
J Comput Virol (2009) 5:119–149
DOI 10.1007/s11416-009-0118-4

ORIGINAL PAPER

Semi-automatic binary protection tampering

Yoann Guillot · Alexandre Gazet

Received: 11 August 2008 / Accepted: 31 December 2008 / Published online: 24 February 2009
© Springer-Verlag France 2009

Abstract Both on malicious binaries and commercial soft-
ware like video games, the complexity of software protec-
tions, which aim at slowing reverse-engineering, is constantly
growing. Analyzing those protections and eventually cir-
cumventing them, require more and more elaborated tools.
Through two examples, we illustrate some particularly inter-
esting protection families and try to show their limits and
how to remove them to recover a binary which is close to the
original code. Each of our approaches is based on the use of
the binary manipulation framework Metasm.

1 Introduction: virtual machines

In the recent years, following constant processors perfor-
mances growth, software protections became more and more
resource consuming. One class of protections perfectly illus-
trates this fact: virtual machine used as software protection.
In the field of software protection, the term of virtual machine
refers to a software component simulating a processor. We
could also use the term of virtual processor. This “proces-
sor” is equipped with its own instruction set thus enabling
the execution of any program specifically written in this
machine code. In this paper, the term of virtual machine
always refers to a software protection component and never
to more advanced methods or software, which would be ded-
icated to a whole architecture virtualization like VMWare or
VirtualPC.

This software protection method is now used in a large
number of widely available commercial protections like
VMProtect, StarForce, Themida or also SecuROM. Beyond

Y. Guillot · A. Gazet (B)
Sogeti, ESEC, Paris, France

those commercial products, we should also notice that many
malware use virtual machine to protect their own code.

When actually dealing with software protection, imple-
menting a virtual machine amounts to add an abstraction
level between the machine code—as it is perceived using a
debugger or a disassembler—and its semantics, i.e. the func-
tion it operates. Analyzing this abstraction level is often quite
challenging and especially time consuming. The simulated
processor possesses its own instruction set and machine code,
which have to be analyzed. Most of the time, the analyst has
to develop dedicated tools to overcome this abstraction level
and to be able to understand the code.

Few elements should be taken to assess the resistance to
analysis of such a protection. Actually a virtual machine can
be seen according to the two following models:

– A concrete model: it is the native code in which is imple-
mented the virtual machine. Typically, we will find at this
level all the primitives dedicated to memory manipula-
tion, virtual registers, implementation of a fetch-decode-
execute cycle and instruction handlers (a function which
emulates an instruction or an opcode). Analysis complex-
ity may be very important whenever the native code has
been obfuscated. Obfuscation is another software protec-
tion technique that we will deal with later.

– An abstract model: a virtual machine simulates the
behaviour of a given architecture or processor. The more
the virtual architecture is complex and distant from the
concrete architecture, the more the analysis is slowed
down. First the translation process is slower, and second,
the lack of references brought by the new architecture,
is a source of confusion. At the highest level of abstrac-
tion, the difficulty is also induced by the complexity of
the program that is executed on the virtual processor.

123

120 Y. Guillot, A. Gazet

Fig. 1 Classic structure of a virtual machine

1.1 Detection

The detection of a virtual machine is linked to its implemen-
tation. Most of the time, we can find some very characteris-
tic schemes. The implementation of a fetch-decode-execute
cycle is performed with a loop. An instruction handler is
nothing more than a function taking some arguments, typi-
cally one or two, and returning the result. Virtual machines,
also often make reference to those handlers using a function
pointer table. From a structural point of view, printing the
call graph is sometimes extremely revelating.

We find in this example (Fig. 1) all the elements we have
mentioned:

– At the top: the main function. It is the implementation
of a fetch-decode-execute cycle. This loop dispatches the
execution flow to the right handler, which is responsible
for the current instruction treatment.

– Then we recognise our instruction handlers which are all
located at the same logic level (here in blue).

– Handlers use tool functions (here in purple), to access the
operands for example.

– Finally at the lowest level, all the primitives dedicated to
the manipulation of physical virtual components: mem-
ory, registers, IO ports. . .. They are the links between
abstract and concrete models.

This scenario is the ideal case study. In practice, it is often
harder to extract the whole structure. As a consequence, only
the experience and the intuition will pay for the analyst.

1.2 Analysis

In a first time, the analysis of a virtual machine goes through
the understanding of the abstract architecture or processor.

Once it has been conceptualised, it is possible to identify
each of the instruction handlers, and so the instruction set
of the virtual machine. This analysis is most often based on
a dynamic approach, like the observation of a data transfer
between a register and a memory area. The main strength of
a virtual machine lies in its abstract model while on the con-
trary its main weakness lies in its concrete model. The latter
model contains all the clues that makes the analysis possible:
a context, a handler function pointer table, instructions and
operands decoding primitives. . ..

The second step is the translation from the virtual machine
code to a programming language which is easier to under-
stand and which we have a good knowledge enough of. Typ-
ically it will be an x86-assembler like. This stage cannot be
avoided and precedes advanced phases of reverse-engineer-
ing like decompilation.

1.3 Virtual machine hardening

There exist two main approaches for anyone trying to harden
a virtual machine based software protection. First, and most
obvious, it consists of a complexification of the virtual
machine itself; using a particularly exotic virtual architecture,
an important instruction set, or by applying a destructuring
process on the virtual machine. By destructuring process, we
mean all processes which are able to conceal, split, and in a
more general way to delay the concrete model analysis.

The second approach turns toward virtual machine mul-
tiplication and so making the analysis work increase. Once
again there are two possible approaches which can be com-
bined:

– A flat multiplication: in a binary n parts are protected,
each of them by a different virtual machine. If we consider
d the performance deterioration factor for one virtual

123

Semi-automatic binary protection tampering 121

machine, then whatever is the number of virtual machines,
the performance deterioration factor for the whole binary
is lower or equal to d.

– A vertical multiplication: here, the idea is to conceive
virtual machines executing themselves others virtual
machines. If we consider the maximal number n of
stacked virtual machines, then the performance deteriora-
tion factor may locally be equal to dn . Even on a powerful
processor, performances are dramatically decreasing.

The goal of those techniques is to create a as great as
possible asymmetry between the protection’s cost and the
analysis’ cost. Nevertheless, both flat and vertical multipli-
cation rely on the hypothesis that the author is able to produce
unique and original virtual machines. We mean that analyz-
ing one instance of virtual machine should give as few as
possible information concerning the analysis of another sam-
ple. Ideally, the author strives to force the analysis of each
virtual machine. In practice, the author will simply try to
complexify the automation of the analysis. Basic techniques
of poly/metamorphism may appear to bring a sufficient and
satisfying level of complexity.

This trend to more complex and elaborated virtual
machine-based software protection clearly implies the need
for tools able to carry out strong abstraction on the code.

2 Obfuscation

As previously mentioned, the strength of a software protec-
tion technique lies in the asymmetry between the protec-
tion’s cost and the analysis cost. Obfuscation is a technique
that consists of increasing analysis’ complexity by deeply
distorting code’s readability. Obfuscation should be applied
thoughtfully on important parts that are really valuable for
an attacker, but it should not act as markers for those parts.
An important problematic is to define the resistance and the
effectiveness of an obfuscation function [2].

An obfuscation process or function may be defined
as a transformation applied to the code that preserves its
semantics.

2.1 The semantics

Semantics is the meaning that we give to the code, its func-
tion or its role. If we consider a part of code denoted p, p′ its
obfuscated form and I the set of initial possible states, then
preserving its semantics may be formulated as follows:

∀s ∈ I, p(s) = p′(s)

Locally, i.e. at instructions level, it is clear that the context
may differ partially. Just take a part of code which is respon-
sible for the calculation of an addition: once obfuscated, it

should return the correct result, whatever the intermediate
states it goes through. In a more concrete way, it means that
many registers, or memory blocks, are essential because they
contains the results or have an influence on it; others are not.
This is what we call the significant context.

Preserving the semantics of the significant context is
essential, since it guarantees a correct execution of the binary
once the obfuscation function has been applied.

2.2 The transformations

Although processes of obfuscation differ depending on their
objectives and the level of abstraction at which they are
applied, all can be modeled in the form of a transformation.
We will first illustrate this concept with few examples that
we have found in different binaries we have analyzed.

Neutral element. Obfuscation using neutral elements (Fig. 2)
is relatively weak and we will try to see why. Actually this is
the simplest scenario we can find when dealing with obfus-
cation: significant contexts before and after execution are
equal. Independently one from the others, the design of each
pattern is trivial. Each effect is subsequently cancelled, thus
the semantics is preserved. In the last of the three examples
above, sub instructions cancel add instructions, pop instruc-
tions cancel push instructions, rol 9 and rol 17h complement
each other arithmetically. . .. This property will be the basis
of a method for automatic detection. Moreover, a second
property is also very interesting and useful during a manual
analysis: a sort of visual symmetry can be observed in the
instruction blocks.

Once we have identified inserted patterns as neutral ele-
ments, we know that it is possible to reduce the code simply
by masking those patterns. In practice, those sequences are
often replaced by nop instructions, which happened to be
a remarkable form of neutral element; a neutral element is
substituted to another, then codes are equivalent. This attack
is quite trivial. Once patterns are identified, a basic matching
at hexadecimal level is enough. There is no need to inter-
pret the code. The more an attack is led at a low level of
abstraction, the more it is simple and effective.

Constants expansion. Constants expansion stands for a kind
of transformation which aims at complexifying the expres-
sion of a constant. Let’s consider the following pattern as an
example (Fig. 3).

Parameters var1 and var2 are XORed using the same
32-bit key. The key appears distinctly for the first param-
eter, while this is more ambiguous until we realized that:
0f91628c5h ⊕ 0d50cab04h == 2c1a83c1h. Here
the idea is to express the key as the result of the XOR of two
constants.

123

122 Y. Guillot, A. Gazet

Fig. 2 Neutral element based obfuscation

Fig. 3 Double XOR

Fig. 4 Structural obfuscation

The constants used in some algorithms are really signifi-
cant and can be used to immediately identify a function as a
hash function by example. Thus, it is really interesting to try
to hide them.

In our example, double XOR is really basic, but other sys-
tems may be much more arduous, both in their form (manip-
ulations on registers, on the stack, in memory) and in their
content (constant expressed like the result of a complex poly-
nomial or trigonometric formula).

Structural obfuscation. Another type of frequently observed
transformation may take the form of the parts of code repre-
sented in Fig. 4.

The first example consists in pushing an address on the
stack and then to use the ret instruction as a jump. This type of
transformation differs from simple neutral element insertion

as the flow graph is modified: this is the reason why we speak
about structural obfuscation.

The second example is a well known type of structural
obfuscation: the false conditional jumps. For these jumps,
the calculation of the condition always returns true or always
false. One of the two branches is never used. We will explain
in detail the nature of this protection later on in this document.
In this example, using constants 89h and 179h, following by
the popf instruction—let us recall that it reloads processor’s
flag using the dword located at the top of the stack—the code
writer controls the condition of the jump instruction located
in @2173f.

In a general way, the apparent condition of the jump is
used to artificially complicate the control flow graph. In addi-
tion, this technique has the quite interesting property to dis-
rupt some disassembly engines. We said that one of the
two branches is a dead one; it is possible to insert garbage

123

Semi-automatic binary protection tampering 123

instructions aiming at polluting the listing, inserting false
references. . .

2.3 Complexity

The complexity resulting from the application of an obfusca-
tion function relies in the possibility for an analyst to under-
stand the used transformation. The more it is identifiable, the
more it is easy to revert it at a low level of abstraction. All
constant, thus predictable, elements represent free informa-
tion for an analysis. This is particularly true when dealing
with software protection. Inserting static patterns is concep-
tually weak: even if a great variety of patterns increase the
difficulty, it is generally not enough to ensure a satisfying
level of protection.

From the developer’s point of view, the more effective
solution consist in designing a set of simple transformations
(f, g . . .), that s/he masters easily and then to apply them suc-
cessively, the output of one being the input of the other. Those
basic functions should be sufficiently varied: pattern inser-
tion, trap insertion, control flow graph modification, variable
expansion, disassembly engine trap. . .. The development of
each function is thus easier, and the preservation of semantics
is more easily provable.

Following composition rules, it is possible to obtain as a
result, a final function of obfuscation fres , defined as

fres = f ◦ g ◦ . . . ;
which is a priori much more resistant to analysis that each
individual function is.

To further strengthen the resistance, it may be efficient
to vary the final function of obfuscation by randomizing the
order of composition. We can also consider parameterised
functions. The only limitation is the imagination of the author
and the performance degradation that is tolerable. The tech-
nical constraint is becoming secondary as the capacity of
processors is increasing month after month.

3 Metasm

Metasm [6] is an opensource framework in which it is possi-
ble to interact with machine code in many different formats
(hexadecimal, assembler, C). It is entirely written in Ruby
[7]. That makes it the perfect tool for our needs: it will be
easy to change the way things are done, as an example how
binary instructions are disassembled. Metasm is a multiplat-
form and multiOS framework. Consequently, we should be
able to create an object to interact with any virtual processor
we may encounter. This framework was first introduced dur-
ing the SSTIC 2007 conference [4] and later the same year
during the Hack.lu 2007 conference [5].

3.1 Code desobfuscation

A virtual machine used as a software protection is often
implemented using obfuscated native code. In order to ease
the preliminary code analysis, we will need to pass through
this layer of protection.

This is accomplished by manually reading a few code
sequences, finding the obfuscation patterns used, and revert-
ing them, either by the removal of the useless instructions
(junk code) or by restoring the standard instructions in the
case of behavior-level obfuscation.

This can be done at different times:

– either in the binary file before disassembling,
– or dynamically while disassembling,
– or on the assembly source once the disassembling is

completed.

The first option is only possible if we manage to find a
binary signature for every pattern; however it may cause data
corruption if the pattern is a false positive (e.g. if it appears
in the middle of a data section).

The last option is safer but needs the disassembling pro-
cess to work on the obfuscated code. However it is quite
possible that the obfuscated code implements some kind of
function call, or a jump sequence, so that the disassembler
misses it. In this case, we will work on a fraction of the inter-
esting code only. This is why we chose the second approach.

Standard disassembly. Out of the box, the disassembly
engine in Metasm works this way:

1. Disassemble the binary instruction at the instruction
pointer,

2. Analyze the effects of the instruction,
3. Update the instruction pointer.

The analysis of the effects of a given instruction enables to
tell whether the instruction does some memory access and/or
changes the execution flow. If this analysis reveals such an
effect and if this effect depends on the value of a machine
register, Metasm uses a backtracking technique to try to deter-
mine the value of those registers.

Backtracking. Backtracking in Metasm consists in the sym-
bolic emulation of each instruction while walking all the exe-
cution flows that arrive to the current address, until the traced
expression’s value is found. The flows used are tagged so that
if we later find a new code flow that will run into the flow we
are currently examining, then we are able to walk this new
flow which may find a new value for the expression.

The backtracking method needs an arbitrary arithmetic
expression, zero or more addresses to stop this backtracking

123

124 Y. Guillot, A. Gazet

Fig. 5 Original

Fig. 6 Junk code pattern

Fig. 7 Final

process (addresses of start of symbolic execution) and the
address to begin the backtrace (end of symbolic execution).
The expression may include the symbolic value of any pro-
cessor register (value at the end address). The method will
then return the same expression expressed using the symbolic
value of the registers at the start address.

For example, if we search the value of the eax register
after execution of “add eax, 4”, we will get eax+4: the value
of eax at the end of the instruction equals the value of eax
before the instruction plus four.

Patched disassembly. The way we will proceed is not very
intrusive but will be unable to handle obfuscations that change
the execution flow with jumps further than a few bytes at a
time.

We will modify the first step of the disassembler loop:
how a binary instruction is disassembled. This step is imple-
mented in the method called CPU#decode_instr_op. When
an instruction is decoded, it will be checked against a list of
predefined patterns, determined by a manual observation, to
see whether it matches the beginning of one of those patterns.
If it matches, the next instruction is decoded to go on with
the pattern matching. If the whole pattern matches, the cor-
responding unobfuscated instruction is returned in place of
the whole sequence. This will totally remove the obfuscation
layer.

Doing it this way makes it recursive, which means that it
will automatically solve interweaved patterns. This has the
added benefit of reducing the length of the pattern list. Addi-
tionally, nop instructions are always merged into the follow-
ing instruction, so that the junk code is absent in the final
assembly listing.

The following figures (Figs. 5, 6, 7) show the result on a
sequence of instructions. We can see the result by looking at
the binary encoding of the pop eax instruction.

In practice, we start by entering the most visible patterns,
look at the result, and refine the pattern list until the output
is readable enough.

A more sophisticated approach would be to automatically
analyze all code sequence we encounter to determine it’s
effects, and then try to express those effects with less instruc-
tions. This would work particularly well with junk code (like
‘add 2, sub 2’); but if the junk code only preserves signifi-
cant registers (for the program) and allows modifications to
unused registers, we would need to define manually what
is significant and what is not. This is quite similar to code
decompilation, as we will see later.

3.2 Automatic analysis of virtual machine handlers

This can only be done after a preliminary manual analysis
which is necessary to determine the virtual machine archi-
tecture:

– encoding of the virtual instructions,
– implementation of virtual registers (memory? dedicated

real register?),
– virtual code flow.

This analysis will answer those questions:

– How the transition between virtual instructions is done?
– How are subfunctions called?
– How do subfunctions return?

123

Semi-automatic binary protection tampering 125

It is then possible to automatically analyze the handlers, at
least those implementing simple functions (like arithmetic
operations or data movements), by comparing the virtual pro-
cessor state before and after the handler symbolic execution.

We will use the backtracking engine of Metasm to mode-
lize the transformations applied to all virtual registers by the
handler; also to track all memory accesses.

These two information suffice to summarize the handler’s
effects; we will call them the handler’s binding. We can then
compare those transformations to a set of known shapes to
name the handlers (eg “addition between two registers”).
This is mostly useful to assign a mnemonic to a handler, in
order to get a readable virtual instructions listing. Handlers
whose binding are not recognized will need to be manually
analyzed.

Note that all this analysis may be done on moderately
obfuscated handlers, as long as the binding can be accurately
computed.

3.3 Pseudocode disassembly

Once all the handlers are identified, we can build a new CPU
class for the virtual processor and integrate it in the Metasm
framework. In this way, we get a full-blown disassembler
able to work directly on the binary pseudo-code. This class
may be automatically created from the results of the auto-
matic handler analysis. The handlers of a virtual machine are
quite simple, so this modelisation is easy.

Furthermore, if we write a few other methods to handle the
virtual assembly language parsing, we could have a working
assembler for the pseudocode, able to generate a binary that
could run on the virtual machine.

3.4 Decompilation

Most of the time a virtual machine instruction set is mini-
malist; and it is cumbersome to write a program directly in
this language. Authors often use another layer to ease his
task; it may be a macro-assembler or even a rudimentary C
compiler. The macros are easy to spot, and it is very feasible
to regenerate the macro-code directly. We are then able to
transform the low-level assembly to a higher-level language,
which is very close to what the original author manipulated
(Fig. 8).

At this step, the protection mechanism applied to the
binary is totally removed and the real reverse-engineering
work can begin to find the algorithms in use.

4 Solving the T2 Securitech 2007 challenge

In order to illustrate the powerful features of Metasm, we
propose to use it to solve the challenge of the T2 conference
for year 2007. This challenge includes many of the features
we were working on and thus it will be the perfect illustration
of what we’ve done.

4.1 The challenge

The challenge is a simple Windows binary to be analyzed.
Once launched, it asks for a password and displays whether
it is correct or not. The goal is to find a password that the
software will accept.

A quick disassembly of the binary shows the actions of
the program which:

1. Extracts a file named “driver” to the disk, from the pro-
gram’s resources,

2. Loads it as a kernel driver,
3. Asks the password,
4. Sends the password to the driver through an IOCTL on

a special file,
5. Reads the response from the driver,
6. Displays it to the user.

So we will need to look into this driver file, whose analysis is
much more interesting. The driver handles the IOCTL with
a massively obfuscated function; the disassembler hangs on
an indirect jump that it cannot resolve.

Note: The assembly listing produced by Metasm consists
in the instructions followed by a comment where to find the
address of the instruction (prefixed by a @), its binary encod-
ing and the effects of the instruction: memory access and
code flow modifications. Thus, 010203...+37 means that the
instruction is encoded starting by the bytes 010203 and goes
on for 37 bytes.

Fig. 8 Macro for an in-memory addition

123

126 Y. Guillot, A. Gazet

Fig. 9 The driver’s code

Fig. 10 Overlapping and fake conditional jump

4.2 Desobfuscation

A quick look at the code shows that the code is mostly junk
code.

Wheels of confusion. We find many different obfuscation
techniques. Here is one of those patterns (Figs. 9, 10). We
have here a little obfuscation recital in a few lines:

– first of all, structural obfuscation through a fake call
(l. 3), followed by a modification of the return address
(l. 5);

– then a fake conditional jump: using the constants 89h et
179h and the popf instruction—which loads the proces-
sor flags from the stack—the author makes sure that the
jnz (l. 10) is always followed;

– a bit of overlapping. It consists in the encoding of two
instructions, so that the last bytes of the first instruc-
tion are also the first bytes of the last instruction. This is
possible because in the IA32 architecture the instructions
do not need to be aligned, and do not have a constant size.
So the instruction jmp edi (binary ffe7) is encoded using
the bytes from the instructions jnz loc_21670 (75ff) and
out eax, 90h (e790). This kind of obfuscation would be

123

Semi-automatic binary protection tampering 127

Fig. 11 Unobfuscated code

impossible on an ARM1 processor for example, where
the instructions have a fixed width and must be aligned.

This is quite charming but it has some major drawbacks:

– obfuscation patterns are almost never interweaved,
– they have very weak polymorphism (only on the registers

used).

Those would allow us to get rid of almost all junk code using
only a binary-match pattern. Because we are trying to be as
correct as possible, we will however use the approach we
talked about before: integration in the disassembler.

We find about 20 different patterns that we can split in
two groups: quite simple sequences (ex: rotating a register of
32bits) and more complex ones. These often involve push-
ing values on the stack and manipulating them; however they
are always put inside a pushfd . . . popfd containment, which
make them quite easy to spot.

Once those patterns are integrated to the disassembler, the
code is much more human-friendly.

Set the record straight. We then find a quite intriguing con-
struction. It reads the value of the processor counter,2 and
uses this value to choose which branch of a conditional jump
to take (Fig. 11). But this value is almost random and hard to
guess! You have to be quite optimistic to play heads or tails
in the code of a driver and brute force is bound to fail. Lets
take a step back.

A quick manual look shows that both branches that follow
the conditional jump are exactly the same: they are both B
and B ′ implementations of the same semantic A (Fig. 12).

This obfuscation technique differs from the simple pat-
tern insertion since it modifies the execution flow inside the

1 Advanced RISC Machine.
2 RDTSC means ReaD TimeStamp Counter.

Fig. 12 Structural obfuscation

binary: it is a structural obfuscation. The use of rdtsc is clever:
two executions of the file will not produce the same trace,
because the value of the counter is not predictable. So a break-
point which would be set without caution on a first review
of the code may never be triggered during later reexecutions.
On the other hand, rdtsc is one of the instructions that will
never appear in a normal code sequence and consequently
will flag the code as suspicious for an attacker.

Note that the two branches are not exactly the same: they
are independently obfuscated by random patterns that we
have seen before; therefore we cannot make a bit-to-bit com-
parison to detect the duplication.

We have chosen to consider this sequence as a junk code
pattern and the disassembler will always follow the first
branch of the conditional jump from now on. The other
branch is still disassembled however, just in case we would
want to manually check the similarity of both ways, but it
will not be shown in the samples we will use in this paper.

123

128 Y. Guillot, A. Gazet

Master of the rings. There are still some unexpected code
sequences. This code (Fig. 13) checks whether it is being
run either in the Windows kernel context (ring 0) or in the
context of a userland standard process. In the kernel, the seg-
ment selector cs’s value is equal to 8 while in userspace it is
equal to 0x1b. So the only goal of the whole sequence that
we will find many times elsewhere in the driver code, is to
forbid the execution of the protection in a standard userland
process context.

One of the characteristics of the challenge, for anybody
who would want to analyze it using dynamic tools, lies in
the fact that all the interesting code is run in kernel context.
This environment is far from being the most ideal one when
debugging. Indeed, most of the debugging tools are focused
on userland code analysis, and only a few of them can handle
the specificity of ring 0 debugging. So it would be tempting
to run the interesting code in a standard process in order to
be able to use standard tools to monitor its behaviour. When
running this code sequence, the value of the cs selector will
make the conditional jump (l. 6) not to be taken. In this case,
the three instructions that follow, will build a pseudo-random
address and route the code flow to it (using the jump at l. 9)
thus ensuring an immediate crash for the program: in the best
case the address is invalid for code execution, otherwise it
will contain code that is not designed to be run this way and
thus will crash sooner or later.

Another sequence has the same behaviour (Fig. 14). This
one checks the address of the code; if it is below 80000000h
(ie. userland3) then a random jump is taken.

Those two sequences will join the ranks of the junk code
patterns hidden by the disassembler.

When you’re pushed. . .. At this point of the analysis, the
code is very reduced, but it still includes long and unfriendly
sequences. There are no more pure junk code sequences but
just obfuscated sequences having a side-effect: this is behav-
ioural obfuscation. Most of those sequences will push a value
and manipulate it on the stack (Fig. 15).

We also find references to the memory, always through an
[ebx+<offset>] expression, that are very intriguing; the off-
sets match nothing and seem randomly chosen (Fig. 16, l.5,
13, 15). Further examination shows that a large memory area
is used to hold temporary values to obfuscate the code only:
in fact the two branches following the rdtsc must have the
same semantic but the offsets are not shared between them.
We will ignore such memory writes. This finally enables us
to remove large sequences of code and we finally obtain a
very concise listing.

3 Yes, Windows may have booted with the /3G switch. . .

4.3 The virtual machine

Now we can begin the code analysis itself. The first step is
a big memory allocation (106,000 bytes) whose address is
saved in ebx.

The code which is executed then, is a sequence of blocks
with a very similar structure. Each of them begins with the
rdtsc splitting obfuscation sequence; they manipulate dword-
sized memory area whose address is taken from the ebp reg-
ister and then xored with a block-specific key. Those values
are sometimes used as indices in the table allocated at the
beginning in ebx.

Finally an epilog will always update the ebp register with
the value stored at [ebp+4] and run the block whose address
is stored at [ebp].

We will interpret this execution scheme as the sequence
of instructions of a virtual processor: the blocks will be the
handlers, the data at ebx will be the virtual processor context
and the data at ebp will be the virtual instruction operands.

In the belly of the beast. The ebx register always points to
the beginning of the memory area allocated during the ini-
tialisation part, which holds the processor execution context.
The ebp register points to the virtual instruction being run.

Those instructions are a sequence of 2–6 memory words.
Each one is ciphered using a 32-bit xor key, which is unique
per handler. The first word is ciphered using another handler-
defined key (Fig. 17).

This first word contains the offset of the next handler to
run; it has to be added to the .data section base address to
get the real memory address. The second word holds the off-
set of the next instruction, also relative to the section base.
The following words have a handler-specific meaning. They
are often an integer (immediate value) or an index in the ebx
table (ie. a virtual register).

The virtual registers are a few memory words, which are
stored at a fixed offset from ebx. According to the way the
handlers are implemented, the register access method allows
arbitrary memory access but only a handful of offsets are
used in practice. Every register has a specific role4:

Offset Name Role
0×4 esp Stack pointer
0×8 ebp Frame pointer
0×64 r64 Generic
0×68 r68 Generic
0×78 r78 Memory indirection
0×0 esp_init Stack pointer initial value
0×c host_esp Host stack pointer
0×18 retval Subfunction return value

4 Registers in the last part of the table are scarcely ever used.

123

Semi-automatic binary protection tampering 129

Fig. 13 Test of ring 0 execution

Fig. 14 Other ring 0 test

Fig. 15 Behavioural obfuscation

Fig. 16 Memory data junk

123

130 Y. Guillot, A. Gazet

next_handler next_instr arg0

key_1

key_2

handler

next_handler next_instr arg0

key_1

key_2

handler

arg1

ciphered instruction

ciphered instruction

mov eax, [ebp+8]
xor eax, h1_key_2
mov [ebx+eax] , 0
mov eax, [ebp]
xor eax, h1_key_1
mov ebp, [ebp+4]
xor ebp, h1_key_2
add eax, [ebx+14h]
add ebp, [ebx+14h]
jmp eax

mov eax, [ebp+8]
xor eax, h2_key_2
mov ecx, [ebp+12]
xor ecx, h2_key_2
mov ecx, [ebx+ecx]
add [ebx+eax], ecx

Fig. 17 T2 virtual machine architecture

Fig. 18 VM initialisation

Initialisation. Let us get back to the initialization sequence.
The first instructions compute the start address for the

.data section, and store it in esi (l. 1–5). A call is made to allo-
cate 0×19e10 (106,000) bytes and the address of this buffer
(the virtual machine cpu context) is saved in ebx
(l. 7–9).

Then some fields of the context are initialized as follows:

– the .data section base address is stored in [ebx+14h]
(l. 11),

– the real cpu stack is stored in host_esp ([ebx+0ch])
(l. 12),

– the virtual stack is initialized with the value ebx+101d0h
(ebx+66000), this address is stored in esp and esp_init
(l. 13–15).

A handler. To illustrate how virtual instructions are working,
let us take a look at an addition handler (Figs. 18, 19).

1. The two first instructions retrieve and decipher the index
of the source register from the field at +0ch in the virtual
instruction (2nd argument).

2. This index is used to read the virtual register.

123

Semi-automatic binary protection tampering 131

Fig. 19 Addition of two registers

3. The two following instructions in the handler retrieve
and decipher the index of the destination register at +8
in the virtual instruction (1st argument).

4. Finally the addition is done and stored in the context.

Thus, control is given to the following couple handler/instruc-
tion, thanks to a code that is shared by all handlers (Fig. 20).

Next handler’s (l. 1–2) and instruction’s (l. 3–4) offsets
are decrypted in current instruction code (one should notice
the use of the specific key for handler’s offset), they are then
converted into absolute addresses by adding the base address
of the .data section, which is stored in [ebx+14h] (l. 5–6).
Finally the control is given to the next handler, which is ebp
pointing to the virtual instruction to be interpreted.

4.4 Modelling

This architecture’s main issue lies in the fact that we have
neither the handlers list nor the instructions list: we have to
follow the execution flow to find decryption keys for each
handler and then to decrypt each instruction to recover the
next couple handler/instruction, again and again. This oper-
ation is quite tedious to do by hands, that is the reason why
we will automate it.

Follow the white rabbit. In order to do so, we use the Metasm
backtracking engine which enable to recover the eip and ebp
values at handler’s end depending on their initial values.

Thus we are able to find the two keys for each handler: the
one for the next handler’s offset is the result of (backtrace
(eip) − [ebx+14]) ⊕ [ebp], the key for arguments is found
using (backtrace(ebp) − [ebx+14]) ⊕ [ebp+4].

Once those two keys have been recovered we are able
to follow the instruction flow of the virtual machine. This
method works well until the 18th handler where an error
occurs: each key has two possible values.

Manual analysis of this handler (Fig. 21) reveals that it is
a conditional jump: if one of the virtual registers contains a
non null value, the control is normally given to next handler;
however, if this value is null, the virtual address to execute is
encoded in fields 2 and 3 of the instruction. These two fields
are enciphered with the key key_args of the handler.

We actually have to face two choices:

– either code another pathfinding algorithm;
– or re-use Metasm disassembly engine.

By looking at the first handlers we have just detected, their
simplicity turns us towards the second solution.

I know there’s an answer. The fundamental element of this
approach is a generic handler analysis method. The method
is composed of the following steps:

1. Handler’s disassembly, using the underlying native dis-
assembler.

2. Examination of the handler’s form:

– How many basic blocks are there?
– How these blocks are laid out?
– How many exit points?

3. Handler’s effects analysis:

– Which are the modifications on native processor’s
registers?

– Which are the modifications on memory?

Tracing native register modifications is implicitly done by
Metasm backtracking functionality: for each exit point, we
list modifications applied on each register compared to the
beginning of the handler.

The analysis of effects on memory is not so straightfor-
ward: one needs to go through the handler again, instruction
by instruction, and to backtrace each access every time we
find an instruction that writes the memory.

We then get an array listing all the elements modified by
the handler and, for each of them, the value which they would
be replaced by, during execution. We call this the handler’s
binding. Virtual machine architecture enables many shortcuts
which radically simplify the binding expression.

If an handler preserves the ebx register value (which, for
recall, contains the virtual machine context base address),
and if ebp and eip bindings match the transition sequence
between handler, as seen previously, then we got the two
decryption keys of the handler. Arguments decryption key is
then used to define the following symbolic entities:

– arg0, which is the first argument of the instruction, con-
sidered as an integer ([ebp+8] ⊕ arg_key),

123

132 Y. Guillot, A. Gazet

Fig. 20 Transition between two handlers

Fig. 21 Conditional jump

– reg0, which stands for the first argument used as a virtual
register index ([ebx+arg0]),

– reg0b, which also stands for the first argument used as a
virtual register index (byte ptr [ebx+arg0]), but which is
seen as a byte (an immediate parallel can be made with al
with respect to eax when dealing with x86 architecture),

– the same operations are repeated for each remaining argu-
ments: arg1, reg1 etc (Fig. 22).

This information enables us to identify an handler by com-
parison to a set of pattern that we define by hand. If none of
the patterns matches, handler is tagged as unknown. We then
have to define a new pattern covering this case through a
manual analysis. Trivial patterns describe handlers made of
only one block: we then are sure to have the whole handler’s
semantic into the binding.

These handlers actually are the standard basic arithme-
tic operations and then read/write memory operations (indi-
rections). Many other handlers call natives functions. These
calls always use a function pointer table, which is initialised
whenever the driver is loaded.

The following functions are referenced into this table:

– ExAllocatePool : memory allocation,
– ExFreePoolWithTag : memory freeing,
– a region of the driver, filled with zero (never called),

– a function displaying a debug string, using vsprintf and
DbgPrint (never called),

– MmGetSystemRoutineAddress: retrieves the address of an
exported system function from its name,

– a driver’s function implementing a MD5 hash.

We know the semantics of each of these functions, and so the
whole handler’s semantics.

The MmGetSystemRoutineAddress function may be prob-
lematic. However, in practice, it happens that all handlers
that call it, use it to get the address of the native function
KdDebuggerEnabled with the purpose of crashing the pro-
cess of a detected debugger. The sequence responsible for
the crash (Fig. 23, l. 20) has been reduced by the deob-
fuscator. Initially it was a random jump on the result of a
rdtsc.

The pattern checks that the function whom we get the
address actually matches the address of MmGetSystemRou-
tineAddress function. If the test is positive, this handler is
tagged as trap, otherwise it is treated as unknown. Among
remaining handlers, four are more complex to analyze, as
they involve conditional jumps.

– A virtual conditional jump which jumps on a virtual
address or another function according to the nullity of
a virtual register.

123

Semi-automatic binary protection tampering 133

Fig. 22 Result of an automatic handler analysis: an addition

Fig. 23 Kernel debugger detection check

– Three categories of handlers which define the value of a
virtual register to 0 or 1, in accordance to the fact that
their initial value is, respectively, greater, lower or equal
than the value of another virtual register.

For those cases, we use a little heuristics in order to keep
the code concise: we look at the native instruction used
for the conditional jump that we find in the implementation
of the handler.

Finally, for the two last types of handlers, one is an indi-
rect jump which loads the offsets of the next handler and next
instructions from the values of two virtual registers. The last
one is more complex than the others: it involves a loop and
seems to implement a kind of decryption routine (Fig. 24).
This handler actually accepts four arguments: a register con-
taining the address of a destination buffer, an integer which
is an offset in the .data section, another integer standing for

a size (in dwords), and a last one, used as a decryption key. It
then copies the data from the .data section to the destination
buffer, after xoring them with the key. The key is modified at
each round, using a shift and an addition involving the index
of the next dword to decrypt (l.19 et 20).

The bugle sounds as the charge begins! Armed with all those
information, we can now associate to each of our handlers:

– a virtual opcode name, to display the assembly listing,
– a list of symbolic arguments, to decode and interpret the

arguments for each virtual instruction,
– a binding which express instruction’s effects on the vir-

tual processor’s context,
– the two encryption keys (when existing), to decode the

arguments and to follow the execution flow.

123

134 Y. Guillot, A. Gazet

Fig. 24 Decryption handler

These data can be calculated once and for all: we backup
them into a cache file in order to speed up the script. Actu-
ally handlers native code disassembling and deobfuscation
is the most time consuming step.

For information, cache initialisation for all handlers (112)
lasts almost 15 min on a standard configuration while the
whole treatment as describes in this paper, with an already
filled cache, takes less than 30 s.

Let us now discuss the idea to dynamically build a ruby
class using this automatic analysis method. The aim is to
interpret the virtual instruction handlers on the fly. This class
will be used as CPU for the standard Metasm disassembly
engine, in order to use it in a transparent way on the vir-
tual code. It works in accordance with the following descrip-
tion.

First, we define a virtual space of code, where an instruc-
tion address is the couple (handler’s address, instruction’s
address). Such an object, standing for the first virtual instruc-
tion, is passed to Metasm as an entry point of a program,
whom the CPU is an instance of the aforesaid T2CPU class.

This CPU contains a reference to an instance of standard
Disassembler, which is the same as the one we have used to
generate the listings used as examples in this article.

As we have seen in the part introducing Metasm, the disas-
sembler asks to the cpu to decode and analyze the instruction
located at the current address, update this address et so on.
This is where interesting things are beginning.

When a decoding request is received, our virtual process
analyzes it automatically to determine instructions to send
back, in addition to its effects; in particular the next instruc-
tion’s address.

Thus, in a transparent way, Metasm disassembles each
of virtual instruction like a classical program, providing us
backtracking features on virtual registers.

The obtained listing obtained thanks to this step is already
remarkable (Fig. 25).

We observe that it is a very low level assembly, using for
example many instructions to do the equivalent of a push.
Instructions also seem to only manipulate variable on the
stack.

Chronologically, it is at this point that we have been able
to assign a name and a role to each of the virtual registers.

By looking at handlers cache file, we notice that most of
them are duplicated: there are for example four handlers able
to perform an addition between two virtual registers, with no
semantic differences.

123

Semi-automatic binary protection tampering 135

Fig. 25 Virtual machine code

4.5 Macro assembler

By filtering nops and others traps, we quickly come to the
conclusion that the virtual assembly language that we have
seen is the result of a macro-instruction oriented program-
mation. Indeed we find again and again identical instruc-
tions sequences, with only few exceptions; those sequences
are contiguous and perfectly cut out the text in elementary
blocks.

The work needed to rebuild macro-instructions from the
listing is quite similar to what has been done to handle the
deobfuscation process of driver’s code: concatenate several
contiguous instructions in another one and express the same
semantics in a concise way.

Here, the pattern is really simple: it mainly consists in
spotting an address in a register and then resolving an indi-
rection; in practice those operations involve many mov and
add instructions only.

As macro-instructions do not have a precise definition, we
are free to use unusual constructions, either involving many
memory references in the same instruction or involving an
indirection degree greater than one; generally it is classically
forbidden in real assembly language.

We also have to our disposal all information necessary to
decipher parts of .data section used by decryptcopy instruc-
tions; the optional pass enables to make explicit many strings.
At this stage, the listing is quite concise and has a satisfying
readability (Fig. 26).

Functions calls. We then recognize a quite interesting pat-
tern: an indirect jump instruction is systematically used to
execute an instruction whom address has been pushed on
the stack a few instructions before. This remains a classical
function call convention for us.

This one is a bit strange: first the return address is manu-
ally pushed onto the stack, then the frame pointer is backuped
and finally arguments are pushed, after which the execution
flow follows the subfunction’s code. Typically, arguments are
pushed before the return address and the execution flow is
modified to enter into the function.

The epilogue is also quite distinctive: code first removes
reserved space on the stack for arguments and local variables,
then it checks whether the stack pointer is equal to its initial
value (when virtual machine started) by comparing it with the
esp_init value. If values match, the code exits from VM and
gives the control back to the non-obfuscated driver’s code,

123

136 Y. Guillot, A. Gazet

Fig. 26 The same listing using macro-instruction abstraction-level

Fig. 27 Subfunction call and return macros

which itself sends back the answer to the user; when they
differ, the frame pointer and the return address are popped
and the control is given back to the caller (Fig. 27). Inte-
grating those macros into Metasm enables to accurately and
efficiently handle subfunctions; therefore, we cover a much
more extensive virtual code sequence.

We now have a classical code design: few basic func-
tions, like a strlen-like function and also three others more
substantial functions. By displaying complete driver’s code
once disassembled, and after having tagged the bytes which
encode virtual instructions, it is possible to check that we
actually have interpreted the whole binary code, excepted
maybe a few very short random bytes sequences inserted
between handlers. This phase is thus successful.

We are at last able to focus ourselves on the code to get
an idea of the implemented algorithm. The code really looks

like to some C code, compiled without optimization (or even
unoptimized). All operations are done on the stack, using
space reserved for local variables.

It is also quite redundant: many values are unnecessarily
copied in different temporary variables on the stack, before
reaching their final destination.

We rename variables according to their offset in the stack
frame: dword ptr [ebp+128h] is seen as var128, always for
the sake of readability (Fig. 28).

4.6 Decompilation

Due to the multiplication of temporary variables, the code is
still tedious to read. The idea is now to cut ourselves off from
the implementation and to try to express the whole seman-
tics and not individual instructions only. This seems feasible

123

Semi-automatic binary protection tampering 137

Fig. 28 Macro-instruction virtual code and local variable

Fig. 29 Preliminary decompilation phase

since each of those instructions is really simple, without side-
effect, and the instruction set is rather tiny.

It also happens that Metasm includes a C compiler, and
thus has all the objects necessary to manipulate code in this
language, to its disposal. We will try to generate transcription
of the listing into C code.

Ideally, the goal is to transcribe the program functionally
by ignoring most of implementation details. At first, we have
to define the significant actions from the useless ones. We
will completely ignore register modifications and stack vari-
ables and put attention only for:

– functions calls, both internal and external, including their
arguments,

– memory writings (outside the stack),
– and the predicated associated with conditional jumps.

This very simplified approach is ineffective for a concrete
advanced language, since data on the stack are meaningful:
there are buffers, structures (in the C language meaning of
the term). There also are problems linked with operating sys-
tems interactions, in particular threads or signals, not to speak
about exceptions handling and others joys. . .. In practice, we
will limit ourselves with working at instruction blocks level,

which is by far simpler than a global program approach, and
provides quite satisfying results.

We will use a recursive function oriented approach, since
we go along through the code from an entry point: when
a function call is encountered, it triggers the analysis of this
function. This approach supposes that the main code segment
is a function. This assertion is verified most of the time.

The main objective is to reduce all intermediate assign-
ments to stack variables. Thus, we need to ascertain which
one are significant.

In a first pass on the code, we mark for each of them, which
variable is read and which is written. Then using function
control flow graph, we know which one we need to keep: the
ones that are read in another block without being overwritten
in the meantime.

The Clairvoyant. We transform each basic block into its
equivalent in C (Fig. 29): arithmetic operations are merged
in a way that conveys the whole block binding with respect
to a significant variable expressed as a unique C expression.
Jumps are translated into goto and conditional jumps into if
(..) goto label;.

We are not interested in variables’ type for the moment,
we will just considered them as integer (int); however, we

123

138 Y. Guillot, A. Gazet

Fig. 30 if/else pattern

Fig. 31 Solved if/else pattern

Fig. 32 Intermediate decompilation phase

keep indirections’ type: for the ones referencing a byte, type
is char, int for others.

There’s a time to live and a time to die. The next phase,
and probably the most important one, is the recognition of C
standard control structures: if, if/else and while.

Let’s start with the easiestone: the if control structure.
While browsing the execution flow, if we find a conditional

jump (i.e. a if (..) goto label;) whose label is located further
in the function, we transform it by inverting the if condition
and by replacing the goto by the whole code located between
the if and the label. We need to repeat the same treatment
on what is now the then block, in order to handle imbricated
tests.

We quickly deduce how to handle if/else structures: if the
then, freshly discovered, block ends with a goto label whose
destination is in the code which remains to be analyzed, we
can remove the goto and move the sequence between if end
and the label in the else block.

The code we get is clearer. However, a pattern appears like
a if/else (Fig. 30): a then which contains a label and which

ends with a goto. Moreover the code following the if jumps
to this label. Consequently, a test is added to correctly handle
this case (Fig. 31). The underlying code is quite repetitive.
It results, among others things, by some if/else whose last
expression are similar between the then and the else. We
take advantage of this phase to factorize the code and extract
it from the if structure.

Once all the code have been processed according to this
method, the while handling is simple: it is a label followed
by a if whose last instruction is a goto which jumps to this
label. Few additional tests enable to recognize the associated
continue and break as well.

Finally, a last cosmetic pass is done in order to remove
unused labels in the code. The result is now very satisfying
(Fig. 32).

Project II. The last phase consists of determining variables’
type. A first pass aims at noticing which variables are assigned
with immediate integers: these ones are typed as int. Then
we look for indirections with type casting, which, coupled
with the integers list, enable to determine those which are

123

Semi-automatic binary protection tampering 139

Fig. 33 Final decompilation phase

Fig. 34 Native shellcode

typed as pointer. Moreover, the size of referenced data are
used to guess the type of pointed data. A final pass remains
to do in order to correct cast sequences. We also need to
fix pointer addition, substraction. Final result goes beyond
our expectation (Fig. 33). We thus obtain a complete listing
of the obfuscated algorithm—in 352 lines only—which can
manually be reduced to as few as 200 lines. This is now the
time to have an admiring and respectful feeling for art craft-
men, goldsmiths of reverse, who have solved the challenge
by hand. . ..

Let us recall that native code consists in almost 40,000
obfuscated instructions which implement 112 handlers used
by 3,000 virtual instructions which altogether are designed
to be painful to read.

4.7 It’s a trap!

The final examination of C code reveals that even at this
abstraction level, the challenge’s designers still have affec-
tion gesture for us. We discover a few strange sequences
(Fig. 34). The Decryptcopy procedure is used to decrypt two
strings in the original binary (here in plaintext), pointed by
var20c and var210. The var210 string is obviously a ciphered
string, which is deciphered into a buffer passed as argument.
The deciphering key is computed at line 9 in a strange way:
the string pointed by var20c is called as if it was a func-

tion body. It happens that this native shellcode is quite basic
(Fig. 35), it returns its first argument shifted to the right by
a number of bits specified using its second argument. In this
case, the first argument is one of the function parameters we
study, and the second is an index in the string being decoded.
The use of native code, in such a hijacked way, suggests that
others ambushes are waiting for us. It is precisely confirmed
in the function’s epilogue. (Fig. 36). Once again, a shellcode
is used within the algorithm. Here, the returned value is used
to fill a part of the string deciphered by the function.

The shellcode is still really basic. However its purpose
seems much less friendly: it is a test to check whether that
code effectively is running in ring 0 (Fig. 37), like the ones
we have found during the desobfuscation part.

This time, we should claim that the test is quite pernicious:
if the test is negative (i.e. we are in ring 3), cs is equal to 8.
The countermeasure is not a straightforward crash. It subtly
modifies the result of a function which is likely to be crucial
for the algorithm. This kind of trap is most of time tedious to
detect and to tamper, since its effects are visible (too) much
later during program execution.

Another deceit lies inside another function (Fig. 38). This
function takes a string as arguments, applies a MD5 hash on
it and returns a value derived from that hash value. However
a small, apparently insignificant modification comes to put a
spoke in our wheel: things happen on lines 12 and 13 of the
listing.

123

140 Y. Guillot, A. Gazet

Fig. 35 Shellcode pointed by var20c

Fig. 36 Killing zone. . .

Fig. 37 . . . Firefight

Fig. 38 Another ring 0 test

They check the address returned by malloc and looks for
a positive value. Actually this is were the bias lies, since the
value is signed. Once again, it is the same kind of ring level
execution test.

4.8 So long, and thanks for all the fish

Once these last pitfall crossed, we can reconstitute the whole
algorithm.

1. Password’s length should be equal to 16 chars.
2. Three integers (h1, h2, h3) are deducted from the pass-

word. Actually it uses a base64 encoding with a custom
base.

3. Those three integers have to fulfil few requirements: one
should get “T2” by xoring the high and the low words of
one of them; the third one should be equal to the MD5
hash of the two first, xored by itself (sub_13bf0h_2b788h
(md5(h1 ⊕ h3, h2 ⊕ h3)) == h3).

4. Password should not contains chars + or /.

123

Semi-automatic binary protection tampering 141

5. Once those requirements are fulfilled, the first integer is
used as a key to decipher an hardcoded string.

6. This string MD5 hash value is checked as a final test.

By studying how the final string is deciphered, we discover
that only 20 bits of the key are significant. This value is eas-
ily bruteforceable: a tiny program coded in assembly tests all
the key in a fraction of a second.

We end up at finding that only one integer deciphered the
string passes the MD5 test. This string is “t207@owned.by”.
Thus we know 20 bits of the first integer.

The “T2” test also provides us with 16 additional bits
for the second integer. The relationship between the xor and
the MD5 also enable us to deduce the third bit of the two
first integers. Finally, the test carried out by this algorithm is
really slack. It accepts a large number of possible solutions
(228 when ignoring test on invalid characters).

Epitaph. To conclude with it, this challenge revealed quite a
good level and it was particularly interesting. Solving it, in a
purely static way was an exciting challenge which has led to
many improvements to Metasm.

5 Securitech 2006: a structural approach

The last part of this article is dedicated to an obfuscation
technique that we have already discussed quickly: structural
obfuscation or control flow graph obfuscation. To illustrate
this issue, we have chosen the challenge No. 10 of the 2006
Securitech challenge. The latter was proposed by Fabrice
Desclaux.

The binary. The file provided is a Win32 executable which
takes a string as input and uses it to generate an output which
seems to include a hash. The goal consists in finding the input
that produces a given output. Binary’s main function is mas-
sively obfuscated, preventing or dramatically slowing down
all attempts to reverse it.

The initial goal was to force the challengers to solve it
using a black box approach without any access to the imple-
mentation. Our goal is to eliminate this obfuscation layer and
to recover the exact algorithm.

5.1 Control flow graph definition

The control flow graph is a fundamental structure, used dur-
ing both the compilation phase and a possible analysis and
disassembly phase. We will briefly recall the main concepts
associated with it.

– Control Transfert Instruction (CTI). A CTI is an
instruction whose intrinsic nature is to possibly modify

the execution flow. This type includes (non exhaustive
list): jumps (conditional or not), calls and their counter-
part returns, or interruptions. It is important to emphasise
that the primary purpose of these instructions is precisely
to act on the execution flow; they operate contrary to oth-
ers instructions, like a mov, that may eventually throw an
exception (ex: null pointer) and so disrupt execution flow.
It can be seen as a side effect and it is not their intrinsic
nature.

– Basic Block. A basic block is a list of contiguous instruc-
tions of which only the first one may be the target of a CTI
and only the last may be a CTI. It is the atomic element
of the control flow graph. We can draw the parallel with
a critic section that is impossible to preempt while being
executed.

The control flow graph groups together those two notions.
Graph’s nodes are the basic blocks. Arcs represent the dif-
ferent relationships between those different blocks. They rep-
resent a transfer of the execution flow: jump, function call,
return, etc. The control flow graph is probably the favourite
level of abstraction to quickly and effectively visualise the
code’s logic: loop, while, do-while, if-then-else. . . For exam-
ple the IDA graph mode (since its version 5.0) is the perfect
illustration of the usefulness of this level.

While disassembling, Metasm implicitly rebuilds this con-
trol flow graph. Indeed, internally, the Disassembler object
creates and manages InstructionBlock objects, which are the
implementation of the notion we have just discussed before.
The arcs are managed with a very fine granularity preserv-
ing all information. For example we distinguish a normal
arc, for example a jump, from an indirect arc like the one
produced by a function return. To visually take advantage of
this abstraction level, a script has been developed to create a
bridge between Metasm and the graph editor yEd [8]. This
editor takes as input a .graphml file, this file format is based
on XML and dedicated to graph description (Fig. 39).

5.2 Predicate definition

From a functional point of view, a conditional jump is a pred-
icate followed by a connection. When dealing with a legiti-
mate conditional jump, a first set of initial states (just call it
A) causes the execution of one of the two branches. A second
set (B) which is complementary with the first one, causes the
execution of the other branch. State sets A and B cover the set
of all possible initial states, and are defined according to the
predicate. A conditional jump inserted during an obfuscation
process is, most of the time, corrupted and the predicate con-
tains a trap. When it happens, A and B sets have noticeable
properties.

123

142 Y. Guillot, A. Gazet

Fig. 39 yEd and Metasm

Fig. 40 Obscure predicate (pseudocode)

Fig. 41 Assembly resulting from predicate function compilation

Obscure predicate. An obscure predicate is a Boolean func-
tion which always returns true or always false, but a pri-
ori, we are not able to predict the result. One of our two
sets, A or B, is empty. Actually the predicate has to be
complex enough and/or obfuscated, in order to be unpre-
dictable in a trivial way [3]. These few lines of pseudo-
code (Fig. 40) are a good example. Here, the predicate is

a small polynomial whose value is always positive or null,
so it always returns true. Written in C, the bias is very easy
to guess; however, if we take a look at the same function
compiled using GCC 4.1.2 (Fig. 41). This implementation
makes an heavy use of floating point computations (using
the floating point unit FPU). Recovering the semantics of
such a part of code while reading it, is not an immediate

123

Semi-automatic binary protection tampering 143

Fig. 42 Complete hazard (pseudocode)

task. However, in a dynamic approach, an emulator or a sta-
tic analysis tool [1] should be able to automate the discovery
and characterization of such a predicate. This example is
voluntarily trivial but it is easy to reach much more complex
construction.

At last, in our obscure predicate example, the else branch
is a dead one: it is never executed. To add confusion to this
structure, one should duplicate important parts of code into
this branch and/or create false references to disrupt any dis-
assembly engine, for example using jump or call that target
an address in the middle of a real instruction (overlapped
code obfuscation).

Complete hazard. This new construction differs from the
previous one since one branch or the other is taken indif-
ferently. The predicate is just an random source. In order
to preserve whole binary semantics, both two branches are
semantically equivalent. Code’s duplication may be seen as a
negative factor as the binary’s size increases; that is the reason
why duplicated parts are often scaled-down, which quickly
reveals diamond type constructions. The only requirement of
this structure (Fig. 42) is that real_code_A and real_code_B
are semantically equivalent. We have already tackle this tech-
nique, but without explaining it, during the part dedicated to
the T2 challenge (see Sect. 4.2); it was a very tiny part of the
protection.

The waterer watered. Conditional jumps inserted to the end
of obfuscation reveal, most of time, biased predicates. As
such, they present themselves properties liable to be detected
and analyzed. A tool designed to model mathematical pred-
icate functions will guess the true nature of the conditional
jump.

From a developer’s point of view, it is interesting to hide
the true nature of the predicate. Thus, concerning the com-
plete random form, he/she could take care to involve signif-
icant variables in the calculation of the predicate to deceive
the analyst (or a tool). This precaution has in part been taken
on the T2 challenge but in a too simple way. Actually finding
a RDTSC instruction involved in the calculation of the pred-
icate, while running in privileged mode, is really suspicious
and finally quickly alerts the analyst.

In the same mood, when using obscure predicates, func-
tions should be varied and complex enough, both on paper
and in their implementation, to circumvent or slow down all
possible forms of analysis.

5.3 Portrait of a man

Before going into further details, we should recall an essen-
tial point. We have been able to build the complete control
flow graph thanks to the disassembling quality proposed by
Metasm. In a few words, Metasm implements a virtuous cir-
cle, in which the dataflow is used to increase our knowledge
of the controlflow, which itself increase knowledge of the
dataflow, and so on. . .. To study a protected binary, a simple
disassembly engine is not sufficient; the mnemonic, a simple
textual translation from the opcode, is not enough. The main
asset of Metasm is its ability to express in an abstract way,
the exact semantics of the instructions, and a step further,
to backtrack instruction effects over the execution flow in
order to improve the discernment of its disassembling. Once
this has been said, we can focus ourselves on the challenge
itself. It massively uses obfuscation to protect the algorithm.
Actually five main techniques are used.

Unconditional jump insertion. Basic blocks are re-ordered
and jumps are inserted between them to preserve the code’s
semantics. A parallel can be drawn with a permutation round
in a cryptographic algorithm. This technique is effective
against an analyst trying to trace step-by-step the code using
a debugger for example; s/he will “wander” from one end to
another of the executable, and it will be hard to stand back to
rebuild a higher level logic. However, graphical control flow
graph visualisation tools—like IDA or Metasm with yEd—
make it totally ineffective.

Jump emulation. This technique may be seen like an exten-
sion of the precedent while being however a little bit more
elaborate in its implementation. Basically, it consists in push-
ing an address on the stack and using a ret instruction as a
jump to this address. The main interest of this construction
lies in the fact that only the knowledge of the semantics of
the two instructions enables to follow the correct execution
flow (Fig. 43).

False call insertion. Without recalling call convention, we
can say that the main property of these inserted calls is that
they modify their return address on the stack. This property
is quite effective to make some disassembly engines fail:
actually those which, by hypothesis, suppose that the call
return to the instruction immediately following the call
instruction. We have refined this example (Fig. 44) in order

123

144 Y. Guillot, A. Gazet

Fig. 43 push-ret used as a jump

Fig. 44 False call skeleton

Fig. 45 Flow duplication and false predicate insertion, seen using IDA

to keep only the code which is specific to this pattern. In
practice, these instructions are intertwined with others pat-
terns and real instructions. Moreover, this pattern is polymor-
phic, concerning both the delta applied to the return address
and the number of registers pushed on the stack. Neverthe-
less, it is remarkable enough to easily match it. One point
to notice: there is dead code between the supposed and real
return address, four bytes in this example.

Flow duplication. Here is the implementation of a biased
predicate, using a complete random-looking form. The obfus-
cation engine selects a part of the code, which is gener-
ally limited in size, then duplicates it in the two branches
of a conditional jump. As the two branches are semanti-
cally equivalent, whatever the random source is, the main
point is to make it seem plausible to disrupt the analyst
(Fig. 45).

123

Semi-automatic binary protection tampering 145

Fig. 46 test inst ruction insertion

Fig. 47 Protected main function epilogue

Apparent randomness. This one is a direct consequence of
the previous. Coupled with the insertion of conditional jumps,
we find random insertion, here it uses the form of test and
cmp instructions. For recall, these two instructions update
the processor’s flags, by comparing the two operands. This
example (Fig. 46) summarizes the strength and weakness of
this technique. At first glance, it is tempting to seek the ori-
gin of registers edi and ebp used by the test instruction. This
would result in a waste of time and in mind confusion. On
IA32 architecture, contrary to others architectures like ARM
for example, many instructions implicitly update the flags,
in particular all arithmetic instructions. In our example, we
see that flags which set the conditional jump jnz (l. 6), are
overwritten twice by the add and and instructions. This is
the main weakness of this technique: it is relatively easy to
filter legitimate comparison instructions using a basic data
flow analysis.

5.4 Control flow graph analysis and factoring

To represent the magnitude of the problem, here is the graph
of control of the main function’s epilogue, as found in the
protected binary (Fig. 47). Our approach takes advantages of
our knowledge of the complete control flow graph. From a
given entry point, we linearly follow the execution flow until
we met a conditional jump. Once it happens, we build the
execution flows associated with each of the two branches.
This process is recursive to handle code duplicated many
times.

With these two flows at our disposal, the treatment is done
in few stages:

1. Removal of test and cmp instructions, according to the
method developed precedently. Metasm associates each
instruction with its semantics, using an abstract expres-

123

146 Y. Guillot, A. Gazet

Fig. 48 Epilogue with factored flows

sion, thus allowing to check whether an instruction read/
write the processor’s flag.

2. Removal of unconditional jumps inserted to compensate
for the basic blocks arrangement trick.

3. Removal of false calls, their structure being noticeable
enough to be matched. The execution flow is built, find-
ing a ret instruction which causes the reconstruction
of the call stack. Then it is easy to match the pattern to
avoid false positives (i.e. removal of real code).

4. Comparison of the two flows which have been cleaned.
For the sake of simplicity, we have implemented a sim-
ple textual comparison of the two flows, instruction by
instruction. In the case of a more advanced protection
(e.g. using poly/metamorphism techniques), it would
have been possible to proceed to a behavioural analy-
sis, like what has been performed for the T2 challenge
in order to recognise handlers’ behaviour.

If the two flows are equivalent, we have a duplication struc-
ture. Then the false conditional jump is deleted and, more
importantly, the control flow graph is modified: one branch
is trashed out. All instructions tagged as “illegitimate” are
removed from the final listing presented to the analyst. Here
is an intermediate result in which we can see that the number
of blocks has been divided by approximately a factor of five
(Fig. 48). The result is already pleasant, but not yet optimal.
The parts of the binary have not been cleaned: actually only
flows involved in a test of duplication have been cleaned from
junk code. That is the reason why an additional pass is per-
formed on the whole control flow graph. Contiguous blocks
are also merged to make it more concise. The final result is
quite satisfying, since we recover the original code which
is completely rid of the protection. Number of basic blocks
has been divided by a factor of about ten (Fig. 49). On the
whole control flow graph, the measured reduction factor on

123

Semi-automatic binary protection tampering 147

Fig. 49 Epilogue completely cleaned

Fig. 50 Script generating a clean executable

the number of basic blocks is approximately equal to 7.7.
Besides, a number of instruction has also drastically been
reduced: almost 70% of the instructions have been removed
from final listing.

5.5 Icing on the cake: interoperability

We have in our hands a disassembly listing which is quite
close to the original; we will take benefit from it and rebuild

an executable devoid of protection. The protected binary is a
console application which requires very few system libraries:
it is possible to port the binary to an ELF file format, without
too much work Fig. 50.

We replace the GCC stub located at the entry point by our
own code (Fig. 51).

The original binary starts by allocating a great amount
of space on the stack. The function which implements this
allocation is not compatible with Linux and thus triggers a

123

148 Y. Guillot, A. Gazet

Fig. 51 Stub to port the binary to a ELF format

SEGFAULT. Consequently, we add a small sequence to our
loader that will transfer the stack into the heap before giving
the control to the original code. Since a compiler is included
into Metasm, we do not even need to use an external pro-
gram to get a binary running on a unix operating system.
Well, basically, it is useless, but it’s fun.

5.6 Solving

Having a clean code quite close to the original, the challenge
is not so hard. The password is split into many blocks, which
are manipulated to produce the output, a few values are cal-
culated: sum and product of a subgroup of chars, a CRC and
a MD5 hash. Those different constraints enable, after a little
bruteforce, to find the correct solution to the problem. Actu-
ally the code contains various calculations that do not seem
to be linked to the generation of the output string, it may be
interesting to investigate them.

6 Conclusion

Through many examples, we have tried to illustrate the need
for tools offering always more abstraction in approaches of
reverse-engineering techniques, and in particular the study
of protected code.

Reverse-engineering consists of rebuilding a stack of lev-
els of abstraction. At the base of this stack, we found the
basic unit of information: the instruction. It is the modelling
of its abstract behaviour that enables Metasm to implement
an effective backtracking. The textual instruction is replaced
by its semantic. This powerful concept is the foundation of
our works. On Securitech challenge, this has initially
permitted ourselves to gain the complete control flow graph,
where a classical disassembler would break on the very first
obfuscation patterns.

Going back at a higher level, this property also enables
us to go into basic behavioural analysis: to cut off from the
implementation and to concentrate on the semantics. Thus,
we have been able to automatically identify the behaviour of
each of the virtual machine handlers, and finally to model a
virtual processor to solve the T2 challenge. The behavioural
aspect that we deal with in this article is very promising, and
could later be developed by taking advantage of achievements
in the field of static analysis [1].

We have stressed on the semi-automatic nature of the
proposed approaches; indeed all rely on a part of manual
analysis: taking awareness of a virtual machine, extracting
obfuscation patterns. . .. Even if pattern matching techniques
are easily automatable, their identification still remains a
manual process. This is also a promising subject that we
should consider in future developments.

123

Semi-automatic binary protection tampering 149

From our approaches, one constant brings out: to under-
stand a software protection, one must be placed at a level
of abstraction higher than or equal to it. To conclude, we
would like to say that Metasm is a powerful binary manipu-
lation framework, which is able to interact at every level of
abstraction, from the lowest—the hardware—to the highest
one: the source code.

References

1. Allamigeon, X., Hymans, C.: Static analysis by abstract interpre-
tation: application to the detection of heap overflows. J. Comput.
Virol. 4(1), 5–24 (2007)

2. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfus-
cating transformations, Technical Report 148, Department
of Computer Science, University of Auckland, July 1997.
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/
CollbergThomborsonLow97a; http://citeseer.nj.nec.com/
collberg97taxonomy.html (1997)

3. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resil-
ient, and stealthy opaque constructs. In: Principles of Programming
Languages 1998, POPL’98, pp. 184–196. http://citeseer.ist.psu.edu/
collberg98manufacturing.html (1998)

4. Guillot, Y.: Metasm. In: Proceedings of the 5ème Symposium sur la
Sécurité des Technologies de l’Information et des Communicatins
(SSTIC’07). http://actes.sstic.org (2007)

5. Guillot, Y.: Metasm, a ruby (dis)assembler. In: Proceedins of
the Hack.Lu 2007 Conference. http://www.hack.lu/archive/2007
(2007)

6. Metasm Website. http://metasm.cr0.org/
7. Ruby Programming Language Website. http://ruby-lang.org/
8. yEd Graph Editor Homepage. http://www.yworks.com/en/

products_yed_about.html

123

http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThomborsonLow97a
http://www.cs.auckland.ac.nz/~collberg/Research/Publications/CollbergThomborsonLow97a
http://citeseer.nj.nec.com/collberg97taxonomy.html
http://citeseer.nj.nec.com/collberg97taxonomy.html
http://citeseer.ist.psu.edu/collberg98manufacturing.html
http://citeseer.ist.psu.edu/collberg98manufacturing.html
http://actes.sstic.org
http://www.hack.lu/archive/2007
http://metasm.cr0.org/
http://ruby-lang.org/
http://www.yworks.com/en/products_yed_about.html
http://www.yworks.com/en/products_yed_about.html

	Semi-automatic binary protection tampering
	Abstract
	1 Introduction: virtual machines
	1.1 Detection
	1.2 Analysis
	1.3 Virtual machine hardening

	2 Obfuscation
	2.1 The semantics
	2.2 The transformations
	2.3 Complexity

	3 Metasm
	3.1 Code desobfuscation
	3.2 Automatic analysis of virtual machine handlers
	3.3 Pseudocode disassembly
	3.4 Decompilation

	4 Solving the T2 Securitech 2007 challenge
	4.1 The challenge
	4.2 Desobfuscation
	4.3 The virtual machine
	4.4 Modelling
	4.5 Macro assembler
	4.6 Decompilation
	4.7 It's a trap!
	4.8 So long, and thanks for all the fish

	5 Securitech 2006: a structural approach
	5.1 Control flow graph definition
	5.2 Predicate definition
	5.3 Portrait of a man
	5.4 Control flow graph analysis and factoring
	5.5 Icing on the cake: interoperability
	5.6 Solving

	6 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

