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Abstract An unprecedented growth in computer and com-
munication systems in the last two decades has resulted in a
proportional increase in the number and sophistication of
network attacks. In particular, the number of previously-
unseen attacks has increased exponentially in the last few
years. Due to the rapidly evolving nature of network attacks,
a considerable paradigm shift has taken place in the intrusion
detection community. The main focus is now on Network
Anomaly Detection Systems (NADSs) which model and flag
deviations from normal/benign behavior of a network and
can hence detect previously-unseen attacks. Contemporary
NADS borrow concepts from a variety of theoretical fields
(e.g., Information theory, stochastic and machine learning,
signal processing, etc.) to model benign behavior. These
NADSs, however, fall short of achieving acceptable
performance levels as therefore widespread commercial
deployments. Thus, in this paper, we firstly evaluate the per-
formance of eight prominent network-based anomaly detec-
tors under malicious portscan attacks to identify which
NADSs perform better than others and why. These NADSs
are evaluated on three criteria: accuracy (ROC curves), sca-
lability (with respect to varying normal and attack traffic
rates, and deployment points) and detection delay. These cri-
teria are evaluated using two independently collected data-
sets with complementary strengths. We then propose novel
methods and promising guidelines to improve the accuracy
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and scalability of existing and future anomaly detectors.
Experimental analysis of the proposed guidelines is also pre-
sented for the proof of concept.

1 Introduction

The CodeRed worm of 2001 catalyzed a notable shift in
the network attack paradigm. This first largescale malicious
attack revealed the destructive capability of an automated and
distributed attack that can be launched using compromised
hosts. Since then, network attacks have evolved considerably
and malware, botnets, spam, phishing, and denial of service
attacks have become continuous and imminent threats for
today’s networks and hosts. Financial losses due to these
attacks have been overwhelming. For instance, the economic
losses to recover from the CodeRed worm alone are esti-
mated at $2.6 billion [2]. In addition to the short-term revenue
losses for businesses and enterprises, network attacks also
compromise information confidentiality/integrity and cause
disruption of service, thus resulting in a long-term loss of
credibility.

In order to combat the rapidly-evolving attacks, network
intrusion detection methods have also become increasingly
sophisticated. In broad terms, the field of intrusion detection
comprises two types of detection methods: misuse detection
and anomaly detection. Misuse detection, the predominant
detection method employed in today’s anti-virus software,
requires a signature of an attack to be known before the
attack can be detected. While such signature-based detectors
can provide 100% detection rates for known attacks, they
have an inherent limitation of not being able to detect new or
previously-unseen attacks; a 468% increase in previously-
unseen attacks was reported over just a six month period
in 2007 [1]. Moreover, development and dissemination of
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attack signatures require human intervention and therefore
misuse detectors are finding it difficult to cope with rapidly-
evolving network intrusions. On the other end of the intrusion
detection spectrum are Network Anomaly Detection Systems
(NADSs) which model the benign or normal traffic behavior
of a network or host and detect significant deviations from
this model to identify anomalies in network traffic. Since
NADS:s rely on normal traffic behavior for attack detection,
they can detect previously-unknown attacks. Consequently,
significant research effort has been focussed on development
of NADSs in the past few years [3].!

The main challenge of NADSs is to define a robust model
of normal traffic behavior. In antivirus detection, however,
this is trivial since the normal behavior pertains to the defined
signatures learnt over a period of time. These learnt signa-
tures are then matched against the signatures in traffic, under
analysis, to detect known malware. However, since NADSs
strive to detect unknown malware as well (zero-day attacks),
the detection is inherently more complicated. In NADSs, an
accurate model of normal traffic behavior needs to cater for
changes in normal behavior over time. Such changes in nor-
mal traffic behavior lead to potentially low detection rates
and high false alarm rates of NADSs. In view of the vast
research literature on network anomaly detection, it is impor-
tant to evaluate the performance of these NADSs and identify
the shortcomings. Based on our findings, we propose novel
guidelines that can be used to improve the accuracy of exist-
ing and future NADSs along with experimental results for
the proof of concept.

Following are the objectives of this research work:

e to quantify and compare the accuracies of some of the
prominent detectors under varying rates of attack and nor-
mal traffic and at different points of deployment;

e to identify promising traffic features and theoretical
frameworks for portscan anomaly detection;
to investigate the detection delay of anomaly detectors;

e to identify a set of promising portscan detection guide-
lines that build on the strengths and avoid the weaknesses
of the evaluated anomaly detectors; and finally

e to provide experimental results for the accuracy improve-
ments achieved by the proposed guidelines.

We evaluate the NADSs on three criteria: accuracy,
scalability, and detection delay. Accuracy is evaluated by
comparing ROC (detection rate versus false alarm rate) char-
acteristics of the NADSs. Scalability is evaluated with respect
to different background and attack traffic rates. Since the
two datasets used in this study are collected at different

! Interestingly, the promise and advantages of anomaly detectors over
signature detectors were identified by the seminal DARPA-funded IDS
evaluation studies much before the CodeRed worm [4,37].
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network entities and contain attacks with different charac-
teristics, evaluation over these datasets allows us to compare
the scalability of the proposed NADSs under varying traffic
volumes. Detection delay is evaluated separately for high-
and low-rate attacks.

Based on our findings, we propose a few promising guide-
lines to improve the accuracy and scalability of existing and
future NADSs. Our results show that the proposed guidelines
result in an average detection rate increase of 5—10%, while
reducing the false alarm rates up to 50%.

The remainder of this document is structured as follows:
Sect. 2 outlines the existing research in the areas of NADSs
and IDS evaluation. Section 3 gives a brief description of
the evaluated anomaly detection systems and the datasets
used. Section 4 provides the comparative performance eval-
uation results in the form of ROC curves on the two datasets
[53]. Section 5 provides the lessons learnt from the compar-
ative performance evaluation of prominent NADSs. More-
over, promising portscan detection guidelines are proposed
to improve the performance of existing and future NADSs.
Experimental results are also provided in the form of ROC
curves for the performance improvements realized by jointly
using the proposed guidelines. Section 6 summarizes the key
conclusions of this work.

2 Related work

In this section, we focus on prior IDS/ADS evaluation stud-
ies. Details of anomaly detectors evaluated in this work are
deferred to subsequent sections.

Performance evaluation of IDSs received significant atten-
tion from the industry and academia in the late 1990°s [30—
44]. However, in the past few years, only four studies have
performed comparative comparison of anomaly detectors
[27-29]. Similarly, very few prior studies have performed
ROC analysis of the evaluated IDSs. Still fewer studies have
made their evaluation datasets available online.

DARPA-funded IDS evaluation studies by the MIT
Lincoln Lab in 1998 and 1999 represent a shift in the IDS
evaluation methodology [4,37]. Datasets used in these stud-
ies were made publicly available [38] and the ROC method
used in these studies has since become the de facto standard
for IDS accuracy evaluation. While some shortcomings of
the DARPA evaluation have been highlighted [45,46], in the
absence of other benchmarks, the results and datasets of this
study have been used extensively in subsequent works. In
the present study’s context, the DARPA dataset is somewhat
dated.

The four recent ADS evaluation studies focus on specific
types of detectors and attacks [27-29]. The study by Wong
et al. [27] is most relevant in the present context. Wong et al.
[27] evaluated four variants of the rate limiting detector under



Accuracy improving guidelines for network anomaly detection systems

65

portscan attacks at two different network points [5—12]. Two
findings of this study are pertinent to the present work: (1)
classical rate limiting is not an effective technique for port-
scan detection, and (2) rate limiting can operate on aggregate-
level DN traffic and hence can potentially scale to core-level
deployments. Attack and background traffic data used in this
study are not publicly available.

Ingham and Inoue [28] compared seven HTTP anom-
aly detection techniques under real-world attacks reported at
public databases. These authors report the same evaluation
difficulties that were faced by us: (1) Some anomaly detec-
tors are not described completely; (2) Implementation source
code is not available; and (3) labeled data used for algo-
rithm evaluation are not publicly available. Consequently,
the authors in [28] make their implementation and attack
data publicly available “to encourage further experimenta-
tion”. We subscribe to the same viewpoint and therefore all
data and implementation used in this project are available
online [26]. Lazarevic et al. [29] performed a comparative
analysis of four data mining based anomaly detection tech-
niques. The live network traffic data used in this study is not
publicly available.

3 ADS evaluation framework

In this section, we would give details regarding the evalu-
ated anomaly detection systems and the datasets used. More-
over, characteristic features of the two datasets will also be
provided.

3.1 Anomaly detection algorithms

We will focus on network-based anomaly detectors and com-
pare the anomaly detectors proposed in [5,8,9,13,16,19,21,
22]. Most of these detectors are quite popular and used fre-
quently for performance comparison and benchmarking in
the Intrusion Detection (ID) research community. Improve-
ments to these algorithms have also been proposed in [7,10—
12,14,15,17,18,20,27].2

Before briefly describing these detectors, we highlight that
some of these detectors are designed specifically for portscan
detection, while others are general-purpose network anom-
aly detectors. We provide brief descriptions of the evaluated
algorithms. Majorly we will focus on the algorithm adap-
tation and parameter tuning for the datasets under consid-
eration. Readers are referred to [5,8,9,13,16,19,21,22] for
details of the algorithms. For techniques operating on fixed-
sized time windows, we use a window of 20s. All other

2 Some promising commercial ADSs are also available in the market
now [23,24]. We did not have access to these ADSs, and therefore these
commercial products are not evaluated in this study.

parameters not mentioned in this section are the same as
those described in the algorithms’ respective papers.

3.1.1 Rate limiting [5,6]

Detects anomalous connection behavior by relying on the
premise that an infected host will try to connect to many
different machines in a short period of time. Rate limiting
detects portscans by putting new connections exceeding a
certain threshold in a queue. An alarm is raised when the
queue length, n,, exceeds a threshold. ROCs for endpoints
are generated by varying n, = u + ko, where u and o rep-
resent the sample mean and sample standard deviation of the
connection rates in the training set, and k = 0, 1,2, ... is
a positive integer. Large values of k£ will provide low false
alarm and detection rates, while small values will render high
false alarm and detection rates. In the Lawrence Berkeley
National Laboratory (LBNL) dataset [25], connection rate
variance in the background traffic is more than the variance
in the attack traffic. Therefore, to obtain a range of detection
and false alarm rates for the LBNL dataset, we use a thresh-
old of n; = wp, with a varying parameter 0 < w < 1, and
the queue is varied between 5 and 100 sessions.

3.1.2 Threshold Random Walk (TRW) algorithm [8]

Detects incoming portscans by noting that the probability of a
connection attempt being a success should be much higher for
abenign host than for a scanner. To leverage this observation,
Threshold Random Walk (TRW) uses sequential hypothesis
testing (i.e., a likelihood ratio test) to classify whether or not a
remote host is a scanner. We plot ROCs for this algorithm by
setting different values of false alarm and detection rates and
computing the likelihood ratio thresholds, no and 71, using
the method described in [8].

3.1.3 TRW with Credit-based Rate Limiting (TRW-CB)[9]

A hybrid solution to leverage the complementary strengths
of Rate Limiting and TRW was proposed by Schechter et al.
[9]. Reverse TRW is an anomaly detector that limits the
rate at which new connections are initiated by applying the
sequential hypothesis testing in areverse chronological order.
A credit increase/decrease algorithm is used to slow down
hosts that are experiencing unsuccessful connections. We
plot ROCs for this technique for varying 1o and 7n; as in
the TRW case.

3.1.4 Maximum Entropy [21]
Detector estimates the benign traffic distribution using maxi-

mum entropy estimation. Traffic is divided into 2,348 packet
classes and maximum entropy estimation is then used to
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develop a baseline benign distribution for each packet class.
Packet class distributions observed in real-time windows are
then compared with the baseline distribution using the
Kullback-Leibler (K-L) divergence measure. An alarm is
raised if a packet class’ K-L divergence exceeds a threshold,
Nk, more than & times in the last W windows of ¢ seconds
each. Thus the Maximum Entropy method incurs a detec-
tion delay of at least & x ¢ seconds. ROCs are generated by
varying 7.

3.1.5 Packet Header Anomaly Detection (PHAD) [13]

Learns the normal range of values for all 33 fields in the Ether-
net, [P, TCP, UDP and ICMP headers. A score is assigned to
each packet header field in the testing phase and the fields’
scores are summed to obtain a packet’s aggregate anom-
aly score. We evaluate PHAD-C32 [13] using the following
packet header fields: source IP, destination IP, source port,
destination port, protocol type and TCP flags. Normal inter-
vals for the six fields are learned from 5 days of training
data. In the test data, fields’ values not falling in the learned
intervals are flagged as suspect. Then the top n packet score
values are termed as anomalous. The value of n is varied over
arange to obtain ROC curves.

3.1.6 PCA-based subspace method [16]

Uses Principal Component Analysis (PCA) to separate a
link’s traffic measurement space into useful subspaces for
analysis, with each subspace representing either benign or
anomalous traffic behavior. The authors proposed to apply
PCA for domain reduction of the Origin-Destination
(OD) flows in three dimensions: number of bytes, packets,
IP-level OD flows. The top k eigenvectors represent normal
subspaces. It has been shown that most of the variance in
a link’s traffic is generally captured by 5 principal compo-
nents [16]. A recent study showed that the detection rate of
PCA varies with the level and method of aggregation [52].
It was also concluded in [52] that it may be impractical to run
a PCA-based anomaly detector over data aggregated at the
level of OD flows. We evaluate the subspace method using
the number of TCP flows aggregated in 10min intervals.
To generate ROC results, we changed the number of normal
subspace as k = 1,2, ..., 15. Since the principal compo-
nents capture maximum variance of the data, as we increase
k, the dimension of the residual subspace reduces and fewer
observations are available for detection. In other words, as
more and more principal components are selected as nor-
mal subspaces, the detection and false alarm rates decrease
proportionally. Since there is no clear detection threshold,
we could not obtain the whole range of ROC values for the
subspace method. Nevertheless, we evaluate and report the
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subspace method’s accuracy results for varying number of
principal components.

3.1.7 Kalman filter based detector [19]

First filters out the normal traffic from the aggregate traffic,
and then examines the residue for anomalies. In [19], the
Kalman Filter operated on SNMP data to detect anomalies
traversing multiple links. Since SNMP data was not available
to us in either dataset, we model the traffic as a 2-D vector X;.
The first element of X is the total number of sessions (in the
endpoint dataset) or packets (in the LBNL dataset), while
the second element is the total number of distinct remote
ports observed in the traffic. We defined a threshold, 7 on
the residue value r to obtain ROC curves. Thresholding of
r is identical to the rate limiting case. An alarm is raised, if
r<-—nforr>rnf.

3.1.8 Next-generation intrusion detection expert system
(NIDES) [22]

Is a statistical anomaly detector that detects anomalies by
comparing a long-term traffic rate profile against a short-
term, real-time profile. An anomaly is reported if the Q dis-
tribution of the real-time profile deviates considerably from
the long-term values. After specific intervals, new value of
Q are generated by monitoring the new rates and compared
against a predefined threshold, n,. If Pr(Q > ¢) < ny, an
alarm is raised. We vary n, over a range of values for ROC
evaluation.

3.1.9 Discussion

The evaluated ADSs are quite diverse in their traffic features
as well as their detection frameworks. These ADSs range
from very simple rule modeling systems like Packet Header
Anomaly Detection (PHAD) [13] to very complex and theo-
retically-inclined Self-Learning systems like the PCA-based
subspace method [16] and the Sequential Hypothesis
Testing technique [8]. However, all the anomaly detection
techniques evaluated in this study are statistical anomaly
detectors. Thus, from an attacker’s perspective, whenever the
detection technique is known, an attack can be built that can
defeat the ADS detection [54,55]. For example, NIDES and
rate limiting detectors rely on traffic rates for the detection of
an anomaly. When this information is known to an attacker,
it can build a malware that spreads at a rate lower than the
threshold rate being analyzed by the ADS. Consequently,
such a malware will go undetected.

3.2 Evaluation datasets

We wanted to use real, labeled and public background and
attack datasets to measure the accuracy of the evaluated
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Table 1 Background traffic information for the LBNL dataset

Date Duration (mins) LBNL hosts Remote hosts Backgnd rate (pkt/sec) Attack rate (pkt/sec)
10/04/04 10 4,767 4,342 8.47 0.41

12/15/04 60 5,761 10,478 3.5 0.061

12/16/04 60 5,210 7,138 243.83 72

anomaly detectors. Real and labeled data allow realistic and
repeatable quantification of an anomaly detector’s accuracy,
which is a main objective of this work. Moreover, as defined
in Sect. 1, another objective is to evaluate the accuracy or
scalability of the anomaly detectors under different normal
and attack traffic rates and at different deployment points in
the network. This evaluation objective is somewhat unique to
this effort, with [27] being the only other study that provides
some insight into host versus edge deployments.

Different network deployment points are responsible for
handling traffic from varying number of nodes. For instance,
an endpoint requires to cater for only its own traffic, while
an edge router needs to monitor and analyze traffic from a
variety of hosts in its subnet. In general, as one moves away
from the endpoints towards the network core, the number of
nodes, and consequently the traffic volume, that a network
entity is responsible for increase considerably. We argue that
if an algorithm that is designed to detect high- or low-rate
attacks at a particular point of deployment, say an edge router,
scales to and provides high accuracy at other traffic rates and
deployment points, say at endpoints, then such an algorithm
is quite valuable because it provides an off-the-shelf deploy-
ment option for different network entities. (We show later in
this study that some existing algorithms are able to achieve
this objective.)

To test the anomaly detectors for scalability, we use two
real traffic datasets that have been independently-collected at
different deployment points. The first dataset is collected at
the edge router of the Lawrence Berkeley National Labora-
tory (LBNL), while the second dataset is collected at network
endpoints by our research lab.? In this section, we describe
the data collection setups and the attack and background traf-
fic characteristics of the LBNL and the endpoint datasets.

3.2.1 The LBNL dataset

This dataset was obtained from two international network
locations at the Lawrence Berkeley National Laboratory
(LBNL) in USA. Traffic in this dataset comprises packet-
level incoming, outgoing and internally-routed traffic streams

3 We also wanted to use a traffic dataset collected at a backbone ISP
network; such datasets have been used in some prior studies [16—18].
However, we could not find a publicly available ISP traffic dataset.

at the LBNL edge routers. Traffic was anonymized using the
tcpmkpub tool; refer to [47] for details of anonymization.

LBNL Background Traffic: LBNL data used in this study is
collected during three distinct time periods. Some pertinent
statistics of the background traffic are given in Table 1. The
average remote session rate (i.e., sessions from distinct non-
LBNL hosts) is approximately 4 sessions per second. The
total TCP and UDP background traffic rate in packets per
second is shown in column 5 of the table. A large variance
can be observed in the background traffic rate at different
dates. This variance will have an impact on the performance
of volumetric anomaly detectors that rely on detecting bursts
of normal and malicious traffic.

The main applications observed in internal and external
traffic are Web (HTTP), Email and Name Services. Some
other applications like Windows Services, Network File Ser-
vices and Backup were being used by internal hosts; details
of each service, information of each service’s packets and
other relevant description are provided in [48].

LBNL Attack Traffic: Attack traffic was isolated by identify-
ing scans in the aggregate traffic traces. Scans were identified
by flagging those hosts which unsuccessfully probed more
than 20 hosts, out of which 16 hosts were probed in ascending
or descending order [47]. Malicious traffic mostly comprises
failed incoming TCP SYN requests; i.e., TCP portscans tar-
geted towards LBNL hosts. However, there are also some
outgoing TCP scans in the dataset. Most of the UDP traf-
fic observed in the data (incoming and outgoing) comprises
successful connections; i.e., host replies are received for the
UDP flows. Table 1 [column 6] shows the attack rate observed
in the LBNL dataset. Clearly, the attack rate is significantly
lower than the background traffic rate. Thus these attacks
can be considered low rate relative to the background traf-
fic rate. (We show later that background and attack traffic at
endpoints exhibit the opposite characteristics.)

Since most of the anomaly detectors used in this study
operate on TCP, UDP and/or IP packet features, to maintain
fairness we filtered the background data to retain only TCP
and UDP traffic. Moreover, since most of the scanners were
located outside the LBNL network, to remove any bias we
filter out internally-routed traffic. After filtering the datasets,
we merged all the background traffic data at different days
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Table 2 Background traffic

Duration (months) Total sessions Mean session rate (/sec)

information for four endpoints Endpoint ID Endpoint type
with high and low rates 3 Home
Home
6 Univ
10 Univ

373,009 1.92
444,345 528
9 60,979 0.19
13 152,048 0.21

and ports. Synchronized malicious data chunks were then
inserted in the merged background traffic.

3.2.2 Endpoint dataset

Since no publicly-available endpoint traffic set was available,
we spent up to 14 months in collecting our own dataset on
a diverse set of 13 endpoints. Complexity and privacy were
two main reservations of the participants of the endpoint data
collection study. To address these reservations, we developed
a custom tool for endpoint data collection. This tool was a
multi-threaded MS Windows application developed using the
Winpcap API[49]. Implementation of the tool is available
at [26].) To reduce the packet logging complexity at the end-
points, we only logged some very elementary session-level
information of TCP and UDP packets. Here a session cor-
responds to a bidirectional communication between two IP
addresses; communication between the same IP address on
different ports is considered part of the same network ses-
sion. To ensure user privacy, the source IP address (which
was fixed/static for a given host) is not logged, and each ses-
sion entry is indexed by a one-way hash of the destination
IP with the hostname. Most of the detectors evaluated in this
work can operate with this level of data granularity.

Statistics of the two highest rate and the two lowest rate
endpoints are listed in Table 2.* As it can be intuitively
argued, the traffic rates observed at the endpoints are much
lower than those at the LBNL router. In the endpoint con-
text, we observed that home computers generate significantly
higher traffic volumes than office and university comput-
ers because: (1) they are generally shared between multiple
users, and (2) they run peer-to-peer and multimedia applica-
tions. The large traffic volumes of home computers are also
evident from their high mean number of sessions per sec-
ond. For this study, we use 6 weeks of endpoint traffic data
for training and testing. Results for longer time periods were
qualitatively similar.

To generate attack traffic, we infected Virtual Machines
(VMs) on the endpoints by the following malware:
Zotob.G, Forbot-FU, Sdbot-AFR, Dloader-NY,
SoBig.E@Gmm, MyDoom.AG@mm, Blaster, Rbot-AQJ,

4 The mean session rates in Table 2 are computed using time-windows
containing one or more new sessions. Therefore, dividing total sessions
by the duration does not yield the session rate of column 5.
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Table 3 Endpoint attack traffic for two high- and two low-rate worms

Malware Release Avg. Scan Port(s)

Date Rate(/sec) Used
Dloader-NY Jul 2005 46.84 sps TCP 135,139
Forbot-FU Sept 2005 32.53 sps TCP 445
MyDoom-2A Jan 2006 0.14 sps TCP 3127 — 3198
Rbot-AQJ Oct 2005 0.68 sps TCP 139,769

and RBOT.CCC; details of the malware can be found at
[50]. These malware have diverse scanning rates and attack
ports/applications. Table 3 shows statistics of the highest
and lowest scan rate worms; D1 oader-NY has the highest
scan rate of 46.84 scans per second (sps), while MyDoom-A
has the lowest scan rate of 0.14 sps, respectively. For com-
pleteness, we also simulated three additional worms that are
somewhat different from the ones described above, namely
Witty, CodeRedv?2 and afictitious TCP worm with a fixed
and unusual source port. Wit ty and CodeRedv2 were sim-
ulated using the scan rates, pseudocode and parameters given
in research and commercial literature [50,51].

Endpoint Background Traffic: The users of these endpoints
included home users, research students, and technical/admin-
istrative staff. Some endpoints, in particular home computers,
were shared among multiple users. The endpoints used in this
study were running different types of applications, including
peer-to-peer file sharing software, online multimedia appli-
cations, network games, SQL/SAS clients etc.

Endpoint Attack Traffic: The attack traffic logged at the end-
points mostly comprises outgoing portscans. Note that this is
the opposite of the LBNL dataset, in which most of the attack
traffic is inbound. Moreover, the attack traffic rates (Table 3)
in the endpoint case are generally much higher than the back-
ground traffic rates (Table 2). This characteristic is also the
opposite of what was observed in the LBNL dataset. This
diversity in attack direction and rates provides us a sound
basis for performance comparison of the anomaly detectors
evaluated in this study [8,9].

For each malware, attack traffic of 15 min duration was
inserted in the background traffic of each endpoint at a ran-
dom time instance. This operation was repeated to insert 100
non-overlapping attacks of each worm inside each endpoint’s
background traffic.
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Fig. 1 ROC analysis on the endpoint dataset; each ROC is averaged
over 13 endpoints with 12 attacks per endpoint and 100 instances per
attack

4 Performance evalaution

In this section, we evaluate the accuracy, scalability and delay
of the anomaly detectors described in the last section on the
endpoint and router datasets.

4.1 Accuracy and scalability comparison

In this section, we present ROC analysis on the endpoint
dataset. The following section explains the scalability exper-
iments in which ROC analysis is performed on the LBNL
dataset and the results are compared with the endpoint
experiments.

4.1.1 Averaged ROCs for the endpoint dataset

Figure 1 provides the averaged ROC analysis of the anomaly
detection schemes under consideration. Clearly, the Max-
imum Entropy detector provides the highest accuracy by
achieving near 100% detection rate at a very low false alarm
rate of approximately 5 alarms/day. The Maximum Entropy
detector is followed closely by the credit-based TRW
approach. TRW-CB achieves nearly 90% detection rate at
a reasonable false alarm rate of approximately 5 alarms/day.
The original TRW algorithm, however, provides very low
detection rates for the endpoint dataset. Results of these three
schemes are shown more clearly in Fig. 2a. Based on these
results, the Maximum Entropy algorithm provides the best
accuracy on endpoints, while TRW provides the best detec-
tion on LBNL dataset.

The Kalman Filter approach is also quite accurate as it
provides up to 85% detection rates at a reasonably low false
alarm cost. Rate Limiting, although designed to detect outgo-
ing scanning attacks, provides very poor performance. This

result substantiates the results of [27] where very high false
positive rates for high detection rates were reported for clas-
sical rate limiting. Hence, we also deduce that rate limiting
is ineffective for portscan detection at endpoints.

Packet Header Anomaly Detection does not perform well
on the endpoint data set. The detection is accompanied with
very high false alarm rates. NIDES achieve reasonable detec-
tion rates at very low false alarm rates, but is unable to sub-
stantially improve its detection rates afterwards. PHAD relies
on previously seen values in the training dataset for anomaly
detection. Therefore, if a scanner attacks a commonly-used
port/IP then PHAD is unable to detect it. On similar grounds,
if the malicious traffic is not bursty enough as compared to
background traffic then NIDES will not detect it, irrespective
of how much the detection threshold is tuned.

Due to the thresholding difficulties for the subspace
method explained in Sect. 3, in Fig. 3, we report results for
this technique for varying values of selected principal com-
ponents. The highest detection rate of 22% is observed at
k = 2 principal components. Its detection rate decreases fur-
ther at k = 5 and drops to 0% at k = 15. False alarm rates
show the opposite trend. Thus the subspace method fails to
give acceptable accuracy on the endpoint dataset.

The ROC results for the endpoint dataset are somewhat
surprising because two of the top three detectors are general-
purpose anomaly detectors (Maximum Entropy and Kalman
Filter), but still outperform other detectors designed specif-
ically for portscan detection, such as the TRW and the Rate
Limiting detectors. We, however, note that this analysis is
not entirely fair to the TRW algorithm because TRW was
designed to detect incoming portscans, whereas our end-
point attack traffic contains mostly outgoing scan packets.
The credit-based variant of TRW achieves high accuracy
because it leverages outgoing scans for portscan detection.
Thus TRW-CB combines the complementary strengths of
rate limiting and TRW to provide a practical and accurate
portscan detector for endpoints. This result agrees with ear-
lier results in [27].

4.1.2 ROC:s for Low- and High-Rate endpoint attacks

To evaluate the scalability of the ADSs under high- and low-
rate attack scenarios, Fig. 4 plots the ROCs for the highest
rate (D1loader-NY) and lowest rate (MyDoom-2) attacks
in the endpoint dataset. It can be observed that for the high-
rate attack (Fig. 4a) Maximum Entropy, TRW, TRW-CB and
Kalman Filter techniques provide excellent accuracy by
achieving 100% or near-100% detection rates with few false
alarms. NIDES’ performance also improves as it achieves
approximately 90% detection rate at very low false alarm
rates. This is because the high-rate attack packets form
bursts of malicious traffic that NIDES is tuned to detect.
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Fig. 4 ROC curves for the lowest and highest rate attack in the endpoint

attack. a D1oader-NY, high scan rate. b MyDoom-2, low scan rate

Rate Limiting and PHAD do not perform well even under
high attack rate scenarios.

Figure 4b shows that the accuracies of all detectors except
PHAD and Maximum Entropy degrade under a low-rate
attack scenario. Maximum Entropy achieves 100% detec-
tion rate with false alarm rate of 4-5 alarms/day. TRW-CB
recovers quickly and achieves a near-100% detection rate
for a daily false alarm rate around 10 alarms/day. NIDES,
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dataset; results averaged over 12 endpoints with 100 instances of each

however, shows the biggest degradation in accuracy as its
detection rate drops by approximately 90%. This is because
low-rate attack traffic when mixed with normal traffic does
not result in long attack bursts. TRW’s accuracy is also
affected significantly as its detection rate drops by about
35% as compared to the high-rate attack. PHAD does not rely
on traffic rate for detection, and hence its accuracy is only
dependent on the header values observed during training.
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Fig. 5 ROC analysis on the LBNL dataset

4.1.3 Averaged ROCs for the LBNL dataset

Figure 5 shows the ROCs for the LBNL dataset. Compari-
son with Fig. 2a and b reveals that the Maximum Entropy
detector is unable to maintain its high accuracy on the LBNL
dataset; i.e., the Maximum Entropy algorithm cannot scale to
different points of network deployment. TRW’s performance
improves significantly as it provides a 100% detection rate
at a negligible false alarm cost. TRW-CB, on the other hand,
achieves a detection rate of approximately 70%. Thus con-
trary to the endpoint dataset, the original TRW algorithm
easily outperforms the TRW-CB algorithm on LBNL traces.
As explained in Sect. 3.2.1, the LBNL attack traffic mostly
comprises failed incoming TCP connection requests. TRW’s
forward sequential hypothesis based portscan detection algo-
rithm is designed to detect such failed incoming connections,
and therefore it provides high detection rates. Thus on an edge
router, TRW represents a viable deployment option.

Kalman Filter detector’s accuracy drops as it is unable to
achieve a detection rate above 60%. PHAD provides very
high detection rates, albeit at an unacceptable false alarm
rate. Other detectors’ results are similar to the endpoint case.
(Results for the subspace method were similar to those
reported earlier and are skipped for brevity.) It can be
observed from Fig. 5 that all algorithms except TRW fail
to achieve 100% detection rates on the LBNL dataset. This
is because these algorithms inherently rely on the high burs-
tiness and volumes of attack traffic. In the LBNL dataset, the
attack traffic rate is much lower than the background traffic
rate. Consequently, the attack traffic is distributed across mul-
tiple time windows, with each window containing very few
attack packets. Such low density of attack traffic in the eval-
uated time-windows remains undetected regardless of how
much the detection thresholds are decreased.

For clarity, we also provide the false alarm rates of the
NADS:s. Tables 4 and 5 give the detection and false alarms/
day as well as the false alarm rate on the Endpoint and the

LBNL datasets respectively. The tables provide the NADS
accuracy at the best operating point on the ROC curve.

Table 4 presents a summary of the accuracy of the ADSs
on the Endpoint dataset. The highest false alarm rate, on the
Endpoint dataset, is 15% for the PHAD detector. PHAD fol-
lows the same trend when evaluated for false alarms/day.
Rate limiting and Kalman filter follow closely with false
alarm rates of approximately 12% and 11% respectively.
Table 5 gives the accuracy results on the LBNL dataset. Max-
imum Entropy presents a false alarm rate of 77% and thus
completely fails on the LBNL dataset as mentioned before.
Another important insight, when evaluated on false alarm
rate, is regarding TRW-CB which offers a false alarm rate of
62%. The LBNL dataset has mostly incoming scan packets
towards the LBNL hosts, and only a few outgoing scans [47].
Since the TRW-CB detector detects outgoing scans, which
are few, it offers low detection rate on the LBNL dataset.
Also, since the amount of outgoing traffic is very small, a
few false alarms/day translate into a very large percentage
value. This renders the detector completely useless. Thus,
evaluating detectors on false alarms/day as well as the false
alarm rate provides a holistic view of the accuracy of the
ADS. However, the best performing detectors on the End-
point dataset (Maximum Entropy and TRW-CB detectors)
completely fail to offer acceptable detection and false alarm
rates on the LBNL dataset.

4.2 Delay comparison

Table 6 provides the detection delay for each anomaly detec-
tor. On the endpoint dataset, delay is reported for the highest
and the lowest rate attacks, while on the LBNL dataset this
delay is computed for the first attack that is detected by an
anomaly detector. A delay value of oo is listed if an attack
is not detected altogether. It can be observed that detection
delay is reasonable (less than 1s) for all the anomaly detec-
tors except the Maximum Entropy detector which incurs very
high detection delays. High delays are observed for the Max-
imum Entropy detector because it waits for perturbations in
multiple time windows before raising an alarm. Among other
viable alternatives, TRW-CB provides the lowest detection
delays for all three experiments. Detection delay for the TRW
is also reasonably low.

5 Lessons learnt

This section provides an outline of the objectives of the study
and the deductions pertaining to these objectives. Moreover,
promising portscan detection guidelines are proposed based
on the NADS evaluation along with some experimental
results, in the form of ROC curves, for the accuracy improve-
ments realized due to the proposed guidelines.
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Table 4 Accuracy of NADSs at the best operating point on Endpoint dataset

Rate limiting TRW TRW-CB Max entropy NIDES PHAD Kalman filter
Detection rate (%) 80 49 90 96.4 56.37 86.77 85.03
False alarms/day 110.74 20.54 5.02 5.07 0.91 125.8 11.97
False alarm rate (%) 12.53 1.44 0.12 4.52 5.45 15.66 11.53
Table 5 Accuracy of NADSs at the best operating point on LBNL dataset

Rate limiting TRW TRW-CB Max entropy NIDES PHAD Kalman filter
Detection rate (%) 47 100 67 86 93.33 93 53.33
False alarms/day 0.22 0.77 1.88 132 143.52 77.97 0.11
False alarm rate (%) 0.534 7.17 62.21 77.05 6.78 6.42 0.14
Table 6 Detection Delay of the Anomaly Detectors

Rate limiting TRW  TRW-CB Max entropy NIDES PHAD Subspace method Kalman filter

MyDoom (msec) 310 510 40 215000 00 900 79 377
Dloader-NY (msec) 140 320 20 56000 0.086 990 23 417
LBNL (msec) 660 660 290 86000 330 330 ) 800

5.1 Objectives of the study

In this study, we evaluated eight prominent network-based e
anomaly detectors using two portscan traffic datasets having
complementary characteristics. These detectors were evalu-

ated on accuracy, scalability and delay criteria. Based on the
results of this research study, we now rephrase and summa-

rize our deductions pertaining to the main objectives of this
study:

e Which NADSs perform better than others? On the end-
point dataset, our evaluation shows that true anomaly e
detectors (Max Entropy, PHAD, Rate Limiting etc.) pro-
vides the best accuracy. However, on the router based
LBNL dataset, we observe that the protocol level, pre-
programmed NADSs (TRW, TRW-CB) outperform the e
true anomaly detectors. Thus the protocol level Maximum
Entropy detector is unable to maintain its high accuracy
on the LBNL dataset.

e Which algorithms provide the best accuracy under vary-
ing rates of attack and normal traffic and at different points
of deployment? Under the varying attack and background
traffic rates observed in the two datasets, a general-pur-
pose Maximum Entropy Detector [21] and variants of
the Threshold Random Walk (TRW) algorithm [8,9] pro-
vided the best overall performance under most evaluation
criteria. In this context, TRW is suitable for deployment
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at routers, while TRW-CB and Maximum Entropy are
suitable for deployment at endpoints.

What are the promising traffic features and theoretical
frameworks for portscan anomaly detection? The
Maximum Entropy and TRW detectors use statistical dis-
tributions of failed connections, ports and IP addresses.
Furthermore, based on the results of the Maximum
Entropy detector on endpoints, a histogram-based detec-
tion approach, in which baseline frequency profiles of a
set of features is compared with real-time feature frequen-
cies, appears very promising.

What detection delays are incurred by the anomaly detec-
tors? If an attack is detected, detection delay is less than 1 s
for all anomaly detectors, except the Maximum Entropy
Estimation method which incurs very large delays.
What are promising portscan detection guidelines that
build on the strengths and avoid the weaknesses of the
evaluated anomaly detectors? From the high detection
rates of the Maximum Entropy and PHAD detectors, it
appears that using a higher dimensional feature space
facilitates detection, without compromising complexity.
On the other hand, relying on specific traffic features (e.g.,
rate, connection failures, etc.) can degrade accuracy as
the attack and background traffic characteristics change.
In summary, a number of statistical features used in an
intelligent histogram-based classification framework
appear promising for portscan anomaly detection.
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5.2 Why do some NADSs perform better than others?

Based on the accuracy results, protocol level true anom-
aly detectors provide the best accuracy on endpoints, while
the protocol level preprogrammed NADSs provides the best
detection on the LBNL dataset. Both the classes are based on
packet level information. Since high-rate malicious packets
affect an increase in the frequency of certain packet head-
ers (e.g., the ports being attacked in case of a worm, or the
IP being attacked in case of a DoS attack), attacks can be
detected most accurately if the protocol level information is
analyzed at different aggregation levels.

At the endpoints, the volume of traffic is much lesser than
that at the router. Moreover, the endpoint behavior changes
with time as different applications are used by the endhost.
Thus NADS:s that are used for deployment at endpoints need
to train on benign data to cater for the changing user behav-
iors. That is why the true self learning NADSs, that trained
on benign profiles provide the best accuracy on the endpoint
dataset.

A router-based NADS analyzes large quantities of data
and consequently the attack traffic gets averaged out in the
normal traffic. Thus training on benign profiles would not
render higher detection rates, as can be seen by the results
of NADSs on LBNL dataset. However, intelligent statisti-
cal measures (e.g., the likelihood ratio test used by TRW)
improve the NADS’ accuracy. Thus to provide better accu-
racy on enterprise/network level traffic, selection of the right
detection method/principle is more important to achieve
higher detection rates than training on benign data.

In light of the accuracy evaluation results, Maximum
Entropy provides best detection and false alarm rates on
individual basis because of the following inbuilt character-
1stics:

e [t segregates traffic into multiple packet classes;
Analyzes a high dimensional feature space;
Generates an alarm when anomalies span across multiple
time windows.

PHAD detector operates on similar principles and thus also
provides high detection rates. In all datasets we observe
that traffic rates keep changing. While all NADSs apply
fixed thresholds to classify anomalies in real-time traffic, an
accurate NADS should vary its classification thresholds with
respect to the changing patterns in benign traffic.

5.3 Promising guidelines to improve the accuracy of
existing and future NADSs

Based on above discussion, we propose the following guide-
lines to improve the accuracy of NADSs:

Guideline 1 To provide high detection rates, endpoint based
NADSSs should be self learning systems which train on benign
traffic profiles.

Guideline 2 To provide high detection rates, router based
NADSs should employ intelligent detection principles for
identifying anomalies in network traffic.

Guideline 3 NADSs should operate on protocol-level packet
features.

Guideline 4 To reduce the false alarm rates, NADSs should
raise an alarm only when they encounter anomalies spanning
across multiple time windows.

Guideline 5 To improve the detection rates, NADSs should
simultaneously consider multiple packet header fields, e.g.
TCP SYN, Ports, Protocol etc.

Guideline 6 To improve detection rates, NADSs should seg-
regate traffic into multiple packet classes before anomaly
detection.

Guideline 7 Adaptive thresholding should be introduced to
allow the NADSs to dynamically adjust their detection
thresholds in accordance with the changing normal traffic
characteristics.

It is important to clarify that these proposed guidelines,
though complement each other, but each operate indepen-
dently. Guidelines 4—7 aim at improving the accuracy of the
anomaly detection system as well as reduce human interven-
tion in their operation. Following is a detailed description of
these guidelines and the accuracy improvements achieved:

5.3.1 Multi-window classification (Guideline 4)

We have seen in the comparative evaluation study of the
NADSSs, that most NADSs suffer from high false alarm rates.
The problem mainly stems from the fact that most NADSs
raise an alarm as soon as the first anomalous time window
is identified. We observed that, due to an inherent burstiness
present in attack traffic, anomalies tend to sustain across mul-
tiple time windows. An example of this behavior is shown
in Fig. 6. In Fig. 6a, even if a false alarm is generated for a
benign traffic window, the false alarm does not span multi-
ple windows. On the other hand, anomalous activity tends to
occur in bursts, and therefore multiple successive windows
are flagged as anomalous. This difference between NADS
classification on malicious and benign traffic can be lever-
aged to reduce an NADS’ false alarm rate. Specifically, an
NADS can reduce its false alarms if it raises an alarm only
after sufficient number of anomalous time windows have
been observed in a given time period. We call this simple
existing technique Multi-Window Classification.
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For accurate multi-window classification, we consider a
fixed number of w most recent classifications by an NADS.
In the w classifications, a majority vote is taken to classify
the current time window as benign or anomalous. It should be
highlighted that multi-window classification will introduce
detection delays in the NADSs. However, as already shown,
detection delays of most existing NADSs are extremely low
and hence these NADSs can tolerate slightly longer detection
delays to achieve higher accuracies.

5.3.2 Feature space extension (Guideline 5)

We have seen in the comparative performance evaluation
that Maximum Entropy and PHAD are the highest accuracy
detectors. Both these detectors employ a rich feature space
for detection. Thus greater the number of packet fields ana-
lyzed for anomaly detection, higher the probability of find-
ing the anomaly. Thus, if within one time window, instead of
analyzing a few packet header fields, the maximum available
fields are analyzed, its highly probable that the NADS finds
an anomaly that perturbs any of the observed packet feature.

Figure 7 shows the distribution of the packet score calcu-
lated for each packet based on the packet header fields ana-
lyzed. In Fig. 7a PHAD detector computes the packet score
based on a single anomalous packet header field. Figure 7b
shows the packet score distribution, for PHAD, when multi-
ple packet header fields are simultaneously used for packet
score calculation. In Fig. 7a, since packet score does not
exceed the specified threshold value, PHAD detector fails to
detect the anomalies which are otherwise detected if diverse
packet features are analyzed as shown in Fig. 7b. Thus, using
a rich feature space assists the detection of anomalies that
perturb any network traffic feature resulting in high detec-
tion rates for the NADSs.

5.3.3 Traffic splitting (Guideline 6)

Traffic Splitting is also aimed at improving an NADS’s detec-
tion rate.
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Our preliminary investigation revealed that much of the
malicious traffic is not detected because of an averaging-out
effect introduced by relatively large volumes of benign back-
ground traffic. More specifically, if the attack traffic rate is
comparable to or less than the background traffic rate then
background traffic acts like noise during anomaly detection
and allows malicious traffic to bypass an NADS.

As an example, note that aggregate traffic routed towards/
from a network is a composite of multiple traffic types, such
as TCP, UDP, ARP, ICMP traffic etc. Now consider the Witty
worm which was a very high-rate UDP-based worm. Since
TCP comprises of almost 80% of the traffic seen on the
Internet, if an NADS analyzes aggregate network traffic then
the attack traffic is overwhelmed by the majority TCP traf-
fic. Such traffic averaging degrades the detection rate of an
NADS. Note that in this example traffic other than UDP acts
as noise and, depending upon whether the volume of back-
ground traffic is substantial, would either delay or prevent
the detection of the anomaly.

To counter this problem, we propose to perform anom-
aly detection separately on different types of network traffic.
Hence, we use traffic semantics to segregate a single traffic
stream into multiple traffic substreams before anomaly detec-
tion is performed. Such traffic splitting will inherently allow
the background traffic to be segregated from the attack traf-
fic, thereby facilitating the anomaly detection phase. After
traffic splitting, separate instances of an NADS operate on
different substreams in parallel. The outputs of these NADS
instances are combined to detect anomalies. Based on the
example given above, traffic splitting should, in addition to
improving detection rates, reduce detection delays.

As a proof-of-concept, in Fig. 8 shows a comparison of
aggregate traffic with segregated TCP and UDP traffics. Both
of these anomalous windows were observed and analyzed
in the Threshold Random Walk Credit Based (TRW-CB)
algorithm under RBOT.CCC’s and Witty’s malicious traffic.
TRW-CB calculates the likelihood ratio for detecting anom-
alies. It is clear from the Fig. 8 that when aggregate traffic
is analyzed without segregation, the output of the likelihood
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ratio test does not cross the fixed TRW-CB threshold and
the malicious traffic remains undetected for both examples.
However, when traffic splitting is employed and TCP and
UDP traffic is analyzed separately, the threshold is exceeded
many times in the 200s windows shown in Fig. 8a and b.
Hence traffic splitting removes the noisy background traffic
from malicious traffic and subsequently increases the detec-
tion rate of an NADS.

5.3.4 Adaptive thresholding (Guideline 7)

Traffic characteristics vary considerably across different
organizations. For instance, traffic characteristics of
academic & research organizations are quite different from
commercial enterprises. Similarly, different network deploy-
ment points are responsible for handling traffic from varying
number of nodes. For instance, an endpoint requires to cater
for only its own traffic, while an edge router needs to mon-
itor and analyze traffic from a variety of hosts in its subnet.
Even for the same network entity, traffic characteristics keep
changing due to diurnal and other network usage patterns.
As an example, consider the LBNL background traffic rates
shown in Fig. 9 (solid line). It can be observed that the traffic
rates change from approximately 500-10,000 pkts/s within a

few seconds. Under such varying traffic characteristics, exist-
ing NADSs require regular manual intervention for accurate
operation. More specifically, a system or network adminis-
trator is responsible for adjusting the sensitivity of the anom-
aly detectors when the number of false alarms (i.e., traffic
classified as malicious but which is in fact benign) increases.
This sensitivity is adjusted using detection thresholds which
are used to flag an anomaly. However, this repeated manual
input renders an NADS less automated and more prone to
configuration errors.

We argue that an effective ADS should automatically
detect varying traffic patterns and adjust its detection
threshold in accordance with varying traffic characteristics.
If accurate, such an adaptive thresholding mechanism can
eliminate the need for human threshold tuning, thereby mak-
ing an NADS more automated. Moreover, as a by-product
adaptive thresholding should also improve the accuracy of
an NADS by tracking normal traffic patterns. (Here accu-
racy is defined in terms of detection versus false alarm rates.)
In this section, we propose adaptive thresholding techniques
that can accurately track the changing behavior of network
traffic.

Threshold Prediction: We use adaptive thresholding to
track the values of the detection feature(s) that an NADS is
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window

employing. For instance, in the Maximum-Entropy detector,
the adaptive thresholding logic will use prior observed val-
ues to predict the next K-L divergence values of each traffic
class, while in the TRW detector the output of the likelihood
ratio test will be tracked by the adaptive thresholding mod-
ule. Irrespective of the traffic metric being employed by an
NADS, a good adaptive thresholding module should be able
to predict the next value with high accuracy. To achieve accu-
rate threshold prediction, we used a stochastic algorithm i.e.,
Kalman filter based detector [56]. Kalman filter based pre-
diction is a well-known technique and was readily applied
for adaptive thresholding. However, we divided the observed
metrics/scores into equal sized bins (i.e. ranges). These bins
were then predicted using kalman filter. This provides the
range of values expected for the next time interval.

Since the main motivation for adaptive thresholding is to
reduce human intervention by accurately tracking varying
traffic characteristics. As an example, consider Fig. 9 which
shows the traffic rates (pkts/sec) observed in a 100s subset
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of the LBNL dataset and the rates predicted by kalman fil-
ter. For prediction, rates were divided into bins of k = 500
packets and predicted on per second basis. It can be seen in
Fig. 9 that kalman predictor follows the observed rate trend.

Similarly, Fig. 10 shows the threshold tracking accuracy
of the predictor in an anomalous LBNL time window of the
Maximum-Entropy detector; the threshold in this case is the
K-L divergence of a packet class that has been perturbed
by the attack. It can be clearly seen that the kalman predic-
tor estimates the highly-varying K-L divergence values with
remarkable accuracy. Furthermore, note in Fig. 10 that select-
ing a fixed threshold may allow a few anomalies to go unde-
tected, especially anomalies which do not cause significant
perturbations in the actual network traffic. For instance, in the
60 s output shown in Fig. 10 only 10 of these values cross the
fixed threshold. In this experiment, the Maximum-Entropy
algorithm was detecting an anomaly if 12 or more values in a
60s window exceed the fixed threshold. Hence, this anomaly
will not be detected by a fixed threshold. Adaptive threshold-
ing, on the other hand, accurately predicts the K-L divergence
in the next window and the observed (perturbed) divergence
exceeds this threshold more than 20 times in a 60 s window,
thereby allowing the Maximum-Entropy detector to flag the
anomaly. Furthermore, observe from Fig. 10 that for many
seconds the observed K-L values drop to 0. These low values
give a crafty attacker the leverage to introduce malicious traf-
fic that does not exceed the fixed threshold of [0; 10]. How-
ever, an adaptive threshold immediately learns the change
and set the threshold to 0, thus ensuring that no room is
available for such a mimicry attack.

5.4 NADS accuracy improvements by traffic splitting and
multi-window classification

We now jointly apply the two accuracy improvement tech-
niques of traffic splitting and multi-window classification on
the TRW and the TRW-CB detectors to observe the accuracy
improvements that can be achieved. TRW and TRW-CB are
evaluated to present the worst case scenario as both these
detectors already incorporate some notion of traffic splitting.
For traffic splitting, we segregate traffic into four classes:
(1) UDP, (2) TCP, (3) broadcast, and (4) all other traffic types.
For multi-window classification, we use a window size of
w = 5;i.e., amajority vote of the last S NADS classifications
is used to flag the current window as normal or anomalous.

It can be seen in Fig. 11a and b that the proposed tech-
niques provide consistent accuracy improvements for TRW
and TRW-CB on both datasets. On the LBNL dataset, while
the detection rates are similar to the original algorithms,
substantial reductions are observed in the false alarm rates.
On the endpoint dataset, the proposed techniques effect sig-
nificant improvements in both detection as well as false
alarms rates as shown in Fig. 11a.
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Fig. 11 ROC-based accuracy comparison of TRW and TRW-CB with
and without traffic splitting and multi-window classification. a Endpoint
dataset. b LBNL dataset

5.5 NADS accuracy improvements by feature space
extension and multi-window classification

We evaluate two NADSs, namely the Maximum Entropy and
PHAD detectors. These detectors already follow Guideline 5
because they operate on a high dimensional feature space.
Furthermore, the Maximum Entropy detector already has the
notion of time extension (Guideline 4) is built into it. More
specifically, the Maximum Entropy detector segregates traf-
fic into multiple protocol classes before the anomaly detec-
tion step and then raises an alarm only after an anomaly is
observed in multiple time windows. Such a strategy results
in very low false alarm rates, but compromises the detection
rate. To make this algorithm compliant with Guideline 5,
instead of waiting for multiple windows before making a
decision, we modified the Maximum Entropy method to raise

Fig. 12 ROC-based accuracy comparison of PHAD and Maximum
Entropy with and without feature space extension and multi-window
classification. a Endpoint dataset.b LBNL dataset

an alarm if the divergence of a given number of protocol clas-
ses in a time-window exceed a threshold.

Similarly, a time extension is introduced into PHAD to
reduce its false alarm rate. Specifically, to make PHAD com-
plaint with Guideline 4, an alarm is raised only when an
anomaly is observed in multiple time windows/packets.

Figures 12a and b show a comparative analysis of the
original and the Improved variants of PHAD and Maximum
Entropy. It can be seen that evaluating PHAD across multiple
time windows using a high dimensional feature space clearly
improves the accuracy of the detector. Similarly, evaluating
Maximum Entropy across its feature space instead of its orig-
inal time domain design considerably improves the accuracy
of the detector.

Evaluating NADSs in space and across multiple time win-
dows might have an impact on the detection delay of the
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Table 7 Detection Delay of the Improved variants of Maximum
Entropy and PHAD

ST-Max Entropy ST-PHAD
MyDoom (msec) 157 900
Dloader-NY (msec) 100 990
LBNL (msec) 333 330

detectors. So we also perform delay comparison so as to
observe the extent of the delay that guideline 4 can incur.
Table 7 provides the detection delay for Maximum Entropy
detector and PHAD. It can be observed that the detection
delay for the Improved variant of Maximum Entropy detec-
tor is dramatically lower than the original algorithm. This
is because the Improved variant of the Maximum Entropy
detector does not wait for multiple anomalous windows
before raising an alarm. For PHAD, the detection delay
remains unaltered because the Improved variants simulta-
neously operates in space and time.

5.6 NADS accuracy improvements by adaptive
thresholding

As mentioned earlier, one should also expect an accurate
adaptive thresholding algorithm to provide accuracy
improvements in an ADS. Accuracy of an ADS is defined by
two competing criteria: (1) detection rate and (2) false alarm
rate. To comprehensively evaluate the accuracy of an ADS,
detection thresholds of the ADS are tuned and for each fixed
threshold value the detection rate is plotted against the false
alarm rate (per day) [4]. Each point on such a plot, referred to
as an ROC curve [4], represents performance results for one
configuration (or fixed threshold value) whereas the curve
represents the behavior for the complete set of configurations.
The steepest curve represents the best accuracy. Through-
out this paper, we use ROC curves to evaluate the accuracy
of the original algorithms. Due to a lack of threshold tuning
capability, adaptive thresholding only results in a single
point on the ROC plane. Figure 13 shows the ROC-based
accuracy comparison of the Maximum Entropy and the
PHAD detectors with and without adaptive thresholding.
It can be clearly seen that for both datasets adaptive threshold-
ing results in a dramatic improvement in PHAD’s accuracy.
In particular, PHAD originally had a very high false alarm
rates, but the proposed technique adapts to the traffic trends
and prevents the false alarms caused by legitimate change in
traffic behavior. Significant improvement was not observed
for the Maximum-Entropy detector on the endpoint dataset
because even the original algorithm provided very high accu-
racy on the endpoints. However, Maximum Entropy failed to
maintain its performance across the LBNL dataset because
the significant traffic variations at an edge router introduce
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significant false alarms for the Maximum-Entropy detector.
Even for the LBNL dataset, adaptive thresholding decreases
this false alarm rate, but still cannot bring it to a reasonable
point. We will show later that the multi-window classification
technique that is designed to reduce false alarms can cater
for these high false alarms.

In the following section, we highlight the accuracy
improvements that can be realized by jointly applying the
proposed guidelines.

5.7 NADS accuracy improvements by jointly using the
proposed guidelines

We now argue that these described guidelines are comple-
mentary to each other and can be applied simultaneously to
achieve higher accuracy while limiting the need for human
intervention during NADS operation.

Figure 14 shows a block diagram of an NADS that jointly
employs the proposed guidelines. The first thing we note
is that none of the guidelines require modifications to the
NADS. The Traffic Splitter is working as a pre-NADS phase
which is segregating a single stream of traffic into multiple
packet classes; these classes can be formed on any basis.
The second phase, as shown in Fig. 14 is the feature space
extension. Once traffic is segregated into multiple packet
classes, each packet class is further segregated into multi-
ple packet features to be examined for an anomaly. Each
packet feature class is sent to a separate NADS instance
which uses the threshold provided by the Adaptive Thres-
holding Module to classify traffic in the observed window
as benign or anomalous. Outputs from multiple instances of
the NADS, each analyzing a unique packet feature class, are
combined into a single result and handed over to the Multi-
Window Classifier. The Multi-Window Classifier acting as
a post-NADS phase takes the majority vote of prior clas-
sification results to decide whether or not an alarm should
be raised. Figure 15 shows the accuracy of five prominent
NADSs along with the jointly-improved versions of these
detectors after application of the proposed guidelines; all
parameters are the same as described in previous sections.
Due to a lack of threshold tuning capability, adaptive thres-
holding only results in a single point on the ROC plane.
Figure 15a shows the accuracy comparison for the endpoint
dataset. Maximum Entropy improves slightly on its already
accurate performance. Jointly-improved Kalman Filter detec-
tor provides better accuracy than the original algorithm with
a detection rates of approximately 96%. TRW-CB detector
maintains similar accuracy as before, but with the additional
advantage of ADS automation. PHAD and TRW detectors
show dramatic improvements in accuracies as they achieve
detection rate improvements of approximately 45 and 70%,
respectively, without compromising their low false alarms
rates. Note that although there was a slight degradation in
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Fig. 13 ROC-based ADS accuracy comparison of adaptive thresholding and the original anomaly detection algorithms; for the endpoint dataset,
each ROC point is averaged over 13 endpoints with 12 attacks per endpoint and 100 instances per attack. a Endpoint dataset. b LBNL dataset

Fig. 14 Block diagram of
Network-based Anomaly
Detection System that jointly
employs the proposed
guidelines
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the jointly-improved TRW’s accuracy on the LBNL data-
set, on the endpoint dataset the proposed techniques pro-
vide remarkable accuracy improvements for TRW. Thus the
proposed guidelines, in addition to the benefits enumerated
above, allow an NADS to scale to different points of deploy-
ment in the network.

From Fig. 15b, marked and mostly consistent improve-
ments in all the NADSs’ accuracies can be observed on the
LBNL dataset. The Maximum-Entropy detector achieves a
remarkable 100% detection rate at a reasonable false rate.
Kalman Filter based detector’s accuracy also improves dras-
tically as its detection rate increases from 54 to 80% with
few false alarms. A similar accuracy improvement trend is
observed for the PHAD detector. No improvement in detec-
tion/false alarm rate is observed in the TRW-CB detector;
however, it continues to provide the same detection rates
without any human intervention and at an acceptable false
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alarm rate. The TRW detector is the only exception on the
LBNL dataset as it incurs somewhat higher false alarms after
using the proposed guidelines.

6 Conclusion

The main aim of this research work was to develop a better
understanding of the basic building blocks of Network-based
Anomaly Detection Systems and to identify the features that
distinguish one NADS from the other. We initially propose
two multidimensional taxonomies of Network-based Anom-
aly Detection Systems with an aim to obtain insights into
why some NADSs perform better than others. Our first tax-
onomy classifies NADSs based on their learning behavior
and detection principles. The second taxonomy categorizes
NADS:s using traffic scales and semantics.
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Fig. 15 ROC-based accuracy evaluation of original and improved NADS algorithms. a Endpoint dataset. b LBNL dataset

Moreover, we evaluated and compared eight prominent net-
work based anomaly detectors on twoindependently collected
public portscan datasets. These NADSs employed different
traffic features and diverse theoretical frameworks for anom-
aly detection and have been used frequently for performance
benchmarking in Intrusion Detection research literature.

NADSs were evaluated on three criteria: accuracy, scala-
bility, and detection delay. Accuracy was evaluated by
comparing ROC (false alarms per day versus detection rate)
characteristics of the NADSs. Scalability was evaluated with
respect to different background and attack traffic rates. Since
the two datasets used in this study were collected at different
network entities and contained attacks with different charac-
teristics, evaluation over these datasets allowed us to compare
the scalability of the proposed NADSs under varying traffic
volumes. Detection delay was evaluated separately for high-
and low-rate attacks.

Based on our findings, we proposed a few promising port-
scan detection guidelines to improve the accuracy and scala-
bility of existing and future NADSs. Our experimental results
showed that the proposed guidelines resulted in an average
detection rate increase of 5-10%, while reducing the false
alarm rates up to 50%. Thus, the proposed guidelines, while
reducing human intervention, provided drastic and consistent
improvements in NADSs’ accuracies.
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