
J Comput Virol (2011) 7:23–49
DOI 10.1007/s11416-009-0130-8

ORIGINAL PAPER

Detecting (and creating !) a HVM rootkit (aka BluePill-like)

Anthony Desnos · Éric Filiol · Ivan Lefou

Received: 18 December 2008 / Accepted: 4 August 2009 / Published online: 12 September 2009
© Springer-Verlag France 2009

Abstract Since the first systems and networks developed,
virus and worms matched them to follow these advances.
So after a few technical evolutions, rootkits could moved
easily from userland to kernelland, attaining the holy grail:
to gain full power on computers. Those last years also saw
the emergence of the virtualization techniques, allowing the
deployment of software virtualization solutions and at the
same time to reinforce computer security. Giving means to
a processor to manipulate virtualization have not only sig-
nificantly increased software virtualization performance, but
also have provide new techniques to virus writers. These
effects had as impact to create a tremendous polemic about
this new kind of rootkits—HVM (hardware-based virtual
machine)—and especially the most (in)famous of them: Blue-
pill. Some people claim them to be invisible and consequently
undetectable thus making antivirus software or HIDS defini-
tively useless, while for others HVM rootkits are nothing but
fanciful. However, the recent release of the source code of the
first HVM rootkit, Bluepill, allowed to form a clear picture of
those different claims. HVM can indeed change the state of a
whole operating system by toggling it into a virtual machine
and thus taking the full control on the host and on the oper-
ating system itself. In this paper, we haven striven to demys-
tify that new kind of rootkit. Ona first hand we are providing
clear and reliable technical data about the conception of such

A. Desnos · I. Lefou
Laboratoire de Sécurité de l’Information et des Systèmes (SI&S),
ESIEA, Paris, France
e-mail: desnos@esiea.fr

I. Lefou
e-mail: ivanlefou@esiea.fr

É. Filiol (B)
Laboratoire de Virologie et Cryptologie Opérationnelles (C + V)o,
ESIEA, Paris, France
e-mail: filiol@esiea.fr

rootkit to explain what is possible and what is not. On a
second hand, we provide an efficient, operational detection
technique that make possible to systematically detect
Bluepill-like rootkits (aka HVM-rootkits).

1 Introduction

Hardware rootkits are for hackers the best mean to obtain a
full control on the victim. For now, they have been contained
to external peripheral device on classical computer. But the
apparition of virtualization features in modern processor and
the possibility to install hypervisor on the top of operating
systems, allowed the emergency of new threat of rootkits.

Processors AMD64 and Intel Dual Core, give in their last
processors, mechanisms to use easily total virtualization or
para-virtualization. Bringing a new ring, at level -1 Ring -1,
where a hypervisor boot firstly on the host and can manage
several virtuals machines. This new class of rootkits, HVM
rootkits, have hijacked this first purpose to move on the fly
the state of an operating system to a virtual machine.

Furthermore, the announcement [31] of the first rootkit
fully undetectable using virtualization, BluePill, have the
effect to generate a general fury in the computer security
world. This security buzz and the fact that the rootkit can
control all timing resources, to monitor all inputs/outputs
without installing any hook in memory, results to make the
conformist spotting methods ineffective. But this agitation
and the lack of scientific thinking to address an issue serenely
stifle the creativity of researchers.

First, we present virtualization technologies, and
particularly hardware virtualization (Intel and AMD). Thus
we will introduce HVM rootkits, to explain their internal
work and the controversy that has been emerged, but also to
provide step by step the stage in the construction of a HVM

123

24 A. Desnos et al.

rootkit. Secondly, we will analyse the detection techniques
suggested by the security community, to analyze the exact
nature of an HVM rootkit (BluePill) and to extend the detec-
tion techniques, providing new ones and testing them in real
situations. At last, we will conclude and address some open-
problems with respect to our work.

2 State-of-the-Art

2.1 Virtualization

Virtualization is a set of technical material and/or software
that can run on a single machine multiple operating systems
separately from each other as if they were operating on dis-
tinct physical machines.

These techniques are not recent but issues for much of the
work of IBM research center in Grenoble France in the 70s,
which developed the experimental system CP/CMS, becom-
ing the product (then called hypervisor) VM/CMS.

In the second half of the 80s and early 90s, embryos vir-
tualization for personal computers have emerged. The Ami-
ga computer could launch pc x386, Machintosh 68xxx, see
solutions X11, and of course all working in a multitasking
context. In the second half of 1990, on x86 emulators of old
machines of the 1980s were a huge success, including Atari
computers, Amiga, Amstrad and consoles NES, SNES, Neo
Geo.

But the popularity of virtual machines came with VMware
in 2000, which gave rise to a suite of free and proprietary
offering virtualization.
Thus, several virtualization techniques can be considered:

– Emulation,
– Full Virtualization,
– Para-virtualization,
– Hardware Virtualization.

2.2 Emulation

Emulation (Fig. 1), can emulate a fictitious equipment which
may be different from that which runs on the host. It inter-
faces directly with the operating system and therefore has no
direct access to hardware.
Examples:

– Qemu [30]
– Bochs [8]

The big problem with this technique is that the emulator
runs in the user context, and therefore due to most of the
extra costs of changing context, there is no direct access to
hardware, which leads to significant performance problems.

Fig. 1 Emulation

Fig. 2 Full virtualization

2.3 Full virtualization

Full virtualization (Fig. 2) are in the same level as the operat-
ing system while using these drivers. As a consequence, the
virtual processor is of the same type as the host processor.
Examples:

– Vmware [41]
– Virtual PC [40]

As the system does not have a direct access to devices this
results in lower performances, especially for graphics cards.

2.4 Para-Virtualization

This virtualization technology (Fig. 3) was created to remedy
problems of full virtualization. It thus introduced a hypervi-
sor running just below the equipment. This hypervisor has
the role of separating the different virtual machines, manage
their context, memory, etc. Thus an operating system in a
virtual machine runs below the hypervisor.
Examples:

– Xen [43]
– Vmware ESX [42]

123

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 25

Fig. 3 Para-virtualization

Fig. 4 Hardware-assisted virtualization

The big problem with this method is that the guest must be
modified, i.e. that these sources must be patched to operate
below the hypervisor.

2.5 Hardware-assisted virtualization

In this race for the best virtualization, manufacturers of
processors arrived. They have equipped their processor with
a new set of instructions, a new context, to optimize and facil-
itate the full virtualization or para-virtualization (we called
this type of virtualization, cooperative vitualization (Fig. 4)),
thus obtaining the commutation of different virtual machines
directly into the processor.
Examples:

– Xen
– Virtual PC

The two main manufacturers of mass market processors,
Intel and AMD, respectively, introduced the technology in
the processor Vanderpool and Pacifica [1]. They are currently
available by default in the Intel Dual Core, and AMD 64-bit.

We will study more precisely these two processors, but
without loss of generality, we will focus especially on Intel
virtualization to understand the next part.

2.5.1 Intel virtualization

The new instructions set of Intel virtualization allows to pro-
vide several states to a processor core. A state is just a set of
values that can differentiate registers core. The VMX instruc-
tion used to handle many of these states, the principle is the
same as a scheduler:

– It loads a state on a core from the physical memory
(RAM),

– This state runs during a certain period,
– It saves the state of the core in the physical memory,
– It comes back to the first step.

In this set of statements, there is a master state called
«VMX-root-operation»; this is in this state that the VMM
works. The other states are related to the core called «VMX
non-root operation» for the VM. There is only one VMCS
active on a core. VMX root and VMX non-root modes are
mutually exclusive on a core.

States are represented by a control structure called VMCS
(virtual machine control Structure), it is a structure provided
by Intel which can handle a VM. A VMCS can be active, idle
or being initialized. Switching mode from VMX-root-opera-
tion to VMX-non-root-operation are called a VM-Entry. On
the opposite side, it is a VM-Exit (Fig. 5).

There is another virtualization-specific structure, the
VMXON-region. This structure must be allocated by the
developer but it is used by the core to perform the virtu-
alization.

2.5.1.1 VMX instructions Ten privileged instructions are to
be considered for the VMX instruction set:

– VMXON: switches the core to VMX-root mode,
– VMXOFF: exits from the VMX-root mode of the core,
– VMCLEAR: initializes the VMCS (in argument). Swit-

ches to an idle state,
– VMPTRLR: sets the VMCS (in argument) to an active

mode on the core,
– VMPTRST: stores the address of the active VMCS (in

argument),
– VMREAD: reads the value of a field of the VMCS,
– VMWRITE: writes a constant in a field of the VMCS,
– VMLAUNCH: switching from VMX-root to VMX-non-

root,
– VMRESUME: restarts the active VM from the VMX-root

mode,
– VMCALL: performs a VM-Exit from the active VM to

switch to VMX-root mode.

123

26 A. Desnos et al.

Fig. 5 VMX transition

Most of these instructions works on the EFlags register:

1. If successful, the flags CF, PF, AF, ZF, SF, OF are set
to 0,

2. In case of failure when there is no active VMCS on the
core, then CF is set to 1, the others flags set to 0,

3. In case of failure when there is an active VMCS, ZF is
set top 0, the others flags set to 0.

2.5.2 AMD virtualization

As Intel did, AMD cames with new features:

– Quickly switches from host to guest,
– Intercepting of instructions or guest’s events,
– DMA access protection: EAP (external access protec-

tion),
– TLB tagging between the hypervisor and the virtual

machines.

2.5.2.1 SVM: Secure Virtual Machine extensions AMD
gives a new set of instructions to take full advantage of
virtualization: SVM. It allows you to run virtual machines

and to achieve the materially switch host/VM, i.e. that each
virtual machine has a context that will be automatically
restored/saved by the processor at each context switching
(hypervisor ⇐⇒ virtual machine). It can also handle excep-
tions caused by the virtual machine, intercept instructions or
to inject interruptions.

We see the interest to activate this mode if it is available,
because it enables to have total control over the machine.

2.5.2.2 Invited Mode This new mode (real, not real, pro-
tected) has been introduced by AMD to facilitate virtualiza-
tion.

2.5.2.3 VMCB The VMCB (or control block of virtual
machine), is a structure in memory to describe a machine
that will run; several parts are to be considered:

– a list of instructions or events in the guest to intercept,
– bytes control specifying the execution environment of a

guest or indicating special actions to be performed before
executing the code of the guest,

– the state of the processor of the guest.

123

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 27

2.5.2.4 Activating of SVM Before activating the SVM, we
must check that the processor has this feature. By execut-
ing the cpuid instruction with the address 8000_0001h, the
second byte of the ecx register must be set to 1.

To activate the SVM, we must set the SVME bit of EFER
MSR to 1.

2.5.2.5 VMRUN This is the most important instruction.
It makes it possible to run a new virtual machine by provid-
ing a control block of virtual machine (VMCB), describing
the features expected and the status of this new machine.

2.5.2.6 VMSAVE/VMLOAD Both instructions complete
the VMRUN instruction by saving and loading the control
block.

2.5.2.7 VMMCALL This instruction calls the hypervisor,
as in ring 3 or ring 0. The choice of the mode in which this
instruction can be called is left to the hypervisor.

2.5.2.8 #VMEXIT When an interception is called, the pro-
cessor makes a #VMEXIT thereby to switch the status of the
virtual machine to the hypervisor.

2.6 Rootkits

A rootkit is a program or a set of programs allowing an
attacker to maintain an access to a computer system. Root-
kits have existed since the beginnings of hacking and are
therefore constantly changing with new technologies.

The features are various, but the main goal is the same, to
hide all traces of a hacker:

– codes,
– process,
– networks,
– drivers,
– files,
– �⇒ everything a mind can imagine!

We can classify rootkits in two families:

– Ring 3 (user land),
– Ring 0 (kernel land).

The first family is the oldest one. It is easy to use because
it is in ring 3. It is simply an amalgamation of several binary
(ps, ls, netstat, etc.) that will be installed in place of the orig-
inals, and that filters the results to hide data. It is trivial to
detect by hashes on the file system [39].

But recent years have seen the emergence of attacks per-
formed completely in memory [14], making rootkits evolve
in ring 3, and leaving the door open to new types of rootkits.

Staying in memory for an attacker is interesting because no
information will be written on a storage device (hard drive…)
and thus bypasses tools of forensics [9,18].

Three types of userland infections are to be considered:

– Patch on the fly,
– Syscall Proxy,
– Userland Execve.

Patch on the fly [3–5,10,11,14,29] is a technique to patch
dynamically a process, injecting codes, data, and to hijack
functions.

Syscall Proxy is a technique which consists in executing
a program entirely on the network by sending most of the
instructions to the exploited server. More precisely, when
a usual program is running, it sends many system calls to
the kernel in order for example to have access to the I/O
devices. With Syscall Proxy, all the system calls are sent by
the attacker, treated by the kernel of the server, and their
result returned. However, even though this method appears
original, it uses extensively the network resources. Its perfor-
mance is thereby directly related because a huge amount of
messages transits on the network (two per system call). But
most of all, the capacity of detection by the administrators
become pretty easy.

The last techniques consists to execute a program without
the execution syscall [38] (sys_execve on Linux). It replaces
in memory the old process with a new code that we will run,
or simply to insert a relocatable binary and to jump on it.
By using the network, no writing is made on the hard drive
[19]. Several automation tools (as SELF [28], pitbull [27], or
more recently Sanson The Headman [12]) have emerged to
use this technique easily.

Rootkits in ring 0 allow a stronger level of invisibility for
the user. They are used to hide process, connections, files or
to bypass some mechanisms of protection. Three categories
[32] are to be considered:

– Those installing hooks in the kernel code,
– Those installing hooks in fields of kernel structure,
– Those with no hooks.

The first category [35,36] changes the system call table,
the interrupt descriptor table, but also redirects some
functions. It is therefore easily detectable with tools making
fingerprints of the kernel memory. The abstraction in the Li-
nux kernel (second category) can bypass flows [18,36] by
changing pointer functions and pointers of structures. We
can easily change the pointer function of the structure listing
the files in the VFS, thus hiding all kinds of things. Again this
kind of corruption can be detected with memory fingerprints.

The last category relates to this new generation of malware
inherited from virtualization technology hardware.

123

28 A. Desnos et al.

2.7 Controversy

The problem which has emerged with this kind of rootkit
is lies in the fact that it does not install hook in memory
and simply uses the system memory allocator, and thus can
control various sources of time in a computer against a tim-
ing attack. All classic sources, as RDTSC instruction which
allowed to know the number of processor’s ticks, or clocks
in the mother board may be intercepted by the hypervisor,
respectively, directly on instruction’s call or an input/output.
As a consequence, hypervisor may alter the return value and
thus fake the detector’s analysis.

Is detecting a hypervisor is equivalent to detect a HVM
rootkit? Maybe not. But let us not be too affirmative [32]
in our answer. A user, an administrator system is always
supposed to know whether he has activated a virtual machine
monitor, as he would use himself a virtualization tools (Vir-
tual PC, KVM, XEN). If any detection technique decides that
a hypervisor is indeed active while the user has not installed
one, thus a rootkit is bound to be present. Of course we will
show that a payload will enable us to do without user’s knowl-
edge of the environment.

Several researchers have reacted quickly (maybe too) to
this security buzz in suggesting sundries solutions:

2.7.1 Timing attack

This attack is established on a simple rule. A rootkit alters
results and appends new instructions [33], we must have a
safely database which can be compared to new measure-
ments. However, BluePill controls all timing resources, it
can play with clocks and change the return values of instruc-
tions’ time.

2.7.2 Pattern matching

Pattern matching consists in searching a signature of a rootkit,
as for example loading or unloading function. This method
may be used in the Bluepill case (in the current release),
but it can control I/O and harms the integrity of the reading
memory (as a result, hiding himself).

2.7.3 TLB

The attack though TLB to detect if a hypervisor is present,
is based on the fact that a virtual machine monitor puts the
TLB entries to 0 if he intercepts an instruction. It is easy
for the detector to watch timing access of a page, to call an
intercepted instruction, and read the new timing access to the
same page and compared both results.

According to Joanna Rutkowska [32], she is capable to
hijack this detecting kind, moreover in AMD processors, the
TLB is tagged with an address space identifier (ASID) dis-
tinguishing host-space entries from guest-space entries.

2.7.4 DMA

Access to the DMA through an external device [13] such as
firewire allows to recover physical memory without modifi-
cation. It is therefore possible to detect an HVM rootkit by
searching his signature.

In most recent AMD processors, EAP (external access
protection) [2] could be used by a hypervisor to fake the
fingerprint.

Also, this solution would be no longer viable in the future,
because IOMMU [20] will allow to solve this problem with-
out access control to the memory by a device.

2.7.5 CPU bugs

This method is simple: crash the processor when virtualiza-
tion is enabled. It is interesting in experimentation to detect
a hypervisor, but it cannot be used in production, and these
bugs have been fixed in the next release.

3 BluePill rootkit

BluePill is the first (and only at the moment) public HVM
rootkit, created by Joanna Rutkowska in 2006, it has been
the subject of several publications, most of them about the
subject that it is undetectable, without analysis of its working.

3.1 Installation

Bluepill must be loaded as a driver. But Windows Vista (and
Windows Server 2008) integrates a security policy against
unsigned drivers. Thereby, either the driver is loaded by
exploitating a vulnerability [31], or we disable driver signing
during the boot of the operating system (function key F8), in
this case the scope of the attack is limited (on Windows Vista).

For our experimentation, we have disabled driver signing,
and loaded BluePill with the tool insdrv.

The first public release (0.11) of BluePill works only on
AMD [1] and the output is on serial port, which is not very
useful (nevertheless it is not required to have a null modem
cable to recover the output). The last public release (0.32)
available on web site adds Intel processor [21], and writing
in systems logs too.

3.2 Analysis

BluePill does not install any hook; this is why it is therefore
impossible to reinstate during boot. There are several pos-
sibilities, either infecting operating system during operating
system boot, or sooner during boot as SubVirt does [23]. In
other words, in both cases we would have a classic rootkit
and thus easily detectable.

BluePill moves the state of an operating system into a
guest operating system. No more and no less. Now (except

123

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 29

version 0.32, with an Intel keylogger), it embeds no classic
rootkit mechanisms (hiding files process, networks, etc). As
a result, one may wonder whether it is not simply the result
of a very good job of a kernel developer and not that of a
rootkit designer? And why does it not contain any payload
while it is presented as the most frightening rootkit ever?

This is his greatest “weakness”: it does not contain any
viral payload. BluePill can exhibit the same behaviour as a
classical rootkit does. There are two solutions. Either it hooks
functions or structures to realize these behaviors, what a clas-
sical rootkit is supposed to do; this is however well known by
any good rootkit detector. Or it monitors any input/output. It
may choose the latest solution, but at what price? The time…

Its great strength, which is to control everything remaining
invisible, could however require a large amount of resources
and thus betray it.

Let us now briefly analyse the BluePill source code.

3.3 Working

The working of these new types of malware can be summa-
rized into one sentence: “Switching the operating system in
a virtual machine”. It is clear that the switching of the state
on the fly, allows an interesting stealth effect (no reboot as
Subvirt requires it [23]), and the state of a virtual machine
allows a full control (see Figs. 6, 7).

Fig. 6 BluePill during the infection

Fig. 7 Bluepill after infection

The algorithm of the new kind of rootkit according to [25]
is in ten steps, but can be resumed in the following section.

3.3.1 Algorithm

1. Loading of the driver,
2. Verification/Activation of the hardware virtualization,
3. Memory allocation of different pages (control block,

saved area of the host…),
4. Initialization of different fields of the control block of

the virtual machine (control area, virtual machine area),
5. Switch to the hypervisor execution code,
6. Call of the instruction which run the virtual machine,
7. Unloading of the driver.

Now, we will analyze each parts of this algorithm by
associating it to the version 0.32-public [22] of BluePill.

Its code is splitted into different parts:

– amd64: assembly code of the hypervisor, calling of the
SVM/VMX instructions, reading/writing code of MSR,

– common: common code of the rootkit (loading, unload-
ing, etc),

– svm: code for the SVM instructions set,
– vmx: code for the VMX instructions set.

123

30 A. Desnos et al.

The common code allows via a structure HVM_DEPEN-
DENT of functions pointer to manage SVM or VMX:

/∗ common/common.h ∗/

typedef struct
{

UCHAR Architecture;

ARCH_IS_HVM_IMPLEMENTED ArchIsHvmImplemented;

ARCH_INITIALIZE ArchInitialize;
ARCH_VIRTUALIZE ArchVirtualize;
ARCH_SHUTDOWN ArchShutdown;

ARCH_IS_NESTED_EVENT ArchIsNestedEvent;
ARCH_DISPATCH_NESTED_EVENT ArchDispatchNestedEvent;
ARCH_DISPATCH_EVENT ArchDispatchEvent;
ARCH_ADJUST_RIP ArchAdjustRip;
ARCH_REGISTER_TRAPS ArchRegisterTraps;
ARCH_IS_TRAP_VALID ArchIsTrapValid;

} HVM_DEPENDENT,

3.3.1.1 Loading Without doubt, the hardest part, as it is
to find an attack vector to load the rootkit. Typically, this
requires getting a communication channel to the kernel to
insert our code:

– Either through the loading interface. What is blocked in
Windows Vista, because a driver must be signed before
being loaded, which has been bypassed [32] but quickly
corrected by Microsoft,

– Either by memory devices (/dev/kmem on Linux, disabled
on Windows Vista), but with a relocation of the code in
memory (for example with Kernsh [37]).

– Either by the exploitation of a kernel security flaw.

The loading of BleuPill begins in the driver loading rou-
tine on Windows, the DriverEntry function:

/∗ common/newbp.c ∗/

NTSTATUS DriverEntry(
PDRIVER_OBJECT DriverObject,
PUNICODE_STRING RegistryPath

)
{
[...]
[A] HvmInit();
[B] HvmSwallowBluepill();
[C] DriverObject−>DriverUnload = DriverUnload;
[...]
}

Three main things are done: HvmInit will check the
availability of virtualization hardware [A], and HvmSwal-
lowBluepill will run the rootkit [B]. We must also setup [C]
the field of the unloading routing of the driver of the structure
DriverObject with the unloading function.

HvmSwallowBluepill:

/∗ common/hvm.c ∗/

NTSTATUS NTAPI HvmSwallowBluepill (
)
{

[...]
for (cProcessorNumber = 0; cProcessorNumber < KeNumberProcessors;
cProcessorNumber++)
{
[A] CmDeliverToProcessor (cProcessorNumber, CmSubvert, NULL,
&CallbackStatus);
}
[...]
}

The initialization of the rootkit must be done on each
processor [A], that is why we associate the setup routine
(CmSubvert) to each processor.

/∗ amd64/common−asm.asm ∗/

CmSubvert PROC
[...]

[A] call HvmSubvertCpu
CmSubvert ENDP

This assembly routine only called the real installation
routine [A] (HvmSubvertCpu).

/∗ common/hvm.c ∗/

NTSTATUS NTAPI HvmSubvertCpu (
PVOID GuestRsp

)
{
[...]
[A] Hvm−>ArchIsHvmImplemented();

[B] HostKernelStackBase = MmAllocatePages (HOST_STACK_SIZE_IN_
PAGES, &HostStackPA);
[C] Cpu = (PCPU) ((PCHAR) HostKernelStackBase + HOST_STACK_SIZE_IN_

PAGES
∗ PAGE_SIZE − 8 − sizeof (CPU));
[D] Cpu−>ProcessorNumber = KeGetCurrentProcessorNumber ();
[E] Cpu−>GdtArea = MmAllocatePages (BYTES_TO_PAGES (BP_GDT_

LIMIT), NULL);
[F] Cpu−>IdtArea = MmAllocatePages (BYTES_TO_PAGES (BP_IDT_LIMIT),

NULL);

[G] Hvm−>ArchRegisterTraps (Cpu);
[H] Hvm−>ArchInitialize (Cpu, CmSlipIntoMatrix, GuestRsp);

[I] HvmSetupGdt (Cpu);
[J] HvmSetupIdt (Cpu);

[K] Hvm−>ArchVirtualize (Cpu);
}

HvmSubvertCpu is the main installation routine, which
is called on each processor. It will first check the availabil-
ity of virtualization [A], then perform various allocations
spaces and structures [B], [C], [E], [F]. At [B], the allocation
of this saved host area allows the vmrun instruction to save
information about the state of the processor. KeGetCurrent-
ProcessorNumber gets the number of processors on which
is running this code [D].

Finally, event management [G] is performed by ArchReg-
isterTraps, and various initializations [H], [I], [J] take place
and then the hypervisor [K] is launched by ArchVirtualize.

3.3.1.2 Checking of hardware virtualization Hvm→
ArchIsHvmImplemented == SvmIsImplemented:

123

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 31

/∗ svm/svm.c ∗/

static BOOLEAN NTAPI SvmIsImplemented (
)
{
[A] GetCpuIdInfo (0, &eax, &ebx, &ecx, &edx);
[B] if !(ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65)

return FALSE;
[C] GetCpuIdInfo (0x80000000, &eax, &ebx, &ecx, &edx);
[D] GetCpuIdInfo (0x80000001, &eax, &ebx, &ecx, &edx);
[E] return CmIsBitSet (ecx, 2);
}

The assembly CPUID instruction get information about
features of the processor. The first function [A] checks
whether the processor has the extend CPUID instruction,
and also checks whether we are on a AMD processor [B].

The functions [C], [D], [E] check whether the second byte
of ecx register is setup.

3.3.1.3 Initialization of events management Hvm→Arch-
RegisterTraps == SvmRegisterTraps:

/∗ svm/svmtraps.c ∗/

NTSTATUS NTAPI SvmRegisterTraps (
PCPU Cpu

)
{
[...]

TrInitializeGeneralTrap (Cpu, VMEXIT_VMRUN, 3, SvmDispatchVmrun,
&Trap);
TrInitializeGeneralTrap (Cpu, VMEXIT_VMLOAD, 3, SvmDispatchVmload,
&Trap);
TrInitializeGeneralTrap (Cpu, VMEXIT_VMSAVE, 3, SvmDispatchVmsave,
&Trap);

TrInitializeMsrTrap (Cpu, MSR_EFER, MSR_INTERCEPT_READ | MSR_
INTERCEPT_WRITE, SvmDispatchEFERAccess, &Trap);

TrInitializeMsrTrap (Cpu, MSR_VM_HSAVE_PA, MSR_INTERCEPT_READ |
MSR_INTERCEPT_WRITE, SvmDispatchVM_HSAVE_PAAccess, &Trap);

TrInitializeGeneralTrap (Cpu, VMEXIT_CLGI, 3, SvmDispatchClgi, &Trap);
TrInitializeGeneralTrap (Cpu, VMEXIT_STGI, 3, SvmDispatchStgi, &Trap);
TrInitializeGeneralTrap (Cpu, VMEXIT_SMI, 0, SvmDispatchSMI, &Trap);
TrInitializeGeneralTrap (Cpu, VMEXIT_EXCEPTION_DB, 0, SvmDispatchDB,
&Trap);
TrInitializeGeneralTrap (Cpu, VMEXIT_CPUID, 2, SvmDispatchCpuid,
&Trap);
TrInitializeGeneralTrap (Cpu, VMEXIT_RDTSC, 2, SvmDispatchRdtsc,
&Trap);
TrInitializeGeneralTrap (Cpu, VMEXIT_RDTSCP, 3, SvmDispatchRdtscp,
&Trap);
TrInitializeMsrTrap (Cpu, MSR_TSC, MSR_INTERCEPT_READ,
SvmDispatchMsrTscRead, &Trap);
}

The initialization of the function that will handle inter-
ception are saved and associated with at the corresponding
interception.

So, BluePill intercepts the following operations:

– instructions: vmrun, vmload, vmsave,
– registers msr efer, vm_hsave_pa, tsc,
– instructions: clgi, stgi,
– interrupts of SMM,

– debug exception,
– instructions: cpuid, rdtsc, rdtscp.

3.3.1.4 Allocation/initialization Hvm→ArchInitialize ==
SvmInitialize:

/∗ svm/svm.c ∗/

static NTSTATUS NTAPI SvmInitialize (
PCPU Cpu,
PVOID GuestRip,
PVOID GuestRsp

)
{
[...]

GetCpuIdInfo (0x8000000a, &eax, &ebx, &ecx, &edx);
Cpu−>Svm.AsidMaxNo = ebx − 1;

Cpu−>Svm.Hsa = MmAllocateContiguousPages (SVM_HSA_SIZE_IN_PAGES,
&Cpu−>Svm.HsaPA);

[A] Cpu−>Svm.OriginalVmcb = MmAllocateContiguousPagesSpecifyCache
(SVM_VMCB_SIZE_IN_PAGES, &Cpu−>Svm.OriginalVmcbPA,
MmCached);

[B] Cpu−>Svm.GuestVmcb = MmAllocateContiguousPagesSpecifyCache
(SVM_VMCB_SIZE_IN_PAGES, NULL, MmCached);

[C] Cpu−>Svm.NestedVmcb = MmAllocateContiguousPagesSpecifyCache
(SVM_VMCB_SIZE_IN_PAGES, &Cpu−>Svm.NestedVmcbPA,
MmCached);

// these two PAs are equal if there’re no nested VMs
Cpu−>Svm.VmcbToContinuePA = Cpu−>Svm.OriginalVmcbPA;

[D] SvmSetupControlArea (Cpu);

[E] SvmEnable (&bAlreadyEnabled);
Cpu−>Svm.bGuestSVME = bAlreadyEnabled;

[F] SvmInitGuestState (Cpu, GuestRip, GuestRsp);

SvmSetHsa (Cpu−>Svm.HsaPA);
Cpu−>Svm.GuestGif = 1;
RegSetCr8 (0);
CmClgi ();
CmSti ();
}

The allocation [A], [B], [C] of all VMCB, then the
initialization of the control area [D], allow the activation of
the virtualization [E]. Finally, the initialization of the VMCB
processor state is performed.

SvmEnable:

/∗ svm/svm.c ∗/

NTSTATUS NTAPI SvmEnable (
PBOOLEAN pAlreadyEnabled

)
{
[...]
Efer = MsrRead (MSR_EFER);
[A] Efer |= EFER_SVME;
[B] MsrWrite (MSR_EFER, Efer);
[...]
}

To enable the SVM, the SVME byte of the EFER MSR
must be set [A], [B] to 1.

SvmInitGuestState:

123

32 A. Desnos et al.

/∗ svm/svm.c ∗/

NTSTATUS SvmInitGuestState (
PCPU Cpu,
PVOID GuestRip,
PVOID GuestRsp

)
{
[...]

Vmcb = Cpu−>Svm.OriginalVmcb;

Vmcb−>idtr.base = GetIdtBase ();
Vmcb−>idtr.limit = GetIdtLimit ();
GuestGdtBase = (PVOID) GetGdtBase ();
Vmcb−>gdtr.base = (ULONG64) GuestGdtBase;
Vmcb−>gdtr.limit = GetGdtLimit ();

[...]
Vmcb−>cpl = 0;
Vmcb−>efer = MsrRead (MSR_EFER);
Vmcb−>cr0 = RegGetCr0 ();
Vmcb−>cr2 = RegGetCr2 ();
Vmcb−>cr3 = RegGetCr3 ();
Vmcb−>cr4 = RegGetCr4 ();
Vmcb−>rflags = RegGetRflags ();
Vmcb−>dr6 = 0;
Vmcb−>dr7 = 0;
Vmcb−>rax = 0;

Vmcb−>rip = (ULONG64) GuestRip;
Vmcb−>rsp = (ULONG64) GuestRsp;

[...]
}

The initialization of state part of the VMCB is to setup
fields required by the processor, i.e. the addresses of the idt
and the gdt. But also information as cr* and dr* registers,
and of course the current pointer and the stack pointer.

SvmSetHsa:

/∗ svm/svm.c ∗/

VOID NTAPI SvmSetHsa (
PHYSICAL_ADDRESS HsaPA

)
{
}

3.3.1.5 Transfer Hvm→ArchIsHvmVirtualize == Svm
Virtualize:

/∗ svm/svm.c ∗/

static NTSTATUS NTAPI SvmVirtualize (
PCPU Cpu

)
{
[A] SvmVmrun (Cpu);
// never returns
}

The transfer to the hypervisor’s code which will launch
the virtual machine and manage events, is located in the
SvmVmrun [A] function.

3.3.1.6 Calling the virtual machine SvmVmrun:

/∗ amd64/svm−asm.asm ∗/

SvmVmrun PROC
[...]

@loop:
[...]
[A] mov rax, [rsp+16∗8+5∗8+8] ; CPU.Svm.

VmcbToContinuePA

[B] svm_vmrun

; save guest state
[...]
call HvmEventCallback

; restore guest state (HvmEventCallback migth have alternated
the guest state)

[...]
jmp @loop

The switching to the virtual machine is done by the vmrun
[B] instruction which takes one argument, the address of the
VMCB of the virtual machine, in the rax register [A].

3.3.1.7 Events management The event management is
significant for an HVM rootkit, since the viral code must
be here.

HvmEventCallback:

/∗ common/hvm.c ∗/

VOID NTAPI HvmEventCallback (
PCPU Cpu,
PGUEST_REGS GuestRegs

)
{
[...]
[A] if (Hvm−>ArchIsNestedEvent (Cpu, GuestRegs))
{
[B] Hvm−>ArchDispatchNestedEvent (Cpu, GuestRegs);
return;
}

// it’s an original event
[C] Hvm−>ArchDispatchEvent (Cpu, GuestRegs);
}

According to the original source of the event [A],
management will be treated differently. But, finally, the pro-
cessing function will be either SvmDispatchNestedEvent [B]
or SvmDispatchEvent [C].

Hvm→ArchDispatchEvent = SvmDispatchEvent:

/∗ svm/svm.c ∗/

static VOID NTAPI SvmDispatchEvent (
PCPU Cpu,
PGUEST_REGS GuestRegs

)
{
[...]
SvmHandleInterception (Cpu, GuestRegs, Cpu−>Svm.OriginalVmcb, FALSE
[...]
}

SvmHandleInterception:

/∗ svm/svm.c ∗/

static VOID SvmHandleInterception (
PCPU Cpu,

123

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 33

PGUEST_REGS GuestRegs,
PVMCB Vmcb,
BOOLEAN WillBeAlsoHandledByGuestHv

)
{

[...]
[A] TrFindRegisteredTrap (Cpu, GuestRegs, Vmcb−>exitcode, &Trap);

switch (Vmcb−>exitcode)
{
case VMEXIT_MSR:
[...]
case VMEXIT_IOIO:
[...]
default :

[...]
[B] TrExecuteGeneralTrapHandler (Cpu, GuestRegs, Trap,

WillBeAlsoHandledByGuestHv);
[...]

}
}

Depending on the type of the event, we seek [A] whether
an entry exists that supports this kind of events and run it [B].

3.3.1.8 Unloading The unloading of BluePill is performed
by the unloading routine filled in the structure of the driver
while loading.

/∗ common/newbp.c ∗/

NTSTATUS DriverUnload (
PDRIVER_OBJECT DriverObject

)
{
[...]
[A] HvmSpitOutBluepill();
[...]
}

The function [A] which will perform the unloading of the
hypervisor is HvmSpitOutBluepill:

/∗ common/hvm.c ∗/

NTSTATUS NTAPI HvmSpitOutBluepill (
)
{
[...]
for (cProcessorNumber = 0; cProcessorNumber < KeNumberProcessors;
cProcessorNumber++)
{
[A] CmDeliverToProcessor (cProcessorNumber, HvmLiberateCpu, NULL,
&CallbackStatus);
}
[...]
}

As for the loading, we attach an unloading routine [A],
HvmLiberateCpu, to each active process.

HvmLiberateCpu:

/∗ common/hvm.c ∗/

static NTSTATUS NTAPI HvmLiberateCpu (
PVOID Param

)
{
[...]
[A] HcMakeHypercall (NBP_HYPERCALL_UNLOAD, 0, NULL);

[...]
}

A hypercall is the same as a system call but for a virtual
machine. That is why this will create a communication from
the virtual machine to the hypervisor [A]. So, the unloading
routine of BluePill makes a hypercall to the hypervisor to
unload itself.

HcMakeHypercall:

/∗ common/hypercalls.c ∗/

NTSTATUS NTAPI HcMakeHypercall (
ULONG32 HypercallNumber,
ULONG32 HypercallParameter,
PULONG32 pHypercallResult

)
{
[...]

// low part contains a hypercall number
[A] edx = HypercallNumber | (NBP_MAGIC & 0xffff0000);
[B] ecx = NBP_MAGIC + 1;

[C] CpuidWithEcxEdx (&ecx, &edx);
}

A little trick lies here: to unload, it makes an hypercall
which call an instruction intercepted by the hypervisor with
magic parameters. The cpuid instruction [C] is used with the
magic values [A], [B] in the edx and ecx registers, with the
first register content concatenated to the value of the desired
hypercall (unloading).

SvmDispatchCpuid:

/∗ svm/svmtraps.c ∗/

static BOOLEAN NTAPI SvmDispatchCpuid (
PCPU Cpu,
PGUEST_REGS GuestRegs,
PNBP_TRAP Trap,
BOOLEAN WillBeAlsoHandledByGuestHv

)
{
[...]

[A] if (((GuestRegs−>rdx & 0xffff0000) == (NBP_MAGIC & 0xffff0000))
[B] && ((GuestRegs−>rcx & 0xffffffff) == NBP_MAGIC + 1))
{

[C] HcDispatchHypercall (Cpu, GuestRegs);
return TRUE;

}

[...]
}

The function which intercepts the cpuid instruction is
SvmDispatchCpuid, and checks whether the magic parame-
ters [A], [B] are in registers and, if present, the management
function of hypercalls [C] is called.

HcDispatchHypercall:

/∗ common/hypercalls.c ∗/

VOID NTAPI HcDispatchHypercall (
PCPU Cpu,
PGUEST_REGS GuestRegs

123

34 A. Desnos et al.

)
{
[...]
switch (HypercallNumber)
{

[A] case NBP_HYPERCALL_UNLOAD:
[...]
// disable virtualization, resume guest, don’t setup time bomb
[B] Hvm−>ArchShutdown (Cpu, GuestRegs, FALSE);
break;

}
}

If the number of the hypercall [A] corresponds to an unload-
ing action, the function of the right architecture is executed
[B].

Hvm→ArchShutdown = SvmShutdown:

/∗ svm/svm.c ∗/

static NTSTATUS NTAPI SvmShutdown (
PCPU Cpu,
PGUEST_REGS GuestRegs,
BOOLEAN bSetupTimeBomb

)
{
SvmGenerateTrampolineToLongModeCPL0 (Cpu, GuestRegs, Trampoline,

bSetupTimeBomb);

CmStgi ();
CmSti ();

if (!Cpu−>Svm.bGuestSVME)
[A] SvmDisable ();

((VOID (∗)()) & Trampoline) ();
// never returns

}

The function [A] SvmDisable disables the virtualization,
and shutdown the hypervisor.

As a conclusion of this brief analysis of the BluePill code
is that finally it does the work of a classical hypervisor but in a
much more dynamic way because it takes a host and switches
into a virtual machine. Moreover, it contains no viral payload
(as hiding files, processes, etc.), and does not hide itself in
memory; it is rather functionally poor compared to a real
rootkit.

Before discussing about methods of detection, we want
now clarify in details the creation of an HVM rootkit, because
there is no documentation about this subject.

4 Creating of an Intel HVM rootkit

We will describe in this part, the various steps that lead to the
creation of an HVM rootkit, so a hypervisor.

The conception of a hypervisor will be done with a
loadable kernel module for the following reasons: it is nec-
essary to access directly to primary resources of the CPU,
which may not be read and modified only in ring 0 with or
without the help of kernel functions.

Instructions of virtualization are privileged instructions.
The kernel module will be make a version of the virtualize
OS. The hypervisor gets the state of registers of the OS, and

loads in the control structure of the virtual machine, so we
will have a “copy” of our OS in the VM.

The VM is an extension of our OS. When the hypervisor is
loaded, the VM resumes the OS execution, as transparently
as possible. Once the OS is virtualized, we have two states for
our CPU, the OS and the hypervisor. When the hypervisor is
called, it relaunches the VM as soon as possible while hav-
ing done what needed. We will see that the hypervisor will
handle specific cases to the failureless execution of the OS.

4.1 Detailed Design

The design required to implement the following features in
order to:

1. Load a loadable kernel module on Windows,
2. Enable VMX support on the core,
3. Check the state of VMX,
4. Move the core to VMX-root-operation,
5. Initialize the VMXON-region,
6. Initialize the VMCS,
7. Launch a virtual machine and switch to VMX-non-root-

operation,
8. Handle VM-Exits,
9. Handle VM-Entries,

10. Disable virtualization,
11. SMP support.

4.2 Loading of a loadable kernel module on Windows

To load a kernel module on Windows, we must have the
SeLoadDriverPrivilege privilege; this privilege is by default
given to the Administrator group.

When we get this privilege, there are two ways to load a
driver:

1. Used the Service Control Manager (SCM) which can
declare a service that will be launched at start-up or man-
ually. Depending on the needs, this service may as well be
in the form of user land program or a driver, depending on
the dwServiceType setting of the function CreateService,
for a driver we must set SERVICE_KERNEL_DRIVER.
The driver is controlled as a service, you can start and
stop it with the ControlService API. This is the official
method described by Microsoft to load a driver.

2. Or it is possible to call the ZwLoadDriverv native API. In
fact, the Service Control Manager uses this API to load
a driver whenever asked. There are the ZwUnloadDriver
API to unload our driver. It thus avoids going through
the SCM using these APIs.

We will use the native APIs in an offensive way: this leaves
the least possible traces on the system.

As said previously, it is not possible to load unsigned
driver on a system without the boot option. This is another

123

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 35

problem with the SeLoadDriverPrivilege privilege in the con-
text of a real attack.

4.3 Detecting VMX support

Once we have inserted our kernel module, we must check
whether our processor core supports the set of VMX instruc-
tions or not. This is performed with the instruction cpuid,
by setting the EAX register to 1, for the results in the ECX
register:

//
// Used by the cpuid instruction when EAX=1
//
typedef struct CPU_FEATURES
{

unsigned long SSE3 :1; // SSE3 Extensions
unsigned long RES1 :2;
unsigned long MONITOR :1; // MONITOR/WAIT
unsigned long DS_CPL :1; // CPL qualified Debug Store
unsigned long VMX :1; // Virtual Machine Technology
unsigned long RES2 :1;
unsigned long EST :1; // Enhanced Intel Speedstep Technology
unsigned long TM2 :1; // Thermal monitor 2
unsigned long SSSE3 :1; // SSSE3 extensions
unsigned long CID :1; // L1 context ID
unsigned long RES3 :2;
unsigned long CX16 :1; // CMPXCHG16B
unsigned long xTPR :1; // Update control
unsigned long PDCM :1; // Performance/Debug capability MSR
unsigned long RES4 :2;
unsigned long DCA :1;
unsigned long RES5 :13;

} CPU_FEATURES;

If the sixth byte of this structure is set to 1, the core indeed
supports the VMX instructions. The CPUID instruction is not
a privileged instruction, so we can avoid to load our kernel
by called this instruction from ring 3.

4.4 VMX State

Simply checking whether the VMX is available on the core
is not enough. We must additionally check whether the core
supports the VMX-root-operation or not. If the first byte of
the IA32_FEATURE_CONTROL MSR is set to 0, the VMX
support is not locked on the core.

//
// IA32_FEATURE_CONTROL (0x3A)
//
#define IA32_FEATURE_CONTROL 0x3A
typedef struct _IA32_FEATURE_CONTROL_MSR
{

// Bit 0 is the lock bit − cannot be modified once lock is set,
controled by BIOS
unsigned Lock :1;
unsigned VmxonInSmx :1;
unsigned VmxonOutSmx :1;
unsigned Reserved2 :29;
unsigned Reserved3 :32;

} IA32_FEATURE_CONTROL_MSR;

4.5 Switching to VMX-root operation

Before switching to VMX-root-operation, we must initial-
ize a structure called VMXON-region. This structure must

be allocated to an address which is a multiple of 4Ko. This
length must be read in the field VmRegionSize of the MSR
IA32_VMX_BASIC MSR. Furthermore, the VMXON-
region cannot be allocated in any type of memory, depending
on the MemType, we must choose a memory that will never
be cached (in the L1, L2, L3 caches of the processor), or a
memory which is Write-Back (a memory area which is given
in RAM when you write in it). We chose the most extreme
and allocate our VMXON-region in an area that will never be
cached. We will use the API (MmAllocateNonCachedMe-
mory) of the kernel. Then, we must write at the start of
the VMXON-region the id RevId returned during the read
of IA32_VMX_BASIC. After that, we must set the VMXE
byte (13) of CR4 to 1 to indicate that we have activated the
extension of virtualization assistance. Finally, to switch to
VMX-root-operation mode, we launch the VMXON instruc-
tion with parameters, the physical address of the VMXON-
region.

Knowing that during the allocation, the MmAllocate
NonCachedMemory API returns a virtual address we should
use the function MmGetPhysicalAddressii to get its physical
address. We must not forget to check whether the VMXON
instruction had no problem by watching if the CF flag is set
to 0.

//
// IA32_VMX_BASIC (0x480)
//
#define IA32_VMX_BASIC 0x480
typedef struct _IA32_VMX_BASIC_MSR
{

// Bits 31..0 contain the VMCS and VMXON revision identifier
unsigned RevId :32;

// Bits 43..32 report # of bytes for VMXON and VMCS regions
unsigned VMRegionSize :12;

// Bit 44 set only if bits 32−43 are clear
unsigned RegionClear :1;

// Undefined
unsigned Reserved1 :3;

// Physical address width for referencing VMXON, VMCS, etc.
unsigned PhyAddrWidth :1;

// Reports whether the processor supports dual−monitor
// treatment of SMI and SMM
unsigned DualMon :1;

// Memory type that the processor uses to access the VMCS
unsigned MemType :4;

// Reports weather the procesor reports info in the VM−exit
// instruction information field on VM exits due to execution
// of the INS and OUTS instructions
unsigned VmExitReport :1;

// Undefined
unsigned Reserved2 :9;

} IA32_VMX_BASIC_MSR;

4.6 Initialization of VMCS structure

This is the most important part of the project, because we
must setup information in the control structure of the VM.

123

36 A. Desnos et al.

Because our OS will be virtualized, it is very easy to get
its state. The initialization of the VMCS is the same as the
VMXON-region. After writing the RevId at the start of the
VMCS, we define its start value with the VMCLEAR instruc-
tion which uses the physical address of the VMCS. After that,
we can define the VMCS active on the core, the VMPTRLD
instruction takes the physical address of a VMCS too.

Now, we setup the state of the VMCS. To begin with,
we consider a neutral state, i.e. a state that inferes the least
possible with the OS activity; to be more precise, it is a state
that generates the fewest VM Exits.

Several parts are to be considered in the VMCS:

1. Guest-state area: the state of the core is loading from this
area during a VM-Entry and saved during a VM-Exit,

2. Host-state area: The context of the core is recovered
during a VM-Exit to relaunch the host in VMX-root-
operation,

3. VM-execution control fields: these variables manage the
behavior of the guest in VMX-non-root-operation and
determine VM-Exit,

4. VM-exit control fields: these fields determine the behav-
ior of the hypervisor during some VM-Exit,

5. VM-entry control fields: these fields determine the
behavior of the core during VM-Entry,

6. VM-Exit information fields: give information about the
reason and the kind of the VM-Exit.

The programmer cannot have free access to the fields of
the VMCS, Intel does not provide the definition of the VMCS
structure. In place, VMREAD and VMWRITE instructions
access to the fields of the VMCS with offsets, or rather a
coding which depends on the area you want to manipulate,
on the size of access and on the access type (Fig. 8):

In this way Intel facilitates access to VMCS because there
no longer needs to define a proper structure where alignment
can change with the compiler options and different evolu-
tions of the structure:

/∗ VMCS Encodings ∗/
enum
{

// 16 bits Guest State Fields
GUEST_ES_SELECTOR = 0x00000800,
GUEST_CS_SELECTOR = 0x00000802,
GUEST_SS_SELECTOR = 0x00000804,
GUEST_DS_SELECTOR = 0x00000806,
GUEST_FS_SELECTOR = 0x00000808,
GUEST_GS_SELECTOR = 0x0000080a,
GUEST_LDTR_SELECTOR = 0x0000080c,
GUEST_TR_SELECTOR = 0x0000080e,

// 16 bits Host State Fields
HOST_ES_SELECTOR = 0x00000c00,
HOST_CS_SELECTOR = 0x00000c02,
HOST_SS_SELECTOR = 0x00000c04,
HOST_DS_SELECTOR = 0x00000c06,
HOST_FS_SELECTOR = 0x00000c08,
HOST_GS_SELECTOR = 0x00000c0a,
HOST_TR_SELECTOR = 0x00000c0c,

// 64 bits Control Fields
IO_BITMAP_A = 0x00002000,
IO_BITMAP_A_HIGH = 0x00002001,
IO_BITMAP_B = 0x00002002,
IO_BITMAP_B_HIGH = 0x00002003,
MSR_BITMAP = 0x00002004,
MSR_BITMAP_HIGH = 0x00002005,
VM_EXIT_MSR_STORE_ADDR = 0x00002006,
VM_EXIT_MSR_STORE_ADDR_HIGH = 0x00002007,
VM_EXIT_MSR_LOAD_ADDR = 0x00002008,
VM_EXIT_MSR_LOAD_ADDR_HIGH = 0x00002009,
VM_ENTRY_MSR_LOAD_ADDR = 0x0000200a,
VM_ENTRY_MSR_LOAD_ADDR_HIGH = 0x0000200b,
TSC_OFFSET = 0x00002010,
TSC_OFFSET_HIGH = 0x00002011,
VIRTUAL_APIC_PAGE_ADDR = 0x00002012,
VIRTUAL_APIC_PAGE_ADDR_HIGH = 0x00002013,

// 64 bits Guest State Fields
VMCS_LINK_POINTER = 0x00002800,
VMCS_LINK_POINTER_HIGH = 0x00002801,
GUEST_IA32_DEBUGCTL = 0x00002802,
GUEST_IA32_DEBUGCTL_HIGH = 0x00002803,

// 64 bits Host−State Field
HOST_IA32_PERF_GLOBAL_CTRL = 0x00002C04,
HOST_IA32_PERF_GLOBAL_CTRL_HIG = 0x00002C05,

// 32 bits Control Fields
PIN_BASED_VM_EXEC_CONTROL = 0x00004000,
PRIMARY_CPU_BASED_VM_EXEC_CONTROL = 0x00004002,
EXCEPTION_BITMAP = 0x00004004,
PAGE_FAULT_ERROR_CODE_MASK = 0x00004006,
PAGE_FAULT_ERROR_CODE_MATCH = 0x00004008,
CR3_TARGET_COUNT = 0x0000400a,
VM_EXIT_CONTROLS = 0x0000400c,
VM_EXIT_MSR_STORE_COUNT = 0x0000400e,
VM_EXIT_MSR_LOAD_COUNT = 0x00004010,
VM_ENTRY_CONTROLS = 0x00004012,
VM_ENTRY_MSR_LOAD_COUNT = 0x00004014,
VM_ENTRY_INTR_INFO_FIELD = 0x00004016,
VM_ENTRY_EXCEPTION_ERROR_CODE = 0x00004018,
VM_ENTRY_INSTRUCTION_LEN = 0x0000401a,
TPR_THRESHOLD = 0x0000401c,
SECONDARY_CPU_BASED_VM_EXEC_CONTROL = 0x000401e,

// 32 bits Read Only Data Fields
VM_INSTRUCTION_ERROR = 0x00004400,
VM_EXIT_REASON = 0x00004402,
VM_EXIT_INTR_INFO = 0x00004404,
VM_EXIT_INTR_ERROR_CODE = 0x00004406,
IDT_VECTORING_INFO_FIELD = 0x00004408,
IDT_VECTORING_ERROR_CODE = 0x0000440a,
VM_EXIT_INSTRUCTION_LEN = 0x0000440c,
VMX_INSTRUCTION_INFO = 0x0000440e,

// 32 bits Guest State Fields
GUEST_ES_LIMIT = 0x00004800,
GUEST_CS_LIMIT = 0x00004802,
GUEST_SS_LIMIT = 0x00004804,
GUEST_DS_LIMIT = 0x00004806,
GUEST_FS_LIMIT = 0x00004808,
GUEST_GS_LIMIT = 0x0000480a,
GUEST_LDTR_LIMIT = 0x0000480c,
GUEST_TR_LIMIT = 0x0000480e,
GUEST_GDTR_LIMIT = 0x00004810,
GUEST_IDTR_LIMIT = 0x00004812,
GUEST_ES_AR_BYTES = 0x00004814,
GUEST_CS_AR_BYTES = 0x00004816,
GUEST_SS_AR_BYTES = 0x00004818,
GUEST_DS_AR_BYTES = 0x0000481a,
GUEST_FS_AR_BYTES = 0x0000481c,
GUEST_GS_AR_BYTES = 0x0000481e,
GUEST_LDTR_AR_BYTES = 0x00004820,
GUEST_TR_AR_BYTES = 0x00004822,
GUEST_INTERRUPTIBILITY_INFO = 0x00004824,
GUEST_ACTIVITY_STATE = 0x00004826,
GUEST_SM_BASE = 0x00004828,
GUEST_SYSENTER_CS = 0x0000482A,

// 32 bits Host State Field

123

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 37

Fig. 8 VMS struct

HOST_IA32_SYSENTER_CS = 0x00004c00,

// Natural width Control Fields
CR0_GUEST_HOST_MASK = 0x00006000,
CR4_GUEST_HOST_MASK = 0x00006002,
CR0_READ_SHADOW = 0x00006004,
CR4_READ_SHADOW = 0x00006006,
CR3_TARGET_VALUE0 = 0x00006008,
CR3_TARGET_VALUE1 = 0x0000600a,
CR3_TARGET_VALUE2 = 0x0000600c,
CR3_TARGET_VALUE3 = 0x0000600e,

// Natural Width Read Only Data Fields
EXIT_QUALIFICATION = 0x00006400,
GUEST_LINEAR_ADDRESS = 0x0000640a,

// Natural Witdh Guest State Fields
GUEST_CR0 = 0x00006800,
GUEST_CR3 = 0x00006802,
GUEST_CR4 = 0x00006804,
GUEST_ES_BASE = 0x00006806,
GUEST_CS_BASE = 0x00006808,
GUEST_SS_BASE = 0x0000680a,
GUEST_DS_BASE = 0x0000680c,
GUEST_FS_BASE = 0x0000680e,
GUEST_GS_BASE = 0x00006810,
GUEST_LDTR_BASE = 0x00006812,
GUEST_TR_BASE = 0x00006814,
GUEST_GDTR_BASE = 0x00006816,
GUEST_IDTR_BASE = 0x00006818,
GUEST_DR7 = 0x0000681a,
GUEST_ESP = 0x0000681c,
GUEST_EIP = 0x0000681e,
GUEST_EFLAGS = 0x00006820,
GUEST_PENDING_DBG_EXCEPTIONS = 0x00006822,
GUEST_SYSENTER_ESP = 0x00006824,
GUEST_SYSENTER_EIP = 0x00006826,

// Natural Width Host State Fields
HOST_CR0 = 0x00006c00,
HOST_CR3 = 0x00006c02,
HOST_CR4 = 0x00006c04,
HOST_FS_BASE = 0x00006c06,
HOST_GS_BASE = 0x00006c08,
HOST_TR_BASE = 0x00006c0a,
HOST_GDTR_BASE = 0x00006c0c,
HOST_IDTR_BASE = 0x00006c0e,
HOST_IA32_SYSENTER_ESP = 0x00006c10,
HOST_IA32_SYSENTER_EIP = 0x00006c12,
HOST_ESP = 0x00006c14,
HOST_EIP = 0x00006c16,

};

4.7 State areas of the guest and the host

These areas define guest and host state. We find segments
values of GDTR, IDTR, debug registers (DRx) and control
registers (CRx), for all areas of the VMCS that are:

– 16-bit Guest State fields,
– 32-bit Guest State fields,
– Natural Width Guest State fields,
– 16-bit Host State fields,
– 32-bit Host State fields,
– Natural Width Host State fields.

We define the same values from OS registers. But for
values: GUEST_ESP, GUEST_EIP, HOST_ESP, HOST_
EIP, we do not setup a value yet. We assign when we launch
the virtual machine. In fact these fields control the point of
entry during the transition in VMX-non-root operation and
its exit point at the back on the host, we can not make them
point to any area code, otherwise you may get early a VM-
Entry or a false VM-Exit.

4.8 Control area of the execution of the VM

This area is the most important because it controls the launch-
ing of the virtual machine. It contains values of representative
flags which determine the behavior of the VM during some
actions. In our case, we will not use its features because we
must have a neutral behavior with the VM. It may happen
that we need one of them to avoid having a VM-Exit.

The fields:

– PRIMARY_CPU_BASED_VM_EXEC_CONTROL

123

38 A. Desnos et al.

– SECONDARY_CPU_BASED_VM_EXEC_
CONTROL

are the most important one: these are sets of bits used to acti-
vate new events on which the Guest will make a VM Exit.

For example, the bit 12 of PRIMARY_CPU_BASED_VM
_EXEC_CONTROL, “RDTSC exiting” define if the RDTSC
instruction causes a VM-Exit. The use of PRIMARY_CPU_
BASED_VM_EXEC_CONTROL must to take the reserved
bytes of this bitmap, that is why Intel requests to read the
IA32_VMX_PROCBASED_CTLS MSR to know how to
define these bits. The first 32 bits of this MSR define the bits
which must set to 0 while the next 32 bits define the bits to be 1
in the PRIMARY_CPU_BASED_VM_EXEC_CONTROL.
We find the same with SECONDARY_CPU_BASED_VM_
EXEC_CONTROL. Finally, we know that we would like the
less VM-Exit while respecting the reserved bits, we write the
code:

//
// The IA32_VMX_PROCBASED_CTLS MSR (index 482H) reports on the

allowed
// settings of the primary processor−based VM−execution controls

(see Section 20.6.2):
//
// − Bits 31:0 indicate the allowed 0−settings of these controls.

VM−Entry fails if bit X
// in the primary processor−based VM−execution controls is 0 and bit

X is 1 in this
// MSR.
// − Bits 63:32 indicate the allowed 1−settings of these controls.

VM−Entry fails if bit X
// in the primary processor−based VM−execution controls is 1 and bit

32+X is 0 in
// this MSR.
//
ULONG32 VmExec=0;

ReadMsr(IA32_VMX_PROCBASED_CTLS, &Msr);

VmExec=Msr.Low&Msr.High;

WriteVMCS(PRIMARY_CPU_BASED_VM_EXEC_CONTROL, VmExec);

4.9 Control area of VM-Exits

This enables to control the MSR to load, and to save it during
a VM-Exit. These MSR are saved in an array, we must use
the field:

– VM_EXIT_MSR_LOAD_ADDR
– VM_EXIT_MSR_LOAD_ADDR_HIGH

to precise the physical address of the array, the VM_
EXIT_MSR_STORE_COUNT field containing the number
of entries. There is the same for the MSR needing to be
stored during a VM-Exit with an array of VM_EXIT_MSR_
STORE_COUNT at addresses:

– VM_EXIT_MSR_STORE_ADDR,
– VM_EXIT_MSR_STORE_ADDR_HIGH.

The bit 15 of the field VM_EXIT_CONTROLS is inter-
esting, «Acknowlegde interrupt on exit». If it is to 1, the
core will automatically behaved LAPIC (Local APIC) once
it receives an interupt and sends it to the IDT. In our case, we
setup the field «Acknowlegde interrupt on exit» to 1. We do
not need to manage different sets of MSR when a VM-Exit
because we handle those of our virtualized OS.

4.10 Area control of VM-Entries

In parallel we find the same thing for VM-Entry with fields:

– VM_ENTRY_MSR_LOAD_ADDR
– VM_ENTRY_MSR_LOAD_ADDR_HIGH

pointing to a table of size VM_ENTRY_MSR_LOAD_
COUNT.

The fields:

– VM_ENTRY_INTR_INFO_FIELD
– VM_ENTRY_EXCEPTION_ERROR_CODE
– VM_ENTRY_INSTRUCTION_LEN

and used to control the injection of exceptions or interrup-
tions in the IDT at the core during a VM-Entry. This feature
is especially used when the hyperviseur makes VM-Exit on
exceptions or interruptions, will let them continue in the VM
during the VM-Entry. For us this area does not matter yet.

4.11 Control area of VM-Exits

In this area we have fields that indicate the possible cause
(reason) of the VM-Exit. The field VM_EXIT_REASON
describes the reason of the VM-Exit (Fig. 9):

The first 16 bits of this field indicate the reason of a VM-
Exit.These causes can have the following values:

//
// VMX Exit Reasons
//

#define VMX_EXIT_REASONS_FAILED_VMENTRY 0x80000000

#define EXIT_REASON_EXCEPTION_NMI 0
#define EXIT_REASON_EXTERNAL_INTERRUPT 1
#define EXIT_REASON_TRIPLE_FAULT 2
#define EXIT_REASON_INIT 3
#define EXIT_REASON_SIPI 4
#define EXIT_REASON_IO_SMI 5
#define EXIT_REASON_OTHER_SMI 6
#define EXIT_REASON_PENDING_INTERRUPT 7
#define EXIT_REASON_TASK_SWITCH 9
#define EXIT_REASON_CPUID 10
#define EXIT_REASON_HLT 12
#define EXIT_REASON_INVD 13
#define EXIT_REASON_INVLPG 14
#define EXIT_REASON_RDPMC 15
#define EXIT_REASON_RDTSC 16
#define EXIT_REASON_RSM 17
#define EXIT_REASON_VMCALL 18
#define EXIT_REASON_VMCLEAR 19

123

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 39

Fig. 9 Exit format

#define EXIT_REASON_VMLAUNCH 20
#define EXIT_REASON_VMPTRLD 21
#define EXIT_REASON_VMPTRST 22
#define EXIT_REASON_VMREAD 23
#define EXIT_REASON_VMRESUME 24
#define EXIT_REASON_VMWRITE 25
#define EXIT_REASON_VMXOFF 26
#define EXIT_REASON_VMXON 27
#define EXIT_REASON_CR_ACCESS 28
#define EXIT_REASON_DR_ACCESS 29
#define EXIT_REASON_IO_INSTRUCTION 30
#define EXIT_REASON_MSR_READ 31
#define EXIT_REASON_MSR_WRITE 32
#define EXIT_REASON_INVALID_GUEST_STATE 33
#define EXIT_REASON_MSR_LOADING 34
#define EXIT_REASON_MWAIT_INSTRUCTION 36
#define EXIT_REASON_MONITOR_INSTRUCTION 39
#define EXIT_REASON_PAUSE_INSTRUCTION 40
#define EXIT_REASON_MACHINE_CHECK 41
#define EXIT_REASON_TPR_BELOW_THRESHOLD 43
#define VMX_MAX_GUEST_VMEXIT EXIT_REASON_TPR_BELOW_

THRESHOLD

The field EXIT_QUALIFICATION of the VMCS con-
tains additional information about the VM-Exit.

4.12 Launching a virtual machine

After the initialization of the VMCS with the OS values while
avoiding creating VM-Exit, we are able to launch our virtual
machine.

But we face a last problem: when loading the VM by the
VMLAUNCH instruction, which will be the first VM-Entry,
the CPU setups the EIP and the ESP of the Guest according
to values of the VMCS (GUEST_EIP and GUEST_ESP). In
the same way, during a VM-Exit, the VMX will update the
values of ESP and EIP according to the fields of the VMCS
(HOST_EIP and HOST_ESP).

About the VM-Exits, we know that the HOST_EIP must
point to the routine which handle VM-Exits, but we know
nothing about the value of ESP? Knowing that a VM-Exit
may arrive during the context of any thread, we can break
the stack or to jump inside an invalid memory area! During
the initialization of the VMCS, we define host segments as
ring 0 segments, so we will be inside a kernel land context.
The easiest solution is to setup ESP of the Host to a mem-
ory allocated area in non paged memory (NonPaged-Pool
allocate with the ExAllocatePoolWithTag function, the first
argument has the value: NonPagedPool), that will be our
stack during the routine which manages VM-Exists.

About the first VM-Entry, we do not have to jump in a spe-
cific area. Our code switches from the VMX- root-operation
mode to the VMX-non-root-operation mode very easily, by
maintaining the continuity of the execution flow. We must
setup the GUEST_EIP (during a VMLAU NCH instruction)
points to a routine which returns in our code by respecting
the stack context. Why, we must respect the current stack?
Because it is more easy to make a fake stack for the switch-
ing. On Windows, each thread have its own kernel stack, so
we would have two stacks; thus it will be too difficult to
manage.

We will setup a mechanism of return function directly to
the launch of the VM, through this we will manage ourselves
the return of the function which was called to execute the
instruction VMLAUNCH. In fact, GUEST_ESP will point to
a state of a stack on return of a function, which have the goal
to resume the execution of the calling function by restoring
the stack, we come back in our calling function as if noth-
ing was spent, then that time we spent in VMX-non-root-
operation.

123

40 A. Desnos et al.

The following code launches the VM only by returning to
the calling function.

//
// Routine used by StartVMX for VMLAUNCH instruction
//
VOID _ _declspec(naked) TinyRet()
{

_ _asm
{

pop ebp
ret

}
}

/∗++

Routine Description:

This routine starts the HVM

Arguments:
CoreIndex : Index of core.
Param : Paramater needed for this function.

Return Value:

−−∗/
VOID StartVMX(ULONG CoreIndex, PVOID Param)
{

PHYSICAL_ADDRESS paVMCS;
EFLAGS EFlags;
ULONG GuestEsp, GuestEbp;
ULONG Error;

VmPtrSt(&paVMCS);
KdPrint(("Starting VMX on core : %lu VMCS is at : 0x%I64x\n",

CoreIndex, paVMCS));

//
// Use the following stack scheme
//
// −−−−−−−−−−−−−−−−−−−−−−−−−−−
// [saved ebp] <− current ebp, artificial esp

used by
Guest when entering
VMX non−root mode

// −−−−−−−−−−−−−−−−−−−−−−−−−−−
// [saved eip] <− ebp+4,
// −−−−−−−−−−−−−−−−−−−−−−−−−−−
//
//
// TinyRet performs ’pop ebp’ and ’ret’ operations.
//
// VMLAUNCH just performs a neutral transistion between VMX root
// an VMW non−root mode.
//

−−asm {mov GuestEbp, ebp}

//
// Set esp for the guest right before calling VMLAUNCH
//
WriteVMCS(GUEST_ESP, GuestEbp);

//
// Set guest eip on ret instruction
//
WriteVMCS(GUEST_EIP, (ULONG)&TinyRet);

//
// Execute VMLAUNCH to launch the guest VM. If VMLAUNCH fails due

to any
// consistency checks before guest−state loading, RFLAGS.CF or

RFLAsiGS.ZF will
// set and the VM−instruction error field will contain the error
// code.
//
_VmLaunch();

//

// Never fall here in case of success
//
//
//
// Get the ERROR number using VMCS field VM_INSTRUCTION_ERROR
//
ReadVMCS(VM_INSTRUCTION_ERROR, &Error);
KdPrint(("VMLAUNCH failed, VM Instruction Error : %lu\n", Error));

return;

}

From there, we launch our VM. It goes on to run the code
of the OS as if everything was normal. We just have to manage
a few mandatory VM-Exits.

4.13 Management of VM-Exits

VM-Exits are mandatory due to the execution of a few
instructions. These instructions are:

– CPUID,
– GETSEC,
– INVD,
– MOV from/to CR3,
– VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD,

VMPTRST, VMREAD, VMRESUME, VMWRITE,
VMXOFF, VMXON.

For all these instructions, we must emulate ourselves in
our VM-Exit manager. We must know the reason of the VM-
Exit and information with respect to the different reasons,
for example which register have been used during a MOV
FROM CR3.

We get all this information with fields VM_EXIT_
REASON and EXIT_QUALIFACTION of the VMCS.

In addition, in our VM-Exit manager we have to save the
state of the general registers ourselves, that are not in the
VMCS. This is important because after treating the VM-
Exit, we must return to VMX-non-root-operation, or since
the management of VM-Exit must be as transparent as pos-
sible, it is necessary to emulate the instruction that has caused
it and therefore to change only what is necessary.

In fact we do not really emulate the instructions, we will
run as if we were the VM. For example, in the case of instruc-
tion RDMSR we will recover the value of ECX register at
the time of VM-Exit, this value is the offset of MSR that
should be read. Next, we will execute the RDMSR instruc-
tion to setup the values saved of EAX and EDX with values
returned by the RDMSR instruction in our registers EAX and
EDX. Now an example of code with the CPUID instruction,
the LocalExitContext structure contains the general purpose
register. CPUID instruction reads its argument in EAX and
returns in the registers: EAX, EBX, ECX and EDX.

123

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 41

case EXIT_REASON_CPUID :
{

//
//
//
DeferedExitKdPrint("EXIT_REASON_CPUID\n");

−−asm
{

MOV EAX, LocalExitContext.GuestEAX

CPUID

MOV LocalExitContext.GuestEAX, EAX
MOV LocalExitContext.GuestEBX, EBX
MOV LocalExitContext.GuestECX, ECX
MOV LocalExitContext.GuestEDX, EDX

}
WriteVMCS(GUEST_EIP, GuestEip+ExitInstructionLen);
break;

}

The last thing, is when the VM comes back, we must
think to resume our code before the instruction that caused
the VM-Exit. The VMX provides an interesting information
in the VM_EXIT_INSTRUCTION_LEN field of the VMCS,
which is the length of the instruction that caused the VM-Exit.
Before resuming the VM, we will update the EIP by taking
one which pointed to the instruction by adding the size of
this instruction, to resume at the next instruction.

Finally, about the virtualization instructions, we will not
do anything more, because it is not the goal to support a
hypervisor inside another hypervisor.

4.14 VM-Entries management

About VM-Entries, only the first VM-Entry is particular as
mentioned before. For the other we just provide a context
update with the general registers depending on the reason of
VM-Exit.

4.15 Disabling the hypervisor

To disable our BluePill-like hypervisor, we must send a
signal from the VMX-non-root mode, for that we will use
the VMXCALL instruction which makes a VM-Exit.

The idea is to it do from the VM, and through our driver,
a call to the VMXCALL instruction. In our manager of VM-
Exit, we detect this call and we will work to return to the VM
with virtualization disabled. In fact, we will just return after
the VMXCALL without having modified any register. In the
meantime we have executed the VMXOFF instruction in our
hypervisor to disable the virtualization on the core.

5 Detection Techniques for HVM Rootkits

We know that it is impossible to detect Bluepill with mem-
ory fingerprints, even if it is in memory, except as another

driver. Pattern matching of signatures against BluePill will
be possible, but only usable up till the next release (because
BluePill can control the I/O).

We have based our research study on a simple fact: a
hypervisor increases the time execution of some instructions,
and an HVM rootkit will increase significantly this one, we
must get the execution time of an instruction. A hypervisor
will increase the execution time of an intercepted instruction
since the commutation context from the virtual machine to
hypervisor will be automatically added, and will be more
increased if a viral payload is present.This is a timing attack
but we have said that we did not control sources of time [15].

An external source of time as a NTP server with an
encrypted communication can be used, and it will increase
time analysis of hypervisor to realize a mechanism for
detection.

But a source of time may be relative and therefore does not
use directly clocks’ system and circumvents the intercepts of
a hypervisor. At a much larger scale, the number of times
the sun goes behind a building can assimilate as a counter.
The same counter to computer can be an increment of a var-
iable (as shown Edgar Barbosa [6]) on one core, while the
other core run an instruction intercepted. Joanna Rutkowska
herself has agreed [32] that this mechanism is impossible to
detect and she thinks that it’s not possible as well.

The Intel Dual Core processors have capabilities to make
the frequency vary, which could distort results. But with a
database and if we set the frequency of a processor, we need
few values.

Blue Chicken [32] is a technique which consists in with-
drawing a HVM rootkit away from memory when a large
number of instructions are called and to reinstate after a given
time (which is also contesting [6] because a hypervisor pro-
tection could then take hold). We can use viral techniques,
for example a sequence of random calls to b ypass it. But the
best method is firstly to emerge a statistical model that will
allow us to limit strongly instructions calls to detect an HVM
rootkit.

A list of intercepted instructions is the list of all possi-
ble intercepted instructions by the hypervisor. One of them
is interesting: vmmcall. Because this instruction must be
intercepted by the hypervisor, because it allows to call the
hypervisor.

But the best method is to find a suitable statistical model
which will limit calls of an intercepted instruction to detect
a rootkit.

5.1 Statistical model for detection

The goal is to model the behavior of a computer according to
two different cases: with or without BluePill. If we manage to
do it, then we will have a powerful detection technique based
on decision statistical testing. When a BluePill-like rootkit

123

42 A. Desnos et al.

is active, we must be able to make the difference between
simple BluePill module and BluePill module with an effec-
tive payload. From a technical point of view, everything lies
on the choice of a suitable, powerful (statistical) estimator
that will exhibit statistically significant different behaviors,
according to the case concerned.

Let us first consider the different technical means on which
we can build such efficient estimators.

5.1.1 NTP (encrypted)

The first method is to take an external time quite accurate and
reliable. Most servers use NTP, which lets to synchronize the
clocks of computer across a network. We may use encryption
on the protocol to have safe communications and to make the
work of the rootkit more complex.

So, the core estimator will be the time difference of the
value returned by the NTP server on a given intercepted
instruction.

5.1.2 Counter

The second method is to a use a relative time as the real time,
for example a counter. But it works only with a processor with
several cores (at least 2) or on a multiprocessor machine (e.g.
dual core processor).

We synchronize the two cores (or processors) to run our
code in parallel. On the first core (or processor), a simple loop
increments a variable, while on the other a potentially inter-
cepted instruction (by the HVM rootkit) will be launched.

If a rookit exists, the value of the incremented variable
will be increase will be superior to a case without rootkit.

In the first case (Fig. 10), instruction runs directly on the
processor, in the next case (Fig. 11), the virtualization is
enables, hence we have extra instructions to do the commu-
tation, with the extra code of the BluePill event management,
and therefore the code of the real event.

5.1.3 Working

This code must be launched at Ring 0, because the implemen-
tation of threads on userland does not choose the processor.

5.1.3.1 Version of Linux 2.6.X On Linux, the call of the
function kthread_create creates a kernel thread, to choose
the processor with kthread_bind, and to run it with the func-
tion wake_up_process.

5.1.3.2 Example The thread that runs the counter (func-
tion timepill_kthread_cpu0) and the other runs the instruction
(function timepill_kthread_cpu1_noloop) can be program as
follows, with ktimepill_counter_t, a structure to get the loop

Fig. 10 Method of detection: counter

counter (in the field titmap), and the call of the function (the
field inst).

static void timepill_kthread_cpu0(void ∗data)
{

int counter;
atomic_t cc;
unsigned long ∗p;
ktimepill_counter_t ∗kct = (ktimepill_counter_t ∗)data;

counter = 0;
atomic_set(&cc, 0);

if (kct == NULL)
goto timepill_kthread_cpu0_out;

down(&sem);
up(&sem2);

down(&semcount);
counter = atomic_read(&stop_counter);
up(&semcount);

while (counter == 0)
{

atomic_inc(&cc);

down(&semcount);
counter = atomic_read(&stop_counter);
up(&semcount);

}

123

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 43

p = (unsigned long ∗)kct−>titmap;
∗p = atomic_read(&cc);

kct−>thread = NULL;
timepill_kthread_cpu0_out:
up(&thread0);

}

static void timepill_kthread_cpu1_noloop(void ∗data)
{

ktimepill_counter_t ∗kct = (ktimepill_counter_t ∗)data;

if (kct == NULL)
goto timepill_kthread_cpu1_noloop_out;

down(&semcount);
atomic_set(&stop_counter, 0);
up(&semcount);

up(&sem);
down(&sem2);

kct−>inst();

down(&semcount);
atomic_set(&stop_counter, 1);
up(&semcount);

kct−>thread = NULL;
timepill_kthread_cpu1_noloop_out:
up(&thread1);

}

Fig. 11 Method of detection: counter + BluePill

5.1.3.3 Version of Windows Vista On windows, the call of
the function PsCreateSystemThread creates a kernel thread,
and the function KeSetSystemAffinityThread chooses the
processor.

This driver (because we are in kernelland) gets results of
the number of loops and sends it to the main program through
the ioctl.

5.1.3.4 Example As the Linux version, two threads (func-
tion thread_counter and thread_inst) get the counter and
call the instruction, with the structure timepill_kern_t which
has the field map to store values, and the field inst to the
instruction.

static VOID NTAPI thread_counter(PVOID Param)
{

int stop_counter;
ULONG cc;
unsigned long ∗p;
timepill_kern_t ∗tkt;

tkt = (timepill_kern_t ∗)Param;
cc = 0;

KeSetSystemAffinityThread((KAFFINITY)0x00000001);

KeSetEvent(tkt−>myevent,
0,
FALSE);

KeWaitForSingleObject(&mut,
Executive,
KernelMode,
FALSE,
NULL);

stop_counter = tkt−>counter;
KeReleaseMutex(&mut, FALSE);

while(stop_counter == 0)
{

cc++;
KeWaitForSingleObject(&mut,

Executive,
KernelMode,
FALSE,
NULL);

stop_counter = tkt−>counter;
KeReleaseMutex(&mut, FALSE);

}

p = (unsigned long ∗)tkt−>map;
∗p = cc;

PsTerminateSystemThread(STATUS_SUCCESS);
}

static VOID NTAPI thread_inst(PVOID Param)
{

int i;
ULONG eax, ebx, ecx, edx;
timepill_kern_t ∗tkt;

tkt = (timepill_kern_t ∗)Param;
KeSetSystemAffinityThread((KAFFINITY)0x00000002);

while(STATUS_TIMEOUT == KeWaitForSingleObject(tkt−>myevent,
Executive,
KernelMode,
FALSE,
NULL));

123

44 A. Desnos et al.

tkt−>inst();

KeWaitForSingleObject(&mut,
Executive,
KernelMode,
FALSE,
NULL);

tkt−>counter = 1;
KeReleaseMutex(&mut, FALSE);

PsTerminateSystemThread(STATUS_SUCCESS);
}

6 Experimental results

6.1 Pillbox

To test our methods of detection, we have written a tool called
pillbox, two parts are to be considered:

– the client picks up data (results), and sends them to the
server. The client is composed of a userland program
which collects measures from the driver (for example,
with the counter technique),

– the server receives results from the client and then analyse
results.

The client has different methods to pick up results, depend-
ing on the privilege level:

6.1.0.5 In user land

– by the RDTSC instruction,

– by the
– gettimeofday function,
– by an external NTP server,
– by the counter method.

6.1.0.6 In kernel land

– by the counter method.

For us, we will focus on the counter method in kernel
land, because it is the most efficient technique, and the most
difficult to intercept by a rootkit.

For graphic representation, we used three types of format
to more quickly analyze the results:

– axis of abscissas: the instruction; axis of ordinates: the
relative time,

– axis of abscissas: identical relative times; axis of ordi-
nates: the number of identical relative times,

– axis of abscissas: the relative time; axis of ordinates: the
number of measures.

All tests have been done on a 2-Ghz AMD 64 processor
with virtualization enabled (under Windows Vista).

As a first step, we will consider an instruction (CPUID)
that BluePill can intercept, and consider the cases with and
without the rootkit.

6.1.0.7 Without BluePill In the first graph (Fig. 12), we
observe that on average we observe a mean value of 30 loop

Fig. 12 Method: counter
(without BluePill)

123

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 45

Fig. 13 Method: counter
(without BluePill), picks

Fig. 14 Method: counter
(without BluePill), bar graph

increment, to run the instruction. Peaks which are due to
commutations of the system, do not affect the results.

With the second (Fig. 13) and the last (Fig. 14), the cpuid
instruction has an average of 33 loop incrementats.

6.1.0.8 With BluePill Now, if BluePill is present, this one
intercepts the cpuid instruction, looks the state of registers to
look for a magic value, modify it when present (we will not
use magic values for our test), and calls the cpuid instruction:

static BOOLEAN NTAPI SvmDispatchCpuid (
PCPU Cpu,
PGUEST_REGS GuestRegs,
PNBP_TRAP Trap,
BOOLEAN WillBeAlsoHandledByGuestHv

)
{
[...]

Vmcb = Cpu−>Svm.OriginalVmcb;

if ((Vmcb−>rax & 0xffffffff) == BP_KNOCK_EAX)
{

_KdPrint (("Magic knock received: %p\n", BP_KNOCK_EAX));

123

46 A. Desnos et al.

Vmcb−>rax = BP_KNOCK_EAX_ANSWER;
}
else
{

[...]
fn = (ULONG32) Vmcb−>rax;
GetCpuIdInfo (fn, &(ULONG32) Vmcb−>rax, &(ULONG32)
GuestRegs−>rbx, &(ULONG32) GuestRegs−>rcx, &(ULONG32)
GuestRegs−>rdx);

}
}

In the first graph (Fig. 15), the interception by the
hypervisor significantly increases the instruction execution

time. In addition, other graphics (Figs. 16, 17) show that the
average is totally different, since it is now equal to 332. That
is to say that a with an HVM rootkit with no viral payload,
but playing the role of a hypervisor, the estimator is ten times
higher, which can easily help detect the presence (or absence)
of a hypervisor, which is for us an HVM rootkit as said in the
previous sections because the user always knows whether
he uses a hypervisor or not.

There is always the same behavior with the instructions
that BluePill can intercept, and in particular with vmmcall
that any hypervisor must manage.

Fig. 15 Method: counter (with
BluePill)

Fig. 16 Method: counter (with
BluePill), picks

123

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 47

Fig. 17 Method: Counter (with
BluePill), bar graph

6.2 Statistical modelling of BluePill-like rootkits

We are now considering the counter value, defined in
Sect. 5.1.2, as a suitable estimator. Without loss of gener-
ality, that approach remains the same when considering the
case of an estimator built from the NTP technique, which has
been exposed in Sect. 5.1.1.

In a first step, a large number of experiments (N = 10, 000)
have been performed in order to collect a statistically signifi-
cant number of data. On every test sample, we have obtained,
we have computed the mean μ and the corresponding stan-
dard deviation σ . Then in a second step, we have supposed
that our estimator was distributed according a Gaussian
distribution law. To verify this on a thorough way, we then
performed a goodness-of-fit test (χ2 test) to compare it to the
normal distribution, with an error type I of α = 0.005. Even
if the χ2 is not an optimal test (since it lacks of power and
since the choice of the different test classes can be considered
as subjective), it remains however a very efficient and con-
venient tool that is not to far from the reality in most cases.
Future works will nonetheless consider more powerful tests
(e.g. Shapiro-Wilk test). But without to much risk, we can
claim that we should obtain the same result: our estimator is
indeed normally distributed.

6.3 Without BluePill

The different data and tests give the following results with
respect to our estimator:

– Statistical mean X̄ = 26, 78,
– Standard deviation s = 13.34,
– Normal distribution N (26; 13).

6.4 With BluePill

The different data and tests give the following results with
respect to our estimator:

– Statistical mean X̄ = 339, 25,
– Standard deviation s = 38, 26,
– Normal distribution N (339; 38).

6.5 With BluePill and payload

The different data and tests give the following results with
respect to our estimator:

– Statistical mean X̄ = 1675, 60,
– Standard deviation s = 77, 91,
– Normal distribution N (1675; 77).

Now our statistical model is theoretically proved, we are
going to consider how we can use it on a practical way to
detect HVM-rootkits.

6.6 Statistical Detection

Our previous modelling results clearly demonstrate that our
estimator significantly behaves different according to the
presence (active) or absence of BluePill. We then are in the
classical case depicted in Fig. 18.

To efficiently detect BluePill, it just suffice to build a
simple hypothesis test. This approach has been thoroughly

123

48 A. Desnos et al.

−10 −5 0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 H0 →

← H1

Decision threshold

α
β

Fig. 18 Statistical modelling of BluePill detection

defined in [16]. The two different hypotheses to be consid-
ered are the following:

– The Null hypothesis H0: BluePill is not active (absent).
Then, our estimator is distibuted according to the normal
distribution N0(26; 13).

– The Alternative hypothesis H1 : BluePill is active. Then,
our estimator is distibuted according to the normal distri-
bution N1(339; 38).

The type I error α (which consists to reject H0 while indeed
it H0 is true) and the type II error (which consists in keeping
H0 while it is a wrong hypothesis) are fixed according to the
final detection efficiency we strive to achieve. Those error
values then enables to fix a detection threshold and accord-
ing to the relative value of our estimator with respect to this
threshold, we can decide whether BluePill is active or not.

From a statistical point of view, this approach can very
easily be generalized to the three hypotheses cases: BluePill
is not active, BluePill active with no payload, BluePill active
with a payload.

7 Future Work and conclusion

The main conclusion of our work is that if no malware is
really undetectable in practice [16,17], the converse is also
true: no antivirus can claim to detect every possible malware.
This is in fact an endless issue. However, it does prevent to
keep our mind cool when facing cases like the BluePill one.
We must stay far from all the buzz blown up out of all pro-
portion by the media and where no dispasionnate, unbiased
thought is present. As any researcher in computer security
should do, we must have a critical look on any such issue.

In fact, when considering the case of HVM rootkits, with
time and reason, it was possible to determine the exact level
of risk and to efficiently solve this critical issue. Taking profit
of the rise of multi-core processors, the loop counter tech-
nique has been proved to be definitively efficient at detecting
HVM-rootkit. In the same time we discovered that any HVM-
rootkit is bound to add a significative execution time when
active, and more critically when embedding a true payload.

It is obviously possible to consider alternative time ref-
erences to detect HVM-rootkits. In the case of single core
processor, the GPU of any graphic card can play the role
of the second core thus extending our approach. But it is
also possible to easily prevent attacks with such rootkits.
Security policy could ask for desactivating the virtualization
capabilities at the bios level. Alternatively, we could install
a prophylactic hypervisor to bar the subsequent installation
of any malicious hypervisor. Different other techniques can
be considered to prevent HVM-rootkits

We have shown that designing and writing HVM-rootkits
requires a lot of dedicated, complex skills. The open informa-
tion (documentation) is fortunately not very widely available.
But what would happen if a BluePill-like code with a true,
offensive payload was put in the wild? It is very likely that
it would have a tremendous impact on the security of any
virtualization-capable computer in the world. Indeed, at the
present time, quite no efficient solution has been made avail-
able by any AV company and/or processor manufacturers.
It makes you wonder.

References

1. Advanced Micro Devices. Amd64 architecture programmer’s
manual, vol. 2: System programming. 15 Secure Virtual Machine

2. Advanced Micro Devices. Amd64 architecture programmer’s
manual, vol. 2: System programming. 15.23 External Access Pro-
tection

3. Anonymous. Runtime process infection. phrack 59-0x08
4. Anonymous author. Runtime process infection. Phrack Mag. 8(59),

(2002)
5. Anonymous author. Building ptrace injecting shellcodes. Phrack

Mag. 12(59), (2002)
6. Barbosa, E.: Detecting bluepill. SyScan’07
7. Bareil, N.: Playing with ptrace() for fun and profit. http://actes.

sstic.org/SSTIC06/Playing_with_ptrace/SSTIC06-article-Bareil-
Playing_with_ptrace.pdf

8. Bochs: highly portable open source ia-32 (x86) pc emulator. http://
bochs.sourceforge.net/

9. Brian Carrier. Open source digital investigation tools. http://www.
sleuthkit.org

10. Casek. http://www.uberwall.org
11. Core Security Technologies. Coreimpact outil de test d’intrusion.

http://www.coresecurity.com/content/core-impact-overview
12. Desnos Guihéry Salaün. Sanson the headman. (2008). http://

sanson.kernsh.org
13. Dornseif, M.: All your memory are belong to us. Cansecwest 2005
14. Dralet, S., Gaspard, F.: Corruption de la mémoire lors de l’exploi-

tation. In: SSTIC 06, 2006

123

http://actes.sstic.org/SSTIC06/Playing_with_ptrace/SSTIC06-article-Bareil-Playing_with_ptrace.pdf
http://actes.sstic.org/SSTIC06/Playing_with_ptrace/SSTIC06-article-Bareil-Playing_with_ptrace.pdf
http://actes.sstic.org/SSTIC06/Playing_with_ptrace/SSTIC06-article-Bareil-Playing_with_ptrace.pdf
http://bochs.sourceforge.net/
http://bochs.sourceforge.net/
http://www.sleuthkit.org
http://www.sleuthkit.org
http://www.uberwall.org
http://www.coresecurity.com/content/core-impact-overview
http://sanson.kernsh.org
http://sanson.kernsh.org

Detecting (and creating !) a HVM rootkit (aka BluePill-like) 49

15. Filiol, E.: A formal model proposal for malware program stealth.
Virus Bulletin Conference Proceedings, Vienna, 2007

16. Filiol, É.: Techniques virales avancées. Collection IRIS, Springer,
France, 2008

17. Filiol, E., Josse, S.: A statitical model for undecidable viral detec-
tion. In: Broucek, V., Turner, P. (eds.) Eicar 2007 Special Issue.
J. Comp. Virol. (3), 2, 65–74 (2007)

18. Gaspard, F., Dralet, S.: Technique anti-forensic sous linux: utilisa-
tion de la mémoire vive. Misc (25), (2005)

19. grugq. Remote exec. Phrack Mag. 11(62) (2004)
20. Input/output memory management unit. http://en.wikipedia.org/

wiki/iommu
21. Intel. Intel 64 and ia-32 Architectures Software Developer’s Man-

ual, Chap. 19. Introduction to virtual-machine extensions
22. Joanna. Site web de bluepill. http://www.bluepillprojet.org
23. King, S.T., Chen, P.M., Wang, Y.-M., Verbowski, C., Wang, H.J.,

Lorch, J.R.: Subvirt: implementing malware with virtual machines.
University of Michigan and Microsoft Research. Available at http://
www.eecs.umich.edu/~pmchen/papers/king06.pdf

24. Microsoft Windows. Driver signing requirements for windows.
http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx

25. Myers, M., Youndt, S.: An introduction to hardware-assisted virtual
machine (HVM) rootkits. http://crucialsecurity.com

26. Northsecuritylabs. Hypersight rootkit detector. http://www.
northsecuritylabs.com

27. Pluf. Perverting unix processes. (2006). http://7a69ezine.org/docs/
7a69-PUP.txt

28. Pluf and Ripe. Advanced antiforensics: self. Phrack Mag. 11(63)
(2005)

29. ptrace(2)—Linux man page. http://linux.die.net/man/2/ptrace
30. Qemu: open source processor emulator. http://bellard.org/qemu/
31. Rutkowska, J.: Subverting Vista Kernel for Fun and Profit. 2006.

SyScan’06 & BlackHat Briefings (2006)
32. Rutkowska, J., Tereshkin, A.: Isgameover() anyone? 2007. Black-

Hat Briefings (2007)
33. Rutkowski, J.K.: Execution path analysis: finding kernel based

rootkits. Phrack Mag. 13(59) (2002)
34. Salaün, D.G.: Sanson the headman. Rapport Interne Ifsic (2007)
35. sk devik. Rootkit linux kernel /dev/kmem. http://packetstormse

curity.org/UNIX/penetration/rootkits/suckit2priv.tar.gz
36. Stealth. Rootkit linux kernel lkm. http://packetstormsecurity.org/

groups/teso/adore-ng-0.41.tgz
37. The ERESI team. The eresi reverse engineering software interface.

http://www.eresi-project.org
38. The Grugq. The design and implementation of userland exec.

(2004) http://www.derkeiler.com/Mailing-Lists/Full-Disclosure/
2004-01/0004.html

39. Tripwire. Configuration audit and control solutions. http://www.
tripwire.com

40. Virtualpc. http://www.microsoft.com/windows/products/win
family/virtualpc/default.mspx

41. Vmware. http://www.vmware.com/
42. Vmware esx. http://www.vmware.com/fr/products/vi/esx/
43. Xen. http://www.xen.org/

123

http://en.wikipedia.org/wiki/iommu
http://en.wikipedia.org/wiki/iommu
http://www.bluepillprojet.org
http://www.eecs.umich.edu/~pmchen/papers/king06.pdf
http://www.eecs.umich.edu/~pmchen/papers/king06.pdf
http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx
http://crucialsecurity.com
http://www.northsecuritylabs.com
http://www.northsecuritylabs.com
http://7a69ezine.org/docs/7a69-PUP.txt
http://7a69ezine.org/docs/7a69-PUP.txt
http://linux.die.net/man/2/ptrace
http://bellard.org/qemu/
http://packetstormsecurity.org/UNIX/penetration/rootkits/suckit2priv.tar.gz
http://packetstormsecurity.org/UNIX/penetration/rootkits/suckit2priv.tar.gz
http://packetstormsecurity.org/groups/teso/adore-ng-0.41.tgz
http://packetstormsecurity.org/groups/teso/adore-ng-0.41.tgz
http://www.eresi-project.org
http://www.derkeiler.com/Mailing-Lists/Full-Disclosure/2004-01/0004.html
http://www.derkeiler.com/Mailing-Lists/Full-Disclosure/2004-01/0004.html
http://www.tripwire.com
http://www.tripwire.com
http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx
http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx
http://www.vmware.com/
http://www.vmware.com/fr/products/vi/esx/
http://www.xen.org/

	Detecting (and creating !) a HVM rootkit (aka BluePill-like)
	Abstract
	1 Introduction
	2 State-of-the-Art
	2.1 Virtualization
	2.2 Emulation
	2.3 Full virtualization
	2.4 Para-Virtualization
	2.5 Hardware-assisted virtualization
	2.5.1 Intel virtualization
	2.5.2 AMD virtualization

	2.6 Rootkits
	2.7 Controversy
	2.7.1 Timing attack
	2.7.2 Pattern matching
	2.7.3 TLB
	2.7.4 DMA
	2.7.5 CPU bugs

	3 BluePill rootkit
	3.1 Installation
	3.2 Analysis
	3.3 Working
	3.3.1 Algorithm

	4 Creating of an Intel HVM rootkit
	4.1 Detailed Design
	4.2 Loading of a loadable kernel module on Windows
	4.3 Detecting VMX support
	4.4 VMX State
	4.5 Switching to VMX-root operation
	4.6 Initialization of VMCS structure
	4.7 State areas of the guest and the host
	4.8 Control area of the execution of the VM
	4.9 Control area of VM-Exits
	4.10 Area control of VM-Entries
	4.11 Control area of VM-Exits
	4.12 Launching a virtual machine
	4.13 Management of VM-Exits
	4.14 VM-Entries management
	4.15 Disabling the hypervisor

	5 Detection Techniques for HVM Rootkits
	5.1 Statistical model for detection
	5.1.1 NTP (encrypted)
	5.1.2 Counter
	5.1.3 Working

	6 Experimental results
	6.1 Pillbox
	6.2 Statistical modelling of BluePill-like rootkits
	6.3 Without BluePill
	6.4 With BluePill
	6.5 With BluePill and payload
	6.6 Statistical Detection

	7 Future Work and conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

