
J Comput Virol (2009) 5:221–245
DOI 10.1007/s11416-008-0094-0

EICAR 2008 EXTENDED VERSION

Detection of metamorphic and virtualization-based malware using
algebraic specification

Matt Webster · Grant Malcolm

Received: 20 January 2008 / Revised: 14 June 2008 / Accepted: 27 June 2008 / Published online: 22 July 2008
© Springer-Verlag France 2008

Abstract We present an overview of the latest develop-
ments in the detection of metamorphic and virtualization-
based malware using an algebraic specification of the Intel
64 assembly programming language. After giving an over-
view of related work, we describe the development of a spec-
ification of a subset of the Intel 64 instruction set in Maude,
an advanced formal algebraic specification tool. We develop
the technique of metamorphic malware detection based on
equivalence-in-context so that it is applicable to imperative
programming languages in general, and we give two detailed
examples of how this might be used in a practical setting to
detect metamorphic malware. We discuss the application of
these techniques within anti-virus software, and give a proof-
of-concept system for defeating detection counter-measures
used by virtualization-based malware, which is based on our
Maude specification of Intel 64. Finally, we compare for-
mal and informal approaches to malware detection, and give
some directions for future research.

1 Introduction

In this paper, we present the latest developments on the
detection of metamorphic and virtualization-based malware
using an algebraic specification of a subset of the Intel 64
assembly language instruction set. Both metamorphic and

M. Webster (B) · G. Malcolm
Department of Computer Science,
University of Liverpool, Liverpool L69 3BX, UK
e-mail: M.P.Webster@liverpool.ac.uk

G. Malcolm
e-mail: Grant@liverpool.ac.uk

virtualization-based malware present serious challenges for
detection: undetectable metamorphic computer viruses are
known to exist [4,9], and virtualization-based malware seem
able to create a virtual computational platform which is indis-
tinguishable to the user under normal circumstances, but
which is completely under the control of the malware
[14,21].

There are currently many avenues of research into the
detection of metamorphic computer viruses, both academic
and industrial. Lakhotia and Mohammed describe an algo-
rithm for imposing order on high-level language programs
based on control- and data-flow analysis [15,18]. Bruschi
et al. [1] describe a similar method for malware detection
to the one described by Lakhotia and Mohammed which
uses code normalisation. Christodorescu et al. describe a
formal approach to metamorphic computer virus detection
using a signature-matching approach, in which the signa-
tures contain information regarding the semantics, as well
as the syntax, of the metamorphic computer virus. In a later
paper, Preda et al. [19] are able to prove the correctness of
this approach with respect to instruction reordering, vari-
able renaming and junk code insertion. Bruschi et al. [2,3]
and Walenstein et al. [25] describe approaches to code nor-
malisation based on program rewriting. Chouchane and
Lakhotia describe an approach to metamorphic computer
virus detection based on the assumption that metamorphic
computer often use the same metamorphism engine, and that
by assigning an engine signature it ought to be possible to
assign a probability that a suspect executable is an output
of that engine [5]. Yoo and Ultes-Nitsche [29,30] present
a unique approach to metamorphic computer virus detec-
tion, which involves training a type of artificial neural net-
work known as a self-ordering map (SOM). Recent work by
Ször [23,24] describes some of the industrial techniques for
the detection of metamorphic computer virus detection.

123

222 M. Webster, G. Malcolm

As virtualization-based malware is a relatively recent phe-
nomenon [14,21], there is less in the literature on the problem
of its detection. King et al. [14] give a detailed overview of the
state-of-the-art in virtual machine-based rootkits (VMBRs)
through the demonstration of proof-of-concept systems, and
explore strategies for defending against VMBRs. Garkinkel
et al. [10] describe a taxonomy of virtual machine detection
methods, and describe a fundamental trade-off between per-
formance and transparency when designing virtual machine
monitors. Rutkowska [20] describes a technique for detect-
ing VMBRs called Red Pill, in which the Intel 64 instruc-
tion sidt is used to reveal the presence of a virtual machine
monitor (VMM) through an altered interrupt descriptor
table.

Algebraic specification has been applied to the problem
of metamorphic malware detection previously [26]. Using
a formal specification in OBJ of a subset of the Intel 64
assembly language instruction set, it was shown that it was
possible to prove the equivalence and semi-equivalence of
programs using equational term rewriting. When combined
with the OBJ term rewriting engine, the algebraic specifica-
tion becomes an interpreter for the programming language,
and can be used to prove the equivalence of assembly
language programs. Notions of equivalence and semi-equiv-
alence were defined formally, and it was shown that it is
possible to extend semi-equivalence to equivalence under
certain conditions, known as ‘equivalence-in-context’. The
present paper builds upon this approach.

In Sect. 2, we describe a translation of the Intel 64 specifi-
cation from OBJ to Maude, a successor to OBJ which allows
proofs based on rewriting logic. We also extend the ear-
lier specification by giving a semantics for conditional and
unconditional jumps. In the earlier work, the technique of
proving equivalence-in-context was only applicable to cer-
tain assembly language instructions for which we could prove
(using a reduction in OBJ) that keeping one set of variables
constant would ensure that another set of variables would
have the same values after executing the instruction within
two different states [26]. In Sect. 3 we improve this result
by showing that equivalence-in-context is applicable to all
instructions in imperative programming languages; i.e., the
earlier restriction is not necessary. We then give concrete
examples of how equivalence-in-context can be used in prac-
tice to detect metamorphic malware, using allomorphs taken
from the Win9x.Zmorph.A, Win95/Bistro and Win95/Zperm
viruses. In Sect. 4, we discuss the applicability of the alge-
braic approaches given in Sect. 3 and [26] to the practi-
cal problem of detection of metamorphic malware based
on formal static and dynamic analysis, and in Sect. 5 we
give a proof-of-concept system for generating metamorphic
variants of virtualization-detection programs (such as Red
Pill [20]), based on the additional proof tools available in
Maude.

2 Specifying Intel 64 assembly language

The Intel 64 instruction set architecture [13] (an extension
of the Intel 32-bit architecture, IA-32) is used by the major-
ity of personal computers worldwide., and it follows that
many computer viruses will be manifest at some point in
their reproductive cycle by a program in Intel 64. We have
specified the syntax and semantics of a fragment of Intel
64 using Maude [7], a formal specification and verification
framework. Maude is a language in the OBJ family of lan-
guages, which have been used for software specification and
verification for over 30 years [12]. The full Maude specifi-
cation of our fragment of Intel 64, which is described below,
can be found in the appendix.

In this section, we describe our approach to specifying
the syntax and semantics of the Intel 64 assembly language,
and describe how algorithmic techniques can use this speci-
fication to reason about programs written in the language. In
Sects. 2.1 and 2.2 we summarise the specification of the syn-
tax and semantics of non-looping instructions (i.e., instruc-
tions that do not change the value of the instruction pointer),
which has also been described in [26,28]. In Sect. 2.3, we
describe how we have extended this approach to include
looping instructions (i.e., jumps and conditional jumps). This
extension of the specification describes a fragment of Intel 64
which is computationally more powerful, as we have condi-
tional execution and iteration as well as variable assignment.

2.1 Specifying the syntax of Intel 64

The Intel 64 assembly language itself can be specified in
Maude (see [7] for details of the Maude language; the pres-
ent discussion does not, however, require any specific knowl-
edge of Maude). The specification of the language declares
sorts for the relevant syntactic categories, such as instruc-
tions, expressions, variables, etc., and declares the constructs
of the language as operations. For example, the mov instruc-
tion is used in Intel 64 to assign the value of an expression
(either a program variable name or a value) to another pro-
gram variable, i.e., it ‘moves’ the value of the expression in
its right-hand (source) operand to the program variable in its
left-hand (destination) operand. We can specify the syntax
of the mov instruction as follows:

mov_,_ : Variable Expression -> Instruction

The variables of the language are the registers eax, ebx,
ecx, and edi, together with various ‘flags’, such as the
instruction pointer ip, and the stack. All of these variable
names can be declared as constants of sort Variable; for
example

eax : -> Variable

123

Detection of metamorphic and virtualization-based malware 223

An important feature of the language is that instructions
can be composed and put together to form programs. It is
convenient to declare this composition operation using a
semi-colon notation rather than the standard juxtaposition.
In Maude this notation is declared as an operation

; : Instruction Instruction -> Instruction

(throughout this paper we shall blur the distinction between
sequences of instructions and individual instructions).

The significance of specifying the syntax of the language
in Maude is that programs can then be represented as terms
such as

mov ecx, eax ; mov eax, ebx ; mov ebx, ecx

This can then be used as a basis for a formal specification of
the semantics of the language.

2.2 Specifying the semantics of Intel 64

Following the approach of Goguen and Malcolm [11],
the semantics of a programming language can be specified
by describing the effect of programs upon the state of the
machine that executes those programs. This state is effec-
tively captured by the values stored in the variables of the
language: programs update this state by manipulating these
values. Our specification declares a sort Store to represent
these states, together with operations that capture how stores
and programs interact.

For example, evaluation of an expression in a given state
is done by declaring an operation

[[]] : Store Expression -> EInt

(where EInt represents integers together with ‘error val-
ues’ that might arise through, for example, stack overflows).
Expressions may include variables, and for a store S and
variable V, the term S[[V]] is intended to denote the value
stored in V in the state S.

The action of a program upon a state is captured by an
operation

; : Store Instruction -> Store

so that for a store S and instruction P, the term S ; P
denotes the store that results from executing P in the ‘starting
state’ S. Putting all the above together, a term such as

s ; mov ecx, eax ; mov eax, ebx ;
mov ebx, ecx [[ebx]]

is intended to denote the value in the ebx register after the
program has executed in starting state s. Equations are used
in the Maude specification to stipulate exactly what such val-
ues should be. For example, the three equations

S ; mov V,E [[V]] = S[[E]]
S ; mov V,E [[ip]] = S[[ip]] + 1
S ; mov V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip

state that a mov instruction assigns the given value to the
given variable, increments the instruction pointer by 1, and
does not affect the value of any other variables.

In practice, we can reduce a term like the one above to a
simpler term denoting the value of ebx after executing the
program. Maude applies the three equations above as rewrite
rules, rewriting the term to a simpler term. In this case, apply-
ing the above equations to the term results in the following
three-step simplification,

s ; mov ecx, eax ; mov eax, ebx ;
mov ebx, ecx [[ebx]]

===>
s ; mov ecx, eax ; mov eax, ebx [[ecx]]

===>
s ; mov ecx, eax [[ecx]]

===>
s [[eax]]

indicating that the value of ebx in the final store is equal to
the value of eax in the initial store.

The semantics of non-looping instructions, such as mov,
or, xor, test, push, pop and nop can be captured in this
way.

2.3 Specifying the semantics of (conditional) loops

We described in the previous section how the semantics of
non-looping instructions can be captured. To capture the
semantics of looping instructions requires an extension of the
specification which allows an arbitrary nesting and ordering
of looping instructions. This extension uses an exec_of_
in_ operator, where exec p1 of p2 in s denotes that
we are executing program p1 in the store s, and that p2 is the
listing of the program from which we have derived p1 (i.e.,
p1 is the fragment of p2 that follows the instruction pointer).
We can make this clearer with an example. Suppose that we
wish to execute the code

mov eax, 0 ; jmp label1 ; label1: mov ebx, 1

in an arbitrary store s. This would be captured by the follow-
ing term:

exec mov eax, 0 ; jmp label1 ; label1: mov ebx, 1
of mov eax, 0 ; jmp label1 ; label1: mov ebx, 1
in s

Execution of the first instruction, mov eax, 0, results
in an updated store s’. Then execution proceeds to the sec-
ond instruction. Notionally, we have rewritten the term above
to a second term:

123

224 M. Webster, G. Malcolm

exec jmp label1 ; label1: mov ebx, 1
of mov eax, 0 ; jmp label1 ; label1:
mov ebx, 1 in s’

which says that the next instruction to be executed is the jump
to label1. (Notice that the store has been updated to s’,
and that we have removed the first instruction from the list
appearing after exec, but that the second list after of has
stayed the same. The utility of this constant second list will
soon become clear.) Next, execution proceeds to the third
instruction, which is a jmp instruction, and can redirect the
flow of control to anywhere else in the program. Our knowl-
edge of the behaviour of jmp l is that it will execute the
instruction that follows the label l. To capture the semantics
of jmp l, we wish to update the first instruction list p1 so
that it starts at the point following the label l. This is where
the second, constant list p2 becomes useful. We specify a
function that searches p2 for an occurrence of the label l and
updates the value of p1 to the program that appears after the
label l. In our running example, the term above rewrites as
follows:

exec jmp label1 ; label1: mov ebx, 1
of mov eax, 0 ; jmp label1 ; label1:

mov ebx, 1
in s’

===>
exec mov ebx, 1
of mov eax, 0 ; jmp label1 ; label1:

mov ebx, 1
in s’’

where s’’ is the state s’ but with the instruction pointer
updated to point to the instruction following label1.

Now suppose that we wish to capture the semantics of the
je l instruction. Usually, je will appear after a calculation
and will jump to label l if and only if the result of the last
calculation is zero. In practice, the Intel 64 processor checks
the results of all calculations and sets the zero flag (zf) to
1 if the calculation is equal to zero. The je l instruction is
designed to jump if and only if the zero flag is equal to 1
(as a shorthand, we say that the zero flag is ‘set’). Therefore
the behaviour of je l is conditional on the value of the zero
flag.

As described in the previous section, we associate vari-
ables with their values using the notion of a store, which is
a function mapping variable names to values. Therefore, to
capture the semantics of je l, we must query the store to
check the value of the zero flag, and if it is set, then je l
behaves exactly asjmp l. If the zero flag is not set, thenje l
behaves exactly as the nop (‘no operation’) instruction.

Therefore, to execute je l we must know the value of the
zero flag. Within our specification, we know the value of any
variable if (i) we know the initial value of the store, and (ii) we

have a list of every instruction that has been executed thus far.
Therefore, each time we evaluate exec p1 of p2 in s
we do one of three things:

1. If the first instruction in p1 is a non-looping instruction,
then we remove it from the list p1 and append it to s;

2. If the first instruction in p1 is an unconditional jump (e.g.,
jmp), then we search for the place in the instruction fol-
lowing the target jump location, and update p1 so that it
contains the everything after this point;

3. If the first instruction in p1 is a conditional jump (e.g.,
je), then we test the value of the variable(s) upon which
the jump is conditional (e.g., the zero flag) relative to
the current store s using the semantics of non-looping
instructions given in the previous section.

Once again, we will make this clear with an example. Sup-
pose we wish to execute the following:

sub eax, eax ; je label1 ; mov eax, 0 ;
label1 ; mov ebx, 1

Now, we start to execute the program as before, but follow-
ing the three rules above. The first instruction is non-looping,
and therefore we invoke condition 1:

exec sub eax, eax ; je label1 ;
mov eax, 0 ; label1 ; mov ebx, 1

of sub eax, eax ; je label1 ;
mov eax, 0 ; label1 ; mov ebx, 1

in s
===>

exec je label1 ; mov eax, 0 ; label1 ;
mov ebx, 1
of sub eax, eax ;

je label1 ; mov eax, 0 ; label1 ;
mov ebx, 1

in s ; sub eax, eax

Now, we want to execute the conditional jump je label1.
To test whether je label1 jumps to label1 or not, we
evaluate the value of the zero flag relative to the current store.
To do this, we evaluate the value of the zero flag relative to
the current store:

s ; sub eax, eax [[zf]]

We do this using our semantics of non-looping instructions.
In this case, sub eax, eax assigns zero to the eax regis-
ter, and therefore the zero flag is set, so the jump is performed:

exec je label1 ; mov eax, 0 ; label1 ;
mov ebx, 1

of sub eax, eax ;
je label1 ; mov eax, 0 ; label1 ;

mov ebx, 1

123

Detection of metamorphic and virtualization-based malware 225

in s ; sub eax, eax
===>

exec mov ebx, 1
of sub eax, eax ; je label1 ;

mov eax, 0 ; label1 ; mov ebx, 1
in s ; sub eax, eax

Execution of the next mov instruction proceeds as above, and
we are left with an empty list in p1:

exec
of sub eax, eax ; je label1 ;

mov eax, 0 ; label1 ; mov ebx, 1
in s ; sub eax, eax ; mov ebx, 1

Therefore we have obtained a list of instructions which spec-
ifies the resulting state of the machine executing the instruc-
tions,

s ; sub eax, eax ; mov ebx, 1

where s is the initial state of the machine.

2.4 Specifications as interpreters, and virtualization

Meseguer and Roşu [16,17] give an overview of the many
languages whose semantics have been specified in Maude,
and reiterate the point made by Goguen and Malcolm [11]
that term rewriting provides interpreters for these languages:
using equations to simplify terms effectively simulates the
execution of programs. For example, the equations above
give us

s ; mov ecx, eax ; mov eax, ebx ;
mov ebx, ecx [[ebx]]

= s ; mov ecx, eax ;
mov eax, ebx [[ecx]]

= s ; mov ecx, eax [[ecx]]
= s [[eax]]

which calculates that the program sets ebx to the value ini-
tially stored in eax; similarly, we could calculate that the
program increments the instruction pointer by 3. Maude has
a rewriting engine that automates this process of simplifica-
tion using equations, and which can therefore be viewed as
interpreting Intel 64 programs.

In a very precise sense, this specification virtualizes Intel
64 programs: it provides a virtual machine on which these
programs can be run. In our earlier work [26] we explored
the ramifications of this for static and dynamic analysis of
metamorphic viruses, and we further develop these ideas in
the following sections. We will also argue that virtualization,
to some extent, turns the tables in the battle between malware
and anti-malware: on gaining control of a host machine, vir-
tualizing malware becomes a defender of the resources that

the virtualized anti-malware may use to detect its virtual-
ized status, while the anti-malware may use stealth, obfusca-
tion, or any of the techniques more usually associated with
malware, to circumvent these countermeasures. The formal
basis provided by a Maude specification of Intel 64 seman-
tics allows us to reason rigorously about both malware and
anti-malware.

3 Equivalence of programs

Our earlier work [26] showed that a Maude specification of
the Intel 64 assembly programming language can be used for
detection by dynamic analysis. In this section, we demon-
strate how equivalence of behaviour can be used for detec-
tion by static analysis. We present an improved form of a
theorem from [26] and show how this can be used to reason
about allomorphs of metamorphic computer viruses, using
the Win9x .Zmorph.A, Win95/Zperm and Win95/
Bistro viruses as examples.

3.1 Equivalence of states and programs

Our end goal is to be able to prove that two allomorphic
sequences of viral code are equivalent, in that they behave
in the same way. The notions of equivalence and behaviour
are semantic notions, so our goal can be rephrased as being
able to prove that two allomorphic sequences of viral code
have the same semantics. In classical denotational seman-
tics, programs denote functions from states to states, and a
state is itself a function from variables to values. Our alge-
braic approach is less concrete in allowing states to be imple-
mented in any way that satisfies the Maude specification of
the semantics of the language, but the notion of equivalence
is still the same: two programs are equivalent if they have
the same effect on all variables. The technical machinery
that we develop in this section applies to any imperative
language with variables, though of course we are primar-
ily interested in Intel 64, and this is the language used in
the examples of Sects. 3.2 and 3.3. For the remainder of this
section we assume there is a countable set V of variables
in the language (for Intel 64, this would include the regis-
ters, flags, stack and memory addresses). We also write S for
the set of states, which we refer to throughout as ‘stores’,
following the terminology of the previous section. We write
s; p for the state that results from running program p in
store s, and we write s[[v]] for the value that the store s
assigns to the variable v. Thus, for example, s; p[[v]] repre-
sents the value of the variable v after p has been run in start-
ing state s. We also assume that the language has sequential
composition, which we also denote with a semicolon, e.g.,
p1; p2.

123

226 M. Webster, G. Malcolm

Any program affects only a finite set of variables, and
two programs may be ‘partially equivalent’ in that they have
the same effect on some variables, but not necessarily all
variables. We begin by defining partial equivalence of
states.

Definition 1 For W ⊆ V , stores s1 and s2 are W -equivalent,
written s1 ≡ Ws2, iff for all variables v ∈ W :

s1[[v]] = s2[[v]].
In the case that W = V , we say that s1 is equivalent to s2,
and write s1 ≡ s2.

Similarly, programs p1 and p2 are W -equivalent, written
p1 ≡ W p2, iff for all stores s, and all variables v ∈ W :

s; p1[[v]] = s; p2[[v]].
In the case that W = V , we say that p1 is equivalent to p2,
and write p1 ≡ p2.

For the purposes of static analysis, we identify the vari-
ables that are read or written to by programs. We identify
Vout(p) as the set of variables that could be modified by the
program p.

Definition 2 For program p, define Vout(p) by v ∈ Vout(p)
iff there is an s ∈ S such that s; p[[v]] �= s[[v]].
For example, Vout(mov eax,ebx) = {eax,ip} because
the values in eax and ip are modified by this program.

A straightforward consequence of this definition is

Proposition 3 Let p = p1; . . . ; pn. If v /∈ ⋃n
i=1 Vout(pi),

then v /∈ Vout(p), and so for all stores s we have s; p[[v]] =
s[[v]].

Similarly, we want Vin(p) to be the set of variables that
could affect the behaviour of some program p in some way.
We find it more convenient to express this by saying when a
variable has no effect on the behaviour of p:

Definition 4 For program p, define Vin(p) by v /∈ Vin(p) iff
for all s, s′ ∈ S, s ≡ V\{v} s′ implies s; p ≡ Vout(p) s′; p.

That is, v has no effect on p if running p in two states that
differ only in the value of v has no effect on the variables
that p affects (attention is restricted to Vout(p) because the
stores s; p and s′; p may of course differ at v itself).

In our earlier work [26] we presented some basic results
that allow the notion of equivalence to be applied to meta-
morphic viruses, principally Corollary 9 below. Our proof,
however, uses a lemma that is proved by case-analysis on
Intel 64 programs, and therefore only holds for those spe-
cific programs: the proof we give below removes this depen-
dency on a particular language, since it uses only the abstract
properties of Vin and Vout. First, we introduce a slight gener-
alisation of the notion of equivalence, that allows us to ignore

certain variables (for example, in Intel 64, we may wish to
prove the equivalence of two instruction sequences of differ-
ent lengths, which means we need to disregard the value of
the instruction pointer after execution of the programs). For
a subset W ⊆ V we write W for the complement V\W .

Definition 5 Let p be a program and W ⊆ V a set of vari-
ables; we say that p has local effect at W iff for all stores s1

and s2, if s1 ≡ W s2 then s1; p ≡ W s2; p.

Note that s1 ≡ W s2 says that stores s1 and s2 differ only on
the values of variables in W , so p has local effect at W means
that any differences that can be observed after running p in
the two stores are kept within W . For example, most Intel 64
programs have local effect on the instruction pointer: execu-
tion of each instruction will increase the instruction pointer,
and two programs of different length will increase the instruc-
tion pointer by different amounts, but that might well be the
only difference between the programs. The notion of local
effect allows us to disregard such differences if we so desire.
Note also that in the special case W = ∅, local effect simply
states that a program produces the same results when run in
equivalent stores.

Lemma 6 For all programs p with local effect at W ⊆ V
and for all states s1, s2:

s1 ≡ Vin(p)\W s2 implies s1; p ≡ Vout(p)\W s2; p.

Proof Let x1, . . . , xn be an enumeration of (V\Vin(p))\W ,
and let s1,1 be some state identical to s1, except

s1,1[[x1]] = s2[[x1]] .
Inductively, let s1,i+1 be some state identical to si except

s1,i+1[[xi+1]] = s2[[xi+1]] .
Then s1,n ≡ W s2, so by local effect at W we have s1,n;
p ≡ W s2; p. Moreover, by Definition 4, s1; p ≡ Vout(p) s1,1;
p ≡ Vout(p) s1,2; p ≡ Vout(p) · · · ≡ Vout(p) s1,n; p. It fol-
lows that for any v ∈ Vout(p)\W , s1; p[[v]] = s1,n; p[[v]] =
s2; p[[v]], as desired.

As a technical remark, the above proof assumes that
(V\Vin(p))\W is finite. For classical denotational semantics,
where a store is a function from variables to values, it is
straightforward to allow the set to be countably infinite: the
required store s1,n is just the uniquely determined function
that agrees with s2 on (V\Vin(p))\W , and with s1 everywhere
else. In our algebraic setting, we need to take more care that
the required store exists. The simplest way of doing so is to
have a default value, such as 0, for all variables, and impose
a reachability constraint on stores, so that we consider only
those stores that assign the default value to all but a finite
number of variables. In the proof, we need then consider
only the finite subset of (V\Vin(p))\W on which s1 and s2

differ.

123

Detection of metamorphic and virtualization-based malware 227

The use of local effect at W gives a greater generality than
our earlier results [26], and allows us to ignore differences at
W . For the sake of clarity, however, it is worthwhile stating
the special case where W = ∅:

Corollary 7 For all programs p and for all states s1, s2:

s1 ≡ Vin(p) s2 implies s1; p ≡ Vout(p) s2; p.

This states that running p in stores that agree on all the vari-
ables that can affect the behaviour of p gives results that
agree on all the variables that can be affected by p.

As in [26], the above lemma allows us to incrementally
chain together sets of variables into equivalences for pro-
grams. The key result, in a general statement with local effects
is

Theorem 8 Let q be a program with local effect at W , and
let p1 and p2 be programs with p1 ≡ U\W p2. If Vin(q) ⊆ U,
then p1; q ≡ (U∪Vout(q))\W p2; q.

Proof For any store s, we have s; p1 ≡ U\W s; p2, so s;
p1 ≡ Vin(q)\W s; p2 because Vin(q) ⊆ U . It follows from
Lemma 6 that s; p1; q ≡ Vout(q)\W s; p2; q. Now for v ∈
U\W and v /∈ Vout(q), we have s; p1; q[[v]] = s; p1[[v]] =
s; p2[[v]] = s; p2; q[[v]], so we conclude that p1;
q ≡ (U∪Vout(q))\W p2; q as desired.

Taking W = ∅, and allowing for general sequential com-
positions, we get

Corollary 9 Let q be a program such that q =q1; q2; . . . ; qm.
If p1 ≡ U p2 and for all j with 1 ≤ j ≤ m

Vin(q j) ⊆ U ∪
j−1⋃

i=1

Vout(qi)

then p1; q ≡ U∪Vout(q) p2; q.

It is possible to recover equivalence of programs from
U -equivalence in some cases. If p1 ≡ U p2, then p1 and p2

may have different effects on variables in U ; but if all vari-
ables in U are overwritten in the same way by some program
q, then this theorem allows us to ‘add’ those variables until
we cover all of V , in which case we say that p1 and p2 are
equivalent-in-context of q .

Corollary 10 (Equivalence-in-context) If p1 ≡ U p2 and
Vin(q) ⊆ U and U ∪ Vout(q) = V , then p1; q ≡ p2; q.

All of the above provides some technical support for static
analysis of programs written in any imperative language. Of
course, the determination of the sets Vin(p) and Vout(p) will
depend upon the particular program p. We conclude this sec-
tion by showing that our Maude specification of Intel 64
allows us to determine these sets for instructions of the assem-
bly language.

Example 11 Suppose we wish to know the value of
Vout(mov v1, v2). By Definition 2, we must show that for
every program variable v ∈ Vout(mov v1, v2) that v is
different after executing mov v1,v2 in some store s. The
semantics of mov is given by the following equations:

eq S ; mov V,E [[V]] = S[[E]].
ceq S ; mov V1,E [[V2]] = S[[V2]]

if V1 =/= V2 and V2 =/= ip.

From these, we may suspect that v1 is in Vout(mov v1,v2).
We can prove this by assuming that the values of program
variables v1 and v2 in some store s are different. We can
express this in Maude notation as

eq s[[v1]] = value1.
eq s[[v2]] = value2.

where value1 and value2 are the (numeric) values of
v1 and v2, respectively. Then, by performing reductions in
Maude we can calculate the value of v1 before and after
executing mov v1,v2:

reduce s[[v1]].
result Int: value1
reduce s ; mov v1, v2[[v1]].
result Int: value2

These reductions tell us that the value of v1 has changed from
value1 to value2 by executing mov v1,v2. Therefore,
we know that v1 ∈ Vout(mov v1,v2).

Example 12 We can determine Vin(θ) for an instruction θ
based on the Maude specification of Intel 64. By the defini-
tion of Vin, we know that if there exist stores s, s′ ∈ S such
that s ≡ V \{v} s′ and s; θ �≡ Vout(θ) s′; θ then v ∈ Vout(θ).
Inspection of the Maude specification might result in the sus-
picion that v2 ∈ Vin(mov v1,v2). We can prove this by
assuming that s ≡ V \{v2} s′, which we can specify in Maude
as follows:

eq s[[v2]] = value1.
eq s’[[v2]] = value2.
ceq s[[V]] = s’[[V]]

if V =/= v2.

The first two equations say that v2 is different in stores s
and s’, and the last equation says that every variable apart
from v2 has the same value in stores s and s’. Now, we
can test using reductions in Maude whether the variables in
Vout(mov v1,v2) are equal after executing mov v1,v2.
Since Vout(mov v1,v2) = {v1,ip}, we can test these val-
ues using reductions:

reduce s ; mov v1, v2 [[v1]].
result: value1

123

228 M. Webster, G. Malcolm

Fig. 1 Allomorphic fragments of Win9x.Zmorph.A

reduce s’ ; mov v1, v2 [[v1]].
result: value2

reduce s ; mov v1, v2 [[ip]].
result: 1 + s’[[ip]]

reduce s’ ; mov v1, v2 [[ip]].
result: 1 + s’[[ip]]

We can see that the value of ip after executing mov v1,v2
is the same in both stores, but the value of v1 is different.
Therefore, we know that v2 ∈ Vin(mov v1, v2).

3.2 Examples using Win9x.Zmorph.A

The following code excerpts were taken from the entry point
of two different executables infected with Zmorph. This virus
reconstructs its code instruction-by-instruction, pushing each
one onto the stack [22]. Therefore the code samples g and h
in Fig. 1 exhibit a part of Zmorph’s decryption algorithm.

In the following examples, we will show that g and h are
equivalent-in-context of two different instruction sequences,
p and p′, by applying the result from Corollary 10.

Example 13 By inspection of the Maude specification of
Intel 64, we know that

Vout(g) ∪ Vout(h) = {stack,ip,edi,ebx,ecx,edx}
By Proposition 3, we know that s; g[[v]] = s[[v]] for all
v /∈ Vout(g), and s; h[[v′]] = s[[v′]] for all v′ /∈ Vout(h).
Therefore, s; g[[v]] = s; h[[v]] for all v /∈ Vout(g)∪ Vout(h).
Using the dynamic analysis approach of our earlier work
[26] (i.e., using reductions in Maude), we can show that
s; g[[stack]] = s; h[[stack]] and s; g[[ip]] = s; h[[ip]].
Therefore we know that s; g ≡ W s; h where W ={edi,
ebx,ecx,edx}. (Note that for the sake of brevity, we have
omitted the EFLAGS register in this example.)

We will show how an instruction sequence p executed
immediately after g and h results in an equivalent store,
which allows the metamorphic computer virus to freely swap
g and h as long as p executes next.

Let p = mov edi,0 ; mov ebx,0 ; mov ecx,0 ;
mov edx,0. In order to apply Corollary 9, we must first
check the values of Vin(pi) and Vout(pi) for all instructions
pi in p (these can be inferred easily by inspection of the
Maude specification of Intel 64):

Vin(mov edi,0) = {ip}
Vin(mov ebx,0) = {ip}
Vin(mov ecx,0) = {ip}
Vin(mov edx,0) = {ip}

Vout(mov edi,0) = {edi,ip}
Vout(mov ebx,0) = {ebx,ip}
Vout(mov ecx,0) = {ecx,ip}
Vout(mov edx,0) = {edx,ip}
The following therefore hold:

Vin(mov edi,0) ⊆ W

Vin(mov ebx,0) ⊆ W ∪ Vout(mov edi,0)

Vin(mov ecx,0) ⊆ W ∪ Vout(mov edi,0) ∪ Vout(mov ebx,0)

Vin(mov edx,0) ⊆ W ∪ Vout(mov edi,0) ∪ Vout(mov ebx,0)

∪Vout(mov ecx,0)

Therefore by Corollary 9, g; p ≡ W∪Vout(p) h; p, and since
W ⊆ Vout(p), we know by Corollary 10 that g; p ≡ h; p.

Alternatively, we can check directly using the Maude speci-
fication of Intel 64 that this is the case, using the above defi-
nitions of g, h and p. We can use Maude’s term rewriting to
simplify terms such as the following:

s ; g ; p[[stack]] == s ; h ; p[[stack]]
s ; g ; p[[ip]] == s ; h ; p[[ip]]
s ; g ; p[[edi]] == s ; h ; p[[edi]]

Each of these terms tests the equality of the two programs
on the variables stack, ip, edi, etc. By testing for all the
variables in Intel 64, we can take these Maude reductions as
a second proof that g; p ≡ h; p [27].

In the example above we showed that by overwriting the
non-equivalent variables from the semi-equivalent programs
g and h in the instruction sequence p, that we can show that g
and h are equivalent-in-context of p. In the following exam-
ple we will show that equivalence can also be demonstrated
where an instruction sequence p′ contains instructions which
overwrite the non-equivalent variables, as long as the instruc-
tions in p′ are not dependent on the non-equivalent variables.

Example 14 Let p′ = pop edi ; pop ebx ; pop ecx ;
mov ecx,edx. Once again we must check the values of
Vin(p′

i) and Vout(p′
i) for all instructions p′

i in p′ before we

123

Detection of metamorphic and virtualization-based malware 229

Fig. 2 Allomorphic fragments of Win95/Bistro [24]

can apply Corollary 10:

Vin(p
′
1) = {ip,stack}

Vin(p
′
2) = {ip,stack}

Vin(p
′
3) = {ip,stack}

Vin(p
′
4) = {ip,ecx}

Vout(p
′
1) = {edi,ip}

Vout(p
′
2) = {ebx,ip}

Vout(p
′
3) = {ecx,ip}

Vout(p
′
4) = {edx,ip}

The following therefore hold:

Vin(p
′
1) ⊆ W

Vin(p
′
2) ⊆ W ∪ Vout(p

′
1)

Vin(p
′
3) ⊆ W ∪ Vout(p

′
1) ∪ Vout(p

′
2)

Vin(p
′
4) ⊆ W ∪ Vout(p

′
1) ∪ Vout(p

′
2) ∪ Vout(p

′
3)

Therefore by Corollary 9, g; p′ ≡ W∪Vout(p′) h; p′, and since
W ⊆ Vout(p′), we know by Corollary 10 that g; p′ ≡ h; p′.

As with the previous example, it is also possible to verify
this directly using a reduction in Maude [27].

3.3 Example using Win95/Bistro

Win95/Bistro applies equivalent sequence replacement to
generate syntactic variants. Figure 2 shows two allomorphic
fragments from Win95/Bistro. Previously, we proved equiv-
alence of the two Bistro fragments by dividing them into
sub-fragments [26]. However, using our semantics of loop-
ing instructions (see Sect. 2.3) we can now prove equivalence
in a simpler, more natural way.

In both fragments, the instruction je 401045 will
jump if and only if the value of esi (which itself depends
on the value of ebp) is equal to zero. Since there is no
way to determine the value of ebp, we replace the source
operand dword ptr [ebp + 08] with a constant,
dword1. Then, if dword1 is equal to zero, the instruc-
tion je 401045 will cause a jump; if not, no jump will
occur.

In order to prove equivalence of the two fragments, we
assign the two fragments of Bistro to two different constants
as follows:

eq prog1 = push ebp ; mov ebp, esp ;
mov esi, dword1 ;
test esi, esi ; je 401045 ;
jmp l1 ; label 401045: mov flag, 1 ;
label l1: end .

eq prog2 = push ebp ; push esp ;
pop ebp ; mov esi, dword1 ;
or esi, esi ; je 401045 ;
jmp l1 ; label 401045: mov flag, 1 ;
label l1: end .

(In each case we append a sequence of instructions that
will test whether the jump has occurred. If the jump is suc-
cessful, then the variable flag is set.)

To determine equivalence of the two fragments, we need
only test that the values of the variables in Vout(prog1) and
Vout(prog2) are the same. Using a similar method to
Example 11, we know that

Vout(prog1) = Vout(prog2)

= {ebp,esp,esi,stack,zf,sf,pf,cf,of},
(neglecting the instruction pointer). In the first case, we
assume that dword1 is equal to zero.

eq dword1 = 0.

Then, we perform reductions to test whether the variables in
Vout(prog1) are equal. In addition, we test that the value of
flag is the same after executing both fragments, showing that
the je 401045 instruction had the same behaviour in both
fragments:

reduce exec prog1 of prog1 in s[[ebp]] is
exec prog2 of prog2 in s[[ebp]].

result: true
reduce exec prog1 of prog1 in s[[esp]] is

exec prog2 of prog2 in s[[esp]].
result: true

reduce exec prog1 of prog1 in s[[flag]] is
exec prog2 of prog2 in s[[flag]].

result: true

...

123

230 M. Webster, G. Malcolm

We therefore know that all variables are treated in the same
way by the two fragments, and therefore the two fragments
are equivalent when dword1 is equal to zero. Similarly,
when we assume that dword1 is not equal to zero, we find
that the values of the variables are the same after execut-
ing both fragments. Therefore, the two fragments of Bistro
are equivalent. (The complete proof script can be found in
the appendix.) It is also possible to use Theorem 8 to show
that the two program fragments of Fig. 2 are {ip}-equivalent;
i.e., they have the same effect except on the instruction
pointer, since the two fragments are of different length.

3.4 Example using Win95/Zperm

The Win95/Zperm metamorphic computer virus generates
syntactic variants by separating its code into fragments,
which are joined using unconditional jump statements. In
addition, junk code is inserted within the fragments. Szor
and Ferrie [24] describe this process, and give three different
examples of the Zperm obfuscation process. In their example,
a five-instruction program is obfuscated by jumps. The orig-
inal code is not given, so we simulate Zperm’s obfuscation
using a five-instruction program called zperm1. We then
generate three different zperm1 variants (see Fig. 3) using
the schemas set out graphically by Szor and Ferrie. Wherever
the authors indicate garbage code, we have inserted a nop
instruction.

We can demonstrate the equivalence of these programs in
a similar way to Win95/Bistro. First, we calculate

Vout(zperm1) = Vout(zperm2) = Vout(zperm3)

= Vout(zperm4) = {eax,ebx,ecx}
(neglecting the instruction pointer). Then, we prove equiva-
lence of the four programs using reductions in Maude.

Each of the programs has a different start (entry) point,
which we are able to specify using the exec p1 of p2

in s described in Sect. 2.3. We assign the code appearing
after start: to p1, whilst p2 and s contain the usual full
program and store (respectively). For example, we can sim-
ulate execution of zperm2 with the following:

exec mov eax, 0 ; mov ebx, 1 ; jmp l2 ;
nop ; label l2:
mov ecx, ebx ; jmp l1 ; nop ;
label out ; end

of label l1: mov ebx, eax ; mov eax,
ecx ; jmp out ; nop ; mov eax, 0 ;
mov ebx, 1 ; jmp l2 ; nop ;
label l2: mov ecx, ebx ; jmp l1 ;
nop ; label out: end

in s

In general, we can describe the above asexec startn of
progn in s, where n corresponds to the number of the
fragment from Fig. 3. To prove equivalence of these frag-
ments we perform reductions with respect to the different
variables in Vout(zperm1). We start with variable eax:

reduce exec start1 of prog1 in s[[eax]].
result: 1

Fig. 3 Allomorphic fragments of Win95/Zperm

123

Detection of metamorphic and virtualization-based malware 231

reduce exec start2 of prog2 in s[[eax]].
result: 1
reduce exec start3 of prog3 in s[[eax]].
result: 1
reduce exec start4 of prog4 in s[[eax]].
result: 1

Therefore, the four different variants of Zperm are equiv-
alent with respect to eax. We can prove equivalence with
respect to ebx and ecx in a similar way, thus proving that
all four variants are equivalent. The full Maude proof script
is available in the appendix.

4 Detecting metamorphism

In the previous sections, we have shown how the formal
specification in Maude of the Intel 64 assembly program-
ming language enables static and dynamic analysis to prove
equivalence and semi-equivalence of code. We have shown
how metamorphic computer viruses use equivalent and semi-
equivalent code in order to avoid detection by signature scan-
ning. Therefore, given the techniques for code analysis
described above, it seems reasonable that static and dynamic
analysis based on the formal specification of Intel 64 should
give ways to detect metamorphic computer viruses by prov-
ing the equivalence of different generations of the same virus
to some virus signature, thus enabling detection of metamor-
phic computer viruses by a signature-based approach.

Implementation of a industrial tool for metamorphic com-
puter virus detection is beyond the scope of this work, but a
discussion of the application of the technique presented ear-
lier to the problem of detecting metamorphic and virtualized
malware is given below.

4.1 Dynamic analysis for detection of metamorphic code

4.1.1 Signature equivalence

The most obvious application for detection is based on the
techniques described in our earlier work [26], and in Sect. 3,
to prove by dynamic analysis the equivalence of code frag-
ments. Suppose that a signature σ is stored in a disassembled
form, and that there is a fragment of suspect code c within
a disassembled executable file. Then, the effects of c and σ
on a generalised store could be discovered by performing
Maude reductions. The resulting stores could be compared,
and if equal, would prove that c ≡ σ . Computer virus sig-
natures must be sufficiently discriminating and non-incrim-
inating, meaning that they must identify a particular virus
reliably without falsely incriminating code from a different
virus or non-virus [8]. If a suspect code block was proven to
have equivalent behaviour to a signature, this would result in

identification to the same degree of accuracy as the original
signature. (Since a signature uses a syntactic representation
of the semantics of a code fragment to identify a viral behav-
ioural trait, any equivalent signature must therefore identify
the same trait.) If the code block is only semi-equivalent,
then the accuracy of detection could be reduced. However if
equivalence-in-context could be proven then accuracy would
again be to the same degree as the original signature.

4.1.2 Signature semi-equivalence

It might be the case that a given metamorphic computer virus
is known to write certain values onto the stack, and therefore
the state of the stack at a certain point in the execution of the
metamorphic virus could be a possible means of detection. In
our previous work [26], two variants of the Win9x.Zmorph.A
metamorphic computer virus were shown to be equivalent
with respect to the stack, meaning that the state of the stack
was affected in the same way by both generations of the virus.
Therefore, the same technique could be used for detection.
In this case, equivalence need not be proven, as the detec-
tion method relies on equivalence with respect to a subset of
variables, i.e., semi-equivalence.

4.2 Static analysis for detection of metamorphic code

4.2.1 Formally-verified equivalent code libraries

One important result in the field of algebraic specification is
the Theorem of Constants (p. 38, [11]). Informally, the the-
orem states that any nullary operator (i.e., constant) used in
a reduction within an algebraic specification system such as
Maude, can be used as a variable in that reduction. This holds
because the definition of variables within Maude is that they
are actually constants within a supersignature, i.e., a variable
in a Maude module is a constant within another module that
encompasses it. This lets us use constants in place of vari-
ables, e.g., for the reductions used in Examples 13 and 14 we
use a constant s to denote any store s.

This means that the proofs of equivalence and semi-equiv-
alence of the code fragments in Sects. 3.2–3.4 still hold if we
swap the program variable names for other program variable
names of the same sort (e.g., we do not interchange stack
variables and “ordinary” variables such as the eax register).
For example, if

push ebp ; mov ebp,esp ≡ W push ebp ;

push esp ; pop ebp (1)

where W = V − {i p}, then by the Theorem of Constants we
can replace ebpwith eax, and espwith edx, for example,
and the statement of semi-equivalence still holds. Therefore,

123

232 M. Webster, G. Malcolm

Fig. 4 Signature-based detection of a metamorphic computer virus,
by application of equivalence-in-context. Instruction sequences c and
σ are semi-equivalent with respect to W . Applying the result in Corol-
lary 10 to c, σ and ψ reveals that in fact c;ψ ≡ σ ;ψ and therefore c

has been identified as equivalent to signature σ , resulting in detection
of the virus. This method could result in a false positive as there may
be a non-malware instruction sequence which is equivalent-in-context
of some signature

we might rephrase the above with a more standard mathe-
matical notation, e.g.,

push x; mov x, y ≡ W push x; push y; pop x (2)

with the additional requirement that x �= y (which was
implicit in Eq. 1).

Therefore, if we know that metamorphic computer viruses
might use a set of equations similar to Eq. 2, then we may wish
to build up a library of equivalent instruction lists based on
those equations. In doing so we could decide, for instance,
that all instances of the left-hand side of Eq. 2 should be
“replaced by” the right-hand side. If there was a metamor-
phic computer virus that exhibited only this kind of meta-
morphism, then we would have effectively created a normal
form of the virus that would enable detection by straightfor-
ward signature scanning. Of course, this example is kept sim-
ple intentionally, and many metamorphic computer viruses
will employ code mutation techniques which are far more
complex, but the general idea of code libraries which are for-
mally verified using a formal specification language, such as
Maude, may be useful.

4.2.2 Equivalence in context

As shown in Sect. 3 and in earlier work by ourselves [26],
metamorphic computer viruses can use semi-equivalent code
replacement in order to produce syntactic variants in order
to evade signature-based detection. The obvious advantage
of this stratagem is that restricting metamorphism to code
sequences that are equivalent limits the number of syntactic
variants. An obvious example is that metamorphic computer
viruses may wish to use code that treats all variables equiva-
lently except the instruction pointer, i.e., equivalent code of
differing length that is semi-equivalent with respect to every
variable except the instruction pointer. Clearly, this will not
pose a problem for the metamorphic computer virus as long

as there is no part of its program that is dependent on the value
of the instruction pointer at a given point after the mutated
code.

It is likely, therefore, that a code segment c of a suspect
executable will be semi-equivalent to some signature σ of
a metamorphic computer virus. If it were possible to prove
equivalence-in-context, i.e., that c;ψ ≡ σ ;ψ , where ψ is
some code appearing immediately after c in the suspect exe-
cutable, then it would be known that σ was a successful
match to c and detection of the virus would be achieved. (See
Fig. 4 for an illustrated example.) Another possible applica-
tion of equivalence-in-context would be in the scenario where
dynamic analysis was computationally-expensive. Equiva-
lence-in-context can be proven using only static analysis,
and therefore could limit the use of dynamic analysis.

5 Detection of virtualization by metamorphic code
generation

In the previous sections, we used our formal algebraic spec-
ification of the Intel 64 assembly programming language to
prove that different generations of a metamorphic code were
equivalent, i.e., we used reductions in Maude to simplify an
Intel 64 instruction sequence to a term denoting the state of
the computer after executing that instruction sequence. Here,
we will show how we can essentially do the opposite: we can
specify some end-condition for the state after executing some
sequence of instructions, and using Maude’s built-in search
function, find sequences of instructions which satisfy that
end-condition.

This is applicable to virtualization-based detection as
follows. Suppose we have some Intel 64 instruction sequence
which, when executed, can highlight the presence of virtual-
ization-based malware. Naturally, virtualization-based mal-
ware will try to detect this instruction by signature matching,

123

Detection of metamorphic and virtualization-based malware 233

as part of a detection counter-measure. Therefore, it would
be useful to be able to generate automatically sequences of
instructions which we know are equivalent, and therefore
would be difficult for the malware detect. In other words, we
can use metamorphism to improve the performance of the
detection method.

We can specify an end-condition in which the detection
instruction sequence is stored in memory. Then, by apply-
ing the Maude search functionality, we can find sequences
of instructions which generate this instruction sequence. The
advantage of using the Intel 64 specification in Maude is that
it is formal, and so any instruction sequence generated is
automatically proven to work.

We will now describe the more technical details of this
application of the Intel 64 specification.

5.1 Virtual machine rootkits

Virtual machine rootkits can be used to force the user to use
an operating system that executes within a virtual machine
[10,14,20,21]. The advantages to the potential attacker are
obvious; the user would be oblivious to any malicious pro-
grams executing outside the virtual machine. Rutkowska
describes an approach to detection of virtualized malware
from within the virtualized operating system, based on the
execution of an Intel 64 assembly language instruction called
sidt x [20]. When executed, this instruction stores the con-
tents of the interrupt descriptor table register into the destina-
tion operand x . The value of x varies depending on whether
the sidt instruction has been executed inside or outside
a virtual machine, and therefore detection is possible. This
method is called Red Pill.

However, this detection method is not always guaranteed
to work, as the user’s interaction with the operating system
can be controlled and manipulated in order to avoid detection
using methods akin to Red Pill. King et al. describe a counter-
measure to Red Pill based on emulation [14]. The VMM,
which controls execution of the virtual machine, detects when
the Red Pill executable is being loaded into memory, and
sets a breakpoint to trap the execution of sidt. When the
breakpoint is reached, the VMM will emulate the instruc-
tion, setting the value of the destination operand of sidt to
a value not indicating detection. The authors note that this
detection counter-measure could be defeated by a program
R that generates the sidt instruction dynamically.

At this point the writers of the malware have two options:
they can re-write the virtualization-based malware so that it
can detect R, as well as Red Pill, by static analysis. Alterna-
tively, they can trace the execution of programs in order to
detect by dynamic analysis any occurrence of Red Pill. King
et al. note that the latter could be computationally expensive,
adding overhead which might result in detection by timing
methods (see, e.g., [10]).

Suppose that the former option were chosen. Then, all the
malware writers need do in order to avoid detection of their
malware is to adjust their program to detect R′ as well as
R and Red Pill. Therefore, from the perspective of the writ-
ers of the Red Pill program, a means of automatic generation
of programs that have the same behaviour as Red Pill would
be desirable. In other words, we would like to use a metamor-
phic version of Red Pill, that changes its syntax at run-time
in order to evade detection. Clearly, metamorphic engines
as seen in metamorphic computer viruses could be used, but
they are not reliable, in that the syntactic variants generated
are not guaranteed to preserve the semantics of the original
program. Therefore, we propose a solution to this problem
based on our formal description of Intel 64 assembly lan-
guage, which could be employed as a means of generating
Red Pill variants before or during run-time.

5.2 Detecting virtualization using the Intel 64 specification

As was discussed in Sect. 2, the Maude specification of Intel
64 denotes a term rewriting system. The usual application
of such a system is to apply equations and rewrite rules in
order to reduce terms to some terminal form, i.e., to rewrite
terms until they can no longer be rewritten. However, it is
also possible to perform a search of the rewriting space of
a term rewriting system in order to determine whether it is
possible to reduce one term to another, and if there are non-
deterministic aspects to the term rewriting system, whether
there are multiple ways of performing such a reduction. It is
also possible to test for some conditional value, and find all
rewriting routes that lead to a term satisfying that condition.

Using the Maude specification of Intel 64, it is possible
to rewrite a term such as S[[eax]], which denotes the
value of eax in some store S, using a variety of rewrite
rules, and check using a breadth-first search of the term
rewriting system whether a condition such as S[[eax]] =
“sidt” is true, which says that the value of eax in some
store S is equal to “sidt”. In other words, it is possible
to create a term rewriting system in Maude that constructs
programs based on rewrite rules, and search the rewriting
space for constructed programs that are satisfy the require-
ment that “sidt” is stored in some variable. Figure 5 shows
such a term rewriting system that generates different ways
of constructing a program that satisfies the condition that
S[[eax]] = “sidt”. Therefore, it is possible to create
a metamorphic code engine based on our formal specification
of Intel 64 in Maude.

The previous example also shows how we can automati-
cally generate programs that assign the number correspond-
ing to the opcode of sidt x to some variable, e.g., register
eax. Therefore this technique could be used to generate
automatically syntactically-mutated forms of a Red Pill pro-
gram in order to evade detection of the Red Pill program

123

234 M. Webster, G. Malcolm

by the VMM. This approach is advantageous to applying
a metamorphic engine from a computer virus, which tend
to be buggy, because the formality of the Intel 64 specifi-
cation assures that any metamorphic code generated satis-
fies a given condition. If that condition is equivalence with
respect to some variables, then we can generate syntactic
variants of code which preserve semantics with respect to
those variables.

5.3 A note on tractability

We described above how term rewriting systems can be spec-
ified in Maude, and used to generate metamorphic code. It
is interesting to note that for certain term rewriting systems,
such as the one in Fig. 5, there are an infinite number of
terms satisfying the condition we have specified. Since each
of these is generated by applying the rewriting rules in dif-
ferent sequences, we know that the set of terms satisfying the
condition is infinite and recursively enumerable. Therefore,
if we directed the Maude term rewriting engine to enumer-
ate all the different terms satisfying a condition, the engine
would never halt.

Therefore, it may appear that tractability is an issue in this
regard. However, our aim is not to enumerate all of the differ-
ent metamorphic programs that have the desired property, but
to generate as many as we require in order to evade the detec-
tion counter-measures of the virtualization-based malware.
For example, in Maude we can specify that we want only the
first n programs that have the desired property. For example,
we specified the rewriting system in Fig. 5 in Maude version
2.3, and produced 1,000 programs satisfying the condition
of assigning "sidt" to variable eax in approximately 0.36
seconds [27]. (The computer used was a Linux PC with a 3.2
GHz Intel Pentium 4 CPU and 1 GB of RAM.)

Therefore, it is practical to use Maude to generate
programs with different syntax in order to evade the detection
counter-measures employed by virtualization-based
malware. In addition, this method is based on a formal spec-

Fig. 5 A metamorphic engine based on the Maude specification of
Intel 64. The four lines beginning with rl are rewrite rules that con-
struct programs by appending an instruction to an instruction sequence.
The search of the rewriting space then reveals sequences of rewrite rule
applications that result in programs that assign "sidt" to eax. The
Maude specification for this proof-of-concept engine can be found in
the appendix

ification of Intel 64, and therefore each of the generated pro-
grams is formally verified by Maude as it is generated.

6 Conclusion

In this paper, we have demonstrated the applicability of
formal algebraic specification to detection of metamorphic
and virtualization-based malware. In order to improve the
detection of metamorphic code, we have extended the appli-
cability of equivalence-in-context to all programs in imper-
ative programming languages through a redefinition of Vout

and a new proof of Corollary 6. To show the applicability
to metamorphic computer virus detection, we gave worked
examples of equivalence of allomorphs of the Win9x.
Zmorph.A, Win95/Bistro and Win95/Zperm viruses, and dis-
cussed the role of a formal model of the Intel 64 assembly
language within the practical setting of anti-virus software.
Finally, we gave a proof-of-concept system for generating
metamorphic code in order to assist detection of virtualiza-
tion-based malware by disabling detection counter-measures
such as those used in the SubVirt system described by King
et al. [14].

6.1 Formal and informal approaches

Most of the approaches to metamorphic computer virus
detection described in Sect. 1 are based on some descrip-
tion of the syntax and semantics of a programming language.
(The only exception is the approach of Yoo and Ultes-Nitsche
[29,30] to the detection of metamorphic computer viruses
using neural networks, in which the semantics of the program
being analysed are completed ignored, as the program code is
treated only as data.) Perhaps then, the most distinctive fea-
ture of our approach to metamorphic computer virus detec-
tion is that the description of the programming language is
both explicit and formal, i.e., it is based on a formal specifica-
tion of the syntax and semantics of an assembly programming
language written in a formal specification language. In con-
trast, many of the other approaches to detection, perhaps with
the exception of the work by Christodorescu et al. [6], are less
formal. For example, in control-flow analysis (e.g., [18,15]),
the flow of control is extracted from a program based on an
implicit assumption about the way that looping instructions
work, i.e., they update the value of the instruction pointer.
Based on this assumption, the control-flow graph is con-
structed. Another example is Bruschi et al.’s approach to
program rewriting and normalisation, in which a program
is translated into a meta-representation based on an implicit
knowledge of the behaviour of the program’s instructions [1].

The advantage of a formal specification of the virus’s pro-
gramming language is that it is possible to prove properties
of a section of code, which in turn allows for the development

123

Detection of metamorphic and virtualization-based malware 235

of methods of analysis which themselves are formally ver-
ifiable. A good example is the proofs of the equivalence of
viral code in Sect. 3. Assuming that we know that the implicit
formal specification in Maude is accurate, then given the exis-
tence of reduction as proof, then by performing reductions
within Maude we can prove a property of a program (in this
example, its equivalence to another program) using a number
of reductions in Maude. Checking the accuracy of the for-
mal specification is equivalent to checking the accuracy of
the axioms within a logical system, that is, we formulate the
formal specification of the Intel 64 assembly language with
truths (i.e., axioms) that we hold to be self-evident. For exam-
ple, in the specification of the MOV a, b instruction which
assigns the value of variable b to variable a, then we specify
that this the value of variable a after executing MOV a, b
as equal to the value of b before we executed the instruction
using the following equational rewrite rule, which expresses
this truth formally:

eq S ; mov V,E [[V]] = S[[E]].

The danger in using an implicit and/or informal description
of the programming language is that our assumptions are not
made clear, and therefore any detection method or program
analysis based on the description may not do the job it is
designed to do.

However, there is an obvious disadvantage to using a for-
mal approach to program specification, verification and anal-
ysis. In order to reap the rewards of a formal specification
of a programming language, first we must create it, which
itself can be a time-consuming, but nevertheless straightfor-
ward, process. For example, in order to define the syntax and
semantics of a ten-instruction subset of the Intel 64 assembly
language instruction set for the proofs in Sect. 3, a Maude
specification of around 180 lines had to be produced [27].
The main difficulty was not in the writing or debugging of
the Maude specification, but rather in the translation from the
informal and implicit definitions of the instructions given in
the official Intel literature (see [13]).

Once created, though, a formal specification of an assem-
bly programming language could be applied to a number
of different problems in the field of computer virology. For
example, the approach of Lakhotia and Mohammed to con-
trol- and data-flow analysis resulted in a rewritten version of a
program called a zero form [18,15]. The specification of Intel
64 could be used to prove the equivalence of the original pro-
gram and its zero form through dynamic analysis in manner
of Sect. 3. Another example would be in the code normal-
isation procedure described by Bruschi et al. in which the
code is transformed into a meta-representation [1]. A formal
specification of the syntax and semantics of the meta-repre-
sentation could be written in Maude in a similar manner to
the Maude specification of Intel 64, and the translation of the
Intel 64 into the meta-representation could be then formally

verified through proofs that an instruction and the translated
form have the same effect on a generalised store.

6.2 Future work

6.2.1 Combination with other approaches

An obvious further application of the methods for computer
virus detection described in Sects. 3–5, and in [26], is to
combine them with other means of metamorphic computer
virus detection. For instance, the formally-verified equiva-
lent code library described in Sect. 4.2.1 may not always
result in reduction of every generation of a metamorphic com-
puter virus to a normal form. However, the overall syntactic
variance of the set of all generations may be significantly
reduced, so that another technique may be used to enable
detection. For instance, the neural network-based approach
of Yoo and Ultes Nitsche [29,30] relies on the identification
of similar code structures, and therefore may be assisted by
an equivalent code library.

6.2.2 Analysis of virtualization-based malware

As described in Sect. 2, a subset of the Intel 64 instruction
set has been specified using algebraic specification in Maude.
Expanding the current specification of ten instructions to the
full instruction set would provide a way of formally prov-
ing properties of programs written in the Intel 64 assem-
bly language. In addition to this, the formal specification is
executable, and therefore once we have fully described the
syntax and semantics of the language, we obtain an inter-
preter “for free” [17]. The development of such a specifi-
cation is well within the reach of specification languages
like Maude [11,17], and therefore we propose the use of
Maude for the formal proofs on assembly language programs,
e.g., [26].

In addition, a specification in Maude of the full Intel 64
instruction set would be a virtual machine (in a very pre-
cise sense), because it would simulate an Intel 64 processor.
Whilst the advanced features of virtual machine software
(e.g., full operating system simulation), such as would be
more difficult to specify, the Maude specification of the whole
instruction set would enable the simulation of virtualization-
based malware at a low-level of abstraction without major
modification. For example, we could simulate the modifica-
tion of the boot sector, a critical phase of the infection process
of some virtualization-based malware (e.g., SubVirt [14]).

Acknowledgments We would like to thank the reviewers and partic-
ipants of the 17th Annual European Institute for Computer Antivirus
Research Conference (EICAR 2008) for their comments, which we have
found indispensable in improving our paper.

123

236 M. Webster, G. Malcolm

Appendix A: Maude specification

The specification described in this paper was used with
Maude 2.3 (built: Feb 14 2007 17:53:50). Maude is available
online from http://maude.cs.uiuc.edu/. To input the Maude
specification, it must be saved to some file f . Then, exe-
cute Maude and type in f . The same applies for the exam-
ples for Win95/Bistro, Win95/Zperm and the metamorphic
engine for virtualization detection.

A.1 Intel 64 specification

*** This module defines the syntax of a subset of I-64.
fmod I-64-SYNTAX is

protecting INT .
sorts Variable Expression Stack EInt Label .
sorts Instruction InstructionSequence .
subsort Instruction < InstructionSequence .
subsorts Variable EInt < Expression .
subsort Int < EInt .

op dadd_,_ : Variable Expression -> Instruction [prec 20] .
op dsub_,_ : Variable Expression -> Instruction [prec 20] .

*** I-64 instructions
op mov_,_ : Variable Expression -> Instruction [prec 20].
op add_,_ : Variable Expression -> Instruction [prec 20].
op sub_,_ : Variable Expression -> Instruction [prec 20].
op nop : -> Instruction.
op push_ : Expression -> Instruction [prec 20].
op pop_ : Variable -> Instruction [prec 20].
op and_,_ : Variable Expression -> Instruction [prec 20].
op or_,_ : Variable Expression -> Instruction [prec 20].
op xor_,_ : Variable Expression -> Instruction [prec 20].
op test_,_ : Variable Expression -> Instruction [prec 20].
op label_ : Label -> Instruction [prec 20].
op jmp_ : Label -> Instruction [prec 20].
op je_ : Label -> Instruction [prec 20].

*** helper operations
op stackPush : Expression Stack -> Stack.
op stackPop : Stack -> Stack.
op stackTop : Stack -> EInt.
op _next_ : EInt Stack -> Stack [prec 15].
op stackBase : -> Stack.
op msb : EInt -> EInt.
op isZero : Expression -> EInt.
op isZero : EInt -> EInt.
op parity : EInt -> EInt.
*** error messages
op emptyStackError1 : -> Stack.
op emptyStackError2 : -> EInt.
*** I-64 registers

123

http://maude.cs.uiuc.edu/

Detection of metamorphic and virtualization-based malware 237

ops eax ebx ecx edx ebp esp esi edi ip : -> Variable.
*** I-64 EFLAGS register
ops cf of sf af zf pf : -> Variable.
*** equality operation
op _is_ : EInt EInt -> Bool.
op _is_ : Stack Stack -> Bool.
*** extending the Int sort to include "undef"
op undef : -> EInt.

*** overloaded Boolean operations
op _band_ : EInt EInt -> EInt [prec 35].
op _bor_ : EInt EInt -> EInt [prec 35].

endfm

*** This module defines the semantics of the I-64 instructions
*** whose syntax is defined in I-64-SYNTAX.
fmod I-64-SEMANTICS is

protecting I-64-SYNTAX.
sort Store.

*** stores
ops s : -> Store.
op initial : -> Store.

*** operators for defining the semantics of I-64
op _[[_]] : Store Expression -> EInt [prec 30].
op _[[stack]] : Store -> Stack [prec 30].
op _;_ : Store Instruction -> Store [prec 25].
op _;_ : InstructionSequence InstructionSequence ->

InstructionSequence [gather (e E) prec 26].
*** variables for equations
vars S S1 S2 S3 : Store.
vars I I1 I2 I3 : EInt.
vars INT INT1 INT2 : Int.
vars V V1 V2 V3 : Variable.
vars E E1 E2 E3 : Expression.
vars ST ST1 ST2 : Stack.
vars P P1 P2 : InstructionSequence.
vars L L1 L2 L3 : Label.

*** evaluation of instruction sequences
eq S ; (P1 ; P2) = (S ; P1) ; P2.
*** _is_ semantics
eq I1 is I2 = (I1 == I2).
eq ST1 is ST2 = (ST1 == ST2).
*** the value of any integer in a store is the integer itself
eq S[[I]] = I.
*** initial values of variables and the stack
eq initial[[stack]] = stackBase.
ceq initial[[V]] = undef
if V =/= ip.

eq initial[[ip]] = 0.

123

238 M. Webster, G. Malcolm

*** Axioms to deal with static analysis of primitive
*** operators such as +, -, |, &, xor.
eq isZero(0) = 1.
eq I | I = I.
eq I & I = I.
eq (I1 + I2) is (I3 + I2) = I1 is I3.
eq (I1 + I2) is (I1 + I2) = true.
eq (I1 - I2) is (I1 - I2) = true.
eq (I1 | I2) is (I1 | I2) = true.
eq (I & S1[[V1]]) is (I & S2[[V2]]) = S1[[V1]] is S2[[V2]].
eq isZero(I1 & I2) is isZero(I1 & I2) = true.
eq parity(I1 & I2) is parity(I1 & I2) = true.
eq msb(I1 & I2) is msb(I1 & I2) = true.
eq isZero(I1 | I2) is isZero(I1 | I2) = true.
eq parity(I1 | I2) is parity(I1 | I2) = true.
eq msb(I1 xor I2) is msb(I1 xor I2) = true.
eq isZero(I1 xor I2) is isZero(I1 xor I2) = true.
eq parity(I1 xor I2) is parity(I1 xor I2) = true.
eq msb(I1 | I2) is msb(I1 | I2) = true.
eq (I1 xor I2) is (I1 xor I2) = true.

*** I-64 instruction semantics
eq S ; and V,E [[V]] = S[[V]] & S[[E]].
ceq S ; and V1,E [[V2]] = S[[V2]]
if V1 =/= V2 and V2 =/= ip and V2 =/= sf and V2 =/= zf
and V2 =/= pf and V2 =/= cf and V2 =/= of.

eq S ; and V,E [[stack]] = S[[stack]].
eq S ; and V,E [[ip]] = S[[ip]] + 1.
eq S ; and V,E [[sf]] = msb(S[[V]] & S[[E]]).
eq S ; and V,E [[zf]] = isZero(S[[V]] & S[[E]]).
eq S ; and V,E [[pf]] = parity(S[[V]] & S[[E]]).
eq S ; and V,E [[cf]] = 0.
eq S ; and V,E [[of]] = 0.

eq S ; or V,E [[V]] = S[[V]] | S[[E]].
ceq S ; or V1,E [[V2]] = S[[V2]]
if V1 =/= V2 and V2 =/= ip and V2 =/= sf and V2 =/= zf
and V2 =/= pf and V2 =/= cf and V2 =/= of.

eq S ; or V,E [[stack]] = S[[stack]].
eq S ; or V,E [[ip]] = S[[ip]] + 1.
eq S ; or V,E [[sf]] = msb(S[[V]] | S[[E]]).
eq S ; or V,E [[zf]] = isZero(S[[V]] | S[[E]]).
eq S ; or V,E [[pf]] = parity(S[[V]] | S[[E]]).
eq S ; or V,E [[cf]] = 0.
eq S ; or V,E [[of]] = 0.
eq S ; xor V,E [[V]] = S[[V]] xor S[[E]].
ceq S ; xor V1,E [[V2]] = S[[V2]]
if V1 =/= V2 and V2 =/= ip and V2 =/= sf and V2 =/= zf
and V2 =/= pf and V2 =/= cf and V2 =/= of.

eq S ; xor V,E [[stack]] = S[[stack]].
eq S ; xor V,E [[ip]] = S[[ip]] + 1.
eq S ; xor V,E [[sf]] = msb(S[[V]] xor S[[E]]).

123

Detection of metamorphic and virtualization-based malware 239

eq S ; xor V,E [[zf]] = isZero(S[[V]] xor S[[E]]).
eq S ; xor V,E [[pf]] = parity(S[[V]] xor S[[E]]).
eq S ; xor V,E [[cf]] = 0.
eq S ; xor V,E [[of]] = 0.

eq S ; test V,E [[V]] = S[[V]].
ceq S ; test V1,E [[V2]] = S[[V2]]
if V2 =/= ip and V2 =/= sf and V2 =/= zf
and V2 =/= pf and V2 =/= cf and V2 =/= of.

eq S ; test V,E [[stack]] = S[[stack]].
eq S ; test V,E [[ip]] = S[[ip]] + 1.
eq S ; test V,E [[sf]] = msb(S[[V]] & S[[E]]).
eq S ; test V,E [[zf]] = isZero(S[[V]] & S[[E]]).
eq S ; test V,E [[pf]] = parity(S[[V]] & S[[E]]).
eq S ; test V,E [[cf]] = 0.
eq S ; test V,E [[of]] = 0.

eq S ; mov V,E [[V]] = S[[E]].
ceq S ; mov V1,E [[V2]] = S[[V2]]
if V1 =/= V2 and V2 =/= ip.

eq S ; mov V,E [[stack]] = S[[stack]].
eq S ; mov V,E [[ip]] = S[[ip]] + 1.

eq S ; add V,E [[V]] = (S[[V]] + S[[E]]).
ceq S ; add V1, E [[V2]] = S[[V2]]
if V1 =/= V2 and V2 =/= ip.

eq S ; add V,E [[stack]] = S[[stack]].
eq S ; add V,E [[ip]] = S[[ip]] + 1.

*** special version of add ("dynamic add") that keeps
*** results of additions within I-64 limits (2ˆ32-1).
eq S ; dadd V,E [[V]] = (S[[V]] + S[[E]]) & 4294967295.
ceq S ; dadd V1, E [[V2]] = S[[V2]]
if V1 =/= V2 and V2 =/= ip.

eq S ; dadd V,E [[stack]] = S[[stack]].
eq S ; dadd V,E [[ip]] = S[[ip]] + 1.

eq S ; sub V,E [[V]] = (S[[V]] - S[[E]]).
ceq S ; sub V1, E [[V2]] = S[[V2]]
if V1 =/= V2 and V2 =/= ip.

eq S ; sub V,E [[stack]] = S[[stack]].
eq S ; sub V,E [[ip]] = S[[ip]] + 1.
*** special version of add ("dynamic sub") that keeps
*** results of additions within I-64 limits (2ˆ32-1).
eq S ; dsub V,E [[V]] = (S[[V]] - S[[E]]) & 4294967295.
ceq S ; dsub V1, E [[V2]] = S[[V2]]
if V1 =/= V2 and V2 =/= ip.

eq S ; dsub V,E [[stack]] = S[[stack]].
eq S ; dsub V,E [[ip]] = S[[ip]] + 1.

eq S ; push E [[stack]] = stackPush(S[[E]],S[[stack]]).
ceq S ; push E [[V]] = S[[V]]
if V =/= ip.

123

240 M. Webster, G. Malcolm

eq S ; push E [[ip]] = S[[ip]] + 1.

eq S ; pop V [[stack]] = stackPop(S[[stack]]).
eq S ; pop V [[V]] = stackTop(S[[stack]]).
ceq S ; pop V1 [[V2]] = S[[V2]]
if V1 =/= V2 and V2 =/= ip.

eq S ; pop V [[ip]] = S[[ip]] + 1.

ceq S ; nop [[V]] = S[[V]]
if V =/= ip.

eq S ; nop [[stack]] = S[[stack]].
eq S ; nop [[ip]] = S[[ip]] + 1.

eq S ; label L [[V]] = S[[V]].
eq S ; label L [[stack]] = S[[stack]].

*** Stack helper operations semantics
eq stackPush(I,ST) = I next ST.
eq stackPop(I next ST) = ST.
eq stackPop(stackBase) = emptyStackError1.
eq stackTop(I next ST) = I.
eq stackTop(stackBase) = emptyStackError2.

endfm

*** This module gives some helper operations for looping
*** instructions.
fmod HELPER-OPERATIONS is

pr I-64-SEMANTICS.

*** variables for equations
vars S S1 S2 S3 : Store.
vars I I1 I2 I3 : EInt.
vars IN IN1 IN2 IN3 : Instruction.
vars INT INT1 INT2 : Int.
vars V V1 V2 V3 : Variable.
vars E E1 E2 E3 : Expression.
vars ST ST1 ST2 : Stack.
vars P P1 P2 : InstructionSequence.
vars L L1 L2 L3 : Label.

op findSubProgram : Label InstructionSequence ->
InstructionSequence.

op labelNotFoundError : -> InstructionSequence.
op end : -> Instruction.
eq findSubProgram(L, label L ; P) = P.
eq findSubProgram(L, IN ; P) = findSubProgram(L, P).
eq findSubProgram(L, end) = labelNotFoundError.

endfm

*** This module gives the semantics of looping instructions.
fmod I-64-JUMPS is

pr I-64-SEMANTICS.
pr HELPER-OPERATIONS.

123

Detection of metamorphic and virtualization-based malware 241

ops l1 l2 l3 : -> Label.
op exec_of_in_ : InstructionSequence InstructionSequence Store

-> Store [prec 30].

*** variables for equations
vars S S1 S2 S3 : Store.
vars I I1 I2 I3 : EInt.
vars INT INT1 INT2 : Int.
vars V V1 V2 V3 : Variable.
vars E E1 E2 E3 : Expression.
vars ST ST1 ST2 : Stack.
vars P P1 P2 : InstructionSequence.
vars L L1 L2 L3 : Label.

*** NON-LOOP INSTRUCTIONS
eq exec mov V,E ; P1 of P2 in S = exec P1 of P2 in S ; mov V,E.
eq exec or V,E ; P1 of P2 in S = exec P1 of P2 in S ; or V,E.
eq exec xor V,E ; P1 of P2 in S = exec P1 of P2 in S ; xor V,E.
eq exec and V,E ; P1 of P2 in S = exec P1 of P2 in S ; and V,E.
eq exec test V,E ; P1 of P2 in S = exec P1 of P2 in S ; test V,E.
eq exec add V,E ; P1 of P2 in S = exec P1 of P2 in S ; add V,E.
eq exec dadd V,E ; P1 of P2 in S = exec P1 of P2 in S ; dadd V,E.
eq exec sub V,E ; P1 of P2 in S = exec P1 of P2 in S ; sub V,E.
eq exec push E ; P1 of P2 in S = exec P1 of P2 in S ; push E.
eq exec pop V ; P1 of P2 in S = exec P1 of P2 in S ; pop V.
eq exec nop ; P1 of P2 in S = exec P1 of P2 in S ; nop.
eq exec label L ; P1 of P2 in S = exec P1 of P2 in S ; label L.

*** LOOP INSTRUCTIONS
eq exec jmp L ; P1 of P2 in S =

exec findSubProgram(L, P2) of P2 in S.
ceq exec je L ; P1 of P2 in S =

exec findSubProgram(L, P2) of P2 in S
if S[[zf]] == 1.

ceq exec je L ; P1 of P2 in S = exec P1 of P2 in S
if S[[zf]] =/= 1.

eq exec end of P2 in S = S.
endfm

A.2 Win95/Bistro example

fmod BISTRO1 is
pr I-64-JUMPS.

ops prog prog1 prog2 : -> InstructionSequence.
ops dword1 dword2 : -> EInt.
ops flag : -> Variable.
ops 401045 : -> Label.

*** dword1 is equal to zero
eq dword1 = 0.
*** BISTRO FRAGMENT 1

123

242 M. Webster, G. Malcolm

eq prog1 = push ebp ; mov ebp, esp ; mov esi, dword1 ;
test esi, esi ; je 401045 ; jmp l1 ;
label 401045 ; mov flag, 1 ; label l1 ; end.

*** BISTRO FRAGMENT 2
eq prog2 = push ebp ; push esp ; pop ebp ; mov esi, dword1 ;

or esi, esi ; je 401045 ; jmp l1 ; label 401045 ;
mov flag, 1 ; label l1 ; end.

endfm

*** should all be true
red exec prog1 of prog1 in s[[ebp]] is

exec prog2 of prog2 in s[[ebp]].
red exec prog1 of prog1 in s[[esp]] is

exec prog2 of prog2 in s[[esp]].
red exec prog1 of prog1 in s[[stack]] is

exec prog2 of prog2 in s[[stack]].
red exec prog1 of prog1 in s[[flag]] is

exec prog2 of prog2 in s[[flag]].
red exec prog1 of prog1 in s[[zf]] is

exec prog2 of prog2 in s[[zf]].
red exec prog1 of prog1 in s[[sf]] is

exec prog2 of prog2 in s[[sf]].
red exec prog1 of prog1 in s[[pf]] is

exec prog2 of prog2 in s[[pf]].
red exec prog1 of prog1 in s[[cf]] is

exec prog2 of prog2 in s[[cf]].
red exec prog1 of prog1 in s[[of]] is

exec prog2 of prog2 in s[[of]].

fmod BISTRO2 is
pr I-64-JUMPS.

ops prog prog1 prog2 : -> InstructionSequence.
ops dword1 dword2 : -> EInt.
ops flag : -> Variable.
ops 401045 : -> Label.

*** dword1 is not equal to zero
*** BISTRO FRAGMENT 1
eq prog1 = push ebp ; mov ebp, esp ; mov esi, dword1 ;

test esi, esi ; je 401045 ; jmp l1 ;
label 401045 ; mov flag, 1 ; label l1 ; end.

*** BISTRO FRAGMENT 2
eq prog2 = push ebp ; push esp ; pop ebp ; mov esi, dword1 ;

or esi, esi ; je 401045 ; jmp l1 ; label 401045 ;
mov flag, 1 ; label l1 ; end.

endfm

*** should all be true
red exec prog1 of prog1 in s[[ebp]] is

exec prog2 of prog2 in s[[ebp]].
red exec prog1 of prog1 in s[[esp]] is

exec prog2 of prog2 in s[[esp]].

123

Detection of metamorphic and virtualization-based malware 243

red exec prog1 of prog1 in s[[stack]] is
exec prog2 of prog2 in s[[stack]].

red exec prog1 of prog1 in s[[flag]] is
exec prog2 of prog2 in s[[flag]].

red exec prog1 of prog1 in s[[zf]] is
exec prog2 of prog2 in s[[zf]].

red exec prog1 of prog1 in s[[sf]] is
exec prog2 of prog2 in s[[sf]].

red exec prog1 of prog1 in s[[pf]] is
exec prog2 of prog2 in s[[pf]].

red exec prog1 of prog1 in s[[cf]] is
exec prog2 of prog2 in s[[cf]].

red exec prog1 of prog1 in s[[of]] is
exec prog2 of prog2 in s[[of]].

A.3 Win95/Zperm example

fmod ZPERM is
pr I-64-JUMPS.

ops prog1 prog2 prog3 prog4 start2 start3 start4 :
-> InstructionSequence.

ops out l4 : -> Label.

*** ZPERM GENERATION 0
eq prog1 = mov eax, 0 ; mov ebx, 1 ; mov ecx, ebx ;

mov ebx, eax ; mov eax, ecx ; end.
*** ZPERM GENERATION 1
eq prog2 = label l1 ; mov ebx, eax ; mov eax, ecx ;

jmp out ; nop ; mov eax, 0 ; mov ebx, 1 ;
jmp l2 ; nop ; label l2 ; mov ecx, ebx ;
jmp l1 ; nop ; label out ; end.

*** ZPERM GENERATION 1 start point
eq start2 = mov eax, 0 ; mov ebx, 1 ; jmp l2 ; nop ;

label l2 ; mov ecx, ebx ; jmp l1 ; nop ;
label out ; end.

*** ZPERM GENERATION 2
eq prog3 = label l1 ; mov ebx, 1 ; jmp l2 ; nop ; label l2 ;

mov ecx, ebx ; jmp l3 ; nop ; label l4 ;
mov eax, ecx ; jmp out ; mov eax, 0 ; jmp l1 ;
label l3 ; mov ebx, eax ; jmp l4 ; label out ; end.

*** ZPERM GENERATION 2 start point
eq start3 = mov eax, 0 ; jmp l1 ; label l3 ; mov ebx, eax ;

jmp l4 ; label out ; end.
*** ZPERM GENERATION 3
eq prog4 = label l1 ; mov ecx, ebx ; mov ebx, eax ; jmp l2 ;

nop ; label l2 ; mov eax, ecx ; jmp out ; mov eax, 0 ;
jmp l3 ; nop ; label l3 ; mov ebx, 1 ; jmp l1 ; nop ;
label out ; end.

*** ZPERM GENERATION 3 start point
eq start4 = mov eax, 0 ; jmp l3 ; nop ; label l3 ; mov ebx, 1 ;

jmp l1 ; nop ; label out ; end.
endfm

123

244 M. Webster, G. Malcolm

*** should be equal to 1
red exec prog1 of prog1 in s[[eax]].
red exec start2 of prog2 in s[[eax]].
red exec start3 of prog3 in s[[eax]].
red exec start4 of prog4 in s[[eax]].
*** should be equal to 0
red exec prog1 of prog1 in s[[ebx]].
red exec start2 of prog2 in s[[ebx]].
red exec start3 of prog3 in s[[ebx]].
red exec start4 of prog4 in s[[ebx]].
*** should be equal to 1
red exec prog1 of prog1 in s[[ecx]].
red exec start2 of prog2 in s[[ecx]].
red exec start3 of prog3 in s[[ecx]].
red exec start4 of prog4 in s[[ecx]].

A.4 Virtualization detection example

mod METAMORPHIC is
pr I-64-SEMANTICS.

op "sidt" : -> EInt. *** "sidt" is a special integer
op s : -> Store.
var S : Store.

rl [1] : S => S ; mov ebx, "sidt".
rl [2] : S => S ; mov eax, ebx.
rl [3] : S => S ; mov ecx, ebx.
rl [4] : S => S ; mov eax, ecx.

endm

search [1000] in METAMORPHIC :
S =>+ S such that S[[eax]] is "sidt".

123

Detection of metamorphic and virtualization-based malware 245

References

1. Bruschi, D., Martignoni, L., Monga, M.: Detecting self-mutating
malware using control-flow graph matching. In: Büschkes, R.,
Laskov, P. (eds) Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA), vol. 4064 of
Lecture Notes in Computer Science, pp. 129–143. Springer,
Heidelberg (2006)

2. Bruschi, D., Martignoni, L., Monga, M.: Using code normalization
for fighting self-mutating malware. In: Proceedings of the Inter-
national Symposium on Secure Software Engineering (2006)

3. Bruschi, D., Martignoni, L., Monga, M: Code normalization for
self-mutating malware. IEEE Secur. Priv. 5(2), 46–54 (2007)

4. Chess, D.M., White, S.R.: An undetectable computer virus.
In: Virus Bulletin Conference, September (2000)

5. Chouchane, M.R., Lakhotia, A.: Using engine signature to detect
metamorphic malware. In: Proceedings of the Fourth ACM Work-
shop on Recurring Malcode (WORM), pp. 73–78 (2006)

6. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.:
Semantics-aware malware detection. In: Proceedings of the 2005
IEEE Symposium on Security and Privacy, pp. 32–46. ACM Press,
New York (2005)

7. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N.,
Meseguer, J., Talcott, C.: The Maude 2.0 system. In: Nieuwenhuis,
R. (ed.) Rewriting Techniques and Applications (RTA 2003),
number 2706 in Lecture Notes in Computer Science, pp. 76–87.
Springer, Heidelberg (2003)

8. Filiol, E.: Computer Viruses: from Theory to Applications, chap. 5,
pp. 151–163. Springer, Heidelberg (2005) ISBN 2287239391

9. Filiol, E., Josse, S.: A statistical model for undecidable viral detec-
tion. J. Comput. Virol. 3, 65–74 (2007)

10. Garfinkel, T., Adams, K., Warfield, A., Franklin, J.: Compatibil-
ity is not transparency: VMM detection myths and realities. In:
11th Workshop on Hot Topics in Operating Systems (HOTOS-X)
(2007)

11. Goguen, J.A., Malcolm, G.: Algebraic Semantics of Imperative
Programs. Massachusetts Institute of Technology (1996) ISBN
026207172X

12. Goguen, J.A., Malcolm, G. (eds.) Software Engineering with OBJ:
Algebraic Specification in Action. Kluwer, Boston (2000) ISBN
0792377575

13. Intel Corporation. Intel®64 and IA-32 Architectures Software
Developer’s Manual, November 2007. http://www.intel.com/
products/processor/manuals/index.htm Accessed 14 June (2008)

14. King, S.T., Chen, P.M., Wang, Y.-M., Verbowski, C., Wang, H.J.,
Lorch, J.R.: SubVirt: Implementing malware with virtual
machines. In: Proceedings of the 2006 IEEE Symposium on Secu-
rity and Privacy (2006)

15. Lakhotia, A., Mohammed, M.: Imposing order on program state-
ments to assist anti-virus scanners. In: Proceedings of Eleventh
Working Conference on Reverse Engineering. IEEE Computer
Society Press, New York (2004)

16. Meseguer, J., Roşu, G.: The rewriting logic semantics project.
In: Proceedings of the Second Workshop on Structural Operational
Semantics (SOS 2005), vol. 156 of Electronic Notes in Theoretical
Computer Science, pp. 27–56. Elsevier, Amsterdam (2005)

17. Meseguer, J., Roşu, G.: The rewriting logic semantics pro-
ject. Theor. Comput. Sci. 373(3), 213–237 (2007)

18. Moinuddin Mohammed.: Zeroing in on metamorphic computer
viruses. Master’s thesis, University of Louisiana at Lafayette
(2003)

19. Preda, M.D., Christodorescu, M., Jha, S., Debray, S.: A seman-
tics-based approach to malware detection. In: Proceedings of the
34th ACM SIGPLAN–SIGACT Symposium on Principles of Pro-
gramming Languages (POPL 2007) (2007)

20. Rutkowska, J.: Red Pill…or how to detect VMM using
(almost) one CPU instruction. http://www.invisiblethings.org/
papers/redpill.html, November 2004. Accessed 14 June 2008

21. Rutkowska, J.: Subverting Vista™ kernel for fun and profit.
Black Hat Briefings 2006, Las Vegas, USA, August 2006. http://
blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.
pdf Accessed 14 June 2008

22. Ször, P.: The new 32-bit Medusa. Virus Bulletin, December 2000
23. Ször, P.: The Art of Computer Virus Research and Defense. Addi-

son-Wesley, Resading (2005) ISBN 0321304543
24. Ször, P., Ferrie, P.: Hunting for metamorphic. In: Virus Bulletin

Conference Proceedings, 2001
25. Walenstein, A., Mathur, R., Chouchane, M.R., Lakhotia, A.: Nor-

malizing metamorphic malware using term rewriting. In: IEEE
International Workshop on Source Code Analysis and Manipula-
tion (SCAM 2006), 2006

26. Webster, M., Malcolm, G.: Detection of metamorphic computer
viruses using algebraic specification. J. Comput. Virol. 2(3), 149–
161, (2006). doi:10.1007/s11416-006-0023-z

27. Webster, M., Malcolm, G.: Detection of metamorphic and vir-
tualization-based malware using algebraic specification—Maude
specification, January 2008. http://www.csc.liv.ac.uk/~matt/pubs/
maude/2/ Accessed 14 June 2008

28. Webster M., Malcolm, G.: Detection of metamorphic and virtual-
ization-based malware using algebraic specification. In: Broucek,
V., Filiol, E. (eds.) 17th European Institute for Computer Anti-
virus Research Annual Conference Proceedings (EICAR 2008),
pp. 99–119, 2008

29. Yoo, I., Ultes-Nitsche, U.: Non-signature based virus detection:
towards establishing a unknown virus detection technique using
SOM. J. Comput. Virol. 2(3), (2006)

30. Yoo, I.: Visualizing Windows executable viruses using self-orga-
nizing maps. In: Proceedings of the 2004 ACM workshop on Visu-
alization and data mining for computer security, 2004

123

http://www.intel.com/products/processor/manuals/index.htm
http://www.intel.com/products/processor/manuals/index.htm
http://www.invisiblethings.org/papers/redpill.html
http://www.invisiblethings.org/papers/redpill.html
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://dx.doi.org/10.1007/s11416-006-0023-z
http://www.csc.liv.ac.uk/~matt/pubs/maude/2/
http://www.csc.liv.ac.uk/~matt/pubs/maude/2/

	Detection of metamorphic and virtualization-based malware using algebraic specification
	Abstract
	1 Introduction
	2 Specifying Intel 64 assembly language
	2.1 Specifying the syntax of Intel 64
	2.2 Specifying the semantics of Intel 64
	2.3 Specifying the semantics of (conditional) loops
	2.4 Specifications as interpreters, and virtualization

	3 Equivalence of programs
	3.1 Equivalence of states and programs
	3.2 Examples using Win9x.Zmorph.A
	3.3 Example using Win95/Bistro
	3.4 Example using Win95/Zperm

	4 Detecting metamorphism
	4.1 Dynamic analysis for detection of metamorphic code
	4.2 Static analysis for detection of metamorphic code

	5 Detection of virtualization by metamorphic code generation
	5.1 Virtual machine rootkits
	5.2 Detecting virtualization using the Intel 64 specification
	5.3 A note on tractability

	6 Conclusion
	6.1 Formal and informal approaches
	6.2 Future work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

