both parents (gene alleles). Hence, the progeny
receives the protein synthesis blueprint from their parent(s).
If errors occur during the DNA replication phase and a faith-
ful copy is not passed on, the daughter cell will synthesize
a different set of proteins, perform a different set internal
Bi reactions and thus reach a different flow equilibrium than
exhibited by the parents. The stationary state will be dif-
ferent, as well. Such punctuated changes in the hereditary
information (genome) of living organism are called muta-
tions. Mutations are random and ‘blind’, and may also arise
spontaneously through DNA changes in ‘ready-made’ cells,
not just during erroneous copying processes. This extremely
short and incomplete exegesis on metabolism, reproduction
and mutation of living beings should serve as a basis for the
following considerations.

7.3 Self-reproducing programs and life

In contrast to natural life forms programs are information-,
not matter-based. To access said information, it has to be
presented in an interpretable format. Examples are:

• punch cards
• punch rolls
• formulations through “Paper and pencil”
...

Programs are usually written for execution on a concrete
computing system. Within the system, programs are digitally
represented on and interpretable by the system given syntac-
tic and semantic10 correctness. Here, we have to stress that
program existence is not tied to its representation. Because
of their more abstract, less material nature, programs do
not have metabolic pre-conditions to sustain their existence,
either. Although energy is required to execute program π on

10 In this context, no run-time errors.

a computing systems, this cannot be classified as catabolism
since the energy supply

• is not actively controlled by program π ,
• is used for the interpretation, not sustainment, of program
π .

Program are written to some sort of storage medium on the
computing systems. Certain storage types like semi-
conducting charged-coupled devices need (time) periodic
content refreshing [13]. The availability of this memory is
indeed contingent on a regular consistent supply of energy;
however, it remains for similar reasons as mentioned above
too much of a stretch to categorize this process as catabolism.
Hence, trying to identify an exact analogy to biological
metabolism in the context of programs may be somewhat
futile. Reproduction and mutation are a different matter;
numerous examples in the preceding sections illustrate the
point that programs can produce identical offspring. One
component that all examples in higher level language had
in common was that they contained somewhere in the pro-
gram text their own blueprint in encoded form (e.g. array
C[23] contains π3 in Sect. 3.2.5; the text constant of proce-
dure AB contains π4 in Sect. 3.2.7). Here, the analogy to the
DNA blueprint of living cells is apt. The assembly of self-
reproducing program copies through a blueprint is in prin-
ciple, albeit tenuously, comparable to the protein synthesis
of cells. A subtle point has to be emphasized and kept in
mind, though: Program reproduction, strictly speaking, dif-
fers from the auto-reproduction of living organisms in that
the former requires an external stimulus (control through the
operating system) and does not rely on an internal mecha-
nism to induce the stimulus. Again, small, but non-zero rates
for switching and transmission errors introduce errors in the
process of program reproduction (see Sect. 7.1). As such,
mutations are possible.

All in all, after examining biological life’s two key pro-
cesses, we merely find a correspondence to one of them,
reproduction and mutation, in the context of self-reproducing
programs. We therefore cannot state that self-reproducing
programs are alive, and thus, they cannot be compared exactly
to living organisms. Certain biological structures, however,
may still be suitably compared to self-reproducing programs.

7.4 Self-reproducing programs and viruses

For a long time, viruses were considered the simplest organ-
isms, far simpler in their makeup even than one-celled living
beings. However, viruses are incomplete organisms - sub-
cellular structures really - consisting almost exclusively of
DNA. In addition, some viruses embed their DNA into a
coating of proteins, lipids and organic substances. They have
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no metabolism; they have to penetrate living cells in order
to show signs of life like mutation or reproduction. Viruses
have to leverage the metabolism of real organisms in order
to reproduce. Otherwise, viruses are dead and may even be
arranged in crystal form, a spatial arrangement that is not
known of living beings. Hence, of the two key processes,
virus’ exhibit only one (reproduction and mutation), and even
that one only on condition that a foreign metabolic entity
provides them with the requisite cata- and anabolic mecha-
nisms. Here, we can point out similarities to self-reproduc-
ing programs: As long as a self-reproducing program is not
written to a computing system’s memory, the program is of
no consequence (besides its inherent information content).
Only when the program finds itself in memory, and only
when it is actually executed, may a self-reproducing pro-
gram actually reproduce and mutate. The program draws on
energy supplied by the system. We stress that the analogy
cannot be stretched too far: a biological virus may induce its
own reproduction by actively intruding into a cell and lever-
aging its metabolic processes. A self-reproducing program
is incapable of such a feat, even residing on a system and
drawing on said computing “system”’s memory and energy,
it remains dependent on activation through the operating
system.

8 Models for competing self-reproducing programs

8.1 Motivation

Multilayered resource jockeying is a fact of biologic life, not
just at the individual, but at the species level (e.g. popula-
tion [25, p. 337]). Competitive success hinges in no small
part on the variability of the species’ genome. Species have
to constantly adapt to an inanimate environment, as well as
assert themselves against other species. Hence, features of
species and individuals cannot be divorced from their rela-
tionship to the animate and inanimate environment (see [27,
p. 199ff]). Similarly, self-reproducing programs are embed-
ded in a computing system “environment” consisting of hard-
ware and system software. Even the storage medium in which
the program resides is part of this environment. To stretch the
analogy further, other self-reproducing programs in memory
can be viewed as part the animate environment. Therefore,
it cannot be ruled out that interactions and feedback effects
between various self-reproducing programs on the one hand,
and self-reproducing programs and the computing system on
the other hand could give rise to new and different self-repro-
ducing programs with ever changing features. We propose
following (speculative!) models to investigate the behavior-
ial patterns that may be induced by feedback effects between
self-reproducing programs.

8.2 A basic model

We assume that the proposed base model MOD1 will be exe-
cuted on a conventional computing system based on a “von
Neumann architecture” [12]. Such an architecture will typ-
ically feature one central processing unit, and one or more
Input-Output (IO) channels (in the extreme case, several IO
CPUs). Limited multiprogramming is possible in that k pro-
grams π1, . . . , πk can be run quasi-simultaneously via tem-
poral switching, but not strictly processed in parallel. The
programs are thus alternately executed in time slices, or put
another way, they are time shared [1]. Self-reproducing pro-
grams in MOD1 are characterized by two metrics:

• Runtime (i.e. their reproductive time cycle).
• Spatial (i.e. memory position) relationship between a pro-

gram and its copy.

8.2.1 An informal description of MOD1

(i) Programs: Programs are identified by name, which
renders the program structure opaque. More impor-
tant data characterizations, however, include

a) The number of time ticks necessary for the pro-
gram to reproduce.

b) The minimum memory distance between the copy
and the inducing program (see (ii)).

(ii) Memory: Memory is one-dimensional, infinite and dis-
cretized into memory cells. Two adjacent cells are
directly connected. Each cell is able to hold exactly
one program, independent of its physical length. The
memory vector is sparse, almost all cells are empty.

(iii) Temporal process: Memory is initialized with NU M
self-reproducing programs π1, . . . , πNU M . Each pro-
gram π j is given periodically a time tick for execu-
tion. The cyclical activation is possible given a finite
number of programs in memory, though the cycle will
grow with the number of reproducing programs. After
an individual, finite number of time ticks in which con-
trol is passed to it, every program residing in memory
is able to reproduce.

(iv) Spatial process: Copies are written to preceding or sub-
sequent memory cells, subject to a minimum distance
requirement. Should the selected cell be occupied,
immediately adjacent cells are probed consecutively
until a free cell is found. It follows from (ii) that this
will eventually happen. Hence, this setup precludes
memory exhaustion problems.

MOD1 avoids collisions in that programs cannot infringe
upon one another. Specifically, ‘privileged’ programs can-
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Table 35 MOD1: SIMULA implementation

Table 36 MOD1: CELL implementation

not destroy other programs by overwriting occupied mem-
ory cells; in this sense, all programs are equivalent. Since
collision avoidance is supported by the infinite memory
framework, we can view every programs (individual) as per-
manent, and permanently replicating (progeny). The number
of residing programs (population) grows and grows. Figura-
tively speaking, the MOD1 universe models peaceful coex-
istence rather than a “fight for survival”. Such a model rules
out evolution, since the driving forces of evolution, mutation
and selection, cannot assert themselves for lack of selection
pressure.

8.2.2 MOD1 implemented in SIMULA

(i) Programs: Incorporating the parameter triples into a
SIMULA program. DELY, DISTANCE, IDENT
denote reproduction time, minimum distance of copy,
and program identification, respectively (Table 35).

(ii) A memory cell can hold an object of type PROGRAM
and is flanked by two neighboring cells. We model
this structure with the SIMULA concept CELL (Table
36). Memory is modeled as a doubly linked list ([28]
p. 233ff). At first, we initialize a fixed memory block
of length N , though we can add additional cells if
needed, making memory potentially infinite. The vari-
ables LEFT and RIGHT point to the left and right end
of the list, respectively. The procedures

ref (CELL) procedure ADDLEFT;

and

ref (CELL) procedure ADDRIGHT;

are used to append a memory cell to the list.

Fig. 5 MOD1: Global data structures

Example 8.1

The procedure ADDRIGHT works analogously.
(iii) Temporal behavior: Start time: At simulation start,

memory is initialized with a fixed number of programs
(objects of type PROGRAM πi , i = 1, . . . , NU M .
There are M ≤ NU M different programs, meaning
that initially, there are multiple copies of some pro-
grams residing in memory. Since the cells hold refer-
ences and not the programs π j themselves, the actual
code has to be stored in toto somewhere. This is the
purpose of ref (PROGRAM) array P[1:M];.
The programπ j can be de-referenced by pointerP[j].
Copying π j requires merely setting another pointer
to π j . Effectively, π j can be viewed as a “program
type”, and pointers thereto as concrete instantiations
or examples of this type. The terminology is a bit vague
in this instance, but we will continue to refer toπ j both
as program, as well as program type, depending on
the context. The field integer array ST[1:M]
keeps track of count ST[j] of program P[j]. We
have initially

M
∑

j=1

ST[j] = NUM

The tuples (PI, WHERE) determine the memory
position of the NU M programs such that program
P[PI] is written to the WHEREth memory cell to the
right of pointer LEFT (Fig. 5; Table 37).
Simulation
Pointer C of type ref (CELL) iterates through
memory from left to right TIME times, testing each
cell for content. If the cell is empty, nothing happens;
if the cell contains a program, the condition

TIMECOUNT+1 = CONTENS.DELY
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Table 37 CELL: adding to the list

Table 38 MOD1: Initialization and copying

is evaluated. Should the test yield true, a copy of the
program is made and TIMECOUNT is reset to zero,
indicating that a new reproductive cycle can start. If the
condition fails, TIMECOUNT is increased by 1. Some-
time, a new memory cell has to be created at the right-
most end of the memory vector. Care must be taken
that the current iteration does not process the newly
created cell; only in the iteration in the subsequent
cycle will access the cell. Support for this notion is
given by variable

ref (CELL) OLD_LAST

and an implementation sketch is given in Table 38
(Lines 3 and 4 initialize one cycle).

(iv) Spatial behaviour:
In the i th, i ≤ TIME, iteration, let pointer C point to
a cell containing program π j = C.CONTENSwaiting
to reproduce, i.e.

C.TIMECOUNT+1 = CONTENS.DELY

Table 39 MOD1: COPY and RANDINT

Program π j is copied either to the left or right of the
cell pointed to by C, into the location determined by
procedureCOPYwith the help of the SIMULA random
number function RANDINT.11 Table 39 shows that
depending on the random number, either COPY_LEFT
or COPY_RIGHT is called to perform the actual copy-
ing. Appendix C.1 in ESM presents MOD1 in its
entirety in the form of an executable SIMULA pro-
gram. The program’s data structures are illustrated in
Fig. 6.

8.2.3 Purpose of MOD1

Simulation models and implementations generally are used
to draw experimental conclusions. MOD1 is too predict-
able for a simulation to offer anything but limited insights.
The memory direction positioning of MOD1’s copy is the
only random element in an otherwise deterministic program.
Hence, we will use MOD1 as a starting point and build
enhanced models with more features (MOD2, MOD3) from
the constitutive building blocks delineated in MOD1. These
are

(i) Program models
(ii) Memory models

(iii) Temporal behaviour
(iv) Spatial behaviour

11 [24, pp. 4–9].
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Fig. 6 MOD1: Global data structures

By varying one or more of these four components we can
design other basic models, especially (iv) hints at a wide
variety. Points (i) to (iv) are not completely independent
from one another: The program’s DELY and DISTANCE
variables impact on the temporal (iii) and spatial behavior
(iv). Another design consideration flows from the implied
“von Neumann architecture” of the computing system. One
feature of this architecture is a single data and instruction
stream at any one point in time, also referred to as single-
instruction single-data stream (SISD) [12] machine. Mod-
ern systems do not quite fit the SISD mold in that they
boast more processing units (especially Input–Output pro-
cessors), in effect re-organizing the machine into a multiple-
instruction multiple-data (MIMD) stream entity. Current
systems are rarely referred to as MIMD, since the number
of concurrently working processors remains very small; the
main idea behind MIMD being the leveraging of a large
number (roughly 100–1,000) [26] of independent processors
for maximum parallelism. There also exist single-instruction
multiple-data (SIMD) and multiple-instruction single-data
(MISD) machines, but practically all current systems can be
roughly characterized as SISD. We ask ourselves

What features would MOD1 require if it were to serve as
a model for unorthodox (i.e non-SISD) machines [6]?

We pre-suppose, of course, the existence of self-reproducing
programs on such systems (Tables 40, 41).

8.2.4 Some SIMULA implementation aspects for MOD1

I As indicated in Sect. 8.2.3, MOD1 does not measure
experimentally the quantitative behavior of individual
programs. Since the programs in MOD1 are both per-
sistent and unconditionally reproduce themselves, we
have for all π j , /; j ∈ [M]: The count S j (T ) after the
T th memory cycle is given by

S j (0) · 2(T÷DELY of π j )

where S j (0) indicates π j ’s count before the simulation
has started. S j (T ) can be printed in tabular form after
every WHEN_CONth memory cycle by calling

procedure CONTROL;
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Table 40 MOD1: Copy to
empty cell

Table 41 MOD1: Input
parameters

II The unchecked program growth should spark some
interest in the spatial positioning of the individual pro-
grams. The specification of MOD1’s spatial behavior
(iv) is quite arbitrary; hence we shall not delve into it
further here, since other spatial arrangements are possi-
ble. However, MOD1 fields two procedures to facilitate
spatial behavior analysis; these are

procedure DUMP;

DUMP effects a memory dump from left to right: Empty
cells are denoted by ‘*’, while a program’s IDENT var-
iable is printed for occupied cells.

procedure AVERAGE;

AVERAGE prints the average distance between
instances of the individual programs in tabular format.
The distance to an adjacent cell is 1.
The calls to both DUMP and AVERAGE are controlled
by the variables integer WHEN_ DUM and WHEN_
AVE, respectively.DUMP is executed after everyWHEN_
DUMth memory cycle; and similarly for AVERAGE.

III It follows from I. and II. that the implementation of
MOD1 as seen in Appendix C.1 in ESM requires three
printing parameters; WHEN_CON, WHEN_DUM, and
WHEN_AVE.

IV Complexity:

Memory: MOD1 keeps the program type count con-
stant, which means that variablesP and ST are constant
during simulation execution, as well. Solely the list rep-
resenting memory is poised to grow during simulation,
given enough TIME specified iterative cycles. Growth
rate in a cycle is dependent on program type: A combi-
nation of short reproduction cycles (variableDELY) and
large distances between copies (variable DISTANCE)
gives rise to exponential program copy growth (see I.),
which in turn induces exponential growth of the mem-
ory list. As such, the aforementioned criteria represent
but just one factor.

Runtime: Several model parameters affect the runtime
of MOD1’s SIMULA implementation. This thesis will
not attempt to give a tight bound; we will merely note
that memory cycle time is dependent on memory length
which in turn suggests an exponential runtime for
MOD1.
We emphasize that this type of exponential behavior
makes MOD1 unsuited for the purposes of statisti-
cal analysis; MOD1 represents a basic model, noth-
ing more. The models that follow, however, will tackle
unfettered exponential growth by modifying spatial
behavior and introducing competitive constraints.
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8.3 A competitive model

The basic model MOD1 allows any self-reproducing pro-
gramπ to freely deposit its copyπ into an empty cell. Hence,
there exists no real conflict nor competition between pro-
grams. The absence of competitive behavior prevents the for-
mation of evolutionary processes. Another aspect of MOD1
is program persistence.

MOD2 expands MOD1’s capabilities by enabling pro-
grams to deposit their copies into occupied cells, thereby
erasing the former contents, i.e. other programs. The net
result is twofold:

• We introduce conflict among—and hence competition
between—programs.

• Overwriting a memory cell erases the former content and
can be viewed as the “death” of a program.

By introducing the notion of (competitive) behavior among
programs, we expand the list of our model components by
adding

(v) Behavior among programs

We give a detailed description of MOD2 in Sect. 8.3.1.

8.3.1 Informal description of MOD2

(i) Programs: We define runtime as a characteristic met-
ric of a program. Runtime denotes its reproduction
time; the minimum number of tick counts needed for
the program to reproduce. Hence, a 2-tuple, program
identity and runtime, sufficiently characterize a pro-
gram in this model.

(ii) Memory: Same as for MOD1.
(iii) Temporal behavior: Same as for MOD1.
(iv) Spatial behavior: At any time t , only a finite number

of cells are occupied, which implies that there exist a
left limit occupied cell l(t) and a right limit occupied
cell r(t) which demarcate the occupied memory seg-
ment. A copy π of a program π must not be deposited

arbitrarily far from this segment; only up to a distance
of a constant number of cells. Hence, we denote by
L(t) and R(t) the respective left and right distance-
constrained deposition limits (Fig. 7).
Every cell within the segment serves with equal prob-
ability as a potential host for copy π . This constrained
spatial behavior guarantees a controlled program
spread by preventing the creation of arbitrarily far
positioned, isolated ‘populations’.

(v) Behavior among programs: A self-reproducing pro-
gram π deposits its copy π in an arbitrarily chosen
memory cell within the constraints expounded in (iv).
Should the memory be empty, no conflict arises; oth-
erwise, another program π ′ is found residing at that
cell, and some decision mechanism invoked to decide
whether π is to overwrite π ′. In the affirmative case,
π overwrites π ′, otherwise π has no refuge and is
deleted. Thus, one program is ‘eliminated’ in either
case.

A specification of this decision mechanism (v) completes
MOD2’s description. Many different criteria may flow into
a decision procedure, we shall limit ourselves for simplic-
ity’s sake to a mechanism that is based solely on properties
of the two conflicting programs. We make this mechanism
slightly more flexible by adding a probabilistic dimension
which implies the consideration of other, albeit unspecified
factors in the process.

Definition 8.1 Let n ∈ N0. A n × n matrix V = (vi j ) ∈
Mn(R) (ring of n row matrices over the real numbers) is
called an n-row precedence matrix if vi j ∈ [0, 1] ⊂ � for all
i, j ∈ [n]
Let P := {π1, · · · , πM } be the set of program types in
MOD2. An M-row precedence matrix in conjunction with an
appropriate interpretation represents a decision mechanism
for MOD2.

Definition 8.2 Let M be the program type count in MOD2.
Let V = (vi j ) be an M-row precedence matrix. Components

Fig. 7 MOD2: Spatial
constraints
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Table 42 MOD2: SIMULA implementation

Table 43 MOD2: Memory as dynamic array

vi j are interpreted as follows: Should a copy π of program
π of type πi be written into a cell that already contains a
program π ′ of type π j , then π overwrites π ′ with probability
vi j . With probability (1− vi j ) π does not overwrite π ′; π ′ is
preserved and π is deleted.

The M-row precedence matrices are fielded as decision mech-
anisms for MOD2, and hence represent one of its parame-
ters. The inclusion of a precedence matrix renders MOD2
non-deterministic.

8.3.2 A SIMULA implementation of MOD2

(i) Programs: The SIMULA program representation is
simpler compared to MOD1.DELY andIDENTdenote
reproduction time and program identification, respec-
tively (Table 42).

(ii) Memory: Implementation of the memory structure
poses some challenges. On the one hand we need a
list-based structure that can grow potentially infinitely
large; on the other hand in light of Sect. 8.3.2(iv) direct
cell access through an array-based memory structure is
desirable, as well. Since both requirements are mutu-
ally exclusive, a compromise must be found. Since
direct memory access positively influences MOD2’s
runtime, we shall make this our priority and repre-
sent memory as an array. To accommodate potentially
infinite memory requirements, the array implementa-
tion must be dynamic. SIMULA’s class concept make
dynamic arrays possible (Table 43). The individual
memory cells (type: CELL) are represented the same
way as in MOD1 (Table 44). The global pointer ref
(STORAGE) STOREPOINTER is used for memory
access. A memory segment containing N cells is ini-
tialized at the beginning of the simulation through the
statement

STOREPOINTER := new STORAGE(N);

Table 44 MOD2: Memory cell

Fig. 8 MOD2: Memory expansion

Since cell occupancy density increases monotonically
during simulation, memory has to be expanded ever so
often.The variable integer PERCENT denotes the
density threshold: Should memory occupancy reach
PERCENT %—which is tested by calling boolean
procedure OVERFLOW—memory is expanded by
invoking

procedure NEW_STORAGE(MORE); integer

MORE;

NEW_STORAGE creates a new object of length N +
2∗MORE of type STORAGE, copies the content of the
old memory structure into this new object and sets the
global pointer STOREPOINTER appropriately
(Fig. 8). After the NEW_STORAGE call, available
memory will have increased at each end byMORE cells.
Variable N, denoting the current memory size, will
have increased by 2 ∗MORE. Since the two parame-
ters PERCENT and MORE influence the mechanism of
memory expansion, they are important for the SIM-
ULA implementation of MOD2. Infinite memory is
better and better approximated by a smaller PERCENT
and a larger MORE. Should PERCENT be set to>100,
MOD2 reverts to a finite memory model.

(iii) Temporal behavior:
Initialization time: Similar to MOD1, we read in M
programs (rather: program types) π1, . . . , πM at sim-
ulation initialization time and store them in field

ref (PROGRAM); array P[1:M];
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Table 45 MOD2: Simulation

Field integer array ST[1:M]; keeps track of
the program type count ST[j] of program π j . Ini-
tial values for ST are read in, as well, which indicates
the program type count written to memory at the start
of the simulation: For every j ∈ [M], ST[j] copies
of program π j is assigned to memory by setting the
appropriate pointers. We invoke the random number
generator RANDINT(1,N,U) to randomize program
position uniformly in memory. Overwriting situations
at initialization time are avoided, and we make sure
that

M
∑

j=1

ST[j] ≤ N

Finally, we read in the M-row precedence matrix and
write it to field

CONFLICT[1:M, 1:M]

Simulation: We cycle through memory bidirectionally
with equal probability TIME times. The cycle direc-
tion is randomized to prevent preferential treatment of
programs. For every non-empty cell encountered dur-
ing a read cycle, we call procedure MATCH. MATCH
checks whether the residing program can self-repro-
duce and potentially creates a copy. Since MATCH
may lead to memory density exceeding the PERCENT

threshold, procedure NEW_STORAGE may be
triggered (Table 45).

(iv) Spatial behavior:
The selection of the memory cell into which a program
deposits its copy is effected by calling the SIMULA
random number function
RANDINT(1,N,U_CELL), where N denotes mem-
ory size, and U_CELL a required parameter of type
name. The selection of each cell is equiprobable (for
a detailed description of RANDINT, see [24]). We
slightly modified the cell selection procedure given in
Sect. 8.3.1(iv). In conjunction with the memory expan-
sion mechanism outlined in Sect. 8.3.2(iii), we realize
the overall end result delineated in Sect. 8.3.1(iv).

(v) Behavior among programs:
Instead representing the precedence matrix V = (vi j )

as an element of MM (R), the SIMULA version of
MOD2 represents it as an element of MM (N):

integer array CONFLICT[1:M.1:M]

Each vi j =(CONFLICT[i,j]) is a percentage value,
and thus can range from (0, 100]. For technical pro-
gramming reasons, zero values are disallowed (a devi-
ation from Sect. 8.3.1(v)).
Appendix C.2 in ESM contains an extensively com-
mented SIMULA implementation of MOD2. An illus-
tration of the implementation’s data structures is
shown in Fig. 9.
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Fig. 9 MOD2: Global data
structures
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8.3.3 Some SIMULA implementation aspects for MOD2

I. This particular SIMULA implementation of MOD2
allows for simulations presuming finite as well as infi-
nite memory, depending on PERCENT.

II. We include two new procedure for output support,
DUMP and CONTROL. This necessitates the introduc-
tion of model-independent parametersWHEN_DUM and
WHEN_CON (see Sect. 8.2.4.I and II.)

III. MOD2 allows us to investigate certain questions exper-
imentally, e.g.:

• For a given program type, can a relatively weak
position in the precedence matrix be compensated
for by a short reproductive cycle, thus enabling the
particular program to assert itself?

• Given M program types, their respective DELY
components as well as a precedence matrix, how
do the proportions of the individual programs types
change over the duration of the simulation? How
long till one or more program types are extinct?
Will a ‘winner’ eventually assert itself in finite time
and overwhelm all other types?

• Questions along the lines above, dependent on
“population density” (controlled by memory
parameters MORE and PERCENT)

• Many more questions.

The abundance of parameters within the SIMULA
implementation of MOD2 offers a fertile experimental
playground. Alas, in the context of this thesis, we shall
not investigate these questions any further (Tables 46,
47).

IV. Complexity:

Memory: The number of program types that appear
in MOD2 remains constant throughout the duration
of the simulation. Hence, the memory requirements
set by CONFLICT, ST and P remain unchanged, as
well. Merely the memory-simulating dynamic field
referenced by STOREPOINTER may grow during the
simulation, depending on the parameters MORE and
PERCENT (see Sect. 8.3.2(ii)). Should PERCENT
>100, the memory field remains constant; otherwise,
its size will increase exponentially throughout the life-
time of the simulation, depending on the number of
memory cycles. To counteract the explosive growth
seen in SIMULA program MOD1, a dampening factor
is introduced, (100-PERCENT)/100, denoting the
proportion of free memory cells. It should be noted
that resizing induces the creation of a new object of
type STORAGE (by calling NEW_STORAGE). The old
object stays resident in memory.

Runtime: In general, runtime is dependent on the num-
ber of memory cycles and the length of the memory-
simulating field. Since the size of grows exponentially
with memory cycle count, so does runtime. Again, the
dampening factor (100-PERCENT)/100 seeks to
counteract exponential runtime growth. Limit
cases:

a) Setting no limits on memory length and keeping
memory density relatively small throughout the
simulation (by choosing a low value for
PERCENT). This results in a paucity of conflicts
and an near-unconstrained program ability to
deposit copies; leading to a near-unmitigated
exponential explosion of program instances. This
situation is comparable to MOD1 (see Sect. 8.2.4.
IV)

b) Letting memory length remain constant (by choos-
ing PERCENT >100). Then, from some memory
cycle onwards, all cells will be occupied. Conse-
quently, runtime will linear in the number of mem-
ory cycles, since the runtime of procedure MATCH
(no other procedure will be called) is bounded by
a constant.

V. After a NEW_STORAGE call, available memory will
have increased by 2∗MORE cells. It may be more advan-
tageous to condition the number of added cells propor-
tionally to current memory length.

9 Program evolution

9.1 Motivation

The plant and animal life we see today has evolved from
simpler life forms by varying its features slowly, but steadily.
This process is called biological evolution, which continues
to this very day, albeit imperceptively. Evolutionary theory
tries to causally explain this process, and can be succinctly
summarized as follows [11,15,25,27]:

Organisms produce far more descendants than necessary
for the propagation of their species. These descendants
exhibit some genetic variation (see Sect. 7.2), this is true even
in the case of shared parenthood. This variation is enabled by
the ability of genes to mutate (see Sect. 7.2). Mutation rates
of living organisms are very low, on the order of 10−4 to
10−7 per gene. (These values are independent of a given spe-
cies’ generational cycle and itself the result of evolutionary
processes balancing species’ adaptability against instabili-
ties in the genome). Since genes determine an individual’s
features, the vast majority of descendants are differentiated
in their traits. There is a constant struggle for life and only
those organisms that have best adapted themselves to the
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Table 46 MOD2: Match
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Table 47 MOD2: simulation

environment - the fittest - will survive and reach their repro-
ductive stage. Sustained natural selection first marginalizes,
then wipes out the population’s feebler individuals (see [25,
p. 337]). The unremitting selection pressure induces more
and more environmentally optimal features in individuals
(transformative selection). New mutations arise at a constant
rate irrespective of prior adaption to a stable environment.
The probability of ‘positive’ mutations, however, decreases
as adaptive corrections take root over time. ‘Negative’ muta-
tions are dealt with in two ways: Insofar they have not had
lethal implications, selection ensures that the population’s
genetic composition remains constant by discarding mani-
fested negative mutations (stabilizing selection). Should pos-
itive mutation arise or the environment change yet again,
transformative selection pressure reasserts itself. Mutation
and selection are the ‘engine’ of evolution; however, other
factors such as isolation and randomness (see [15, p. 317ff]),
meiotic and mitotic reproduction may play a role,
as well.

Section 7.4 compared self-reproducing programs with
viruses. Even though one cannot classify viruses as living
organisms they are subject to evolution. This is because viru-
ses are capable of mutations and experience similar selec-
tion pressure in the ‘struggle for life’. This suggests that
self-reproducing programs can evolve as well if subjected
to mutation and selection. Sect. 8.3’s MOD2 introduced a
model incorporating competitive behavior (= struggle for
life) among programs. MOD2’s program types were char-
acterized by their reproductive cycle and position in the pre-
cedence matrix: the programs that enjoy a short reproductive
cycle and - due to a advantageous entry in the precedence
matrix - have an easier time locating memory space for their
copies are likely to assert themselves. Hence, selection pres-
sure in MOD2 is geared towards short reproductive cycle
time and an advantageous precedence matrix entry. Should a
program type be able to vary one or both of these parameters,
the subsequent program could have an easier time asserting
themselves in MOD2. Mutations can cause these parameters
to vary. Section 9.2 expands MOD2 by allowing for program
type mutation, the net result being the introduction of a model
satisfying the requirements needed for evolution. Hence, the
SIMULA version implements a program simulating the evo-
lution of self-reproducing programs.

We note that computer programs in general are suited to
simulate evolutionary processes: Since such processes (bio-
logical, chemical, cosmic,...) require a very long period of
time to generate and manifest changes, the fundamental mod-
eling constraint is one of temporal duration. Only fast com-
puter systems, capable of executing many operations in a
fraction of a second, can compress such eons into an accept-
able time frame (see [8]).

9.2 MOD3: A model for the evolution of self-reproducing
programs

Given a program π , we pre-suppose that with a certain
probability p1 (model parameter) errors will occur during
reproduction, such that the resulting differing program π

constitutes a mutation of program π . Generally, errors will
be minimal and hence the differences between π and π will
not be pronounced. Since MOD3 programs are characterized
by their respective reproductive cycle time and their prece-
dence matrix entries, these are the visible values affected by
mutation, provided that π ’s reproductive ability is not
impaired. We denote the case in which a mutation lead to
non-self-reproducing programs as a lethal mutation. Since
mutations are random and punctuated, lethal mutations may
occur at any time. MOD3 controls their occurrence with prob-
ability parameter p2. We note that in principle every non-
lethal mutation gives rise to the first manifestation of a new
program type. MOD3 records such mutants together with
their ‘pedigree’; thereby incorporating each non-lethal muta-
tion into the fold of available program types. Since selection
pressure favors shorter reproduction time which manifests
itself through more advantageous precedence matrix entries,
those mutations evidencing improvements in these values
(an increase in fitness) will have an evolutionary advantage
viz their parents. Under certain circumstances, such mutants
may crowd out the program types from whence their parents
sprung (selection). It goes without saying that mutated pro-
gram types may mutate again. Since program reproduction
passes off conceptually in an “asexual” manner, every muta-
tion can be viewed as a lineage starting point of divergent
program types (clones, see [25, p. 313]).
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Table 48 MOD2: input
parameters

9.2.1 Informal description of MOD3

(i) Programs: Programs in MOD3 are represented by their
reproductive cycle time and name. The name of
mutated programs sheds light on the program’s ‘ances-
tral roots’.

(ii) Memory: Same as MOD2.
(iii) Temporal behavior: Same as MOD2. In addition, a

program is capable of reproducing (and hence poten-
tially fathering a mutated offspring) if it has been
active for t time ticks. Parameters p1 and p2 denote
the probability of a mutation and subsequent lethality
of said mutation, respectively. Should the mutation be
non-lethal, either the offspring’s DELY component or
its competitive conduct (precedence matrix) will be
changed with probability p3 and 1− p3, respectively,
and the program type count in MOD3 increases by 1.
The mutated offspring is subsequently treated like any
other error-free copy.

(iv) Spatial behavior: Same as MOD2. Mutants and error-
free copies are treated the same way.

(v) Behavior among programs: As in MOD2, the behav-
ior among the individuals programs is determined by
the precedence matrix. Should a non-lethal mutation
arise, the matrix’s rows and columns are expanded to
accommodate the new program type and specify its
behavior towards the other programs.

9.2.2 A SIMULA implementation of MOD3

(i) Programs: Table 48 gives an overview of MOD3’s
SIMULA parameter structure.DELY,IDENT,PROG-
NAME, MUT denote reproduction time, program
identification, program name, and mutation count,
respectively. Although PROGNAME would suffice for
unambiguous program identification, code implemen-
tation issues (array access) necessitate the IDENT
variable. MUT keeps track of the program’s mutated
offspring count. DELY and PROGNAME are analogous
to Sect. 9.2.1(i).

(ii) Memory: The memory structure follows MOD2’s
lead. We also reuse the memory expansion mecha-
nism, as well as its control parameters integer

Table 49 MOD3: SIMULA implementation parameters

MORE and PERCENT (procedures: NEW_STORAGE,
OVERFLOW).

(iii) Temporal behavior: We note that the program type
count M will not likely remain constant during the life-
time of the simulation. This entails that all variables
which exhibit M components in MOD2 will have to
be of dynamic length in MOD3. This holds true for
the precedence matrix, as well. We show these modi-
fications in Table 49.
LinesVECTOR.x,S.x andCONFLICT.x are substi-
tuted for ref (PROGRAM) array P[1:M],
integer array ST[1:M], and integer
array CONFLICT [1:M,1:M], respectively.

Initialization: This remains analogous to Sect. 8.3.2
(ii), with consideration of the aforementioned data
structure modifications. The added parameters
MUT and PROGNAME are initialized thusly: Let
{π1, . . . , πM } be the set of initial program types. Then
MUT is set to 0 for each π j . Furthermore, π1’s PROG-
NAME is set to “P1”, π2’s PROGNAME is set to “P2”,
and so on.

Simulation: In general, we can adopt the description
given in Sect. 8.3.2(iii). Since MOD3 extends MOD2
significantly, we have to make some changes to accom-
modate the generation and treatment of mutations.
These changes manifest themselves in a set of pro-
cedures which have to be called in toto prior to calling
procedure MATCH. Before we give a modified descrip-
tion of MATCH, we have to outline these additional
procedures.
A program’s determinant features are captured by its
DELY variable and its position in the precedence
matrix. Only mutations of these characteristics are
selection-relevant. MOD3’s SIMULA version induces
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Table 50 MOD3: Dynamic variables

program mutation by calling

ref (PROGRAM) procedure MUTANT(X);

ref (PROGRAM) X;

MUTANT produces a pointer to an object of type PRO-
GRAM. This object finds one or both of its aforemen-
tioned determinant features slightly altered compared
to the original program, denoted by pointer parame-
ter X. Hence, it represents a mutation and the gener-
ation of a new program type. This also necessitates
increasing by 1 variable M , which denotes the count
of available model program types in the model. This
increase is effected before calling procedure MUTANT.

Workings of MUTANT:

I. MUTANT first creates a new object of type PRO-
GRAM and initializes the fields that are not
directly relevant to model behavior. The resulting
object -constructed as a mutant of program X - is
addressed through pointer HELP (Table 50)

II. The creation of a new mutant necessitates a row
and a column expansion of the precedence matrix.

Since at procedure MUTANT invocation time, it has
not yet been determined whether the mutated pro-
gram will be kept or discarded (see the function-
ality of MATCH below), the precedence matrix is
not yet changed. Rather, the column and row are
held in a new data type object (See Table 51 for the
data type ) for putative matrix expansion at a later
time.MUTANT creates an object of typeFIELD and
assign it to global variable CHANGE_CONFLICT.

CHANGE_CONFLICT := new FIELD(M);

The precedence matrix’s X.IDENTth row and col-
umn entries regulate the competitive behavior
between instantiations of program type X and other
program types. The mutant’s behavior towards
other program types will be similar to program
X’s: To this end, the X.IDENTth column is copied
into the first row of CHANGE_CONFLICT.V and
theX.IDENTth row is copied intoCHANGE_CON-
FLICT.V’s second row (Fig. 10).

CHANGE_CONFLICT.V(1,M), CHANGE_
CONFLICT.V(1,X.IDENT) and CHANGE_
CONFLICT.V(2.X.IDENT) represent the
components which specifies type-conflict behavior
for instantiations of (mutant) type HELP, as well
as between HELP and original program X, respec-
tively. The component values are generated ran-
domly with the help of RANDINT. Since mutant
and original program are closely related, these val-
ues may deviate only up to a factor of two from
the values of X’s precedence matrix. Hence, with
the exception of the three aforementioned compo-
nents, the mutant exhibits the same type-conflict
behavior as the original.

III. It remains to be determined how the mutant will
differentiate itself with respect to model-relevant
features from the original. We handle this with
variable PROB_DELY which captures model
parameter p3 mentioned earlier: With probability
PROB_DELY∗10−3,X’sDELY is mutated with the
help of RANDINT. With probability (1-PROB_

Table 51 MOD3: Mutant
creation
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DELY) ∗ 10−3, the mutant’s conflict behavior
towards MOD3 program types other than X is
changed.
• Should the DELY component value be cho-

sen for changes, the mutant and original
value will differ by at most 100%.

HELP.DELY := RANDINT(1,2*X.
DELY, U_DELY2);
while HELP.DELY = X.DELY do;
HELP.DELY := RANDINT(1,2*X.
DELY, U_DELY2);

• Should the mutant’s conflict behavior cho-
sen to be altered, exactly one component
value of CHANGE_CONFLICT will be
changed; again at most by 100%. This

component, chosen randomly byRANDINT,
must have been copied from the old pre-
cedence matrix; hence components at indi-
ces [1,M], [2,M], [1, X.IDENT] and
[2, X.IDENT] are disallowed (Table 52).

IV. The steps in III. lead to a completed mutant, as
well as the additional row and columns of the pre-
cedence matrix in the form of HELP andCHANGE_
CONFLICT, respectively. We finish the procedure
call to MUTANTwith the assignment MUTANT :=
HELP.

Example:
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The mutant’s PROGNAME variable is set within proce-
dure MUTANT by calling function
text procedure CREATE_NAME(X); ref
(PROGRAM) X;

Workings of CREATE_NAME:

CREATE_NAME receives as a formal input parame-
ter X a pointer to an object of type PROGRAM which
returns a text string denoting the name of a mutant
derived from program X. This name is constructed by
concatenating the integer component X.MUT (parsed
as text), the symbol “.”, and the text component
X.PROGNAME.

Example:

Since the generation of a program mutant entails an
increase-by-one of the program’s MUT variable, the
mechanism guarantees unambiguous names for suc-
cessive mutations. In addition, since the object passed
into parameter X may be itself a mutant (see exam-
ple b) above), it is possible to reconstruct the gene-
alogical ‘tree’ through component PROGNAME (see
Fig. 11). Note that MOD2’s integer IDENT compo-
nent, though adequate program identification in MOD2,
lacks this feature. We mentioned repeatedly that in
general, a mutation adds to the number of available
program types. This manifests itself at first in the
increase to variable M. Should the mutated program
succeed in establishing itself (see the description of
procedure MATCH), an expansion of the dynamic
arrays which store, register and manage the pro-
grams is required. These changes are effected through
procedure calls

procedure NEW_PROG(P); ref (PROGRAM) P;

procedure NEW_ST(T); ref (PROGRAM) T; and

procedure NEW_CONFLICT(A); integer array A;

Workings of NEW_PROG:

PROGPOINTER points to the field responsible for the
actual storage of the program types. Should a new
mutant emerge (passed via pointer P as a parameter
to NEW_PROG), a component has to be added to this
field. Fig. 12 shows the workflow schematically: A
new object of typePROG is created, the field expanded,
its entries copied over and finally PROGPOINTER set
to the new updated structure.

Workings of NEW_ST:

The field referenced by STPOINTER keeps track of
program type count; at any time in the simulation, the

i th component denotes the count of program type i .
Upon emergence of a new mutation, an additional
component is added to the field and initialized with
value 1. Apart from that, the order of events mirrors
NEW_PROG’s (Fig. 13).

Workings of NEW_CONFLICT:

CONPOINTER points to the field that stores the prece-
dence matrix. A new mutation expands the matrix by
one column and one row. Both row and column specify
the mutant’s conflict behavior, and are passed via for-
mal parameter integer array A to NEW_CON-
FLICT. At NEW_CONFLICT call time, the object
pointed to by CHANGE_CONFLICT is passed in as
a parameter. This object in turn is generated before-
hand in procedureMUTANT (see workings of MUTANT
in the preceding section). Again, the order of events
in NEW_CONFLICT is largely analogous to NEW_
PROG’s and NEW_ST’s. Fig. 14 picks up on the exam-
ple from procedure MUTANT.
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Fig. 10 MOD3: Mutant conflict behavior

Table 52 MOD3: Row and column creation

Fig. 11 Program genealogy

After our elucidating the procedures used to create
and manage mutations, we may move on to specify
procedure MATCH. Like its namesake in the MOD2
SIMULA program (see Sect. 8.3.2), MATCH consti-

tutes the program’s core procedure. We additionally
adopt in its entirety the simulation scheme delineated
in Sect. 8.3.2(iii), Table 53.

(iv) Spatial behavior:
We follow the approach delineated by SIMULA pro-
gram MOD2, since mutation options do not change
spatial behavior.

(v) Behavior among programs:
Again similar to SIMULA program MOD2. However,
every element vi j of the current precedence matrix is
interpreted as a ‘per mille’ value rather than a percent-
age value, as was the case for MOD2’s vi j . Thus, the
entries in a given MOD3 precedence matrix can range
from (0, 1000].

Appendix C.3 in ESM contains an extensively commented
SIMULA implementation of MOD3. An illustration of the
implementation’s data structures is shown in Fig. 15.

9.2.3 Some SIMULA implementation aspects for MOD3

I. This particular SIMULA implementation of MOD3
allows for simulations presuming finite as well as infi-
nite memory, depending on PERCENT.

II. We integrated three procedures for output support:
DUMP, CONTROL and AVERAGE. Thus, the program
contains model-independent parameters WHEN_DUM,
WHEN_CON and WHEN_AVE (see Sect. 8.2.4.I and II.)
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Fig. 12 Managing new
(mutant) program types

Fig. 13 Keeping track of (mutant) program type count

III. MOD3 reverts to the SIMULA program MOD2
should PROB_MUT be set to 0 (i.e. mutations are
disallowed).

IV. MOD3 allows us to investigate certain questions exper-
imentally. It follows from III. that the experimental
questions raised for MOD2 can be answered within
the MOD3 framework. Additionally, MOD3 may shed
some light on questions pertaining to evolution:

• Does an optimal mutation frequency exist for the
given model?

• Is there a ‘red line’ mutation rate which should not
be exceeded lest the mutants become unstable?

• By judiciously varying PROB_DELY, we may
investigate the effects of the reproductive cycle
time’s selection effectiveness (the DELY com-
ponent) and its position in the precedence matrix.

• How are mutations able to prevail against other pro-
grams -and their own cousins, ancestors and pre-
decessors? We find programmatic support for this
investigation with the help of the taxonomic gene-
alogical ‘tree’ (see CREATE_NAME).

• We can vary population density through MORE and
PERCENT and repeat the line of questioning delin-
eated above.

• Many more questions ..

Again, the SIMULA implementation of MOD3 offers
a fertile experimental playground. Alas, in the context
of this thesis, we shall not investigate these questions
further (Tables 54, 55).

V. Complexity:
Without going into further details, it is apparent that the
analysis of MOD2’s memory requirements and run-
time is applicable to MOD3, as well. In general, com-
plexity grows exponentially with memory cycle count.
Again, a dampening factor counteracts this exponen-
tial growth; its effectiveness dependent on permissible
limits of simulated memory density (see Sect. 8.3.3.IV).
There is also some additional overhead due to the com-
plicated data structures and new procedures needed to
accommodate and manage mutagenic behavior. How-
ever, its overall effect on complexity is negligible, pro-
vided that realistically small mutation rates (which
keep M small) are specified (see Table 56)
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Fig. 14 Generation of new
precedence matrix

Table 53 MOD3: Change behavior component value

VI. We adopt the memory expansion mechanism delin-
eated in Sect. 8.3.3-IV for the SIMULA implementa-
tion of MOD3.

VII. In MOD3, a mutant will differentiate itself with respect
to model-relevant features from its original by altering
exactly one value by at most by 100% (see description
of MUTANT). This leeway of 100 % has been arbi-
trarily chosen and may alternatively be specified by

a variable parameter. In MOD3, the lower limit for
mutation rates was programmatically set to 10−8. We
note that this rate was taken from biological processes,
and may not have the same relevance when applied
to evolution in a computing environment. Thus, this
value, along with the fixed lower limit for mutation
lethality, may be passed in as a parameter, as
well.
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Table 54 Workings of procedure MATCH
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Table 54 continued
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Table 54 continued

Table 55 MOD3: Input
parameters
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Fig. 15 MOD3: Global data
structures

Table 56 MOD3: Memory and runtime complexity
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