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Abstract Most of malware detectors are based on syntactic
signatures that identify known malicious programs. Up to
now this architecture has been sufficiently efficient to over-
come most of malware attacks. Nevertheless, the complexity
of malicious codes still increase. As a result the time requi-
red to reverse engineer malicious programs and to forge new
signatures is increasingly longer. This study proposes an effi-
cient construction of a morphological malware detector, that
is a detector which associates syntactic and semantic analy-
sis. It aims at facilitating the task of malware analysts provi-
ding some abstraction on the signature representation which
is based on control flow graphs. We build an efficient signa-
ture matching engine over tree automata techniques. More-
over we describe a generic graph rewriting engine in order to
deal with classic mutations techniques. Finally, we provide a
preliminary evaluation of the strategy detection carrying out
experiments on a malware collection.

1 Introduction

The identification of malicious behavior is a difficult task.
Until now, no technologies have been able to automatically
prevent the spread of malware. Several approaches have been
considered but neither syntactic analysis nor behavioral con-
siderations were really effective. Presently, human analysis
of malware seems to be the best strategy, malware detectors
based on string signatures remains the most reliable solution.
From this point of view, we have tried to easier the task
which consists in finding a good signature within a malicious
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program. Our technique has been inspired from the article
[6] where control flow graphs (CFG) are used to detect the
different instances of the computer virus MetaPHOR.

Generally speaking, detection strategies based on string
signatures uses a database of regular expressions and a string
matching engine to scan files and to detect infected ones.
Each regular expression of the database is designed to iden-
tify a known malicious program. There are at least three
difficulties tied to this approach. First, the identification of a
malware signature requires a human expert and the time to
forge a reliable signature is long compared to the time related
to a malware attack. Second, string signature approach can
be easily bypassed by obfuscation methods. Among recent
works treating this subject, we propose to see for example
[4,7,14]. Third, as the quantity of malware increases, the
ratio of false positives becomes a crucial issue. And remo-
ving old malware signatures would open doors for outbreaks
of re-engineered malware.

Thus, a current trend in the community is to design the
next generation of malware detectors over semantic aspects.
[9,11,20]. However, most of semantic properties are difficult
to decide and even heuristics can be very complex as it is
illustrated in the field of computer safety. For those reasons,
in [5] we propose to construct a morphological analysis in
order to detect malware. The idea is to recognize the shape of
a malicious program. Unlike string signature detection, we
are not only considering a program as a flat text, but rather
as a semantic object, adding a dimension to the analysis. Our
approach tries to combine several features: (a) to associate
syntactic and semantic analysis, (b) to be efficient and (c) to
be as automatic as possible.

Our morphological detector uses a set of CFG which plays
the role of a malware signature database. Next, the detection
consists in scanning files in order to recognize the shape
of a malware. This design is closed to a string signature
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based detector and so we think that both approaches may be
combined in a near future. Moreover, it is important to notice
that this framework makes the signature extraction easier.
Indeed, either the extraction is fully automatic when the
malware CFG is relevant, or the task of signature makers is
facilitated since they can work on an abstract representation
of malicious programs.

This detection strategy is close to the ones presented in
[9,6] but we put our strengths to optimize the efficiency of
algorithms. For that sake, we use tree automata, a generaliza-
tion to trees of finite state automata over strings [10]. Intui-
tively, we transform CFG into trees with pointers in order to
represent back edges and cross edges. Then, the collection
of malware signatures is a finite set of trees and so a regular
tree language. Thanks to the construction of Myhill-Nerode,
the minimal automaton gives us a compact and efficient data-
base. Notice that the construction of the database is iterative
and it is easy to add the CFG of a newly discovered malicious
program.

Another issue of malware detection is the soundness with
respect to classic mutation techniques. Here, we detect
isomorphic CFG and so several common obfuscations are
canonically removed. Moreover, we add a rewriting engine
which normalizes CFG in order to have a robust represen-
tation of the control flow with respect to mutations. Related
works are [6,8,20] where data flow of programs is also consi-
dered.

The design of the complete chain of process is summarized
by Fig. 1.

We also provide large scale experiments, with a collec-
tion of 10,156 malicious programs and 2,653 sane programs.

Fig. 1 Design of the control flow detector

Those results are promising, with a completely automatic
method for the signature extraction we have obtained a false
positive ratio of 0.1%.

This study is organized as follows. First we expose the
principles of CFG extraction and normalization. Then, we
present a matching engine for CFG that is based on tree auto-
mata. Finally we carry out some experiments to validate our
method.

2 CFG in x86 languages

Road-map. Since we focus on practical aspects we choose
to work on a concrete assembly language. This language is
close to the x86 assembly language. We detail how to extract
CFG from programs, we underline the difficulties that can
be encountered and we outline how they can be overcome
with classic methods. Finally, we study the problem of CFG
mutations. We propose to normalize the extracted CFG accor-
ding to rewriting rules in order to remove common muta-
tions.

An x86 assembly language. We present the grammar of the
studied programming language. The computation domain is
the integers and we use a subset of the commands of the
x86 assembly language. The important feature is that we
consider the same flow instructions as in x86 architectures,
as a result the method that we develop can be directly applied
to concrete programs.

Addresses N

Offsets Z

Registers R

Expressions E ::= Z | N | R | [N] | [R]
Flow instructions I

f ::= jmp E | call E | ret | jcc Z

Sequential instructions I
d ::= mov E E | comp E E | . . .

Programs P ::= I
d | I

f | P ; P

Next, a program is a sequence of instructions p = i0 ; . . . ;
in−1. The address of the instruction ik is k. In order to ease
the reading and without loss of generality, we suppose that
i0 is the first instruction to be executed, the address 0 is the
so called entry point of the program.

We observe that the control flow of programs is driven
by only four kinds of flow instructions. Given an instruction
ik ∈ I

f , the possible transfers of control are the following.

• If ik is an unconditional jump jmp e. The control is trans-
ferred to the address given by the value of the expression e.

• If ik is a conditional jump jcc x . If its associated con-
dition is true, the control is transferred to the address
k + x . Otherwise, the control is transferred to the address
k + 1.
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• If ik is a function call call e. The address k +1 is pushed
on the stack and the control is transferred to the value of
the expression e.

• If ik is a function return ret. An address is popped from
the stack and the control is transferred to this address.

Prerequisites. The extraction of a CFG from a program is
tied to several difficulties. First, we need access to the ins-
tructions of the program. As a result packing and encryption
techniques can thwart the extraction. This problem is part
of the folklore, indeed classical string signature detectors
also have to face those techniques. Many solutions such as
sand-boxes and generic unpackers have been developed to
overcome this difficulty. The presentation of those solutions
exceeds the scope of the current study then we refer to the
textbooks [12,13,18].

Second, we are confronted to obscure sequences of
instructions such as push a; ret which has the same
behavior as the instruction jmp a. This is also part of the
folklore and we will suppose that such sequences of instruc-
tions are normalized during the disassembly phase of the
extraction.

Third, the target addresses of jumps and function calls
have to be dynamically computed. For example, when we
encounter the instruction jmp eax we need the value of the
register eax in order to follow the control flow. In such cases
we rely on a heuristic (|e|) which provides the value of the
expression e if it can be statically computed. If the value
cannot be computed then (|e|) = ⊥. Such an heuristic can
be based on partial evaluation, emulation or any other static
analysis technique.

The extraction procedure. The control flow consists in the
different paths that might be traversed through the program
during its execution. It is frequently represented by a graph
named a CFG. The vertices stand for addresses of instructions
and the edges represent the possible paths that the control
flow can follow.

We suppose that we have access to the code of programs
and that we have an heuristic (| |) to evaluate expressions.
Table 1 presents a procedure to extract CFG from programs.
We observe that this procedure closely follows the semantics
of flow instructions. Indeed, the vertices of the CFG are labe-
led accordingly to the instruction at the night address and the
nodes are linked according to the possible control transfers.

• The symbol inst of arity 1 labels addresses of sequential
instructions. There is only one successor: the address of
the next instruction.

• The symbol jmp of arity 1 labels addresses of uncondi-
tional jumps. There is only one successor: the address to
jump to.

Table 1 Control flow graph extraction

Instruction CFG

in ∈ I
d

in = jmp e

(|e|) = k

in = call e

(|e|) = k

in = jcc x

Otherwise

• The symbol jcc of arity 2 labels addresses of conditional
jumps. There is two successors: the address to jump to
when the condition is true and the address of the next ins-
truction where the control is transferred when the condi-
tion is false.

• The symbol call of arity 2 labels addresses of function
calls. There is two successors: the address of the function
to call and the return address, that is the address of the
next instruction.

• The symbol end of arity 0 labels addresses of function
returns and undefined instructions. There is no successor.

The entry point of the program corresponds to the root of the
CFG.

Normalizing mutations. Our CFG representation is a rough
abstraction of programs. Indeed we do not make any distinc-
tion between the different kinds of sequential instruction, all
of them are represented by nodes labeled with the symbol
inst. This first abstraction level makes the CFG sound with
respect to mutations which substitutes instructions with the
same behavior. For example the replacement of the instruc-
tion mov eax 0 by the instruction xor eax eax does not
impact our CFG representation.

However, the soundness with respect to classic mutations
techniques remains an important issue. Indeed, some well
know mutation techniques can alter the CFG of malicious
programs. In order to recover a sound representation of the
control flow we apply reductions on CFG. A reduction is
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Table 2 Control flow graph reductions

Concatenate instructions Realign code Merge jcc

Fig. 2 A program and its CFG

defined by a graph rewriting rule. As a case study, we consider
three reductions associated to classic mutation techniques.
Of course several other reductions can be defined in order
to handle more mutations techniques. We use the following
reductions

• Concatenate consecutive instructions into blocks of
instructions.

• Realign code removing superfluous unconditional jumps.
• Merge consecutive conditional jumps.

Those abstractions can be defined through the graph rewriting
rules of Table 2. Figure 2 presents an assembly program and
its reduced CFG.

Table 3 presents mutations of the program of Fig. 2. All
of them have the same reduced CFG as the original program.

We remark that each rewriting rule impose a diminution
of the size of the rewritten graph then the reduction clearly
terminates. Moreover, since there is no critical pair we have
no problem of confluence. Nevertheless, normalizing muta-
tions through rewriting rules is a generic principle that could
be applied on sophisticated cases. Then, the issues of termi-
nation and confluence shall be carefully considered.

3 Efficient database

Road-map. Morphological detection is based on a set of
malware CFG which plays the role of malware signatures.
This collection of CFG is compiled into a tree automaton
thanks to a term representation. Since tree automata fulfill
a minimization property, we obtain an efficient representa-
tion of the database. Next, we apply this framework for the
sub-CFG isomorphism problem in order to detect malware
infections.

From graphs to terms. A path is a word over {1, 2}∗, we
write ε the empty path. We define the path order for any path
ρ, τ ∈ {1, 2}∗ and any integer i ∈ {1, 2} as follows.

ρ1 < ρ2 ρ < ρi ρ < τ ⇒ ρρ′ < ττ ′

A tree domain is a set d ⊂ {1, 2}∗ such that for any path
ρ ∈ {1, 2}∗ and any integer i ∈ {1, 2} we have

ρi ∈ d ⇒ ρ ∈ d

A tree over a set of symbols F is a pair t = (d(t), t̂ ) where
d(t) is a tree domain and t̂ is a function from d(t) to F.

We consider the set of symbols F = {inst, jmp, call,
jcc, ret} ∪ {1, 2}∗ and the trees overs this set. In such trees,
a nodes labeled by a path ρ = {1, 2}∗ is thought as pointers
to the night node of the tree. Then, a tree have two kinds of
nodes: the inner nodes labeled by symbols of {inst, jmp,
call, jcc, ret} and the pointer nodes labeled by path in

{1, 2}ρ . In the following we write
◦
d(t) the set of inner nodes

of the tree t , that is

◦
d(t) =

{
ρ

∣∣∣∣ρ ∈ d(t)
t̂(ρ) ∈ {inst, jmp, call, jcc, ret}

}

Next a tree t is well formed if for any paths ρ, τ ∈ d(t)

(
t̂(ρ) = τ

) ⇒
(

τ ∈ ◦
d(t) and ρ ≤ τ

)
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Table 3 Control flow graph
mutations Instruction substitution Block substitution Block permutation jcc obfuscation All in one

0: cmp eax 0 0: cmp eax 0 0: cmp eax 0 0: cmp eax 0 0: cmp eax 0

1: jne +7 1: jne +8 1: jne +7 1: jne +9 1: je + 2

2: mov ecx eax 2: push eax 2: mov ecx eax 2: mov ecx eax 2: jmp + 10

3: sub ecx1 3: pop ecx 3: dec ecx 3: dec ecx 2: push eax

4: mul eax ecx 4: dec ecx 4: mul eax ecx 4: mul eax ecx 3: pop ecx

5: cmp ecx 1 5: mul eax ecx 5: cmp ecx 1 5: cmp ecx 2 4: sub ecx 1

6: jne −3 6: cmp ecx 1 6: jne −3 6: ja − 3 5: mul eax ecx

7: jmp +2 7: jne −3 9: ret 7: cmp ecx 1 6: cmp ecx 2

8: mov eax 1 8: jmp +2 8: inc ecx 8: jne − 5 7: ja − 3

9: ret 9: inc ecx 9: jmp − 2 9: jmp + 2 8: cmp ecx 1

10: ret 10: inc ecx 9: jne − 5

11: ret 10: ret

11: mov ecx 1

12: jmp − 2

We observe that any CFG can be represented by a unique
well formed tree.

Tree automata. A finite tree automaton is a tuple A =
(Q, F, Q f ,�), where Q is a finite set of states, F is a set
of symbols, Q f ⊂ Q is a set of final states and � is a finite
set of transition rules of the type a(q1 . . . qi )→ q with a ∈ F

has arity i and q, q1, . . . , qi ∈ Q.
A run of an automaton on a tree t starts at the leaves and

moves upward, associating a state with each sub-tree. Any
symbol a of arity 0 is labeled by q if a → q ∈ �. Next, if
the direct sub-trees t1, . . . , tn of a tree t = a(t1, . . . , tn) are
respectively labeled by states q1, . . . , qn then the tree t is
labeled by the state q if a(q1, . . . , qn)→ q ∈ �. A tree t
is accepted by the automaton if the run labels t with a final
state. We observe that a run on a tree t can be computed in
linear time, that is O(n) where n is the size of t , that is the
number of its nodes.

For any automatonA, we writeL(A) the set of trees accep-
ted by A. A language of trees L is recognizable if there is a
tree automaton A such that L = L(A). We define the size
|A| of an automaton A as the number of its rules.

Tree automata have interesting properties. First, it is easy
to build an automaton which recognize a given finite set of
trees. This operation can be done in linear time, that is O(n)

where n is the sum of the sizes of the trees in the language.
Second, we can add new trees to the language recognized
by an automaton computing a union of automata, see [10].
Given an automaton A, the union of A with an automaton
A′ can be computed in linear time, that is O(|A′|).

Finally, for a given recognizable tree language, there exists
a unique minimal automaton in the number of states which
recognizes this language. This property ensures that the mini-
mal automaton is the best representation of the tree language.

Theorem 1 (from [10]) For any tree automaton A which
recognize a tree language L we can compute in quadratic
time (O(|A|2)) a tree automaton Â which is the minimum
tree automaton recognizing L up to a renaming of the states.

Building the database. We explain how this framework can
be used to detect malware infections. Suppose that we have a
set {t1, . . . , tn} of malware CFG represented by trees. Since
this set is finite, there is a tree automaton A which recognizes
it.

Next, consider the tree representation t of a given program.
Computing a run of A on t , we can decide in linear time if
this tree is one of the trees obtained from malware CFG. This
means that that we can efficiently decide if a program has the
same CFG as a known malware.

Finally, we can speed-up the detection computing the mini-
mal automaton which recognizes the language {t1, . . . , tn}.
From a practical point of view this is the most efficient repre-
sentation of the malware CFG database.

Detecting infections. Actually, when a malicious program
infects an other program, it includes its own code within the
program of its host. Then, we can reasonably suppose that
the CFG of the malicious program appears as a subgraph of
the global CFG of the infected program. As a result, we can
detect such an infection by deciding the subgraph isomor-
phism problem within the context of CFG.

First we have to observe that we are not confronted with
the general sub-graph isomorphism since CFG are graphs
with strong constraints. In particular the edge labeling pro-
perty and the constraint on symbolarity imply that a CFG
composed of n nodes accepts at most n subgraphs. As a result,
the sub-CFG isomorphism problem is not NP-complete. Then

123



268 G. Bonfante et al.

to detect sub-CFG it is sufficient to run the automaton on the
tree representations of any sub-CFG.

4 Experiments

Road-map. We consider the win32 binaries of VX Hea-
vens malware collection [2]. This collection is composed of
10,156 malicious programs. Then, we have collected 2,653
win32 binaries from a fresh installation of Windows Vista™.
This second collection is considered as sane programs.

Using those samples we experiments with our implemen-
tation of the morphological detector. We focus our atten-
tion on false positive ratios in order to validate our method.
Indeed, we have to know if it is possible to discriminate
sane programs from malicious ones only considering their
CFG. The following experimental results agree with this
hypothesis.

CFG extraction in practice. To overcome the difficulties
of CFG extraction we have chosen the following solutions

• In order to deal with crypted and packed samples, we use
the unpacking capabilities of ClamAV™[3].

• We have implemented a dynamic disassembler based on
the disassembler library Udis86 [1]. Our module is able
to follow the control flow and it keeps track of the stack
in order to remove push a; ret sequences.

• The evaluation heuristic (|e|) proceed as follows. When we
encounter a dynamic flow instruction, we emulate the pre-
ceding block of sequential instructions in order to recover
the value of the expression e. Our emulation technology
is also build over Udis86. It is limited to a subset of the
x86 assembly language, interruptions and system calls
are not taken into account.

• We reduce the obtained CFG according to the rules of
Table 2.

Figure 3 gives the sizes of the reduced CFG extracted from
the programs of those collections. On the X axis we have the
upper bound on the size of CFG and on the Y axis we have
the percentage of CFG whose size is lower than the bound.

We observe that about 5% of the database are programs
with a non valid PE header, they produce an empty graph.
Then we are able to extract a CFG of more that 15 nodes from
about 65% of the samples. The remaining 30% produces a
CFG which has between 1 and 15. We think that those graphs
are too small to be relevant. We are currently working on this
part of the samples to improve our extraction procedure.

Building the database. The size of malware CFG clearly
impact the accuracy of the control flow detector. We have
observed that the graphs extracted from some malware were

Fig. 3 Sizes of control flow graphs

too small to be relevant and the resulting detector makes
many false alerts because of a few such graphs. As a result,
we impose a lower bound on the size of the graphs that we
include in the database. Next, we have done several tests
using different lower bounds.

Let N ∈ N be the lower bound on the size of CFG. We
build the minimized automaton AN

M
which recognizes the

set of tree representations of reduced malware CFG that are
composed of more than N nodes. We define the morpholo-
gical detector DN

M
as a predicate such that for any program

p ∈ P we have DN
M

(p) = 1 if a malware CFG appears as
a subgraph of the CFG of p and DN

M
(p) = 0 otherwise. We

have seen in the previous sections that DN
M

can be decided
using AN

M
.

This design has several advantages. First, when a new
malicious program is discovered, one can easily add its CFG
to the database using the union of tree automata and a new
compilation to obtain a minimal tree automaton.

The computation of the ‘not minimal’ automata takes
about 25 min. The minimization takes several hours but this
delay is not so important. Indeed, within the context of an
update of the malware database, during the minimization we
can release the ‘not minimal’ automaton. Indeed, even if this
is not the best automaton it still recognize the malware data-
base and it could be used until the minimization is terminated.

Evaluation. We are interested in false positives, that is sane
programs detected as malicious. For that, we have collec-
ted 2,653 programs from a fresh installation of Windows

Vista™. Let us note S this set of programs. Let N ∈ N be a
lower bound on the size of malware CFG, we consider the
following approximation of the false positives of the detector
DN

M

False positives
{

p | DN
M

(p) = 1 and p ∈ S

}

We do not evaluate false negatives, that is undetected
malicious programs. Indeed, by construction all malicious
programs of our malware collection are detected by the mor-
phological detector. Nevertheless, this methods seems pro-
mising for this aspect. Indeed, the study [6] has shown that

123



Architecture of a morphological malware detector 269

Table 4 Results of the experiments

Lower bound False positives (%) Undetected (%)

1 100.00 4.80

2 83.78 5.43

3 76.82 16.43

4 76.77 16.66

5 57.98 20.01

6 34.84 21.50

7 20.57 23.34

9 12.06 24.43

10 2.17 26.47

11 2.04 27.78

12 1.60 29.35

13 0.71 30.74

15 0.09 36.52

a CFG based detection allows to detect the high-obfuscating
computer virus MetaPHOR with no false negative.

However, the presence of the lower bound on the size of
malware CFG that enter in the database implies that some
malware are undetected. Those can be considered as false
negatives, even if they are more related to the technical
problem of CFG extraction than to the method of morpholo-
gical detection. The results of the experiments mention this
ratio of undetected malware.

Experimental results. We have built tree automata from the
malware samples considering different lower bounds N on
the size of CFG. According to the previous section we obtain
the morphological detectors DN

M
. We have tested those detec-

tors on the collection of saneware in order to evaluate the false
positives. It takes about 5 h 30 min to analyze the collection of
saneware, this represents the analysis of 2′319′294 sub-CFG.
Table 4 presents the results. The first column indicates the

considered the lower bound N . The second column indicates
the ratio of false positives that is the number of sane pro-
grams detected as malicious out of the total number of sane
programs. The third column indicates the ratio of undetected
malicious programs that is the number of malware samples
with a CFG size lower than the bound out of the total number
of malware samples.

4.1 Analysis

As expected, we observe that the false positives decrease with
the lower bound on the size of CFG. Over 15 nodes, the CFG
seems to be a relevant criterium to discriminate malware.

Concerning the remaining false positives. The libraries
ir41_qc.dll and ir41_qcx.dll, and the malicious pro-
gram Trojan.Win32.Sechole have the same CFG com-
posed of more than 1′000 nodes. We have tested those
programs with commercial antivirus software and the libra-
ries ir41_qc.dll and ir41_qcx.dll are not detected
whereas the program Trojan.Win32.Sechole is detected
as malicious. This malicious program seems to be based on
the dynamic library and the extraction algorithm was not able
to extract the CFG related to the payload.

Concerning the ratio of undetected malware, the only way
to improve the detector is to implement a better heuristic for
CFG extraction. In its current version our prototype only use
a few heuristics.

For comparison, statistical methods used in [16] induce
false negatives ratios between 36 and 48% and false positive
ratios between 0.5 and 34%. A detector based on artificial
neural networks developed at IBM [19] presents false nega-
tives ratios between 15 and 20% and false positive ratios
lower than 1%. The data mining methods surveyed in [17]
present false negatives ratios between 2.3 and 64.4% and false
positive ratios between 2.2 and 47.5%. Heuristics methods
from antivirus industry tested in [15] present false negatives
ratios between 20.0 and 48.6% and false positive ratios lower
than 0.2%.
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