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Abstract Commercial anti-virus scanners are generally
signature based, that is, they scan for known patterns to deter-
mine whether a file is infected. To evade signature-based
detection, virus writers have employed code obfuscation
techniques to create metamorphic viruses. Metamorphic
viruses change their internal structure from generation to
generation, which can provide an effective defense against
signature-based detection. To combat metamorphic viruses,
detection tools based on statistical analysis have been studied.
A tool that employs hidden Markov models (HMMs) was
previously developed and the results are encouraging—it has
been shown that metamorphic viruses created by a reasonably
strong metamorphic engine can be detected using an HMM.
In this paper, we explore whether there are any exploitable
weaknesses in an HMM-based detection approach. We create
a highly metamorphic virus-generating tool designed spe-
cifically to evade HMM-based detection. We then test our
engine, showing that we can generate metamorphic copies
that cannot be detected using existing HMM-based detec-
tion techniques.

1 Introduction

A virus is designed to infect and potentially damage a com-
puter system. Viruses are generally parasitic, in the sense that
they attach themselves to executable files that are part of legit-
imate programs [2]. When an infected program is launched,
the embedded virus is also executed and may replicate itself
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to infect other files and programs. In contrast, a worm is often
defined as malware that is self-replicating, but not parasitic,
and propagates over a network [2]. Here we use the term
“virus” generically.

Some viruses may perform damaging activities on the host
machine, such as corrupting data. Other viruses are relatively
harmless and might, for example, print annoying messages
on the screen. In any case, viruses are undesirable for com-
puter users. Modern viruses take advantage of the Internet
to spread on a global scale. Therefore, early and effective
detection is necessary to minimize potential damage.

There are many antivirus defense mechanisms in use
today, but the most widely used strategy is signature detec-
tion, which scans for viruses by searching for predetermined
binary strings or other patterns [18]. Another popular mech-
anism for virus detection is code emulation, which creates a
virtual machine to execute suspicious programs and monitor
for unusual activity.

To evade signature detection, virus writers have adopted
various strategies, including code obfuscation techniques to
create metamorphic computer viruses. Metamorphic viruses
change their internal structure from generation to genera-
tion. Consequently, signature-based scanners cannot reliably
detect well-designed metamorphic malware.

To combat metamorphic viruses, detection tools based
on statistical analysis have been previously studied. A tool
based on hidden Markov models (HMMs) was developed
in [22], and the results are encouraging—it has been dem-
onstrated that metamorphic viruses created by a reasonably
well-designed hacker-produced metamorphic engine can be
detected using HMMs.

The goal of this work is to develop a standalone metamor-
phic engine that will defeat the HMM-based detection tool
developed in [22]. We employ elementary code obfuscation
techniques to generate highly metamorphic copies of a given
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base virus. In addition, each viral copy is made similar to a
randomly selected “normal” file. These morphed copies have
been tested against commercial virus scanners and the HMM
detection tool in [22].

Intuitively, it is clear that it is possible to defeat commonly
used virus detection schemes. This can be made rigorous in
some cases. For example, in [10] it is shown that detection
schemes that rely on “spectral analysis” can be defeated,
where the “spectrum” consists of a listing of instructions
from the suspect code. The idea is simply to modify viral
code until the spectrum is statistically indistinguishable from
normal code. The HMM-based detector considered here is
based on opcode sequences, so it is not surprising that it can
be defeated. However, we show that a straightforward spec-
tral modification is not sufficient to break the HMM detector.

The techniques we employ to evade detection may also
be of independent interest. Our method is relatively simple
and the metamorphic generator we have constructed is quite
strong, in spite of the fact that it only uses elementary morp-
hing techniques. In addition, the resulting morphed viruses
could be made considerably more difficult to detect by rela-
tively simple modifications to our generator. We have more
to say about these topics below.

This paper is organized as follows. In Sect. 2, we provide
background information on computer viruses and discuss
some common defenses. Section 3 describes a similarity test
that is useful for measuring the degree of variability between
files. Also in Sect. 3, we provide a brief discussion of HMMs
and their potential role in virus detection. Section 4 gives
the design and implementation of our metamorphic genera-
tor. Then in Sect. 5 we discuss our experiments and give our
results, while Sect. 6 contains a statistical analysis related to
these empirical results. Finally, Sect. 7 presents our conclu-
sions and future work.

2 Antivirus and metamorphic viruses

2.1 Antivirus defense techniques

Techniques for generating viruses have evolved over time,
primarily as a reaction to improved anti-virus techniques.
In this section, we briefly outline some popular antivirus
techniques.

2.1.1 Signature detection

Signature detection was the earliest antivirus technique and
is still the most widely used approach. Ideally, a signature
is a string of bits (that may include wildcards) found in a
particular virus, but not in other executables [2]. During the
scanning process, a signature-based virus detection tool will
search the files on a system for known signatures. It will flag

a file as possibly infected if a known virus signature is found.
Secondary testing may be required to confirm an infection.

2.1.2 Heuristic analysis

Heuristic analysis is a method designed to detect previ-
ously unknown computer viruses, as well as new variants of
existing malware [2]. One popular dynamic analysis method
is to emulate execution of a questionable program or script
and monitor for common viral activities, such as replication,
overwriting executable files, etc. If such actions are detected,
the suspicious program is flagged as a possible virus.

One method of static heuristic analysis is to disassemble
the viral program, then analyze the code. This analysis might
look for instructions that are commonly found in viral pro-
grams. If the source code contains a certain percentage of
instructions that match common viral instructions, the file is
flagged.

Heuristic analysis has a relatively high false positive rate.
Consequently, signature detection is preferred, if it is appli-
cable. However, for previously unseen malware, heuristic
analysis is a viable option while signature detection is not.

2.2 Viruses

2.2.1 Virus obfuscation techniques

Virus-like programs first appeared on a wide scale in the
1980s [5]. Since then, the arms race between antivirus
researchers and virus writers has continued unabated. To
avoid detection by signature scanning, a virus can modify
its code and alter its appearance on each infection. The tech-
niques that have been employed to achieve this end range
from encryption, to polymorphism, to metamorphism; see
[2] for additional information on these approaches. Here, our
focus is on metamorphic viruses.

2.2.2 Metamorphic viruses and metamorphic techniques

Metamorphism refers to code that changes its internal struc-
ture without changing its function [21]. Intuitively, different
generations of a metamorphic virus have different “shapes”
while maintaining the original behavior, that is, the internal
structure varies, but the function remains the same.

Next, we briefly discuss some of elementary techniques
employed by metamorphic virus writers. This list is not by
any means exhaustive—more advanced techniques can be
found, for example, in [12]. However, the techniques consid-
ered here are more than sufficient for our purposes.

2.2.2.1 Register swap Register swapping is one of the sim-
plest metamorphic techniques. For example, “pop edx” might
be replaced with “pop eax.” The W95/Regswap virus is
among the earliest metamorphic viruses and it primarily
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Fig. 1 Zperm virus [19]

used this technique. Note that with register swapping, the
opcode sequence remains unchanged. Register swapping is
a relatively weak form of metamorphism and viruses such
as RegSwap can be detected by using wildcard strings in a
standard signature scan [19].

2.2.2.2 Subroutine permutation If a virus has n subroutines,
then we can generate n! distinct variants by simply permut-
ing the subroutines. The W32/Ghost virus, which incorpo-
rates this technique, has 10 subroutines and, therefore, it can
generate 10! = 3,628,800 unique copies. However, the virus
can still be detected with search strings since the content of
each subroutine remains constant [19].

2.2.2.3 Garbage insertion Many metamorphic viruses
incorporate the technique of garbage instruction insertion.
Garbage instructions are either not executed (dead code) or
have no effect (do nothing) on the program outcome [6]. By
inserting garbage instructions within useful code, a virus can
generate an unlimited number of distinct copies while effec-
tively breaking signatures.

Dead code insertion can be accomplished by including
jump instructions to avoid the dead code. The Win95/Zperm
virus is one virus that incorporates this technique, as illus-
trated in Fig. 1.

2.2.2.4 Instruction substitution Instruction substitution is
the replacement of an instruction or a group of instructions
with an equivalent instruction or group. For example, “inc
eax” is equivalent to “add eax, 1” and as another example,
“move eax, edx” can be replaced by “push edx” followed by
“pop eax.” In the context of metamorphic code, instruction
substitution is discussed in [15,21].

2.2.2.5 Transposition Transposition is the reordering of the
instruction execution sequence. This can only be done if
the affected instructions have no dependencies. Consider the
following generic example:

op1 r1, r2

op2 r3, r4; r1 and/or r3 are modified

Fig. 2 Decryptor code

Fig. 3 Metamorphic versions of decryptor code

We can swap the above two instructions provided that r1
is not equal to r4, and r2 is not equal to r3, and r1 is not equal
to r3; see [14] for more details.

2.2.3 Formal grammar mutation

Formal grammar mutation is the formalization of code
mutation techniques by means of formal grammars and au-
tomatons. In general, classic metamorphic generators can
be presented as non-deterministic automata, with all pos-
sible input characters specified for each state of the automata
[12,23]. By formalizing existing code mutation techniques
into formal grammars, formal grammar rules can be applied
to create new viral copies with large variations. For example,
this technique has been used to morph the simple decryptor
code in Fig. 2 to create the variants in Fig. 3.
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3 Similarity and hidden Markov models

This section outlines the similarity test and the HMM tech-
nique developed in [22]. In subsequent sections, we employ
this similarity technique to quantify the degree of metamor-
phism produced by our generator, and we employ HMMs for
detection.

3.1 Similarity test

Metamorphism is a practical approach to evading signa-
ture detection. However, for this to be effective, different
generations of a virus must be sufficiently different so that
no common signature is present. Consequently, we need a
way to determine the effectiveness of a given metamorphic
generator. We will apply a similarity index to measure the
“closeness” of two assembly language programs. Then we
can measure the effectiveness of our metamorphic genera-
tor by compare the similarity of viruses from a given family,
where “family” refers to a set of viruses derived from the
same metamorphic generator. We also apply this similarity
measure to determine how much the morphed code differs
from selected non-viral (i.e., “normal”) code. In addition,
we can compare samples of normal code to other normal
code determine the expected similarity between non-viral
programs.

Various similarity tests have been proposed. For exam-
ple, three standard approaches to measuring similarity (edit
distance, inverted index, and Bloom filters) are discussed
in [11]. Another approach is pairwise alignment, which is
commonly used to align sequences in bioinformatics appli-
cations [8]. Pairwise alignment is an edit distance that allows
for insertions, deletions, and gaps to better align sequences.
In [1], pairwise alignment is applied to opcode sequences
extracted from metamorphic viruses. A sophisticated simi-
larity measure based on the call graph and control flow graph
is discussed in [4], while a similarity measure based on code
behavior is given in [3].

We are focused static analysis, so comparing code behavior
is not considered here. The similarity measure in [4] does
not appear to have been applied specifically to metamor-
phic malware, so its performance is unclear. The remaining
static approaches mentioned in the previous paragraph are
generally not well suited to metamorphic malware. In meta-
morphism, code can be shuffled arbitrarily far apart. Dealing
with basic blocks can help, but aligning the code is decidedly
nontrivial, particularly in the presence of junk code and/or
equivalent code substitution. For example, as demonstrated
in [1], metamorphic generators with modest amounts of code
shuffling result in weak pairwise alignment scores. Conse-
quently, here we have opted to use the similarity test given in
[22], which was originally developed in [15]. This score was
designed to deal with mutated code, it is easy to compute,

and it has a demonstrated track record of producing useful
results when applied to metamorphic code. Next, we briefly
outline the steps needed to compute this similarity index and
we give an example that illustrates the process.

We compare two assembly programs and assign a score
from 0 to 100%, where 0% implies no similarity, and 100%
implies the programs are virtually identical. The idea behind
the method is to look for overlapping opcode subsequences at
any offset in the two programs. The score is then, essentially,
the fraction of subsequences for which a match is found.
Based on previous work, subsequences of length 3 are used,
and we considered it a match if the 3 opcodes agree, irre-
spective of order. To reduce random noise, a threshold of
five consecutive 3-opcode matches must be found before the
result contributes to the score.

This score can be illustrated graphically, as shown in
Fig. 4. Note that if a program is compared with itself, the
main diagonal will be a solid line with some random matches
appearing off the diagonal. Segments parallel to the main
diagonal represent matches at some offset.

Previous work [22] has shown that of the hacker-produced
metamorphic engines studied, the best achieves a similarity
score of about 10%, that is, the family viruses are only about
10% similar to each other, on average. In contrast, a control
set of normal files is shown to have an average similarity of
about 30%. For more details on this similarity scoring tech-
nique, including numerous examples, see [15,22].

3.2 Hidden Markov models

A hidden Markov model (HMM) is a machine learning tech-
nique, which can also be viewed as a discrete hill climb
[16,17]. Conceptually, in an HMM there is a Markov process
that cannot be directly observed. However, we do have access
to a series of observations (or emissions) that are related to
the underlying Markov process. A generic HMM is illus-
trated in Fig. 5, where the Xi represent the hidden states
and A is the (row stochastic) matrix that drives the hidden
Markov process. In addition, the Oi are the observations and
B is a (row stochastic) matrix that contains probability distri-
butions relating the observations to the states of the Markov
process. Finally, the dashed line in Fig. 5 indicates that we
cannot directly observe the hidden Markov process.

HMMs are widely used in applications such as protein
modeling and speech recognition [8,16]. An HMM model
can be trained to match a set of data. The trained model
can then be used to score data to determine its similarity to
the training data. There are efficient algorithms for both the
training and scoring phases. Another highly desirable fea-
ture of HMMs is that virtually no a priori assumptions are
required—essentially, the only free parameter is the size of
the square matrix A, and for most applications a 2 × 2 or
3 × 3 matrix will suffice. For more information on HMMs,
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Fig. 4 Similarity between two
assembly programs [22]

Fig. 5 Generic hidden Markov
model [17]

including a motivating application and detailed pseudo-code,
see [17].

Recently, HMMs have been successfully used to detect
metamorphic viruses [20,22]. Although metamorphic engi-
nes use various code obfuscation techniques to change the
appearance of their viral copies, some statistical similarities
likely remain within a virus family. An HMM can be
trained using opcode sequences extracted from known fam-
ily viruses. Subsequently, any file can be scored using the
model to determine its similarity to the virus family. Intui-
tively, HMMs seem particularly well suited for such analysis,
since the actual opcode sequence can be viewed as a Markov
process [10].

To train an HMM for virus detection, a set of viruses from
the same metamorphic family are disassembled using IDA
Pro [13]. We append these sequences to obtain one long op-
code sequence, which constitutes the observations. An HMM
model is then trained on this data. For example, given the
training data in Fig. 6, part of the corresponding trained HMM
model is shown in Fig. 7. Note that only the initial part of
the training sequence appears in Fig. 6 and only the initial
section of the B matrix appears in Fig. 7.

As mentioned above, after generating the HMM model,
it is used to score files to determine the probability that they
belong to the virus family from which the training data was
obtained. If a file has a score above a certain threshold, then
it is assumed to belong to the same family. The threshold can
be determined experimentally.

4 Metamorphic generator

4.1 Introduction

To produce viral copies that are difficult to detect, a metamor-
phic engine must implement various code obfuscation tech-
niques. Many of the metamorphic viruses tested in [22] could
not be detected using commercial scanners, yet an HMM
detector was able to correctly classify the family viruses and
normal code with 100% accuracy. Our goal here is to create
a metamorphic generator that evades signature detection and
is also undetectable using the HMM-based approach in [22].

The paper [7] contains a highly metamorphic generator
that was designed to evade HMM detection. However, the
approach in [7] was largely unsuccessful. Our goal here is to
improve upon this previous work.

4.2 Design

Our metamorphic generator is designed to achieve the
following:

• Generate morphed copies of a single input virus. The mor-
phed copies should have the same functionality as the base
virus. Ideally, these morphed copies should have a simi-
larity of less than 30%, when compared to the base virus
and when compared to each other, as measured by the
similarity index discussed in Sect. 3.1. Based on previous
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Fig. 6 Training data
example [7]

Fig. 7 HMM model
example [7]

work, this level of similarity will enable the viruses to
evade signature detection [7,22].

• The morphed copies should be “close” to normal pro-
grams. For the normal programs we use cygwin utility
files of roughly the same size as the base virus. The rea-
son for using these files is that they engaged in low-
level operations, which should be somewhat similar to
the activities of viruses. That is, these utility files should

be relatively difficult to distinguish from the viruses. For
efficiency, when morphing viruses, we measure close-
ness based on opcode mono-graph and di-graph fre-
quency counts. Intuitively, if the morphed viruses are
sufficiently close to the normal files, they should evade
HMM detection. This concept of closeness can be for-
malized [10] and we have more to say about the topic in
Sect. 6.

123



Hunting for undetectable metamorphic viruses 207

In short, our goal here is to generate viral copies that evade
signature detection and also evade HMM detection. This is
the precise sense in which our viruses are “undetectable.”

4.3 Code obfuscation techniques

Our metamorphic engine leverages the code obfuscation
techniques implemented in [7] with some important refine-
ments. In our engine, we apply randomly selected code obfus-
cations only if they make the resulting virus closer to a normal
program. We have developed a simple dynamic scoring algo-
rithm for efficiently determining whether a potential modifi-
cation makes the virus code closer to a given program.

4.3.1 Dynamic scoring algorithm

We have developed a simple dynamic scoring algorithm to
calculate the closeness between two files—the lower the
score, the closer the files. Since this algorithm will need to
run each time we consider a change to an instruction, it must
be efficient. Our algorithm does not compute the score from
scratch each time. Instead, it modifies the score based on the
actual modifications made. That is, we only need to compute
deltas to update the score.

4.3.1.1 Algorithm initialization To initialize the dynamic
scoring algorithm, two files are passed in as parameters,
where the first one is a the file to be morphed (i.e., a virus),
and the second one is a normal file. The algorithm initial-
izes four master lists, namely, mono-graphic and di-graphic
opcode counts for both the normal file and the virus file. For
example, given the two short files with five opcodes each that
appear in Table 1, the algorithm initialization yields the four
lists shown in Table 2.

We compute the initial score by summing the differences
of the mon-graph and di-graph counts. In the example above,
the initial score is 8.

4.3.1.2 Updating the score To determine whether a change
will yield a better score, we only need to compute the score
change in terms of the opcode sequence changes, as discussed

Table 1 Opcode sequences

Virus Normal file
opcode opcode

Mov Mov

Add Mov

Mov Sub

Pop Popf

Retn Retn

in detail in [14]. Here, we simply illustrate the process with an
example. Suppose we transpose “add, mov” to “mov, add.”
Then we obtain the result given in Table 3. Since the new
score of 5 is less than the previous score of 8, this is an
improvement, and we make the change. That is, by making
this change, we will make the virus file closer to the normal
file.

4.3.2 Code morphing and scoring

Opcode mono-graph and di-graph frequencies in a virus are
generally statistically different than those in normal pro-
grams. Examples of such mono-graph statistics, which were
analyzed in [7], appear in Figs. 8 and 9.

One morphing technique that we use is to insert dead
code into the generated viruses. We insert dead code by
copying blocks of instructions and subroutines directly from
a selected normal program. Since the dynamically generated
“dead code” is, in fact, actual code from a normal program,
using this code will make our virus closer to the normal pro-
grams.

When we copy code from a normal file, we take blocks of
five or more consecutive instructions, or complete subrou-
tines. When we copy a block of consecutive instructions, we
insert an unconditional jump instruction before the block so
that these instructions will not be executed. While this could
itself provide a heuristic for detection, it would be easy to
modify this approach to make it stealthier by, for example,
using opaque predicates [15].

Table 2 Opcode mono-graph
and di-graph counts Virus opcode Normal file Difference Virus opcode Normal opcode Difference

mono-graphs mono-graphs di-graphs di-graphs

Mov (2) Mov (2) 0 Mov_add (1) Mov_add (0) 1

Add (1) Add (0) 1 Add_mov (1) Add_mov (0) 1

Pop (1) Pop (1) 0 Mov_pop (1) Mov_pop (0) 1

Retn (1) Retn (1) 0 Pop_retn (1) Pop_retn (1) 0

Sub (0) Sub (1) 1 Mov_mov (0) Mov_mov (1) 1

Mov_sub (0) Mov_sub (1) 1

Sub_pop (0) Sub_pop (1) 1
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Table 3 New score after
changes New virus Normal file Difference New virus opcode Normal file Difference

opcode count opcode count after changes sequence count opcode sequence after changes
list list list count list

Mov (2) Mov (2) 0 Mov_add (1) Mov_add (0) 1

Add (1) Add (0) 1 Add_mov (0) Add_mov (0) 0

Pop (1) Pop (1) 0 Mov_pop (0) Mov_pop (0) 0

Mov_mov (1) Mov_mov (1) 0

Add_pop (1) Add_pop (0) 1

Fig. 8 Virus opcode
mono-graph counts [7]

Fig. 9 Normal file opcode
mono-graph counts [7]

In addition to inserting a jump instruction, in some cases
we also need to modify the operands of instructions so that
the generated virus file can be assembled correctly [9]. For
example, if an instruction contains a label that is only valid
in the normal file, then we will need to replace that label with
one that is valid in the virus file.

When copying a subroutine, we also need to modify the
operands of some instructions, but we do not need to insert
jump instructions. A copied subroutine is placed between
two existing subroutines in the virus file. Since the copied

subroutine never gets called, it will not impact the behavior
of the virus. Again, in our implementation this dead code is
not stealthy, but it would be straightforward to make it much
more so.

Our metamorphic generator also employs equivalent code
substitution, but only when it makes the virus opcode
frequency counts closer to that of a normal program.
When considering equivalent substitutions, we also use
the dynamic scoring algorithm discussed above to measure
closeness.
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Fig. 10 HMM results for base
viruses generated by NGVCK

After generating dead code and performing equivalent
instruction substitution, we perform transposition. Again,
the dynamic scoring algorithm is used, and we only make
changes that cause the virus to be closer to the normal
program.

5 Experiments

We used the similarity algorithm and HMM detection tools
developed in [22] to test our metamorphic generator. First,
we demonstrate that our engine is able to evade HMM-based
detection. Then we repeat our test with different settings to
esitmate the threshold at which the HMM detector begins
to fail.

5.1 Base virus

To test our engine, we used the Next Generation Virus Con-
struction Kit (NGVCK) to generate 200 virus files. These 200
files serve as our base viruses. We then obtained 40 normal
files consisting of cygwin utility files. Note that this is the
same procedure followed in [22].

After we generated our base viruses and normal files, we
used the HMM detector to verify that viruses generated by
NGVCK were still detectable. We first generated an HMM
model using 160 viruses. We then scored the remaining 40
viruses against the HMM model and we also computed scores
for the 40 normal files against the same HMM model.

If none of the normal files score higher than the viruses,
then for an appropriate threshold, the HMM detector will
detect the family viruses without fail. On the other hand,

if some normal files score higher than some of the virus files,
then the HMM detector will not provide a clear threshold
for determining whether a given file is a virus or not. In this
latter case, HMM-based detection will fail, at least for some
percentage of the files.

Figure 10 shows the result of scoring NGVCK viruses
against normal files. The scores are given in the form of log
likelihood per opcode (LLPO), that is, log odds are com-
puted and then normalized to a per opcode score. Note that
in Fig. 10, all of the normal files score lower than virus files.
Therefore, the base viruses we generated from NGVCK are
detectable by the HMM detector. This serves as a confirma-
tion of the relevant work presented in [22].

Next, we used our metamorphic generator to morph the
base viruses. That is, we used our engine to perform addi-
tional code obfuscation on the NGVCK viruses. As discussed
above, our engine takes one base virus and one normal file
as inputs and it applies code obfuscation techniques to the
base virus so that the resulting virus is statistically closer
to the normal file. Before testing the HMM detector on our
morphed viruses, we consider their similarity to normal files.
For similarity comparisons of NGVCK files with each other,
see [22].

5.2 Similarity test

We compared the similarity of our metamorphic viruses using
the similarity measure discussed in Sect. 3. Since our engine
is designed to make virus files closer to normal files, we com-
pared the similarity of a virus file with its peer normal file.
We computed the similarity multiple times as we increase
the percent of dead code copied from the normal file.
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Fig. 11 Similarity graphs for
morphed virus versus normal
files

Fig. 12 Similarity score of virus and file size

We first compared a base virus against a normal file, and
there was essentially no similarity between them. Then we
ran the two files through our engine without any dead code
copying and we obtained a similarity score of 13.8% between
the two files. A typical similarity graph for this case is given
in Fig. 11.

Then we copied dead code from the normal file into the
virus and computed the similarity score again. As expected,
the more dead code we copied into the virus, the higher the
similarity score; see Fig. 12. However, for the range of val-
ues given in Fig. 12, the similarity does not increase dramati-
cally. To increase the similarity to higher levels would require
insertion of relatively large amounts of dead code and would
significantly increase the file size.

5.3 HMM-based detection

We performed HMM tests for the virus sets that we generated.
The goal here is to empirically determine how much dead

code we need to copy from normal files to make our viruses
undetectable (with respect to the HMM-based approach).

We conducted tests on our viruses with the number of
HMM hidden states ranging from 2 to 5. However, based
on the previous work [7,22], and confirmed by our results,
it appears that the number of hidden states does not signif-
icantly affect the results. Therefore, we focus on analyzing
the results for the HMM tests with three hidden states; see
[14] for tests involving other numbers of hidden states.

5.3.1 Zero percent dead code

A set of viruses was generated using our engine without any
dead code copied from the normal files. With this setting,
the average virus file size increase from 17 to 21.8 kB. The
similarity score also increase from essentially 0 to 13.8%.
From the results in Fig. 13, we see that HMM-based detec-
tion is still possible in this case.

5.3.2 Copying dead code from normal file

This next set of viruses we consider were generated by apply-
ing our engine with the probability of copying dead code
blocks set to 35%. This probability is applied after each
instruction, that is, 35% of the time a block of dead code
is inserted after an instruction. Also, the block of dead code
ranged from 3 to 5 instructions. With this setting, the average
file size increased from 17 to 24.3 kB. The HMM detection
results are shown in Fig. 14.

In spite of these high settings for dead code insertion, the
HMM was able to distinguish the family virus. These strong
detection results are, perhaps, somewhat surprising given that
the dead code was carefully selected so as to increase the
similarity between the virus and normal files.
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Fig. 13 HMM result with 0%
dead code copied

Fig. 14 HMM results with
35% dead code setting

5.3.3 Copying subroutines from normal file

We continued our experiments by copying subroutines from
the normal files into our viruses. We configured the subrou-
tine copying probability to 5% along with a 35% probability
of copying dead code (as discussed above). The subroutine
copying probability refers to the likelihood of copying an
entire subroutine following any given subroutine in the base
virus. Figure 15 gives the scores of family viruses and nor-
mal files using the HMM model with this 5% subroutine
copying probability. Even with such a low setting, the HMM
detection fails to accurately classify the viruses—16 viruses

score lower than the maximum normal file score. This level
of failure would make the HMM entirely impractical.

5.3.4 Copying subroutines only from normal file

Based on the results in Fig. 15, we observe that copying sub-
routines from normal files significantly impacts our scores.
Therefore, we conducted additional experiments copying
only subroutines into our base viruses without any addi-
tional code obfuscation. These results showed that even with
as little as a 5% threshold for copying subroutines from
the normal files—and no dead code copying—the HMM
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Fig. 15 HMM detection with
35% dead code and 5%
subroutine copy

Fig. 16 HMM results with 5%
subroutine copied

detector misclassified some of our viruses; see Fig. 16. In this
case, the HMM detector would be ineffective as a detection
mechanism. Additional experimental results can be found
in [14].

6 Statistical analysis

Next, we give a brief statistical analysis of the results of the
previous section. These results shed some additional light on

our empirical results. The discussion here was motivated by
the results in [10].

Suppose that c distinct opcodes appear in normal files.
Let ni , for i = 1,2,…,c, be the relative frequency of opcode i
in these normal files and let mi , for i = 1,2,…,c, be the relative
frequency of opcode i in one of our morphed file. Define the
null hypothesis to be that opcode frequencies of the morphed
file are indistinguishable from that of a normal file, that is,

H0 : mi = ni for i = 1, 2, . . . , c
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Table 4 Frequency count
statistical analysis Case D2 P (χ2 < D2) Detected

with HMM?

Base NGVCK virus 23.77 0.035 Yes

0% dead code, 0% subroutine 1.52 0.000 Yes

35% dead code, 0% subroutine 1.52 0.000 Yes

35% dead code, 5% subroutine 1.52 0.000 No

5% subroutine (no other morphing) 20.67 0.010 No

The alternative hypothesis H1 is that the frequencies are sig-
nificantly different, in which case there may exist a simple
heuristic for detection of the morphed file.

It is well-known that the statistic

D2 =
c∑

i=1

(mi − ni )
2/ni

follows a chi-square distribution (asymptotically) with c-1
degrees of freedom, provided that H0 holds [10]. The values
of D2 corresponding to typical morphed files from each of
the various cases considered in the previous section appear in
Table 4. For all results in Table 4, c = 39, so the probabilities,
P(χ2 < D2), are for a chi-square distribution with 38 degrees
of freedom. Also, the probabilities have been rounded to the
nearest 1/1000th.

The second row in Table 4 indicates that even without
copying any code directly from a normal file, the spectrum
of one of our morphed files is statistically indistinguishable
from that of a normal file. However, these viruses are easily
detected by an HMM which implies that the HMM is superior
to a simple spectral heuristic, at least in some cases. On the
other hand, the final row in Table 4 indicates that the HMM
is highly vulnerable to insertion of normal opcode sequences
of sufficient length? these viruses appear vulnerable to detec-
tion by a simple heuristic, yet they evade our HMM-based
detector. Of course, if we apply our other morphing tech-
niques, the resulting viruses would not be detectable using
such a heuristic, as can be seen in the “35% dead code, 5%
subroutine” row of Table 4.

7 Conclusions and future work

By modifying viruses so that they are similar to normal files,
we were able to make them undetectable using an HMM-
based detector. However, a very specific type of similarity
was required to achieve this result. Specifically, the HMM-
based detector began to fail when we copied subroutines
(at a low rate) from normal files, while copying small
segments of code did not yield the same effect.

To evade signature detection, a metamorphic engine must
generate highly metamorphic viruses, that is, the viruses must
exhibit little similarity when compared to other viruses of
the same family. However, in [22] it was demonstrated that
a high degree of metamorphism is not sufficient to evade
HMM-based detection, and it was conjectured that highly
metamorphic viruses that are similar to normal code would
evade such detection. The work presented here confirms this,
while also providing a simple method to obtain the required
level of similarity. It is somewhat surprising that such a small
addition of carefully selected code can defeat the HMM-
based detector, which, in many respects, had proven to be
fairly robust.
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