
J Comput Virol (2009) 5:271–282
DOI 10.1007/s11416-008-0103-3

ORIGINAL PAPER

IDS alerts correlation using grammar-based approach

Safaa O. Al-Mamory · Hongli Zhang

Received: 5 April 2008 / Revised: 15 July 2008 / Accepted: 28 July 2008 / Published online: 15 August 2008
© Springer-Verlag France 2008

Abstract Intrusion Detection System (IDS) is a security
technology that attempts to identify intrusions. Defending
against multi-step intrusions which prepare for each other is a
challenging task. In this paper, we propose a novel approach
to alert post-processing and correlation, the Alerts Parser.
Different from most other alert correlation methods, our app-
roach treats the alerts as tokens and uses modified version of
the LR parser to generate parse trees representing the scenarii
in the alerts. An Attribute Context-Free Grammar (ACF-
grammar) is used for representing the multi-step attacks.
Attack scenarii information and prerequisites/consequences
knowledge are included together in the ACF-grammar
enhancing the correlation results. The modified LR parser
depends on these ACF-grammars to generate parse trees.
The experiments were performed on two different sets of
network traffic traces, using different open-source and com-
mercial IDS sensors. The discovered scenarii are represented
by Correlation Graphs (CGs). The experimental results show
that Alerts Parser can work in parallel, effectively correlate
related alerts with low false correlation rate, uncover the
attack strategies, and generate concise CGs.

1 Introduction

The study of Intrusion Detection System (IDS) has become
an important aspect of network security. As soon as the IDS
detects a set of attacks it will generate many alerts referring

S. O. Al-Mamory (B) · H. Zhang
School of Computer Science and Technology,
Harbin Institute of Technology, 150001 Harbin, China
e-mail: safaa_vb@yahoo.com

H. Zhang
e-mail: zhl@pact518.hit.edu.cn

to as security breaches. Unfortunately, it provides unmanage-
able amount of alerts. It has been estimated that up to 99% of
these alerts are false positives alerts [1]. The main reasons for
triggering false alerts are: runtime limitations of IDSs, speci-
ficity of detection signatures, dependency on environment
[2], the difficulty to define precisely the boundary between
abnormal and normal activities, and IDS isolation from the
rest of the system and the network [3].

Many methods to deal with alerts are available, but main
objectives of these investigations are: to reduce the amount
of false alerts [2,4], to study the cause of these false positives
[5], to recognize high-level attack scenarii [6–11], and finally
to provide a coherent response to attacks, understanding the
relationship among different alerts. In this paper, we focus
on the methods that recognize high-level attack scenarii. Our
method aims to construct the multi-step attacks from the raw
alerts by parsing the alerts using the modified Left-to-Right
(LR) Parser algorithm. The architecture of our system can
be seen in Fig. 1. The distributed sensors over the protected
network generates alerts and then forward them to the cen-
tral alerts database. After correcting the time order of the
alerts in the database, the alerts are fed into our Alerts Parser
correlator to recognize the multi-step attacks. Alerts Parser
generates Correlation Graphs (CGs) describing the detected
scenarii and then forwards them to the security analyst to
make the appropriate reaction decision.

We can compare the role of IDS to the lexical analyzers
role, where the lexical analyzer issues tokens, but it does not
know the relations connecting them. This is the situation in
IDS behavior where it triggers many separated attacks while
neglecting the relationships among them. In the same way,
the problem of scenario discovery seems to be like the parser
problem which tries to find the correct sequence of tokens
and to which grammar each token belongs. The comparison
between Alerts Parser phases and compiler phases is depicted

123

272 S. O. Al-Mamory, H. Zhang

Fig. 1 Raw alerts generated by distributed sensors are stored in a cen-
tral database. The alerts (after reordering) will be forwarded to Alerts
Parser which produces CGs. The reaction by the security analyst would
depend on the resulted CGs

Fig. 2 Alerts Parser has three phases. Each phase has a similar phase
in the compiler phases

in Fig. 2. In this paper, a novel alerts correlation method is
proposed depending on LR parser. The standard LR parser
algorithm is modified to meet scenario recognition require-
ments. The Alerts Parser compose of three phases as can be
seen in Fig. 2. In the first phase, the raw alerts are fed to the
modified LR parser to construct attack scenarii. The second
phase tries to connect the resulted (may be separated) sce-
narii. Finally, the third phase converts the resulted scenarii to
CGs. Instead of repairing a broken scenario afterwards [6],
our method can tolerate missed attacks at the same correla-
tion time.

The more information fed into the correlation system,
the better the accuracy is obtained. Alerts can be correlated
based on similar attributes [12], attack signatures [13],
prerequisites/consequences knowledge [6,9], and vulnera-
bilities information [11]. We encode the attack signature
information and prerequisites/consequences knowledge into
Attribute Context-Free Grammar (ACF-grammar). The pre-
requisites/consequences knowledge [9] is used here as attri-
butes (in the semantic rules) to enhance alerts correlation and
to mitigate the influence of false correlations. In addition,

the similarity between alerts attributes are used. The ACF-
grammars are converted to LR tables. Alerts Parser would
use the LR tables to construct scenarii.

We report experimental results on the DARPA 2000 DDoS
evaluation datasets [14] and DEFCON 8 Capture The Flag
(CTF) datasets [15]. Our experiments shows that Alerts
Parser can work parallel, effectively correlate related alerts
with low false correlation rate, uncover the attack strategies,
and generate concise CGs.

The remainder of this paper is organized as follows. In
Sect. 2, we review related works. In Sect. 3, we state how
to represent the attack scenarii by ACF-grammar. In Sect. 4,
we propose Alerts Parser correlator to discover multi-step
attacks from raw alerts. We report experimental results in
Sect. 5, discuss the contributions and the results of this paper
in Sect. 6, and present conclusions and future work in Sect. 7.

2 Related works

Many alert aggregation and correlation approaches have
recently been proposed with the goal of reducing the false
alerts rates of the IDSs and building attack scenarii to recog-
nize attack plans. Dain et al. [7] used data mining approach
to combine the alerts into scenarii in real time. Qin et al. [8]
presented an alert correlation system combining a Bayesian
correlation with a statistical correlation using a time series-
based causal analysis algorithm. The probabilistic alert cor-
relation system [12] based on the similarities between alerts
to correlate the alerts. Measures have been defined to eval-
uate the degree of similarity between two alerts. The work
of Julisch [5] outlines an effective approach to reduce false
positives in sensor reports by clustering alerts, then using the
clusters to discover and understand the root causes of false
alerts.

The Morin et al. model (M2D2) [16] has provided con-
cepts and relations relevant to the information system secu-
rity. It relies on a formal description of sensor capabilities
in terms of scope and positioning, to determine if an alert
is false positive. This model can be used to facilitate event
aggregation and correlation.

Several researchers have studied automated generation of
attack graphs [17–19]. They used vulnerability information
instead of IDS alerts to construct high-level attack graphs.
The attack graph represents the possible intrusion paths.

The work of Ning et al. [9] generates CGs depending on
prerequisites/consequences knowledge (pre/con for short) of
individual alerts. They proposed a correlation model based
on the inherent observation that most intrusions consist of
many stages, with the early stages preparing for the later ones.
The correlation model is built upon two aspects of intrusions
that are, pre/con knowledge. With knowledge of pre/con,
their model can correlate related alerts by finding causal

123

IDS alerts correlation using grammar-based approach 273

Table 1 Classes of alerts represent stages in the multistage attacks

Classes Abbreviations

Enumeration EN

Host Probe HP

Service Probe SP

Service Compromise SC

User Access UA

Root or Administrator Access RAA

SYstem Compromise SYC

Sensitive Data Gathering SDG

Active Communication Remote ACR

Trojan Activity TA

Availability Violation AV

Integrity Violation IV

Confidentiality Violation CV

relationships between them. They used hyper alert correla-
tion graphs to represent the alerts, where the nodes represent
hyper alerts and the edges represent prepare for relation.

With the same lane to the related works, a novel correla-
tion method is proposed, which depends on encoding scenarii
information in ACF-grammars, then uses parsing techniques
to extract attack scenarii from alerts. To the best of our knowl-
edge, the use of LR parser techniques has not been addressed
in the correlation problem.

3 Attack scenarii modelling

In this section, we will state how the ACF-grammar can rep-
resent the multi-step attacks, we define the terminals and non-
terminals in this ACF-grammar, and the attributes assigned
with these terminals and nonterminals.

The alerts can be classified into groups that most effec-
tively indicate their stages in multistage attacks. An alert can
be part of multiple classes. Each class has its name indicat-
ing the general category; the set of classes will be denoted
by CLS. Table 1 presents the classes which belong to CLS.
Many types of Snort IDS [20] alerts and RealSecure IDS
[21] alerts have been manually classified and their descrip-
tion had been taken from [22,23], respectively. These classes
represent the nonterminals in the ACF-grammar whereas the
alerts represent the terminals of the ACF-grammar.

Definition 1 A context-free grammar CF-grammar is a
quadruple such that CF-grammar = <N, T, P, S > , where N
is a finite set of nonterminals which belong to CLS and they
usually start with capital letters, T is a set of terminals rep-
resenting the alerts and the terminals start with small letters,
P is a finite set of productions, and S is the start symbol of the
CF-grammar which represents the scenario name; unusually,
S /∈ N.

Definition 1 formally describes the CF-grammar from the
point of view of attack scenario. An element in V = N∪T is
called CF-grammar symbol. The productions in P are pairs of
the form X → α, where X ∈ CLS and α ∈ V*. In other way,
the left hand side symbol (LHSS) X is a nonterminal, and the
right hand side symbol (RHSS) α is a string of CF-grammar
symbols. An empty RHSS (empty string) is denoted by
an ε.

Definition 2 An Attribute context-free grammar ACF-
grammar consists of three elements, a CF-grammar, a finite
set of attributes Att, and a finite set of semantic rules R. The
set of attributes Att includes the prerequisites/consequences
knowledge and the attributes of the alerts. Thus ACF-
grammar = <CF-grammar, Att, R >.

A finite set of attributes Att(X) is associated with each sym-
bol X ∈ V. The set Att(X) is partitioned into two disjoints sub-
sets, the inherited attributes and the synthesized attributes.
The synthesized attributes move the data flow upwards and
the inherited attributes move the data flow downwards in the
derivation tree during the attribute evaluation process. In our
model, we only used the synthesized attributes.

The production p ∈ P, p : Y j → X1 . . . Xm (m ≥ 1), has an
attribute occurrence Xi .a, if a ∈ Att(Xi), 1 ≥ i ≥ m. A finite
set of semantic rules is associated with each production p. We
have classified these semantic rules, in our implementation,
into two types: copy rules and check rules. The copy rule,
as its name, copies the attribute value from Xi to Y j , where
Xi , Y j ∈ V. The check rule checks for some conditions to
be satisfied. The prerequisites/consequences knowledge [9]
is used here as attributes to enhance alerts correlation and to
mitigate the influence of false correlations.

Example 1 Consider a scenario in which the attacker probes
the hosts to see which one is active, probes the services,
compromises a service, installs a Trojan and launches it, and
finally uses this Trojan to launch a DDoS attack. This scenario
can be noted in DARPA 2000 scenario based datasets [14].
The ACF-grammar representing this scenario is depicted in
Fig. 3. The alert messages in this figure were generated using
RealSecure IDS [21].

As shown in Fig. 3, The AV, in the last production, is
presented without a loop and the ε rule, assuming that it is
neither can be missed nor be duplicated (RealSecure IDS
triggers one alert for this attack). Moreover, the frequently
use of the ε makes this scenario capable of accepting only
the last attack. For this reason, a combination of the first
production’s nonterminals can be used to solve this problem.
All the semantic rules in this figure are copy rules except
for the first production’s rules which are check rules. This
modeling has the capability of detecting new combinations
of attacks because the focusing is on alerts classes instead of
alerts themselves.

123

274 S. O. Al-Mamory, H. Zhang

Fig. 3 One multi-step attack
from DARPA 2000 datasets [14]
is represented here using
ACF-grammar

The attack scenario is a set of malefactor’s intentions par-
tially ordered in time. Each malefactor’s intention, either can
be detected by the IDS as an alert message or it can be missed.
We can use (Intention → a1 Intention |a2 Intention |. . .|an

Intention |ε) as a template to represent each intention where
ai represents the alert message. Some points can be noted
from this template. First, the attacker may try to do the same
intention using different ways until he succeeds; in this case
the IDS may generate different alerts messages. Moreover,
the security analyst may use different IDSs (which can trig-
ger different alert messages referring to the same intention)
to monitor the network. Consequently, we put the LHSS after
each alert message to allow the loops. Second, we put the ε

in this template to pass the missed attacks by the IDS.
The attack scenarii are represented by CF-grammars

making the rules writing and updating an easy task. Solv-
ing several simpler problems is often easier than solving one
complicated problem. We can construct individual produc-
tion for each intention as we noted above. Next, these indi-
vidual productions can be easily merged into a CF-grammar
for the original scenario and then adding the main production
(ScenarioName → I1 I2 ,. . ., Ik), where the variables Ii are
the start variables for the individual productions (or individ-
ual intentions). The order of intentions in the right hand side
of this rule refers to their time order. Some helpful techniques
for building the CFG are presented in [24].

All multi-step attacks can be represented by regular gram-
mars. The state transition is an efficient method to represent
penetrations where a penetration is viewed as a sequence of
actions performed by an attacker that leads from some initial
state on a system to a target compromised state [25]. The
state transition (or finite automata) can be easily converted
to a grammar [24,26]; in this case, all resulted grammars are
regular grammars. For this reason we have used the regular
grammar in our modeling to represent attack scenarii.

The resulted regular grammars are then converted to LR
tables which are the basic information used by the modified

LR parser to construct the attack scenarii presented in the
alerts. There are many types of LR parser; i.e. LR, Simple
LR (SLR for short), and Look Ahead LR (LALR) [26]. While
parser generators use the most complex method (LALR), we
used SLR parser because it is easy to implement. Moreover,
the main difference between these parsers is the speed of
detecting the errors and we have deleted the error action in
the modified LR parser. The resulted SLR tables are sparse;
as a result, we represented them by linked lists in order to
save memory.

We selected CF-grammars to model the attacks because
they offer significant advantages. First, a CF-grammar gives
a precise, yet easy to understand, specification of the scenarii.
Second, an efficient parser can be automatically constructed
for the CF-grammars [26]. And finally, scenarii evolve over
a period of time, and they can be added more easily when
there is an existing implementation based on grammatical
description.

The using of ambiguous CF-grammars causes conflicts in
the LR tables, which should be avoided when building the
parsers. The conflict occurs when some finite automata states
suggest two actions at the same time. There are three types
of conflicts which are shift/shift, shift/reduce, and reduce/
reduce conflicts. However, the shift/shift conflict occurence
is rare, while shift/reduce and reduce/reduce conflicts can be
avoided by using look-ahead family of parsers like LR(1)
[27].

There is no general procedure to eliminate ambiguity
from CF-grammar. However, in some cases, it is still pos-
sible to rewrite the CF-grammar to produce unambiguous
CF-grammar. Rewriting an unambiguous CF-grammar to
eliminate conflicts is somewhat of an art. Some techniques
may help to remove ambiguity from CF-grammars, like
changing from left-recursive to right recursive, left factor-
ing, etc. [28]. It should be noted that we used only regular
grammars. For any ambiguous regular grammar, there exists
an unambiguous regular grammar [29].

123

IDS alerts correlation using grammar-based approach 275

4 Alerts Parser correlator

In this section, we present Alerts Parser correlator which
processes the alerts produced by various IDS sensors, to
produce CGs. The Alerts Parser core depends on one of the
shift-reduce parser techniques, and Sect. 4.1 describes the
shift-reduce parser techniques in details. Due to the reason
that Alerts Parser receives alerts from different IDS
sensors (i.e. Snort and RealSecure), the temporal character-
istic of alerts are typically imprecise. Consequently, Sect. 4.2
discusses the alerts time constraint. To study the relation
among the attacks, parsed by Alerts Parser Sect. 4.3 defines
addresses similarity. Finally, the modified LR parser algo-
rithm used by Alerts Parser is presented in Sect. 4.4.

4.1 Shift-reduce parser

Parsing is the process of determining if terminals string can
be generated by a CF-grammar. The parser is capable of con-
structing the parse trees. Most parsing methods fall into one
of two classes, called the top-down and bottom-up meth-
ods. Bottom-up parsing methods can handle a larger class of
grammars than top-down methods [26]. For this reason we
selected the bottom-up parsing methods, which is the shift-
reduce method.

Shift-reduce parser attempts to construct a parse tree for
an input string beginning at the leaves (the bottom) and work-
ing up towards the root (the top). While the parser primary
operations are shift and reduce, there are actually four pos-
sible actions the shift-reduce parser can make: shift, reduce,
accept, and error.

Initially, the stack (which uses $ as bottom marker) is
empty and the string to be parsed is on the input buffer. The
parser operates by shifting zero or more input symbols onto
the stack until a handleβ is on top of the stack. The parser then
reduces β to the LHSS of the appropriate production. The
parser repeats this cycle until it detects an error or the stack
contains the start symbol and the input string is empty. After
entering this configuration, the parser halts and announces
successful completion of parsing.

The LR parser is a shift-reduce parser which has the
importance and popularity for many reasons [26]. First, this
technique can be used to construct parsers that recognize
context-free languages. Second, LR parsers are predictive
descent parsers, i.e., they avoid the use of backtracking which
is quite expensive and slow. Third, grammars amendable
to LR parsing are more powerful than grammars that can
be parsed by other predictive parsers. Finally, no other
left-to-right input scanner can detect a syntax error in the
input string as fast as the LR parsers.

Synthesized attributes can be evaluated by the LR parser
as the input is being parsed. The parser can keep the val-
ues of the synthesized attributes (which are associated with

the CF-grammar symbols) on its stack. Whenever a reduc-
tion is made, the values of the new synthesized attributes are
computed from the attributes appearing on the stack for the
RHSSs of the reducing production [26].

4.2 Time constraint of alerts

When using different IDS sensors to monitor a real network,
alerts order becomes a critical issue. A number of factors
affect the timestamp of alerts such as clock discrepancy of
IDSs, network delay, IDS system workload, etc. [30]. The
correct order of alerts has an influence on the correctness of
the Alerts Parser.

To solve this problem, we used the conservative approach
proposed by Wang et al. [11]. They classified the alerts to con-
current and non-concurrent alerts depending on tcon thresh-
old; the real problem is with the concurrent alerts. They
addressed this problem by reordering alerts inside a time win-
dow before feeding them to the correlation engine; assuming
the delays are bounded by a threshold tmax . They postponed
the processing of an alert a1 with a timestamp t1 until tmax

time has passed since the time of receiving a1. Then, the
postponed alerts are reordered so they arrive at the corre-
lation engine in the correct order [11]. There is a trade off
between the performance and the correlation effectiveness
when setting the value of tcon .

4.3 Addresses similarity

An alert A can be characterized by a set of features. Assume
that A. fi represents the i th feature of an alert A. The used
features in this paper are: alert type, source IP, target IP, and
time stamp; where alert type is the subattack name, source
IP is usually the address of the attacker, target IP is usually
the address of the victim, and time stamp is the time infor-
mation. The alerts table is denoted by T. We consider only
IPv4 addresses.

Definition 3 The addresses similarity between any two
alerts can be computed as follows: IP_Sim(Ai , A j) =
Sim(Ai.SrcI P , A j.SrcI P) + Sim(Ai.Dst I P , A j.Dst I P) + Sim
(Ai.Dst I P , A j.SrcI P), where: (1) Sim(Ai.SrcI P , A j.SrcI P)
and Sim(Ai.Dst I P , A j.Dst I P) are the source and target IP
similarities respectively; (2) Sim(Ai.Dst I P , A j.SrcI P) also
checks if Ai.Dst I P is similar to A j.SrcI P ; this feature is neces-
sary because sometimes the attacker uses one victim as a step
stone to compromise other victims; These measures compute
the common similar bits of any two IP addresses from the left
then the result is divided by 32; (3) Ai .time ≤ A j .time.

Assume that we want to compute the similarity between
two source IP addresses Sim (192.168.0.1,192.168.2.8), then
the computation of similarity will be as follows:

123

276 S. O. Al-Mamory, H. Zhang

Fig. 4 The LR parsing framework is modified to be suitable for alerts
correlation. The SLR tables and alerts are fed to the parser. The detected
scenarii are forwarded to the second phase for more process

11000000.10101000.00000000.00000001
11000000.10101000.00000010.00001000

The number of common similar bits (the underlined bits)
from the left is 22; as a result, the value of this measure will
be 22/32 = 0.688. Some attacks (like Mstream_Zombie)
use the broadcast address such as 255.255.255.255 which
has a special treatment. It gets a maximum similarity with
any IP address because it is forwarded to all computers in the
network.

4.4 The LR parser to correlating alerts

We used the Alerts Parser to discover the multi-step attacks
presenting in the raw alerts. The Alerts Parser core is the LR
parser. The LR parser has stringent style. Consequently, we
performed some modifications to make it flexible. First, we
eliminated the error action because it is undesirable in the
scenario recognition process. The use of ε (i.e. the empty
string) was to pass the missed attacks and to avoid the error
action. Second, instead of using one SLR table, we used many
SLR tables each contains one or more scenarii (one SLR table
for each CF-grammar). Finally, we used many stacks (instead
of single stack) which are created dynamically depending on
the number of scenarii in the alerts. The modified LR parser
can be shown in Fig. 4.

Each scenario can be represented by a CF-grammar or
sometimes the CF-grammar can contains some scenarii. The
SLR table should be built for each CF-grammar; it represents
the scenario template. The scenario template is denoted here
by TPLT and the set of scenario templates by ST P LT .

Definition 4 Given ST P LT , the modified LR parser repre-
sents each resulting scenario by a stack. The stack STK is
seven tuples = <V, State, Att_Val, Reference, SourceIP, Tar-
getIP, Step Stone >, where State represents the current state of

Fig. 5 The main procedures of the Alerts Parser

a finite machine, Att_Val is the value of synthesized attribute
for V, Reference is an array of alerts indices, and Step Stone
is the intermediate victims. The last three elements are the
properties of the STK. The set of the STKs is denoted by SST K .

When a new alert becomes available, it is first being
checked against the existing SST K using IP_Sim function
and the State on the top of each STK. It can be added to more
than one STK if these conditions have frequently satisfied.
We called this checking as STK_Selection. Before shifting
the new alert to any stack, the semantic rules can be used
to check the consistency of the new alert with the compared
stack. If the STK_Selection fails to find any STK, then a new
STK will be created. The main Alerts Parser procedures can
be shown in Fig. 5.

The role of $ symbol is to enforce the LR parser to check if
some scenarii (i.e. STKs) are completed in order to send them
to the second phase. This can be done by inserting dummy
$ symbols (in addition to the last $ symbol) between alerts
to detect the completed scenarii as soon as possible. This
insertion removes the completed STKs.

One advantage of the Alerts Parser is the capability of
working in parallel where the ST P LT can be partitioned and
distributed over many processing units. In other words, each
processing unit will have a subset of ST P LT . The detected
scenarii will be forwarded to central processing unit to com-
plete the second phase. The second phase tries to connect the
resulting scenarii. Refer to Sect. 5.3 for more details.

123

IDS alerts correlation using grammar-based approach 277

Sometimes, the single scenario spread over more than one
STK; as a consequence, the second phase connects the sep-
arated scenarii. The third phase receives the detected attack
scenarii as input and uses Graphviz package [31] to visualize
them.

Alerts Parser time complexity is related to the number
of alerts and the number of scenarii in the alerts. The time
for processing each new alert with STK_Selection function
is linear in (SST K). It is well known that LR parser has a
linear time complexity [26]. Consequently, the total time
complexity of the scenario recovery procedure (Fig. 5) is
O(n*(ST P LT +SST K)) where n is the number of alerts.

Two optimizations points can be noticed: first, ST P LT

is related to the network vulnerabilities which are limited.
Some attack graph methods can generate the scenarii (which
the network is vulnerable to) automatically [32]. Second,
the dealing with flooding alerts makes the performance of
STK_Selection function decreasing as more and more alerts
received. Depending on site policy, they are either neglected
(such as HP alerts) or aggregated.

5 Experimental results

This section describes the experiments conducted to
evaluate our system. The Alerts Parser was tested on an
AMD Athelon processor 2.01 GHz with 512 RAM running
Windows XP. We used two different IDS sensors: RealSecure
6.0 [21] and Snort 2.6.1 [20]. Two sets of experiments were
performed. The first set of experiments was conducted with
the DARPA 2000 scenario specific datasets [14]. The sen-
sor alerts reported by RealSecure and Snort sensors on these
datasets were forwarded to Alerts Parser to test system effec-
tiveness and to show its ability to differentiate true and false
alerts. We used DARPA 2000 datasets for this purpose
because they have well known attack scenarii, which can
be referenced in the included description or previous work,
such as [9].

For the second set of experiments, DEFCON 8 CTF
datasets [15] and the DARPA 2000 datasets were chosen.
DEFCON 8 CTF datasets contain intensive attacks launched
by competing hackers. We chose this datasets to test the per-
formance of Alerts Parser because they have a high alert rate
(about 41 alerts per second) [33]. Snort was used with this
set of experiments to test system performance.

5.1 Effectiveness tests

The datasets in this set of experiments are the DARPA 2000
datasets from MIT Lincoln Laboratory [14]. They consist
of two multi-step attack scenarii, namely LLDDoS 1.0 and
LLDDoS 2.0.2. LLDDoS 1.0 contains a series of attacks
in which the attacker probes the network, probes the active

hosts for Solaris Sadmind, breaks into these hosts with their
vulnerabilities, installs the Mstream DDos software on the
three compromised hosts, and actually launches a DDos
attack against a victim server. LLDDoS 2.0.2 includes a sim-
ilar sequence of attacks run by a more sophisticated attacker.
Four sets of experiments were performed, each with either
the DMZ or the inside network traffic of one dataset. The
objective of this set of experiments is to demonstrate the
effectiveness of the proposed approach in scenario recovery.
The RealSecure and Snort sensors were used in this set of
experiments.

At the very beginning, the generated alerts from RealSe-
cure and Snort were saved in alerts repository. Then, we used
the approach mentioned in Sect. 4.2 to process the timestamp
attribute. Hereafter, these alerts were fed to the Alerts Parser
to construct the attack scenarii. Alerts Parser depends on
SLR tables which were built as stated in Sect. 3. Our exper-
iments with DARPA 2000 datasets shows results like the
described one in [9], validating the correctness of our corre-
lation method.

The CG which is discovered from the LLDDoS 1.0 inside
zone can be seen in Fig. 6. Each node in this figure represents
a subattack (i.e., CF-grammar nonterminal); the text inside
the nodes is the class of the alerts followed by their IDs. The
edges represent the time order. The loops in the graph means
that either the attacker did some trials to succeed or some
alerts have been aggregated. There are no false alerts in this
figure. In addition, the extracted CG from LLDDoS 2.0.2 is
shown in Fig. 7.

To test the effectiveness of the Alerts Parser, we used
the measures of completeness and soundness defined in [9].
The soundness measure (Rs) evaluates the rate of true alerts
appearing in the CG. The completeness measure (Rc) looks
for missing true alerts from the CG. Equation (1) shows
these measures. The results of the two measures are given
in Table 2. The missed alerts by the IDS sensors degrade
the effectiveness which was the situation in our experiments.
The missed alerts by the used IDS sensors affect the com-
pleteness measure results as shown in Table 2. In addition,
the experiments produces good results for the soundness
measure.

Rc = # of correctly correlated alerts

of related alerts
,

Rs = # of correctly correlated alerts

of correlated alerts
(1)

5.2 Alerts differentiation tests

The goal of this test was to see if the Alerts Parser can differ-
entiate false and true alerts. The Alerts Parser has shown the
ability to reduce the correlation false alert rate by not corre-
lating false alerts. The CGs only show true alerts classes that

123

278 S. O. Al-Mamory, H. Zhang

Fig. 6 The detected scenario
from the inside zone of
LLDDoS 1.0 dataset. This
correlation graph contains three
sub scenarii from one attacker to
three victims. Nodes in this
correlation graphs represent
attacks and edges represent time
order

Fig. 7 The detected scenarii from the inside zone of LLDDoS 2.0.2
dataset. The attacker uses one victim as a step stone o attack another
victim. Though the IDS sensors were missed some attacks, Alerts Parser
correlated the related attacks

are correlated. We only computed the false alert rates of the
correlated alerts.

The Detection Ratio (DR) and Correlation False Alert
Ratio (CFAR) can be computed using Eq. (2) as defined
in [9]. The correlation false alert rates for the Alerts Parser
are shown in Table 3. False and true alerts were determined
according to the description of the datasets. We can look at

Table 2 Correlation effectiveness of the Alerts Parser

LLDDoS 1.0 LLDDoS 2.0.2

DMZ Inside DMZ Inside

Correctly correlated 140 87 14 29
alerts

Related alerts 144 91 16 32

Correlated Alerts 140 87 14 30

Rc (%) 97.22 95.60 87.50 90.63
Rs (%) 100 100 100 96.67

Table 3 Alerts differentiation test results of the Alerts Parser

LLDDoS 1.0 LLDDoS 2.0.2

DMZ Inside DMZ Inside

Alerts 140 87 14 30

True alerts 140 87 14 29

Observed attacks 89 60 8 14

Detected attacks 57 39 6 11

DR (%) 64.05 65 75 78.57

CFAR (%) 0 0 0 3.33

the correlated alerts and compare them to the description of
the scenario to see if they are true or false alerts.

DR = # of detected attacks

of observed attacks
,

C F AR = 1 − # of true alerts

of aler ts
(2)

123

IDS alerts correlation using grammar-based approach 279

It should be noted that the used IDS sensors (sometimes)
generated duplicate alerts for the same attack. As a result,
we counted them as the same attack. In other words, the
alerts from RealSecure and Snort that refer to the same attack
are computed as one attack. For this reason, we do note, in
Table 3, that the number of attacks are less than true alerts. In
addition, sometimes the attacker tries the same attack with
different stack pointers until he succeeds; as a result, we
computed these attacks as different attacks.

It can be concluded from the results shown in Table 3 that
the Alerts Parser can efficiently differentiate true and false
alerts. In addition, the missed attacks by the IDSs have a
negative effect on the results and this can be noted from the
detection ratios.

5.3 Performance tests

The objective of the third set of experiments is to evaluate
the Alerts Parser performance and to show its ability to work
in parallel. The performance metric includes the processing
time of each alert. Snort IDS was used in this set of experi-
ments.

We applied the Alerts Parser on the DEFCON 8 CTF
datasets. Unfortunately, due to the nature of the DEFCON
8 CTF datasets, we did not have any information about the
attack scenarii within it. Thus, we analyzed the resulted alerts
depending on Snort signature database [22]. Hereafter, we
encoded these alerts into regular grammars which were used
for building SLR tables. About 40 regular grammars have
been written for DEFCON datasets, where some regular
grammars contain more than one scenario.

The DEFCON 8 CTF datasets generated a large amount of
alerts. The resulting alerts from Snort IDS were 1847745 raw
alerts. Scanning related alerts were divided into two groups:
host probe and service probe. Host probe alerts account for
1255881 (67.9%) whereas service probe alerts account for
425398 (23%). Other alerts include service compromise,
Dos, etc., account for 166466 (9.1%). In Sect. 4.4, we referred
to the processing of flooding alerts which are either neglected
or aggregated. In this set of experiments, we neglected host
probe alerts and Dos flooding alerts, then aggregated the
remaining alerts in two minutes time window. The remaining
alerts (which are used in the experiments) are 33,818 alerts.

As can be seen in Fig. 8, the Alerts Parser measures its own
processing time per alert (averaged per 1,000 alerts). Clearly,
the processing time of alerts increases when the scenarii in the
alerts increase. The increasing of scenarii in the alerts leads
to increase the number of stacks making the Alerts Parser
slow down. The DEFCON 8 CTF datasets are unusual and
contain huge number of attacks in a short period of time. As
a consequence, our system will exhibit a better performance
in real-world because attacks are usually less intensive.

Fig. 8 The processing time of Alerts Parser on DEFCON 8 CTF
datasets

Fig. 9 Alerts Parser processes alerts of DARPA 2000 datasets faster
than Snort sensor

Moreover, we have compared the processing time for the
Alerts Parser to the delay between receiving two consecutive
alerts from Snort. The DARPA 2000 datasets were used for
this purpose. Figure 9 shows the processing time per alert
(averaged per 50 alerts). Obviously, the Alerts Parser works
faster than Snort in processing the entire dataset.

In spite of the fact that few papers have published per-
formance data, data are available though not in every paper.
The correlation system created by Debar et al. [34] reported
to process one alert per second [35]. Haines et al. [36] have
a very modest alert rate of about 1-10 alerts per second. The
work of Zhou et al. [37] reported to process 53 alerts per sec-
ond. The Alerts Parser has an alert rate of about 70 alerts per
second. This is far greater than any alert rate seen currently
on large networks [33].

We tested the capability of the Alerts Parser to work in
parallel. We used a cluster of seven nodes in our test with one
node as a master; each node has the same properties noted at
the beginning of Sect. 5. We partitioned and distributed the
ST P LT over the processing nodes and ran the system many
times with different number of processing nodes. As shown in
Fig. 10, the processing time declines whenever the processing
nodes increase. We can conclude from these results that the
Alerts Parser has the capability to work in parallel increasing

123

280 S. O. Al-Mamory, H. Zhang

Fig. 10 The relation between the number of processing units and the
processing time

the processed alerts rate to about 100 alerts per second (using
three nodes).

6 Discussion

We have proposed a novel correlation method to extract attack
strategies from intrusion alerts. This method employed the
ACF-grammar and LR parser to process alerts. The repre-
sentation of multi-step attacks by ACF-grammar makes the
description easy to understand and update. The experimental
results on the DARPA 2000 datasets and DEFCON 8 CTF
datasets shows that our graph representation results are accu-
rate and condensed. The CGs produced by our system as we
believe convey more information to the security analyst than
the individual alerts.

We have compared our method with three methods having
different techniques. The first one is the method of Ning et al.
[9] which uses the knowledge of prerequisites/consequences
for each alert to build attack scenarii. The second method,
which is the work by Qin et al. [8], uses statistical causality
analysis to correlate alerts, and the third system employs the
hidden colored Petri-Net to predict the next goal of intruder
by Dong et al. [10]. We were unable to compute the sound-
ness and completeness measures for some methods because
they have published few results. Therefore, we used different
measures which appeared in [8]. Equation (3) shows these
measures. True causality rate (TCR) measures the ratio of the
correctly correlated alerts. False causality rate (FCR) mea-
sures the ratio of the incorrectly correlated alerts.

T C R = # of correct causal aler ts

total # of causal relationships
,

FC R = # of incorrect causal aler ts

total # of causal aler ts
(3)

Some measures have been used in this comparison, which
are: detection ratio, true causality rate, false causality rate,
and the size of the resulted graphs. The comparison was made
using DARPA 2000 datasets. The results of comparison are

Table 4 General comparison among the four methods for the DARPA
datasets

Ning et al. Qin et al. Dong et al. Alerts Parser

DR (%) 56.43 – 96.31 70.66

TCR (%) 79.27 97.08 96.16 92.73

FCR (%) 4.94 4.42 10 0.83

of Nodes 44 19 – 17

of Edges 153 21 – 29

presented in Table 4. It can be noted that our system has
enhanced all measures over Ning et al. system. Qin et al.
and Dong et al. methods have better results for TCR mea-
sure. Due to the reason that the value of TCR is affected by
the missed attacks, our method produced lower value for it.
Table 3 shows the number of the missed attacks by the IDS
sensors in our experiments. However, we can note (from the
FCR measure) that the soundness of our results is the best. In
addition, we can note the amount of noise in their results. We
think that they made a tradeoff between the TCR and FCR
measures.

The proposed method provides a high-level representa-
tion of the correlated alerts, which reveals the causal rela-
tionships among the alerts. The resulting CGs (cf. Sect. 5)
clearly shows the strategies behind these attacks. One advan-
tage of our method is the compressing of the resulted CGs.
Such an abstracted CGs provide a concise view of the real
attacks, which help the security analysts to understand the
results of alert correlation. The number of edges and nodes
in Table 4 represents the size of the CG which appeared
in LLDDoS 1.0 inside zone; our method was produced CG
which has acceptable size.

The more information is fed to the Alerts Parser, the bet-
ter the accuracy is obtained. The proposed model makes use
of vulnerability information, attack knowledge, and prereq-
uisites/consequences knowledge of the alerts. The vulnera-
bility information can be used to write scenarii related to
the protected network. The scenarii, which the network is
vulnerable to, can be generated automatically using attack
graph methods [32]. Attack knowledge was used to write the
CF-grammars. And finally, the prerequisites/consequences
knowledge of the alerts was used as filters to reduce the false
correlations; furthermore, they make the correlation process
more reliable.

A natural way to correlate alerts is to search all the received
alerts for those who prepare for a new alert. This nested loop
procedure is assumed by many correlation methods [11].
As we have noted in Sect. 4.4, the time complexity of the
Alerts Parser was O(n*(ST P LT +SST K)), which seems to be
an attractive solution for the alerts correlation problem.

To recapitulate, the contributions of this paper are three
folds: First, the scenarii are represented by CF-grammars

123

IDS alerts correlation using grammar-based approach 281

which make the rules writing and updating an easy task.
Second, the Alerts Parser generates compressed and easy
to understand CGs which reflect the attack scenarii. Finally,
our method can tolerate missed attacks by IDS at the same
time of correlation.

Prior to applying our approach it is important to consider
its limitations. First, our method depends on the underlying
IDSs to provide alerts. Though our reasoning process can
pass the undetected attacks, the attacks missed by the IDSs
certainly have a negative effect on the results as we have seen
on the previously presented materials. Second, our approach
is not fully effective for the coordinated attacks in which
many attackers cooperate to do some goals. Nevertheless, it
is not clear whether any method can correlate coordinated
attacks without making mistakes. Finally, it is worth men-
tioning that the results produced by Alerts Parser are only as
good as the classification information provided by the user.
This process requires expert users who have certain skills and
insights in the attack scenarii.

7 Conclusions and future work

This paper presented a method for constructing attack sce-
narii through alert correlation using compiler techniques. The
ACF-grammar was used to describe the multi-step attacks
using alerts classes. Based on ACF-grammars, the modi-
fied LR parser was used to detect the scenarii presented in
the alerts. The ACF-grammar makes the scenario writing
and updating an easy task; furthermore, it describes multi-
step attacks explicitly. Experiments performed on different
datasets showed that the Alerts Parser effectively correlates
multi-step attacks in spite of the missed attacks by
the IDS.

Several issues worth investigation in the future. First, the
proposed approach has the capability to compensate the
missed attacks by the IDS; as a consequence, we intend
to develop this capability. Second, we want to deploy this
approach in real environment. Finally, we believe that there is
a room for enhancement in the performance of our approach
as new research avenue.

Acknowledgments The authors thank the anonymous reviewers for
their valuable comments and suggestions in improving this paper. This
research was supported by Project 863 (2007AA01Z442).

References

1. Stefan, A.: The base-rate fallacy and its implications for the intru-
sion detection. In: Proceedings of the 6th ACM Conference on
Computer and Communications Security, pp. 1–7. Kent Ridge Dig-
ital Labs, Singapore (1999)

2. Pietraszek, T., Tanner, A.: Data mining and machine learning-
towards reducing false positives in intrusion detection. Inf. Secur.
Tech. Rep. 10, 169–183 (2005)

3. Yu, J., Reddy, Y.V.R., Selliah, S., Reddy, S., Bharadwaj, V.,
kankanahalli, S.: TRINETR: an architecture for collaborative intru-
sion detection and knowledge-based alert evaluation. J. Adv. Eng.
Inform. 19, 93–101 (2005)

4. Perdisci, R., Giacinto, G., Roli, F.: Alarm clustering for intru-
sion detection systems in computer networks. Eng. Appl. Artif.
Intell. 19, 429–438 (2006)

5. Julisch, K.: Clustering intrusion detection alarms to support root
cause analysis. ACM Trans. Inf. Syst. Secur. 6, 443–471 (2003)

6. Ning, P., Xu, D., Healey, C.G., Amant, R.S.: Building attack
scenarios through integration of complementary alert correlation
methods. In: Proceeding of 11th Annual Network and Distributed
System Security (NDSS’04), pp. 97–111 (2004)

7. Dain, O.M., Cunningham, R.K.: Fusing a heterogeneous alert
stream into scenarios. In: Proceeding of ACM Workshop on Data
Mining for Security Applications, pp. 231–235 (2001)

8. Qin, X., Lee, W.: Statistical causality analysis of INFOSEC
alert data. In: Proceeding of 6th International Symposium on
Recent Advances in Intrusion Detection (RAID 2003), Pittsburgh,
pp. 591–627 (2003)

9. Ning, P., Cui, Y., Reeves, D.S., Xu, D.: Techniques and tools for
analyzing intrusion alerts. ACM Trans. Inf. Syst. Secur. 7, 274–
318 (2004)

10. Yu, D., Frincke, D.: Improving the quality of alerts and predict-
ing intruder’s next goal with hidden colored petri-net. Comput.
Netw. 51, 632–654 (2007)

11. Wang, L., Liu, A., Jajodia, S.: Using attack graphs for corre-
lating, hypothesizing, and predicting intrusion alerts. J. Com.
Commun. 29, 2917–2933 (2006)

12. Valdes, A., Skinner, K.: Probabilistic alert correlation. In: Pro-
ceeding of International Symposium on Recent Advances in Intru-
sion Detection, LNCS vol. 2212, pp. 54–68. Springer, Heidelberg
(2001)

13. Cuppens, F., Miège, A.: Alert correlation in a cooperative intrusion
detection framework. In: Proceedings of the 2002 IEEE Sympo-
sium on Security and Privacy, pp. 202–215 (2002)

14. MIT Lincoln Lab., DARPA Intrusion Detection Scenario
Specific Datasets. http://www.ll.mit.edu/IST/ideval/data/2000/
2000_data_index.html

15. DEFCON Captures the Flag (CTF) Contest. http://cctf.shmoo.
com/data/cctf-defcon8/

16. Morin, B., Me, L., Debar, H., Ducasse, M.: M2D2: A formal data
model for IDS alert correlation. In: Proceeding of International
Symposium on Recent Advances in Intrusion Detection, pp. 115–
137 (2002)

17. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based
network vulnerability analysis. In: Proceeding of Ninth ACM Con-
ference on Computer and Communications Security (CCS’02),
pp. 217–224 (2002)

18. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Auto-
mated generation and analysis of attack graphs. In: Proceeding of
IEEE Symposium on Security and Privacy (S&P’02), pp. 273–284
(2002)

19. Noel, S., Jajodia, S.: Correlating intrusion events and build-
ing attack scenarios through attack graph distance. In: Proceed-
ing of 20th Annual Computer Security Applications Conference
(ACSAC’04) (2004)

20. Roesch, M.: Snort-lightweight intrusion detection for networks. In:
Proceeding of USENIX LISA Conference, pp. 229–238 (1999)

21. Internet Security Systems, RealSecure Intrusion Detection System.
http://www.iss.net

22. Sourcefire, Snort signature database, http://www.snort.org/
pub-bin/sigs.cgi (2007)

123

http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.html
http://www.ll.mit.edu/IST/ideval/data/2000/2000_data_index.html
http://cctf.shmoo.com/data/cctf-defcon8/
http://cctf.shmoo.com/data/cctf-defcon8/
http://www.iss.net
http://www.snort.org/pub-bin/sigs.cgi
http://www.snort.org/pub-bin/sigs.cgi

282 S. O. Al-Mamory, H. Zhang

23. Internet Security Systems, RealSecure Signatures Refer-
ence Guide. http://documents.iss.net/literature/RealSecure/
RS_Signatures_6.0.pdf

24. Sipser, M.: Introduction to the theory of computation, second
ed. Massachusetts Institute of Technology, Cambridge (2006)

25. Ilgun, K., Kemmerer, R.A., Porras, P.A.: State transition analy-
sis: a rule-based intrusion detection system. IEEE Trans. Soft.
Eng. 21, 181–199 (1995)

26. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers, Principles, Tech-
niques, and Tools. Addison-Wesley, Reading (1986)

27. Power, J.: Notes on Formal Language Theory and Parsing, Tech-
nical Report. National University of Ireland, Maynooth (2002)

28. ÆMogensen. T.: Basics of Compiler Design, vol. 5, 2nd edn. http://
www.diku.dk/~torbenm/Basics (2007)

29. White, J.: Algorithms and Foundations Qualifier, Technical Report,
January (2007)

30. Serrano, A.: Integrating Alerts from Multiple Homogeneous Intru-
sion Detection Systems, Master Thesis, North Carolina State
University, Raleigh (2003)

31. AT & T Research Labs, Graphviz-open source graph lay-
out and drawing software, http://www.research.att.com/sw/tools/
graphviz/

32. Hamza, L., Adi, K., El Guemhioui, K.: Automatic generation of
attack scenarios for intrusion detection systems. In: Proceeding of
IEEE AdvancedInternational Conference on Telecommunications
and International Conference on Internet and Web Applications
and Services (2006)

33. Valeur, F.: Real-Time Intrusion Detection Alert Correlation, PhD
Dissertation, University of California, Santa Barbara (2006)

34. Debar, H., Wespi, A.: Aggregation and correlation of intrusion
detection alerts. In: Proceeding of International Symposium on
Recent Advances in Intrusion Detection, Davis, pp. 85–103 (2001)

35. Debar, H., Wespi, A.: Aggregation and Correlation of Intrusion
Detection Alerts, Presentation Slides, October (2001)

36. Haines, J., Ryder, D.K., Tinnel, L., Taylor, S.: Validation of sensor
alert correlators. IEEE Secur. Priv. Mag. 1(1), 46–56 (2003)

37. Zhou, J., Heckman, M., Reynolds, B., Carlson, A., Bishop, M.:
Modeling network intrusion detection alerts for correlation. ACM
Trans. Inf. Syst. Secur. 10, 1–31 (2007)

123

http://documents.iss.net/literature/RealSecure/RS_Signatures_6.0.pdf
http://documents.iss.net/literature/RealSecure/RS_Signatures_6.0.pdf
http://www.diku.dk/~torbenm/Basics
http://www.diku.dk/~torbenm/Basics
http://www.research.att.com/sw/tools/graphviz/
http://www.research.att.com/sw/tools/graphviz/

	IDS alerts correlation using grammar-based approach
	Abstract
	1 Introduction
	2 Related works
	3 Attack scenarii modelling
	4 Alerts Parser correlator
	4.1 Shift-reduce parser
	4.2 Time constraint of alerts
	4.3 Addresses similarity
	4.4 The LR parser to correlating alerts

	5 Experimental results
	5.1 Effectiveness tests
	5.2 Alerts differentiation tests
	5.3 Performance tests

	6 Discussion
	7 Conclusions and future work
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

