J Comput Virol (2010) 6:329-342
DOI 10.1007/s11416-009-0134-4

ORIGINAL PAPER

IpMorph: fingerprinting spoofing unification

Guillaume Prigent - Florian Vichot - Fabrice Harrouet

Received: 5 January 2009 / Accepted: 20 August 2009 / Published online: 3 September 2009

© Springer-Verlag France 2009

Abstract There is nowadays a wide range of TCP/IP stack
identification tools that allow to easily recognize the oper-
ating system of foreseen targets. The object of this article
is to show that fingerprint concealment and spoofing are
uniformly possible against different known fingerprinting
tools. We present IpMorph, counter-recognition software
implemented as a user-mode TCP/IP stack, ensuring session
monitoring and on the fly packets re-writing. We detail its
operation and use against tools like Nmap, Xprobe2, Ring?2,
SinFP and pOf, and we evaluate its efficiency thanks to a
first technical implementation that already covers most of
our objectives.

1 Introduction

On the attacker’s side, information gathering is the prepa-
ration phase that determines the creation of an appropriate
offensive strategy. At this stage, the point is to have as much
reliable and proven information as possible at hand, to give

The IpMorph software is distributed under the GPLv3 license.

This independent project is based on our previous works, and mainly
derives from a specific need in the “Hynesim” network architecture
simulation project (DGA-CELAR/SSI-AMI government contract,
http://www.hynesim.org).

G. Prigent (X)) - F. Vichot

Diateam: Architectes de ’information, 41, rue Yves Collet,
29200 Brest, France

e-mail: guillaume.prigent@diateam.net

F. Vichot
e-mail: florian.vichot@diateam.net

F. Harrouet

Laboratoire d’Informatique des Systeémes Complexes (LISyC),
Technopdle Brest Iroise, 29280 Plouzané, France

e-mail: harrouet@enib.fr

the right direction to the penetration process and to maxi-
mize the relevance of all undertaken actions. On the con-
trary, on the defender’s side, the possibility to minimize the
visibility of its infrastructure’s critical perimeter is a limit-
ing, or at least slowing factor for any potential attack lead
against him. To face the increasing number of recognition
actions (port scans explosion, massive and automated use
of vulnerability analysis tools or fingerprinting agents, tar-
get adapted malware), it is now critical to be able to reduce
the visible informational perimeter of the infrastructure to
protect. At the network level, even if it is almost impossible
to hide basic services (IP addresses, TCP ports) supporting
the infrastructure’s interconnection, it is nevertheless possi-
ble to imagine a realistic enough falsification to fool distant
recognition actions.
Our understanding is the following:

“If a computer is able to hide its identity from the rec-
ognition tools and to impersonate the identity of a less
interesting system, it reduces its appeal to the attacker
and disturbs the relevance of attacks targeted to its
apparent nature.”

The OSFP! domain has already been widely discussed in
numerous articles [1] in the last 10 years, and nowadays dif-
ferent techniques exist to identify the behavior of operating
systems’ TCP/IP stacks. The subject of this article is there-
fore not to once again detail these methodologies from the
attacker’s (the person trying to identify the personality of the
target) point of view. Our objective, in an educational way
and from the defender’s point of view, is to show that it is
possible to create a software component with a role to prevent
and to really disturb this remote identification, whether it is

I OSFP: Operating System FingerPrinting.

@ Springer

http://www.hynesim.org

330

G. Prigent et al.

[Detection techniques]

(Collecting J [Stack ﬂngerprlnts] [Network snlfﬁng]

s 4

Fig. 1 Classification of a few techniques, illustrated by some associ-
ated tools

ICMP replies

o
o
=
]
£
=]

Header
analysis
Temporal
ELENEH

Ettercap

active or passive. This article is hence intended to be both a
pragmatic reflection about what has to be done to fool most
currently known tools, and a presentation of the architecture
used for the IpMorph tool that we’re developing to fool these
identifications.

Since we are willing to embrace the wide range of tools
implementing different OSFP techniques (Fig. 1), we start
the next paragraph by quickly explaining its two main meth-
ods, to introduce the tools we want to fool.

2 Reminder

There are two methods for remote fingerprinting an operating
system, and each one has advantages and drawbacks.

2.1 Active fingerprinting

This method is considered active because it consists in con-
tacting the target by sending particular stimuli (specially
crafted IP and TCP packets) and analyzing its answers in
comparison with a previously built knowledge base (signa-
ture base). The choice of stimuli, and hence of packets sent
from the source, is made following the axiom that several
TCP/IP stacks implementations (and therefore operating sys-
tems) can answer differently depending on the implementa-
tion choices (or even design choices) [2-5].

Major drawbacks By definition, active fingerprinting leaves
lots of traces on the studied system, as well as all along the
path used (filtering equipment, intrusion detection,...), which
makes its potential detection and analysis easier. The modus
operandi used by this type of tool is so recognizable that
most network intrusion detection system (NIDS) probes con-
tain entries about them. We are often going to use this typ-
ical “noise” and this particular traffic to identify the stimuli

@ Springer

specific to this type of operation. Moreover, the ability to
send these packets to the target for this kind of “intrusive”
test requires nominal conditions, whether they are remotely
made or on a local network (packets filtering for example).
This important limitation depends on the considered tools.

Major advantages Active fingerprinting allows probing of
the target as wanted, and therefore testing a wide range of
answers. Thanks to this, adaptative tests can be performed
(depending on previous answers) to precisely identify a tar-
get. When correctly performed, these types of test permit to
quickly obtain conclusive results (sometimes, depending on
the tools, a few well-chosen packets can be enough).

Tools Nmap, Xprobe2, Ring, SinFP, GFI's Languard
Network Security Scanner, Queso,....

2.2 Passive fingerprinting

Passive fingerprinting only performs an analysis of flows
coming out of the target, without calling it directly by sending
it packets. Most of time, this analysis deals with “legitimate”
traffic (which does not deviate from normal use) between
the target and a particular host of the local or remote net-
work. The way this method operates offers the attacker the
advantage of recognition stealth. Some network protection
equipments (like firewalls or NIDS) already use this passive
method to correlate potential attacks and operating systems
of the computers to protect [3,4,6].

Major drawbacks Passive recognition of a legitimate flow
implies to have enough packets to perform identification
analysis. This collecting can be long and tedious, and there
is no guarantee that the targets at stake in the recorded com-
munications will not change. This temporal aspect is all the
more disturbing as it is often hard to access the flows between
targeted computers (excluding the trivial case where you are
on the filtering element, on a inline probe or directly on a
netlink). The techniques that are to be used to capture anal-
ysis samples are identical to the ones used for “Man in the
middle” attacks.

Major advantages Passive fingerprinting has a read-only
access to the flow. Detection of this type of behavior is exactly
the same as in a traditional “Sniffing” type capture in “pro-
miscuous” mode on a network. Moreover, the target is never
directly contacted. Hence, passive fingerprinting is highly
furtive.

Tools pOf, SinFP, Ettercap, Satori,....

IpMorph: fingerprinting spoofing unification

331

Active fingerprinting
Advantages |Fast
Accurate identification
Often “noisy” Slow
Bulky in packets Not very discriminatory
Sensibility to testing conditions

Passive fingerprinting
Stealth

Drawbacks

Fig. 2 Advantages and drawbacks of the two methodologies

2.3 Fingerprinting methodologies synthesis

Advantages and drawbacks of the two methodologies are to
be seen as a generalization. Some tools may be more or less
concerned.

This table (Fig. 2) is a synthesis and a classification based
the current state of the art. Some tools are especially “noisy”
(Nmap with the sending of a great number of voluntarily dis-
torted packets), while other tools are less noticeable and only
imply a few standard packets (e.g. SinFP).

Concerning IpMorph, we wish to be able to ensure defeat-
ing as many tools as possible, which is the reason why we
have integrated both active fingerprinting tools (Nmap,
Xprobe2, SinFP, Ring2) and passive fingerprinting tools (pOf,
SinFP) to IpMorph. Each one of these tools is further des-
cribed in Sect. 5, with a technical focus on the specificity of
their respective integration to the design of our tool.

3 Fingerprinting defeating state of the art

There is already a wide range of solutions [7] trying, each one
in a different way, to disturb the exact identification of the
computer to protect. The following section lists most existing
approaches, and classifies them according to their predefined
way of operating.

3.1 Classification of identification disturbance solutions

We consider that there are three main approach categories
using concealment techniques. The ones working on filter-
ing and rewriting of packets, the ones aiming at modifying
the native configuration of the TCP/IP stack of the computer
to protect, and the ones which substitute a new stack to the
existing one.

Filtering

— Stealth patch [8]: simple TCP packets identification solu-
tion as a GNU/Linux 2.2-2.4 core module patch, allowing
to filter and to ignore SYN+FIN packets (QueSO probe),
Nmap T2 probe (bit “reserved”) and FIN+PUSH+URG
packets (Nmap T7 probe).

— Blackhole [9]: TCP and UDP packets filtering options,
allowing to respectively block RST and ICMP answers
on closed ports.

— IPlog[10]: “userland” application, detecting and answer-
ing instead of the native stack to most Nmap probes.
Answers are statically created in the code (iplog_tcp.c)
and allow to prevent Nmap of correctly identifying the
target.

— OpenBSD packet filter [11]: official OpenBSD firewall,
allowing to specify (pf.conf file) most packets options
when they are emitted (like default TTL, maximum MSS,
IPID choice policy...). The tools based on matching these
fields with their signatures do not find anymore the real
signature of the equipment protected by this solution.

TCP/IP stack configuration and modification (‘“host
based”)

— Ip personality: Netfilter module for Linux 2.4, allowing
to configure some parameters of the TCP/IP stack.

— Fingerprint fucker: Core module for Linux 2.2, able to
read previous Nmap base’s signatures and to configure
the stack parameters accordingly.

— FreeBSD fingerprint scrubber [1]: Developed for Free-
BSD, it does not try to emulate the behavior of a partic-
ular system, but aims only at not looking like any other
system.

— OSfuscate [12]: Windows software that modifies keys in
the register, to change some TCP/IP parameters.

TCP/IP stack substitution (“proxy behavior’)

— Honeyd [13]: Probably the most wellknown honeypot
software, Honeyd is able to simulate Xprobe2 and Nmap
(previous version) signatures for its virtual hosts.

— Packet purgatory/Morph [14]: Morph is a process that
is able to emulate three personalities by modifying out-
coming packets. To do so, it wedges itself between the
network interface and the core using PacketPurgatory, a
libPcap-based library.

3.2 State of the art synthesis

The most part of presented tools is already old or no longer
maintained. Most of them only ensure a partial disturbance
of fingerprinting tools. For us, these are not “really” com-
plete identity customization tools, we consider them more as
unitary ad hoc disturbance techniques.

The usage of these tools is often difficult and implies to
own either the considered filtering equipment or a specific
system configuration with regards to the core or firewall of
the target to protect. This is exactly what IpMorph refuses
to do. We want to offer an entirely user-space application

@ Springer

332

G. Prigent et al.

solution, able to deploy on a wide range of equipments and
allowing a complete spoofing depending on the identity cho-
sen by the user.

Beside these general considerations, the solution that at
first glance seems to be the one closest to our interests is
the Morph tool, based on the “userland” Packet Purgatory
[14] library. Though they have similar names, Morph and
IpMorph projects strongly differ in their objectives and
implementation.

Morph is mainly a “proof of concept” tool, which only par-
tially manages a few fingerprinting tools and does not have
any personality or setup mechanism, except three different
behaviors directly coded in the sources (OpenBSD 3.3, Linux
2.4, Windows 2000). The packets modification mechanism is
not very extensible (if-based implementation, switch/case in
C language) and the field values are static. For now, it seems
impossible to us to transform it into a generic personalities
“engine”.

Moreover, the lack of Morph update since 2005 and the
compilation problems encountered in executable file crea-
tion let us think that the project has been abandoned. The
only really functional mode of Morph is the “proxy” mode,
but we notice several performance and relevance problems
(a Nmap scan forces Morph to use 100% of a CPU and takes
up to several minutes, SSH connections take five to ten times
longer to establish), as well as a few limitations when the
management of a large number of connections is needed
(if we launch a Xprobe2 scan with a simultaneous Nmap
detection, Xprobe?2 returns that the host is not online).

Finally, managed tools versions are outdated: Xprobe2
recognizes a FreeBSD 1.5.1 when the personality coded in
the resources is “openbsd”, and the latest version of Nmap
never recognizes anything. SinFP or RINGv2-type tools are
not supported.

4 Design objectives and principles
4.1 Project’s context

Our first works in this domain have started with the BridNet
[15] project, where our objective was to completely simu-
late the network behavior of a connected computer. We have
then realized our first user-mode TCP/IP stack. This valuable
experience has shown us that it was possible to create a com-
plete minimal stack in user space, provided we knew how to
correctly handle IP fragmentation and IP session monitoring.

More recently, as part of the Hynesim [16] project, we
wanted to be able to “customize” the network behavior of
some virtual machines, especially the ones based on Open-
VZ.To separate problems and technical components, we have
decided to re-use our TCP/IP stack and to adapt it to finger-
printing spoofing. The idea is simple: “how can we make a

@ Springer

virtual machine appear like any other operating system for
detection tools?”. IpMorph project was born.

The following section presents the design and creation
goals we have set, followed by the general architecture of
the tool we are developing.

4.2 Objectives

IpMorph project has been launched to answer a practical
need, which is both conceptual and technical. For this reason,
it is meant to be used in several current or upcoming pro-
jects. For us, it is not a simple idea, or an elegant theoretical
concept, it is much closer to designing and creating an oper-
ational, documented, rugged and long-time maintained solu-
tion. Beyond the fact that this project is a great occasion to
learn more about fingerprinting, it offers us the possibility to
re-use several software components that have been validated
in previous projects, as well as to perform an innovative work
to synthesize different tools signatures.

Our main goal is to design a user-space application that
protects a computer by preventing its TCP/IP fingerprint
identification, and also allows to customize its appearance
to make every testing tool consider it like the one config-
ured in IpMorph, both for active and passive fingerprinting
techniques. This is the reason why we talk about unification,
for we are able to spoof several different tools with a single
solution, IpMorph.

The imperative we have to keep in mind through the whole
design stage is that the protected computer must stay fully
operational at network level. It is critical that services hosted
by the computer under protection continue to normally oper-
ate. IpMorph must never introduce an applicative network
failure. This challenge implies a special care for the tech-
niques used to manipulate transiting packets, especially
during their re-writing. We want to design and create an
application allowing a wide range of implementations, to
protect either actual computers of a network (Fig. 3) or vir-
tual machines hosted by a host integrating IpMorph (Fig. 4).
When implementing this tool, we want to create the core
of the application in C++ to associate performance and

Perception
- -

Computers
to protect

(IP addresses)
- --

l’

=

Attacker
Nmap, Xprobe2,
Ring, SinFP, ...

‘eossesae

Fig. 3 Use of IpMorph inline to hide “real” hosts

IpMorph: fingerprinting spoofing unification

333

Perception

csssscsssee Virtual machines

¢] to protect
" [] sessssessessene,
0 f !
. [] —a
b 14 £11 ﬁ e
' |
B 22 NT SP4 : A ™ 1
. L [1
Y aaal _— ~ Al '
{ - igsiassais Vista 1
== —- |
H““m,___—""-"‘ — :
Attacker. 1
Nmap, Xprobe2, B | 1
Ring, SinFP, ... | 1
K”I A f
Y- 1
]

Fig. 4 Use of IpMorph on a host to hide virtual machines hosted on it

object-oriented programming in a portable way and with
minimum dependencies on external libraries, thus ensuring
its compatibility and “source” portability on a wide range of
platforms (for now mainly BSD, Linux, Solaris and MacOS).

4.3 General architecture

The core principle of our solution is the setup of a TCP/IP
stack in user space, which has two sides, among which, one
is exposed to fingerprinting tools (“exposed side”), and one
is exposed to the computer you want to protect (“protected
side”). Each side is directly linked with a network interface of
the host system, below the firewall-like mechanisms, whether
it is real (ethO,...) or virtual (tap0,...) and is able to read and
write the frames it is responsible of (frames to or from the
fingerprinting tools for the exposed side and frames to or
from the protected computer for the protected side). This
reading on each interface exactly corresponds to a “sniff” in

182.168.100.1
00:1D-E0:36:90-C1

“promiscuous” mode, like in numerous network tools. The
main work of the application’s core is to ensure clever switch-
ing between these two sides, depending on the state of flows
and actions that are to be implemented.

We want to be put in protection at link layer, which is why
we first perform a modification of the Ethernet address at time
of ARP and RARP requests (Fig. 5). This way, the exposed
side reveals a MAC address which is not really the one of
the protected computer. Even if for now it is not managed, it
would be useful to ensure coherence between the manufac-
turer designated by the exposed MAC address and the chosen
personality for [pMorph (e.g. it seems quite unlikely to be in
front of a Windows Vista computer if the MAC address has
the prefix of a VoIP phone manufacturer).

IpMorph only takes care of legitimate traffic to or from the
computer to protect, and filters transiting flows at Ethernet
and IP level as well. In other words, IpMorph only intervenes
in exchanges associated with the protected computer.

Once the work is reassigned to the IP and higher levels,
IpMorph supports, for each side, IP reassembly and fragmen-
tation, as well as TCP session monitoring, like most modern
“stateful” firewalls do. An IP data packet, whether read or
written on one of the sides, compulsory passes through reas-
sembling module (for reading) and fragmentation module
(when writing). This way of operating is exactly identical
to the one of a router placed between two netlinks with dif-
ferent MTUs. Then, at network layer level, each IP data-
gram can be directly analyzed by IpMorph (we are sure that
this is a complete upper layer packet, e.g. ICMP, TCP or
UDP). Once the packet (and hence headers) are complete,
we go up the layers until taking care of TCP to ensure ses-
sion monitoring and relay flows to the opposite side (Fig. 6).

Fig. 5 Bidirectional translation of ARP resolutions

@ Springer

334

G. Prigent et al.

-
oo IpMorph Main Design |

Time! amp } olicy
ISN policy
Options suppoerted
Congestion

Port Unreachable
policy

Protocols supported
Data reply policy

Ip Id policy
Protocols supported

pry v) e e

> Protected Side

Mac spoofing

Real Virtual
Device Device

Fig. 6 IpMorph detailed functional architecture

For each flow, an IpMorph context is created and stored to
keep in memory sessions, states and possibly data previously
exchanged.

With these contexts at hand, we perform data handling and
make filtering choices on each introspection stage. IpMorph
operates most of time as a relay and a packet normalization
tool. In some cases, especially during active fingerprinting
tools probes detection, IpMorph does not relay these frames
but authoritatively (which means that IpMorph decides to
answer on behalf of the protected computer) creates each
answer awaited by these tools. Put simply, we can consider
that our solution works in “interception” mode for active
tools and in “relay” mode for passive tools (this relay is of
course not a direct copy, because we modify packets to give
them the expected characteristics).

The main challenge when you follow this way of oper-
ating is to be able to keep a good coherence from end to
end (e.g. for TCP) between the exposed side’s flows and the
associated protected side’s flows. Production network traffic
must seamlessly go on and each connection state must still
correspond on both sides. In an analogical way, it can be
seen as a kind of SNAT/DNAT extended to all TCP and IP
fields in addition to the source and destination ports. Most
of time, we perform translations on packet fields by keep-
ing them in memory in contexts to apply them reversely on
return.

@ Springer

IpMorphPersonality

Real Virtual

Device Device File

Database
[ipMorphPersonalty.db]

5 Implementation and technical focus

IpMorph is made of a core (two-sided virtual TCP/IP stack)
and of a set of external operating tools (ipmController, ipm-
PersonalityDBManager, ipmGui).

Contrary to many open source tools which read and send
network packets (e.g. Morph), I[pMorph does not use the tra-
ditional libpcap/libdnet duo. Even if 1 day we might use ded-
icated libraries to ensure portability, we have for now chosen
not to use them to keep a close control on the code and to unify
our design in manipulated objects (for reading, handling or
sending as well). We only rely on standard system calls for
the underlayers of our solution. No dependency (except the
C++ Qt4 library that we use as development facilitator and
host structure of our C++ classes) is required in the project
(Fig. 7).

5.1 Nmap integration

Nmap is probably the most used active fingerprinting tool,
and also the most complete in terms of signatures. That is
why, even if we do not consider it the most relevant tool, it
is critical to be able to fool it using IpMorph.

For any fingerprinting attempt, Nmap starts by perform-
ing a scan of open and closed ports on the target. During this

IpMorph: fingerprinting spoofing unification

335

IpMorph GUI
A

ia
*

Controller «
P
.
r'/
=

Host Operating System
(GNU/Linux, BSD, ...)

Fig. 7 Software dependencies of IpMorph components

preliminary scanning, IpMorph has no reason to interfere in
the exchanges with the protected computer, and hence oper-
ates in relay mode. Once this scan is complete, Nmap sends
a series of 16 packets that build its discriminative tests to
try to identify the remote system. The 16 probes are com-
posed by the sequential sending (average interval: 110 ms)
of a series of 6 TCP packets on a port that has previously
been detected as open, of two echo request ICMP pack-
ets, of a explicit congestion notification (ECN) test TCP
packet, of a series of 6 TCP packets to open and/or closed
ports and of a UDP packet to a closed port. At this stage,
IpMorph operates in interception mode and directly answers
(or does not answer) on its own initiative without ever relay-
ing packets to the protected side. Based on the desired person-
ality, IpMorph tries to answer precisely what Nmap awaits.
Thus, IpMorph’s job is to interpret the desired Nmap signa-
ture and to react accordingly for the probes.

This interception operating mode is possible because each
one of the 16 packets is easily identifiable and widely doc-
umented (if a doubt still exists, Nmap source code analysis
clearly unveils what it does). Most answers (or the need not
to answer) are easily manageable, even if this work has been
arduous due to heterogeneous signature elements, and there-
fore possible answers. However, among tests performed by
Nmap, some are harder to fool than others, and we have
decided in order to stay concise, to only present below par-
ticular points that we consider as non-trivial and that neces-
sitated the most work.

“Sequence generation (SEQ, OPS, WIN and T1)” tests This
test deals with the analysis of TCP (ISN) initial sequences
numbers chosen by the target stack. This signature element
is very discriminative for Nmap for remote system identifi-
cation. The test consists in emitting a sequence of six TCP
packets on an open port. Then, Nmap analyzes and calcu-
lates three values from the initial sequence numbers gathered
(in SYN+ACK answers to its SYN packets). These three val-
ues are the three signature attributes, GCD, ISR and SP. As
soon as a new session is detected on the exposed side (receipt
of a SYN packet), a TCP context is created, and a new session
is initiated on the protected side (sending of a SYN packet).
When the SYN+ACK packet returns on the protected com-
puter, an initial sequence number is chosen by IpMorph to
replace the one used by the protected side in the exposed side
session. This difference is stored in the previous context to
apply it on return, and so ensure protected side connection
maintenance. The problematic we address here is to correctly
create our ISNs, so that the six consecutive ISNs received by
Nmap will allow it to calculate the same values for GCD, ISR
and SP as in the signature. In other words, the goal is to deter-
mine a way to create ISNs only based on three parameters
stored in the Nmap signature.
These three parameters are the following:

— TCP ISN greatest common divisor (GCD): the greatest
common divisor of the five ISN deltas. Here we call
“delta” the differences between two consecutive ISN
received by Nmap.

— TCP ISN counter rate (ISR): the ISN average increment
per second rate, which corresponds to the speed the ISNs
increment at.

— TCP ISN sequence predictability index (SP): dissemina-
tion in the creation of ISNs compared to the average,
more precisely the standard deviation of the five incre-
ment rates with another, compared to the average (ISR
above).

While it is easy to create values that respect a given mean
and a known standard deviation, it is much harder to make
their standard deviations have the same greatest common
divisor. This GCD-ruled creation task is not trivial (not to
mention the fact that, as ISN's are stored on 32 bits, they can
loop) and represented a technical lock for several weeks on
IpMorph. Moved by the feeling that it was surely possible
(at least by using method from operations research) to find
an acceptable solution, we tried several approaches.

Here is the technique we now use to resolve this
problematic:

1. We systematically memorize the 6 last created ISNs and
their creation date

@ Springer

336

G. Prigent et al.

2. Every time anew ISN is created, we determine, consider-
ing what Nmap awaits and the delay we might have, the
best ISN rate we will try to keep up with (in other words:
what is the ideal ISN we should return to respect the ISR
Nmap is going to calculate on our series of answers?)

3. Using the Box—Muller formula, we generate a series a
values that respects (for each value) the standard devi-
ation awaited by Nmap. Each one of these values is
rounded off to the closest GCD multiple.

4. On the series that has been pre-calculated on previous
step, and for each one of the potential values, we cal-
culate, like Nmap would do, the resulting ISR and SP
we would have if we kept this value, and then we apply
a cost function that is proportional to the squared value
of the distance to the signature’s ideal (to penalize ISN
values that deviate significantly from the ideal value)

5. Finally, we keep the ISN value that minimizes the dis-
tance, and we store it with the current creation date in
microseconds. This value is the one used in the SYN+
ACK to Nmap.

“TCP RST data checksum (RD)” test The RD test has been
an interesting problem for us, and we will present it below.

Some stacks add an ASCII message in the data of a TCP
RST packet (generally the error message). This case is rela-
tively rare and few Nmap signatures have this RD field, but to
ensure the completeness of our approach, we had to perform
this test to completely fool Nmap.

To avoid storing the message found in the TCP RST packet,
Nmap stores a CRC-32 of the data in its signatures. Unfortu-
nately, this means that I]pMorph no longer has access to the
original message, which has to be sent again when a TCP
RST packet is emitted. We have to create data corresponding
to the same CRC-32, which will be calculated on return. For-
tunately, the CRC-32 algorithm is “cryptographically” weak,
and has the property that each 4 bytes block added to a mes-
sage can turn the CRC-32 into any desired CRC-32. This
directly implies that all CRC-32 inherently have a 4 bytes
corresponding message.

Based on this statement, the first approach has naturally
been to try brute force, for the range of values to be tested is
very narrow (232 combinations) in comparison with the cur-
rent processors capacities. Beyond the fact that an average of
thirty seconds is needed to find a collision (which is too long,
even if we memorize the result in the IpMorph personality),
this approach is, scientifically speaking, not really elegant.

More subtly, we tried to create CRC-32 collisions in O(1),
which means reversing the CRC-32 algorithm.

The calculation of a CRC-32 is like the division of the mes-
sage by a polynomial, using “modulo 2 polynomial arithme-
tic”, which actually corresponds to binary arithmetic with-
out carry digit (i.e. 1 + 1 = 0, without carrying the 1 digit

@ Springer

on the next bit). In this type of arithmetic, addition and
subtraction are identical and correspond to a XOR. A more
efficient version of the algorithm (Table driven CRC) uses
a pre-calculated table to make this division by 8-bits blocks
(see [17]) instead of bit by bit. The CRC is so calculated by
shifting the message byte by byte through a “register” the
size of the CRC (in our case 32bits). The outcoming value
resulting from the shifting is memorized (it is the ropbyte).
The register is combined by a XOR having the value of the
pre-calculated value extracted from the table (on the position
equal to the topbyte). These manipulations are made once for
each byte of the message, and finally the register contains our
CRC-32. Reversing this algorithm corresponds to revers-
ing this calculation until the 4 bytes message producing the
CRC-32 extracted from the Nmap signature is found.

Our work has been directly influenced by existing works
[18].

The principle of this algorithm is the following:

1. First take an 8 bytes table, and fill 0-3 positions with the
CRC-32 of the message until now. Fill 4—7 positions with
CRC-32 desired value.

2. Take the value from the 7 position and use it to find the
complete value back in the table.

3. Make a XOR with this value (4 bytes) with bytes 4—7.

Make a XOR of the position in the table with byte 3.

5. Repeat steps 2—4 three times, by decrementing index
number by 1 every time (value = 6, 5, 4 for step 2; 36,
2-5, 1-4 for step 3 and 3, 2, 1, O for step 4)

&

Finally, data generating the desired CRC-32 are in the
positions 0-3 of the table. You can so systematically find
4bytes which CRC-32 is the one of Nmap signatures,
in O(1).

This reverse CRC-32, i.e. the creation of 4bytes corre-
sponding to the RD of the Nmap signature, is made upon
creation of the personality. Fortunately, Nmap does not use
any hashing function like MD5 or SHA1, which would have
forced us to have access to real operating systems to analyze
their specific TCP RST packets, capture their real text field
and store it in a base in the IpMorph personality.

“TCP IP ID sequence generation algorithm (TI) and ICMP
IP ID sequence generation algorithm (11)” test During these
tests, Nmap tries to determine the IP packets ID creation
algorithm, both if it is a TCP packet or an ICMP packet. As
for other signature parameters, [pMorph must respect this
IP packet ID creation policy. We must especially respect
the fact that this ID creation can be either shared between
TCP and ICMP or separate (Shared IP ID sequence Bool-
ean (SS) parameter). To do so, IpMorph keeps two attributes
up-to-date: _lastIpIdTcp and _lastIpIdIcmp,

IpMorph: fingerprinting spoofing unification

337

which it increments independently or simultaneously upon
every new ID creation, depending on the incrementing policy
desired by Nmap. The incrementing policy is also tested (TI
and II tests), for example systematically equal to zero (TI=2),
always equal to a specific value stored in hexadecimal in the
signature (TI=A400), incremented every time (TI=),...

Taking into account this test has not been difficult, because
the call of our _generateIpIdent () method only has
to scrupulously respect the range of potential cases and the
potential sharing of this creation between TCP and ICMP.

The implementation of this IP ID creation spoofing has
allowed us to unveil a malfunction of Nmap, due to a “bug”
in its code, which was already present in previous versions.
During our tests (which mainly consist in launching IpMorph
with a random Nmap signature and verifying for each Nmap
execution if the detected signature is correct, all this looped
on all Nmap signatures), we have noticed that for certain
signatures, Nmap did not manage to identify the desired fin-
gerprint. Considering our classification of problematic sig-
natures and Nmap source code analysis (osscan? . cc file),
we discovered that the Nmap analysis function of the returned
IP ID series did not match with its objectives. More precisely,
probably because of a copy/paste error in its code, the table
containing IDs measured by Nmap was modified before its
analysis function. This noticed “bug” has a significant impor-
tance for us, because it means that, in many of the last versions
of Nmap, several signatures of the Nmap base will never be
detected by the tool, even if the remote OS is the one of the
signature present in the base (in other words, the base signa-
ture is correct, but because of its wrong analysis Nmap will
never detect it). We have corrected this malfunction, and we
have sent a patch to the developers.

This Nmap code analysis on the last version (current
version: 4.85 BETA 4) has allowed us to understand that
undocumented tests are already being prepared. As an
example, Nmap will soon perform its IP ID creation test
simultaneously on open TCP ports, closed TCP ports and
ICMP. A new ClI field (corresponding to the detected crea-
tion policy when the TCP port is closed) should appear in
upcoming signature bases, which will add a third parameter
for this IP ID test. For us, it is all about adding a specific
_lastIpIdTcpClosed attribute to differentiate this cre-
ation from IpMorph _generateIpIdent () method if
needed.

5.2 SinFP integration

SinFP [4], developed in Brittany by Patrice Auffret, is the first
fingerprinting tool that unifies active fingerprinting with pas-
sive fingerprinting and performs stack recognition on IPvo6.
It is, both in its design and operation (sending of at least
three packets in active mode), an interesting tool, which

differs significantly from Nmap in terms of stimuli volume
and probe characterization (sending of conform packets).
Given its characteristics, and mainly its passive analysis
mode, it was critical for us to be able to integrate, and thus
fool it. Contrary to the easily detectable Nmap probes (where
IpMorph operates in interception), in this case our tool oper-
ates as a relay between the exposed side and the protected
side. Our approach was the following: we first tried to fool
SinFP during active fingerprint detection, and then we tried
to fool it during passive fingerprinting.

SinFP spoofing in active mode We extract the desired sig-
nature from the SinFP signature base (in SQLite format).
We only interpret its first heuristic and we do not consider
its alteration masks, because we intend to return exactly
what SinFP expects to ensure perfect spoofing starting on
the first analysis of results by SinFP. The three SinFP probes
are standard TCP packets on a port specified as open (SYN,
SYN with options and SYN+ACK) that induces respective
answers from the protected computer (SYN+ACK, SYN+
ACK and RST). As there is no way to differentiate such
a SinFP probe from a legitimate connection, IpMorph sys-
tematically operates as a relay on return of protected side
packets while modifying these upon sending to the exposed
side (to SinFP). This relay/re-writing on return only implies
SYN+ACK and RST concerned packets, and consists in mod-
ifying the IP and TCP headers fields according to the expected
SinFP signature. To concretely illustrate this relay, below is
an example of re-writing on the P2 test of SinFP:

— Whena SYN packet arrives on the exposed side, a context
is created and the packet is transmitted to the protected
side.

— Upon receipt of the responding SYN+ACK packet of the
protected computer, we consult the IpMorph personal-
ity. For this example, we consider that this personality
has been built from the signature id 140 of SinFP, i.e. an
OpenBSD 3.7.

— Depending on the parameters of this personality, we per-
form a number of alterations:

— We apply directly the initial TTL, Don’t Fragment (DF)
bit, maximum segment size (MSS), TCP option and Win-
dows Scale values to the packet, like we read them from
the signature 140.

— We then apply the right algorithms to generate SEQ,
ACK, and IP ID values (once again, based on the Sin-
FP signature).

— The so modified packet is transmitted to the exposed side.

SinFP spoofing in passive mode Contrary to what we could
think at the beginning, the supporting of SinFP spoofing in
passive mode is almost instantaneous if you also know how

@ Springer

338

G. Prigent et al.

to modify outgoing SYN packets, i.e. coming from the pro-
tected computer. This statement mainly derives from the fact
that SinFP uses a unified approach both in active and passive
mode (only a few details differ) on acquired packets analysis.

In passive mode, SinFP can detect the communicating
computer’s identity both on its answers to SYNs (i.e. SYN+
ACK packets) of a client and on initial connections of a
computer to a server (i.e. SYN packets). For us, the first
case is automatically managed because we ensure to send a
SYN+ACK answer, like SinFP awaits. It is the same case as
active mode spoofing.

For example, in passive mode and for a setup of IpMorph
with the 140 signature (OpenBSD 3.7) of the SinFP, here is
the detection performed:

$ sudo/usr/local/sinfp/bin/sinfp.pl -P -d ethO

192.168.100.110:80 > 192.168.100.73:47979 [SYN|ACK]

P2: B11111 FOx12 W16384 O0204f£f£01010402010303000101080
af fEEFEFEEFEFEEEE M1460
IPv4: HEURISTICO/P2: BSD:
IPv4: HEURISTICO/P2: BSD:
IPv4: HEURISTICO/P2: BSD:
IPv4: HEURISTICO/P2: BSD:

IPv4: HEURISTICO/P2: BSD:
IPv4: HEURISTICO/P2: BSD:

OpenBSD:
OpenBSD:
OpenBSD:
OpenBSD:
OpenBSD:
OpenBSD:

W WwWwww
O W o 3o Ul

The 192.168.100.110 computer (which is an Ubuntu 8.04),
protected by IpMorph, appears correctly on SYNs/ACKs
as an OpenBSD 3.5-4.0-family computer (this uncertainty
range is due to the fact that these SinFP signatures are iden-
tical for the P2 test and that it is the only identification infor-
mation the tool has access to in passive mode).

In the second case, and when SinFP only has access to the
SYN packets coming from the protected computer, we simply
have to add support for rewriting of connection made from the
protected computer. In this detection mode, SinFP analyzes
the SYN packet by normalizing it its way to make it match
with a P2 test analysis (several fields of the received packet
and of the in-base signature are deactivated because the P1
or P2 initial comparison packet has not been sent by SinFP).
Our task consists then in only modifying the SYN packet on
tested fields, i.e. the order and values of TCP options given
by the SinFP signature, the MSS and the window size. The
initial sequence number is chosen and modified as usual in
IpMorph (see Nmap), the acknowledgement number is set
to zero and the TTL is the one from IpMorph’s personality
(coming from other tools signature).

In this very case, SinFP can not legitimately base itself
on IP header’s fields (ID, TTL, bit DF) or on the sequence
and acknowledgement numbers of the packet, for it does
not have any corresponding signature in base (the acquired
patterns are often differences from a request and only on
SYN+ACK answers). Aware of this, upon packet analysis in
passive mode, the author does not consider most of fields for
its matching in signature base.

Unfortunately for SinFP, some analysis and pattern match-
ing fields are kept, though we think they should not be,

@ Springer

because they make identification much less precise at first
time (without activating the advanced alteration masks).
To be sure of this, see below the detection performed in
passive mode for the same IpMorph’s setup with the 140
signature (OpenBSD 3.7) when SinFP does not access to the
SYN packets:

$ sudo/usr/local/sinfp/bin/sinfp.pl -P -d eth0
192.168.100.110:35366 > 192.168.100.73:80 [SYN]
P2: B11110 FOx12 W16384 00204fff£f01010402010303000101080
affff££££00000000 M1460
IPv4: unknown

If we now activate the advanced alteration masks (which
equals to allowing any value used for B11110 analysis and
thus ignore these analysis criteria), the new detection is the
following:

$ sudo/usr/local/sinfp/bin/sinfp.pl -P -d eth0 -H
192.168.100.110:59893 > 192.168.100.73:80 [SYN]
P2: B11110 FOx12 W16384 00204fff£f01010402010303000101080
affff££££00000000 M1460

IPv4: BH2FHOWHOOHOMH1/P2: BSD: OpenBSD: 3.5
IPv4: BH2FHOWHOOHOMH1/P2: BSD: OpenBSD: 3.6
IPv4: BH2FHOWHOOHOMH1/P2: BSD: OpenBSD: 3.7
IPv4: BH2FHOWHOOHOMH1/P2: BSD: OpenBSD: 3.8
IPv4: BH2FHOWHOOHOMH1/P2: BSD: OpenBSD: 3.9
IPv4: BH2FHOWHOOHOMH1/P2: BSD: OpenBSD: 4.0

Willing to participate in the quality of major tools like
Nmap or SinFP, we told the author about our analysis.
According to us, there is no need to perform comparison
tests when the reference sample is too weak and when no
comparison with reference values is possible.

5.3 pOf integration

pOf has been designed and created by Michal Zalewski and
is historically the first operational and efficient passive mode
fingerprinting tool (other pre-existing tools as Siphon did
not make it further than the proof of concept step). As a
key passive mode detection and fingerprinting tool, it should
integrate with our spoofing tool.

Default pOf performs a SYN packets analysis, i.e. the “out-
going” SYN packets for us (coming from the protected com-
puter). Not only is this for us the same connection diagram
(relay and re-writing) as in SinFP passive mode on SYN
packets, but, moreover, the re-writing of packets is the same
because pOf’s signatures, and thus analyzed fields, are almost
the same as the ones of SinFP (and vice versa).

No pOf specificity has had to be considered because we
have already handled SinFP integration. In other words, the
operating process and analysis criteria of SinFP completely
“overlap” the ones of pOf.

To be sure of this without having modified IpMorph since
complete SinFP integration, we have performed a few tests
by configuring IpMorph with signatures coming from SinFP,
that correspond to stacks identified in pOf base. Here is an

IpMorph: fingerprinting spoofing unification

339

Exposed Side

[Connection (SYN+ACK)
congestion spoofing on

Protected Side

182.168.100.2
00:10-4F EACT:E

behalf of the attacker]

SYN+ ACK EEEEEEEPEPE

iro

L O PPRPRTEETT =i+ ACK

+

Hal
i

i

i

T

SYN+ ACK

3 times retransmission of the SYN+ACK
packet with retansmission delay
{longer walting time than the legitimate
retransmission of the protected
computer = t0 > t'0 & t1 > t'1)

Fig. 8 Implementation of congestion spoofing on a connection on behalf of the “exposed side” computer (i.e. “client”)

example for the same personality as above (SinFP signature
N° 140: OpenBSD 3.7):

$ sudo ./pO0f -i ethO
p0f - passive os fingerprinting utility, version 2.0.8
(C) M. Zalewski <lcamtuf@dione.cc>,
pO0f: listening (SYN) on ‘eth0’, 262 sigs
192.168.100.110:35365 - OpenBSD 3.0-3.9
-> 192.168.100.73:80 (distance 0, link:

(14 generic,
(up: 0 hrs)
ethernet/modem)

and to emit the SYN or FIN packet on behalf of IpMorph
before the protected computer itself. The same phenomenon
has to be considered for the opposite case (introduction of a

W. Stearns <wstearns@pobox.com>
cksum OF1F5CA2),

rule: ’all’.

The IpMorph-protected 192.168.100.110 computer really
appears like an OpenBSD 3.0-3.9 operating system.

5.4 Ring2 integration

Ring2 [19], developed in Brittany by Franck VEYSSET,
Olivier COURTAY and Olivier HEEN, tries to perform a
remote fingerprinting by focusing on temporal specificities
of TCP/IP stacks during an induced simulation of TCP
congestion. “SYN relay” type solutions only rarely handle
transmissions on behalf of protected computers [19] (upon
establishment of the session, and thus sending by protected
computer of a SYN packet and waiting of the SYN+ACK
packet). This characteristic is all the more obvious as it
implies a disconnection (session closing by a FIN and wait-
ing for ACK as answer) on behalf of the protected computer.
Since these are two of the main tests of RINGv2 (temporal
measures on a congestion simulation) and we consider this
approach as groundbreaking and elegant, we have decided to
integrate these types of relays in [pMorph.

The consideration of these tests forces us to extend our ses-
sions monitoring to the phases when the TCP retransmission
is supposed to take place. It can sometimes be compulsory to
answer ahead of time, depending on the defined personality,

retransmission delay). Moreover, in these cases, you have to
block legitimate retransmissions of the protected computer
and correctly manage this protected side congestion depend-
ing on the exposed side results. Figures 8 and 9 schemas
graphically illustrate these use-cases.

Atimplementation level, we have added timers on the TCP
session monitoring IpMorph context. In every concerned
case, and both at SYN packet emission level and at FINs
level, we systematically launch a time counter, which then
launches the re-emission of the last packet stored in the
IpMorph context (traffic memory), with defined intervals and
with as many occurrences as needed depending in Ring2 sig-
natures. As said above, it is especially important to take care
of filtering legitimate re-emission flows of the protected com-
puter as long as the retransmission simulation is not over on
the exposed side to Ring2.

5.5 Signature unification
IpMorph’s behavior is defined by a set of parameters that con-
cerns some reply options as well as the algorithmic choices

to make on certain stimuli. All these parameters are custom-
izable and this is what we define as the IpMorph personality.

@ Springer

340

G. Prigent et al.

[Congestion spoofing E
on termination (FIN) on
behalf of the attacker]

Exposed Side

FIN

FIN L LT

2 times retransmission of the FIN packet
ahead of time (shorter waiting time than
the legitimate retransmission of the
protected computer = t0 < t'0)

Fig. 9 Implementation of congestion spoofing on a session termination on behalf of the “exposed side” computer (i.e. “client”)

Nmap poOf Ring2/Cron-08 SinFP

Satori

[nmap-os-db] [0 f] i | db]

e aml, iempuemi, .|

o
L=
L=

L

ercccccccccna

Yovy

IpMorphAssociation

IpMarph association XML file is a tree in [PMomAFpindes i}
which branches are categories and leafs
are the aggregation of the different keys
of tools signatures. Each association owns
a unique key which is the same index
used in the IpMorph personalities
database (primary key)

<

The construction {or regeneration) process of the personalities
datab a fusion of sig s of
different tools, depending on the association XML file and
creates an IpMorph ity for each <IpmA = node.
An inconsistency control is performed and conflict resolution
implies an intervention of the user.

PersonalityBuilder
oMovphPersonaltyMansges]

IpMarph is started with a personality
from its database. This corresponds
to setting "attributes® (parameters)

of the stack and conditional
branches (algorithms).

Ajpersonalily{ Uniqueld)

IpMorph

IpMorphPersonality
Database
fipMomphParsonality. db]

Fig. 10 Indexation/association principle for the creation of the personalities database and their use

This personality concept is simply the granular setup of
the application according to the signatures of the tools. For
us, an IpMorph personality is the union (or aggregation) of
multiple signatures coming from different tools and param-
eters of the application itself.

Inside an indexation format (Fig. 10), we textually des-
cribe (using a simple text editor or the IpMorphGui with
its PersonalityDBManager module) associations structured
in categories and subcategories of different signatures of
observed tools.

@ Springer

Based on this indexation schema, on the analysis and on
the extraction (IpMorphFpParser class), we build (or re-build
if the user asks us to) a SQLite database of IpMorph person-
alities (in a format close to the C++ structures/classes we use
then in the virtual stack).

This personalities extraction and construction mechanism
is able to detect some inconsistencies between signatures,
whether they are due to an inconsistency of signatures bet-
ween the tools or to a bad indexation in the association
XML file. We think for example of “unique” attributes of the

IpMorph: fingerprinting spoofing unification

341

XProbe2Signature Nmap2Signature SinFPSignature pOfSignature
icap_echo_reply_code: beol tep_tl_ecn_reply: int[]) ip_ttl: bool ip_dent_fragsent: bool
icmp_echo_reply_ip_id: int tep_t2_reply: int[] ip_id: int tep_wss: int
icmp_echo_reply_tos bits: bool tep_t3_reply: int(] ip_df: bool tep_packet_size: int

icmp_echo_reply_df_bit: bool
icap_echo_reply_ttl: int

icmp_timestamp_reply_received: bool
icmp_timestamp_reply_ttl: int
icep_timestamp_reply_ip id: int

tep_t4_reply: int[)
tep_tS_reply: int[]
tep_t6_reply: int[)
tep_t7_reply: int[]
icap_ie_reply: int[]
udp_ul_reply: int[]

tep_seq: int
tep_ack: int
tep_flags: bytel]
tep_wss: int
tep_mss: int
tcp_options: bytel)

tep_initial_ttl: int
tcp_mss: int
tep_window_scaling:
tep_options: bytel]
tep_quirks: booll)

int

icep_address_mask_reply_received: bool H
icep_address_sask_reply_ttl: int '
icep_address_mask_reply_ip_id: int "

icep_inforesation_reply_received: bool
icep_inforsation_reply_ttl: int
icmp_inforeation_reply_ip_id: int

icmp_udp_unreach_reply_echoed_dtsize: int
icep_udp_unreach_reply_ttl: int
icmp_udp_unreach_reply_precedence_bits: int
icmp_udp_unreach_reply_df_bit: bool
icmp_udp_unreach_reply_ip_id: int
icmp_udp_unreach_reply_payload_udp_chksum: int
icmp_udp_unreach_reply_paylead_ip_chksun
icmp_udp_unreach_reply_paylead_ip_df: bool
icap_udp_unreach_reply_payload_total_len: int
icmp_udp_unreach_reply_paylead_3bit_flags: beol

tep_syn/ack_reply_tos: int
tep_syn/ack_reply_df: bool
tep_syn/ack_reply_ip_id: int
tep_syn/ack_reply_ttl: int
tep_syn/ack_reply_ack_delta: int
tep_syn/ack_reply_wss: int
tep_syn/ack_reply_options: byte[]
tep_syn/ack_reply_wscale: int

Ring2Signature

nb_packets: int
ring_timeout: int

: ------------ connexion_time: int

H retry_intervals: intl]
L]

l

myToolSignature

?

s

IpMorphPersonalityDatabase

[inMorphPersonality.db]

Fig. 11 Detailed example of reading and storing structures of signature extraction tools (IpMorphFpParser abstract class derived depending on

the tools)

IpMorph stack (e.g. icmp.ip.defaultTtl or icmp.ip.idPolicy),
that can be indicated or described with different values in
different signatures (Fig. 11). Depending on the importance
of these differences, the personalities creation tool may need
some interaction (conflict resolution) with the user.

6 Conclusion and perspectives

We have demonstrated in this article that it was possible
to design and create a fingerprint scrubber preventing most
fingerprinting tools from working, whether they are in active
or passive mode. The most significant work has been to pre-
cisely analyze each tool’s modus operandi, and has offered
us the ability to correct some of its malfunctions (e.g. Nmap)
or to suggest changes to make these tools more relevant (e.g.
SinFP). The necessary consideration of multiple signatures
of different tools has enabled us to perform a synthesis work
on different parameters of signatures and has naturally led
us to the unified personality concept. Finally, the implemen-
tation of a TCP/IP stack substitute inside our tool and the
extent of parameters and connections that are not currently
used in fingerprinting tools signatures let us think that mul-
tiple OSFP techniques can appear.

IpMorph does not go any further than TCP for now, which
is where, according to us, personality detection future starts.
It appears critical to us to be able to go up into most of
the basic network applicative layers to spoof the ‘“real”

content of traffic (DNS, DHCP, SMB,...) as well. This per-
spective seems all the more relevant as certain tools, like
Satori, already perform this type of analysis on flows to iden-
tify probed computers fingerprint.

However, even if our design principles have to make
IpMorph more scalable (to manage new versions of existing
or upcoming tools as well as new fingerprinting methods),
this kind of approach highly depends on evolutions of tools
we want to fool, and often remains an ad hoc work, which can
hardly be generalized. It seems to us especially obvious that
it is quite easy to detect the presence of a tool like IpMorph.
This last statement has to be put in context and moderated,
because in the end people will only know they must not trust
the performed fingerprinting and that a filtering mechanism
prevents them from doing what they want.

Finally, beyond what IpMorph really is for now (a sim-
ple promising prototype resulting of a feasibility study), it
is critical to perform an experimentation and measurement
phase on this tool in a production environment, as well as,
similarly as most prototypes, a new implementation phase
to make IpMorph rugged, documented, distributable and
sustainable.

However, the frame of this application (spoofing protected
resources real identity), potential stakes, evolution perspec-
tives and first feedback elements of people who we presented
our designs to, let us think this project might quickly make
a important contribution to the information systems security
field.

@ Springer

342

G. Prigent et al.

References

Smart, M., Malan, G.R., Jahanian, F.: Defeating TCP/IP stack
fingerprinting. In: Proceddings of the 9th USENIX Secu-
rity Symposium. http://www.usenix.org/events/sec00/full_papers/
smart/smart_html/index.html

Fyodor: Remote OS detection via TCP/IP stack fingerprinting.
http://www.insecure.org/nmap/nmap-fingerprinting- article.txt
Spangler, R.: Analysis of remote active operating system finger-
printing tools, ettercap, Nmap and other OS detection tools. http://
www.packetwatch.net/documents/papers/osdetection.pdf (2008)
Auffret, P.: SinFP, unification de la prise d’empreinte passive
et active des systemes d’exploitation, SSTIC 2008. http://www.
gomor.org/bin/view/GomorOrg/ConfSstic2008

Veysset, F., Courtay, O., Heen, O.: New tool and technique for
remote operating system fingerprinting. http://www.ouah.org/ring-
full-paper.pdf (2002)

Smith, C., Grundl, P.: Know your enemy: passive fingerprinting.
http://old.honeynet.org/papers/finger/ (2002)

Berrueta, D.B.: A practical approach for defeating Nmap
OS-fingerprinting. http://nmap.org/misc/defeat-nmap-osdetect.
htm (2003)

Trifero, S., Callaway, D.: Linux stealth patch. http://www.innu.org/
~sean/ (2002)

Rehmet, G.: FreeBSD blackhole. http://www.gsp.com/cgi-bin/
man.cgi?section=4&topic=blackhole

@ Springer

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

McCabe, R.: IPlog. http://ojnk.sourceforge.net/stuff/iplog.readme
(2001)

Hartmeier, D.: OpenBSD packet filter. http://www.openbsd.org/
faq/pf/index.html

Crenshaw, A.: OSfuscate: change your windows OS TCP/IP
fingerprint to confuse POf, NetworkMiner, ettercap, Nmap and
other OS detection tools. http://www.irongeek.com/i.php?page=
security/osfuscate-change-your-windows-os-tcp-ip-fingerprint-
to-confuse-pOf-networkminer-ettercap-nmap-and-other-os-
detection-tools (2008)

Provos, N.: Honeyd: a virtual honeypot daemon. http://www.citi.
umich.edu/u/provos/papers/honeyd-eabstract.pdf (2003)

Wang, K.: Frustrating OS fingerprinting with morph. http://www.
synacklabs.net/projects/morph/ Wang-Morph-TheFifthHOPE.pdf
(2004)

BridNet SSTIC 2005. http://www.bridnet.fr/files/23/sstic2005_
bridnet.pdf

Hynesim http://www.hynesim.org

A painless guide to CRC error detection. http://www.repairfaq.org/
filipg/LINK/F_crc_v3.html

CRC and how to reverse it. http://www.codebreakers-journal.com/
downloads/cbj/2004/CBJ_1_1_2004 Anarchriz_CRC_and_how
_to_Reverse_it.pdf

Veysset, F., Courtay, O., Heen, O.: Détection des systemes d’exploi-
tation avec RINGv2 Actes SSTIC 2003

http://www.usenix.org/events/sec00/full_papers/smart/smart_html/index.html
http://www.usenix.org/events/sec00/full_papers/smart/smart_html/index.html
http://www.insecure.org/nmap/nmap-fingerprinting-article.txt
http://www.packetwatch.net/documents/papers/osdetection.pdf
http://www.packetwatch.net/documents/papers/osdetection.pdf
http://www.gomor.org/bin/view/GomorOrg/ConfSstic2008
http://www.gomor.org/bin/view/GomorOrg/ConfSstic2008
http://www.ouah.org/ring-full-paper.pdf
http://www.ouah.org/ring-full-paper.pdf
http://old.honeynet.org/papers/finger/
http://nmap.org/misc/defeat-nmap-osdetect.htm
http://nmap.org/misc/defeat-nmap-osdetect.htm
http://www.innu.org/~sean/
http://www.innu.org/~sean/
http://www.gsp.com/cgi-bin/man.cgi?section=4&topic=blackhole
http://www.gsp.com/cgi-bin/man.cgi?section=4&topic=blackhole
http://ojnk.sourceforge.net/stuff/iplog.readme
http://www.openbsd.org/faq/pf/index.html
http://www.openbsd.org/faq/pf/index.html
http://www.irongeek.com/i.php?page=security/osfuscate-change-your-windows-os-tcp-ip-fingerprint-to-confuse-p0f-networkminer-ettercap-nmap-and-other-os-detection-tools
http://www.irongeek.com/i.php?page=security/osfuscate-change-your-windows-os-tcp-ip-fingerprint-to-confuse-p0f-networkminer-ettercap-nmap-and-other-os-detection-tools
http://www.irongeek.com/i.php?page=security/osfuscate-change-your-windows-os-tcp-ip-fingerprint-to-confuse-p0f-networkminer-ettercap-nmap-and-other-os-detection-tools
http://www.irongeek.com/i.php?page=security/osfuscate-change-your-windows-os-tcp-ip-fingerprint-to-confuse-p0f-networkminer-ettercap-nmap-and-other-os-detection-tools
http://www.citi.umich.edu/u/provos/papers/honeyd-eabstract.pdf
http://www.citi.umich.edu/u/provos/papers/honeyd-eabstract.pdf
http://www.synacklabs.net/projects/morph/Wang-Morph-TheFifthHOPE.pdf
http://www.synacklabs.net/projects/morph/Wang-Morph-TheFifthHOPE.pdf
http://www.bridnet.fr/files/23/sstic2005_bridnet.pdf
http://www.bridnet.fr/files/23/sstic2005_bridnet.pdf
http://www.hynesim.org
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html
http://www.repairfaq.org/filipg/LINK/F_crc_v3.html
http://www.codebreakers-journal.com/downloads/cbj/2004/CBJ_1_1_2004
http://www.codebreakers-journal.com/downloads/cbj/2004/CBJ_1_1_2004

	IpMorph: fingerprinting spoofing unification
	Abstract
	1 Introduction
	2 Reminder
	2.1 Active fingerprinting
	2.2 Passive fingerprinting
	2.3 Fingerprinting methodologies synthesis

	3 Fingerprinting defeating state of the art
	3.1 Classification of identification disturbance solutions
	3.2 State of the art synthesis

	4 Design objectives and principles
	4.1 Project's context
	4.2 Objectives
	4.3 General architecture

	5 Implementation and technical focus
	5.1 Nmap integration
	5.2 SinFP integration
	5.3 p0f integration
	5.4 Ring2 integration
	5.5 Signature unification

	6 Conclusion and perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

