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Abstract This paper presents a supervised methodology
that detects malware based on positive selection. Malware
detection is a challenging problem due to the rapid growth of
the number of malware and increasing complexity. Run-time
monitoring of program execution behavior is widely used to
discriminate between benign and malicious executables due
to its effectiveness and robustness. This paper proposes a
novel classification algorithm based on the idea of positive
selection, which is one of the important algorithms in Artifi-
cial Immune Systems (AIS), inspired by positive selection of
T-cells. The proposed algorithm is applied to learn and clas-
sify program behavior based on I/O Request Packets (IRP).
In our experiments, the proposed algorithm outperforms
ANSC, Naïve Bayes, Bayesian Networks, Support Vector
Machine, and C4.5 Decision Tree. This algorithm can also
be used in general purpose classification problems not just
two-class but multi-class problems.

1 Introduction

According to the reports published by Symantec in April
2010, the number of malware is rapidly increasing. In 2008
the number of exiting malware increased up to 1691 thou-
sand and in 2009 grows up to 2895 thousand [1]. The rapid
growth of the number of malware has made manual meth-
ods of disassembly or reverse engineering unaffordable [2].
More resilient and effective methods must be applied to com-
bat malware.
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Run-time malware detection strategies have attracted
extensive attention due to its effectiveness and robustness.
Forrest et al. [3] leverage system calls to discriminate
between benign and malicious Unix processes. Hofmeyr
et al. [4] build normal behavior of Unix processes in terms
of short sequences of system calls. The Hamming distance
is used to determine how closely a system call sequence
resembles another. A threshold must be set to determine
whether a process is anomalous. Typically, processes show-
ing large Hamming distance values are anomalous. Wepsi
et al. [5] propose an improved version with variable length
system call sequences. A detection method based on the fre-
quency of system calls has been proposed by Sato et al. [6].
Manzoor et al. [7] collect some Windows malicious execu-
tables from VX Heavens [8] and their API call sequences
are monitored by API Monitor [9]. The DCA (Dendritic Cell
Algorithm) [10–12] is applied for detection. Later, Ahmed
et al. [13] use statistical features which extracted from both
spatial (arguments) and temporal (sequences) information
available in Windows API calls for malware detection. All
these methods use system calls or API calls to monitor
program behavior. However, the system call or API call
sequences can be manipulated by a crafty attacker to cir-
cumvent detection [14–16].

Seifert et al. [17] compared three popular event-based
techniques that can monitor program behavior: user mode
API hooking, kernel mode API hooking, and kernel mode
callbacks. Applications that directly call the kernel and avoid
using the Win32 API cannot be monitored by user mode
API hooking. Kernel mode API hooking injects code into
the kernel itself providing a system wide view of program
behavior that is more difficult to circumvent [18]. Modifica-
tions of the kernel in this manner are now being discouraged
by the vendor, as they can cause other programs to crash
or perform unexpectedly. Kernel mode API hooking is not
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portable across different versions of the operating system as
hooked function calls are not a supported interface and there-
fore are changing with each version. Instead of patching the
kernel with kernel mode API hooking, Microsoft encourages
the usage of callback functions [19]. Callback functions are
publicly supported interfaces on the kernel mode that notify
an application about state changes on the system. These call-
backs are designed with reliability and long-term support-
ability in mind allowing a monitoring application to run on
various versions of the Microsoft Windows operation system
without modification [17]. So kernel mode callbacks is the
best way to monitor program behavior, and I/O Request Pack-
ets (IRP) are used to analyze program behavior, MBMAS
[20] is used for capturing IRPs in this paper.

Artificial Immune Systems (AIS) are defined as intelligent
computational systems inspired by Human Immune System
(HIS), which are applied to anomaly detection [3,21–23],
optimization [24,25], clustering and classification [26–30],
and so on. The most widely used theories in AIS are self/non-
self theory and clonal selection theory. The representative
algorithms are the negative selection algorithm (NSA) pre-
sented by Forrest et al. [21], which is inspired by the pro-
cess of self-tolerance of B-cells, and CLONALG [24,31],
which is inspired by clonal selection theory and consists
of mutation and selection processes. NSA is appropriate for
anomaly and malware detection problems. In original NSA,
candidate detectors are generated in a random manner, and
then exposed to a negative censoring mechanism. Only the
qualified detectors that do not match any self-sample are
inserted to the detector set. Unfortunately, these randomly
generated detectors have three problems. Firstly, many of
these randomly generated detectors are useless and will be
discarded. Secondly, many detectors generated in a random
manner are similar. In other words, some nonself data are
detected by two or more detectors. Thirdly, these randomly
generated detectors cannot be guaranteed to cover the non-
self-space [44]. Particle swarm optimization was proposed
to optimize detectors of negative selection algorithm [45].
This method uses a multi-phase particle swarm optimization
and anti-collision technique. Each sub-swarm represents a
detector group, which consists of a given number of detec-
tors. But their methods use fixed radius for each detector.
The real valued negative selection was proposed in order
to cover the abnormal space [46]. They introduced a new
scheme of detector generation and matching mechanism for
negative selection algorithm with variable properties. The
negative selection was applied to multi-class classification
problems [29]. Detectors are generated for each self and non-
self data set using clonal selection principles and a new data
reduction technique is proposed to reduce the noise effect.
All these algorithms have two problems. Firstly, in many
cases self-space is small and nonself-space is large. In par-
ticular, nonself-space is larger than self-space for multi-class

classification problems. Large numbers of detectors are
needed to cover nonself-space. Secondly, in these algorithms,
when a test sample cannot be recognized by any detector,
each detector radius is enlarged by a fixed multiplier until this
sample is recognized by at least one detector. The problem is
that more than one enlarged detectors covers the self-space.
In addition, many detectors overlap the others. Therefore,
one test data can be recognized by multiple detectors.

In HIS, only T-cells capable of binding to Self-MHC
(Major Histocompatibility Complex) molecules can survive
[34]. This is called positive selection [32,33]. It is also an
important mechanism in AIS. Positive selection algorithm
(PSA), inspired by the positive selection, belongs to self/non-
self theory and is the opposite of NSA. In PSA, the detectors
that match any self-sample are inserted into the detector set.
In other words, the detectors only need to cover self-space.
In multi-class classification problems, self-space is smaller
than nonself-space. So, fewer detectors are needed in PSA.

In this paper, we present a novel classification algorithm,
positive selection classification algorithm (PSCA), based on
the idea of positive selection. PSCA overcomes the two above
mentioned problems. Firstly, only self-space are needed to
be covered. Secondly, k-nearest neighbor algorithm is used
to solve the hole problem. So not all self-space are needed
to be covered. In other words, fewer detectors are needed.
We also propose an initial algorithm for classifier gener-
ation based on the maximum distance to cover more self-
space with fewer classifiers, and clonal selection algorithm
is used to search approximate optimal classifiers. For gen-
eral purpose, we expand PSCA to handle multi-class prob-
lems. PSCA turns multi-class classification problem into
two-class classification problem: self and nonself. Each time
one class is selected as self-class and the others are nonself-
class. The classifiers which only can recognize self-class data
are selected by positive selection. The procedure is iterated
until classifiers are generated for all classes. At classifica-
tion stage, these classifiers are used to recognize self-class
data. In our experiments, PSCA outperforms artificial neg-
ative selection classifier (ANSC) [29], Naïve Bayes (NB),
Bayesian Networks (BN), Support Vector Machine (SVM),
Decision Tree (DT), NB with Boosting (BNB), BN with
Boosting (BBN), SVM with Boosting (BSVM), and DT with
Boosting (BDT).

The contributions are: (1) Kernel mode callbacks tech-
nique, which is more effective and robust than API hooking,
is used to monitor program behavior and IRPs are used for
run-time malware detection; (2) PSCA is proposed for effec-
tive classification.

This paper is organized as follows: Sect. 2 introduces the
positive selection algorithm and clonal selection algorithm in
AIS. Section 3 describes PSCA in detail. The experimental
results and discussion are given in Sect. 4. Section 5 con-
cludes this paper.
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2.1 Positive selection algorithm

Positive selection algorithm [33] is inspired by positive selec-
tion process of T-cells. In the selection process, only T-cells
able to recognize self-molecules can be used in immune sys-
tem. Seiden and Celada [32] proposed a model for simulating
cognate recognition and response in the immune system, in
which the positive selection algorithm is applied.

The concept of the positive selection algorithm is shown
in Fig. 1. At the generation stage, the candidate detector is
produced randomly and tested for the ability to recognize
self-samples. A detector which is able to recognize any self-
sample is added to the detector set. Only those that can-
not recognize any self-sample are removed. At the detection
stage, if one input data is recognized by any detector, result
is self-class; otherwise, result is nonself-class.

2.2 Clonal selection algorithm

When an immune system is exposed to an antigen, the anti-
bodies which spread on surfaces of B lymphocytes are pro-
duced. Each B-cell is specific to a given antigen. Antibodies
are able to recognize certain type of antigens. If a new antigen
enters into the body, the immune system clones the most stim-
ulated lymphocytes. Clonal selection has a mutation operator.
The mutation rate of an individual is inversely proportional
to its affinity by means of different mutation variations.
In other words, the better affinity the antibody has, the less
it may be exposed to mutation. A general scheme for clonal
selection is CLONALG [24,31]. It utilizes clonal selection
and affinity maturation. The main steps of this algorithm are
described in the following.

1. The algorithm starts with an initial set of population Pr

of B-cells and an empty memory set M .
2. The selection process then selects n best cells from Pr to

generate a new population Pn according to the affinity
principle.

3. The clonal process reproduces a population of clones
C from the population of Pn cells. This step produces
more offspring for higher affinity cells.

4. The maturation process mutates the cells to create the
population C∗.

5. The reselection process reselects the improved cells
from C∗ and updates the memory set M .

6. The diversity introduction process replaces d cells with
new ones Nd .

This algorithm is one of the most classic clone selec-
tion algorithms, which is applied to pattern recognition [35],
anomaly detection [36], and so on. The clone selection
method used in this paper is based on this algorithm.

3 Positive selection classification algorithm

Positive Selection Classification Algorithm (PSCA) is a gen-
eral classification algorithm. PSCA classifies unknown data
only use classifiers that are able to recognize self-class data.
In order to obtain effective classifiers, PSCA uses positive
selection algorithm and clonal selection algorithm in AIS.
The following notations are applied in the PSCA.

• D: the training data set.
• d: a training data, d ∈ D.
• n f : the number of features in the data set.
• nc: the number of classes in the data set.
• d. f : the feature vector of the training data d.
• d. f lg: the recognized flag of the training data d.
• d. fi : the value of the i th feature in d. f .
• Di : the training data set of the i th class, Di ⊆ D, D =
{D1 ∪ D2 ∪ . . . ∪ Dn}.

• Let one class (i) be the self-class, and the set of the
remaining classes (1, . . . , i−1, i+1, . . . , nc) be the non-
self-class.

• S: the self-class data set, S = Di .
• |S|: the number of self-class data set.
• s: a self-class data, s ∈ S.
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• N : the nonself-class data set, N = {D1 ∪ . . . ∪ Di−1 ∪
Di+1 ∪ . . . ∪ Dn}.

• n: a nonself-class data, n ∈ N .
• C : the classifier set.
• c: a classifier, c ∈ C .
• c. f : the feature vector of classifier c.
• c.r : the recognition radius of classifier c. If the distance

between the classifier c and the training data d is less than
the recognition radius of c, then c can recognize d. The
distance is dependent on the type of data, for example, the
Euclidean distance for real-valued data or the Hamming
distance for bitstrings.

• c.sl: the stimulation level of classifier c. The stimulation
level is the number of self-class data recognized by the
new classifier but not recognized by any old classifier.

• c.ssl: the substimulation level of classifier c. The substi-
mulation level is the number of self-class data recognized
by the new classifier and old classifiers.

• Ci : the classifier set of the i th class, Ci ⊆ C, C = {C1 ∪
C2 ∪ . . . ∪ Cn}.

• Ng: number of iterations.
• Nc: number of clone selections.
• P: mutation probability.

3.1 Learning stage

The purpose of the learning stage is to produce classifiers for
each class. This process turns multi-class classification prob-
lem into two-class classification problem: self and nonself.
The functions used at learning stage are described as follows.

• minDist_s(s, N ): the minimum distance between s and
each n in N .

• minDist_c(c, N ): the minimum distance between c and
each n in N .

• dist Order(S, N ): the descending order of all minDist_s
(s, N ), s ∈ S.

• distant[|S|]: the self-class data set obtained by dist
Order(S, N ).

• getClassi f ier(s, S, N ): generate a classifier.
• set Radius(c, N ): set the recognition radius of c.
• set Stimulation(c, S): set the stimulation and substimu-

lation level of c.
• mutate(c): mutation of c.
• clone(c_clone, c_best): clone selection.
• recognize(c, s): return true if c recognizes s; return

f alse otherwise.

The classifiers, which are generated by PSCA, only recog-
nize self-class data. The initial algorithm for classifier gener-
ation based on the maximum distance is proposed to generate
effective initial classifiers. The maximum distance is

max
s∈S

minDist_s(s, N ) (1)

This method sorts the minimum distances between each self-
class data and all nonself-class data in descending order.
The first data in the sorted list which is not recognized by
any existing classifier is used as the feature value for the
initial classifier. Algorithm 1 shows the learning stage of
PSCA.

Algorithm 1 Learning stage of PSCA
for each Di (S) in D do

Ci ← ∅;
dist Order(S, N );
for each s in S do

s. f lg← f alse;
end for
for i ← 0 to |S| do

if distant[i]. f lg eq f alse then
c← getClassi f ier(distant[i], S, N );
Ci ← Ci ∪ c;

end if
for j ← 0 to |S| do

if recognize(c, distant[ j]) then
distant[ j]. f lg← true;

end if
end for

end for
end for

In Algorithm 1, the function getClassi f ier(s, S, N ) is
used to set the feature vectors, recognition radius, stimula-
tion level, and substimulation level. The optimal classifier
is obtained by clonal selection. Details of getClassi f ier
(s, S, N ) are described in Algorithm 2. The recognition
radius set function is determined by:

c.r = minDist_c(c, N )× α (2)

where α is the control parameter, α ∈ [0, 1]. Equation 2
ensures that the classifier does not recognize any non-
self-class data, and reduces the probability of misclassifi-
cation.

Algorithm 2 getClassi f ier(s, S, N )

c. f ← s. f ;
c.r ← set Radius(c, N );
c← set Stimulation(c, S);
c_best ← c;
for i ← 0 to Ng do

for j ← 0 to Nc do
c_clone← mutate(c);
c_clone.r ← set Radius(c_clone, N );
c_clone← set Stimulation(c, S);
c_best ← clone(c_clone, c_best);

end for
c← c_best ;

end for
return c;
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Fig. 2 a Overlap. b The
solution to overlap

(a) (b)

Algorithm 3 set Stimulation(c, S)

c.sl ← 0;
c.ssl ← 0;
for each s in S do

if recognize(c, s) eq true then
if s. f lg then

c.ssl ← c.ssl + 1;
else

c.sl ← c.sl + 1;
end if

end if
end for
return c;

Algorithm 3 describes the function set Stimulation(c, S).
Algorithm 4 describes the mutation process. Each feature of
a classifier is adjusted according to the mutation probability
P . The mutation process is used to search for the optimal
classifier in the whole space. The clonal selection process is
shown in Algorithm 5, which is used to determine whether
or not the mutated classifier is better than the original one.
The judgement rules are:

1 If the stimulation level increased after mutation, the
mutated classifier is better;

2. If the stimulation level is equal to the original stimula-
tion level after mutation, and the substimulation level
increased, then the mutated classifier is better;

3. Otherwise, the original classifier is better.

3.2 Classification stage

After the learning stage, all classifiers are available to clas-
sify the unknown data (s). The radius is a threshold used for
classification, opposed to the usual classification approach
where the minimal distance between several centers is used.
If the distance between classifier (i) and s less than the radius
of i, i can recognize s. If only one kind of classifiers i rec-
ognize s, the class of s is determined as i . This is the normal
state, however there are two other states: (1) overlap: the
unknown data is recognized by more than two kinds of clas-
sifiers (Fig. 2a). (2) hole: no classifiers can recognize the
unknown data (Fig. 3a). The solutions to these two states are
describes as follows.

Algorithm 4 mutate(c)
f lg← f alse;
while f lg eq f alse do

for each c. fi in c. f do
if random(0, 1) < P then

if c. fi eq 0 then
c. fi ← 1;

else
c. fi ← 0;

end if
f lg← true;

end if
end for

end while
return c;

Algorithm 5 clone(c_clone, c_best)
if c_clone.sl > c_best.sl then

return c_clone;
else

if (c_clone.sl eq c_best.sl)&&(c_clone.ssl > c_best.ssl) then
return c_clone;

else
return c_best ;

end if
end if

1. Overlap: Fig. 2a describes the state that the unknown
data is recognized by two kinds of classifiers. The red
point in Fig. 2 represents the unknown data. In this sit-
uation, the two classifiers are temporarily moved away
along the direction of the center connection. The moving
distance is (c1 + c2 − dist (c1, c2))/2. c1 and c2 repre-
sent the two classifiers, and dist (c1, c2) is the distance
of the two classifiers. Figure 2b is the state after the
movement. The two circles are tangent with each other.
After the movement, if the unknown data is recognized
by only one kind of classifiers (i), its class is determined
as i . If the unknown data is not recognized by any clas-
sifier, it is considered as the hole. If the unknown data is
recognized by more than two kinds of classifiers, handle
it in the same way as the two classes, until all overlaps
are eliminated.

2. Hole: Fig. 3a illustrates the hole state, in which the
k-nearest neighbor algorithm is applied. We use k = 3 in
our algorithm. The distance is defined as dist (c, s)− c.r ,
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Fig. 3 a Hole. b The solution
to hole

(a) (b)

where dist (c, s) is the Hamming distance between the
classifier c and unknown data s. The data s is classified
into the class where any two classifiers agree. If each of
the three classifiers produces a different class, the data
s is classified by the classifier with the nearest distance
to it.

The classification is performed as follows:

Step 1. Select an unknown data and classify it using each
classifier.

Step 2. If the unknown data is recognized by only one kind
of classifiers (i), then it is classified as i , and go
back to Step 1. Otherwise, if the state is overlap, go
to Step 3. If the state is hole, go to Step 4.

Step 3. Classify the unknown data using solution to over-
lap.

Step 4. Classify the unknown data using solution to hole.

4 Evaluation

4.1 Compare the initial algorithm for classifier generation
based on the maximum distance with the random initial
classifier generation algorithm

In order to evaluate the performance of our algorithm, we
compare the proposed algorithm to the random algorithm
[29]. We use the sepallength and sepalwidth attributes of the
Setosa and Versicolor classes in the Fisher’s Iris data set [47]
to formulate a two-dimension, two-class problem. The first
30 instances in each class are chosen for training data and the
remaining 20 instances are used for test data. The parameters
of PSCA are set to α = 0.85, Ng = 0. The results are shown
in Fig. 4. The red points represent Setosa, and the green points
represent Versicolor. In Fig. 4, we can see that 2 classifiers
for Setosa and 2 classifiers for Versicolor are generated by
our algorithm. But 4 classifiers for Setosa and 3 classifiers
for Versicolor are generated by the random algorithm. The
two algorithms achieve the same accuracy of 97.5%.

We also compare these two algorithms using the entire
Iris data set. Also, the first 30 instances of each class are
chosen for training data and the remaining 20 instances are

Fig. 4 a The generated classifiers by the initial algorithm for classifier
generation based on the maximum distance. b The generated classifiers
by the random initial classifier generation algorithm
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used for test data. For our algorithm, the number of classifi-
ers generated is 16, and the accuracy is 96.7%. For random
algorithm, the number of classifiers generated is 17, and the
accuracy is 95%. The results show that our algorithm gener-
ates fewer classifiers, but achieves higher accuracy than the
random algorithm.

4.2 Dataset

We collect 3721 Windows malicious executables and 3458
benign Windows executables for experiment. 1421 malicious
executables are randomly selected from VX Heavens [8],
another 2300 are collected from Internet from December
2009 to April 2011. There are four types of malicious ones,
including 912 backdoors (such as Backdoor.Win32.Cold-
Death, Backdoor.Win32.Coma, Backdoor.Win32.Galaxy),
785 spyware (such as Spyware.Win32.RedCod.01, Spy-
ware.Win32.AimSpy, Spyware.Win32.BC), 1,074 trojans
(such as Trojan.Win32.FireKill, Trojan.Win32.Ghost, Tro-
jan.Win32.PowerOff), and 950 worms (such as Worm.
Win32.Burn.a, Worm.Win32.Denit, Worm.Win32.Elman).
There are 343 variants in backdoors (such as Backdoor.
Win32.Agent, Backdoor.Win32.Aimbot, Backdoor.Win32.
BlackAngel, Backdoor.Win32.Ghost), 189 variants in spy-
ware (such as Spyware.Win32.Agent, Spyware.Win32.Ban-

Table 1 Statistics of dataset

File type Quantity Minimum
size (KB)

Maximum
size (KB)

Average
size (KB)

Malware 3721 2 3,542 84
Benign 3458 9 263,525 138

cos, Spyware.Win32.Delf), 279 varians in trojans (such
as Trojan.Win32.Agent, Trojan.Win32.PSW, Trojan.Win32.
Downloader), and 365 variants in worms (such as Worm.
Win32.Agent, Worm.Win32.AutoRun, Worm.Win32.Down-
loader). Table 1 shows the statistics of dataset.

For capturing IRPs, we developed MBMAS [20] based on
kernel driver technology. The most advantage of MBMAS is
that it can associate a process with its child processes. In
run-time detection, if any child process is malicious then
we believe that the father process and the executable which
creates this process is malicious. Because some malware
does not have malicious behavior in main process but cre-
ates child process, for example cmd.exe, to do. But MBMAS
can not associate a thread with its children for now. We
will fix it in the next version of MBMAS. Figure 5 is the
user interface of MBMAS. Details of MBMAS can be found
in [20].

The MBMAS is installed in a fresh VMware [37] virtual
machine of Windows XP SP2 and a snapshot is taken. After
each execution of malware or benign executable, we replace
the virtual machine with the original snapshot.

In our previous work, we find 59 types of IRPs. We ana-
lyze IRP traces using 4-gram and shown in Fig. 6. We can
see that there are less than 4,000 unique 4-grams in 600,000
IRPs.

For good performance, we use Information Gain (IG) [38]
and Fisher score [39] to select top features for classifica-
tion. Our previous work shows that 4-gram performs well.
We test top 10, 50, 100, 200, 500, 1000 4-grams for IG and
Fisher score and the top 500 4-grams outperform others. So
we select the top 500 4-grams for IG and Fisher score to
classify. We check each IRP sequence in testing dataset for
presence or absence of the selected 4-grams. We place 1 if

Fig. 5 The user interface
of MBMAS
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Fig. 6 Unique 4-gram
sequences with the total number
of IRPs growing

the 4-gram is present and 0 otherwise. Each IRP sequence
is mapped to a 500-dimensional binary string for classifica-
tion.

4.3 Evaluation measures

For evaluation purposes, we want to measure the accuracy of
the classification algorithms, as well as the true positive rate
and false positive rate. First, we give some definitions:

1. |T P|, the number of malicious executable samples clas-
sified as malicious executables.

2. |T N |, the number of benign programs classified as
benign.

3. |F P|, the number of benign programs classified as mali-
cious executables.

4. |F N |, the number of malicious executables classified as
benign.

We use the common three measures to evaluate, which
are the True Positive Rate (TRP), which is the rate of pos-
itive instances classified correctly, as shown in Eq. 3, False
Positive Rate (FPR), which is the rate of negative instances
misclassified, as shown in Eq. 4, and the Total Accuracy,
which measures the number of absolutely correctly classified
instances, either positive or negative, divided by the entire
number of instances shown in Eq. 5.

T P R = |T P|
|T P| + |F N | (3)

F P R = |F P|
|F P| + |T N | (4)

T otal Accuracy = |T P| + |T N |
|T P| + |T N | + |F P| + |F N | (5)

We use 10-fold cross-validation to evaluate. That is, we
randomly partitioned the candidate data set into ten disjoint
sets of equal size, selected one as a testing set, and combined
the remaining nine to form a training set. We conducted ten
such runs using each partition as the testing set.

4.4 Sensitivity analysis of parameter α

Parameter α is the key of PSCA. That’s important to know
the impact of α on accuracy. Set Ng = Nc = 100, P = 0.2,
and all results are obtained by averaging ten runs of each
value of α. Figure 7 shows the impact of α on accuracy with
different feature selection algorithms. For IG, the accuracy
is not sensitive to the change of α. The minimum value is
97.38% when α = 0.2, and the maximum value is 99.22%
when α = 0.55 or 0.65. But for Fisher score, the accuracy is
more than 97% when α from 0.3 to 0.75, and less than 72%
when α less than 0.3 or more than 0.75. The maximum value
is 99.30% when α = 0.6 or 0.65. So parameter α should be
adjusted for different features to obtain an optimal result.

4.5 Sensitivity analysis of parameter Ng and Nc

Set α = 0.65, Ng = Nc, and P = 0.2. The results are
obtained by averaging ten runs of each value of parameters
Ng and Nc. Figure 8 shows the impact of Ng and Nc on
accuracy. Results reveal that the clonal selection does not
always produce an increase in accuracy. So the initial algo-
rithm for classifier generation based on the maximum dis-
tance can achieve approximate optimal results. The clonal
selection is used to search optimal results, but can not be
used to retrain the classifiers. The mutation probability P
also has a little help to improve performance, but can not
guarantee the improvement of performance. If the value of
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Fig. 7 The impact of α on accuracy

P increase, more learning time is needed. So the best value
of P is 0.2 or 0.3.

4.6 Comparison

In this section, we compare results of PSCA with ANSC,
NB, BN, SVM, DT, BNB, BBN, BSVM, and BDT. For NB,
we use NaiveBayes implemented in WEKA [40,41]. For BN,
we use WEKA’s BayesNet. For SVM, we use sequential min-
imal optimization (SMO) [42] implemented in WEKA. For
DT, we use J48 implementation in WEKA. And for Boost-
ing, we use the AdaBoost.M1 algorithm [43] implemented in
WEKA. We use CVParameterSelection to select the optimal
parameters of algorithms implemented in WEKA. In ANSC,
set α = 0.65, Pm = 0.2, Ng = Nc = 100, and the cutting
method is not used. In PSCA, set α = 0.65, P = 0.2, and
Ng = Nc = 100. Results are shown in Table 2 (Remark

Fig. 8 The impact of Ng and Nc on accuracy

IG-NB Naïve Bayes with Information Gain, FS-NB Naïve
Bayes with Fisher score, and so on), and the highest TPR,
highest Total Accuracy and lowest FPR are bolded.

Among these methods, FS-PSCA outperforms others with
the highest accuracy of 99.30%. The TPR of FS-PSCA is
98.87% the same as IG-PSCA, heigher than ANSC and other
methods. The FPR of FS-PSCA is 0.23%. In general, PSCA
outperforms other well known methods. We also see that the
performances of classification algorithms are influenced by
different feature selection algorithms. Good feature selection
can help classification.

We also present the average number of classifiers in PSCA
and ANSC. In PSCA, the average number of classifiers is
134.4 for malware and 64.3 for benign. In ANSC, the aver-
age number of classifiers is 168.2 for malware and 102.4 for
benign. Fewer classifiers are needed in PSCA than ANSC.
This reduction is caused by the initial algorithm for classifier
generation based on the maximum distance. Because this
algorithm can cover more self-space with fewer classifiers
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Table 2 Results of all algorithms

TPR (%) FPR (%) Total
accuracy (%)

IG-NB 83.53 1.68 90.65

IG-BN 79.06 2.00 86.38

IG-SVM 97.69 2.02 97.83

IG-DT 94.68 4.25 95.19

IG-BNB 97.85 3.90 97.01

IG-BBN 94.09 2.54 95.71

IG-BSVM 97.69 2.02 97.83

IG-BDT 96.41 3.59 96.42

IG-ANSC 98.58 0.49 99.02

IG-PSCA 98.87 0.40 99.22

FS-NB 96.18 0.20 97.92

FS-BN 91.16 0.23 95.31

FS-SVM 96.96 1.76 97.58

FS-DT 96.45 1.65 97.37

FS-BNB 97.04 0.46 98.24

FS-BBN 97.53 0.26 98.59

FS-BSVM 96.96 1.76 97.57

FS-BDT 98.82 0.38 99.21

FS-ANSC 98.63 0.38 99.11

FS-PSCA 98.87 0.23 99.30

than ANSC. The detection time is proportional to the num-
ber of classifiers. So PSCA is more effective than ANSC.

4.7 Discussion

There is a problem that the IRP traces of programs are vary
from a host to another. But the functions of programs are the
same. After extensive analysis we found that the difference
between two IRP traces of the same program is that some-
times an IRP is not successful, so the IRP will keep trying
until success. So the real difference between the two IRP
traces is that some IRPs repeat some times. This difference
has little effect on the results. The system does not need to
be retrained every time new programs are installed.

5 Conclusion

In this paper, we propose a novel classification algorithm
PSCA for malware detection based on positive selection. For
general purpose, PSCA not just work with two-class clas-
sification problems, but multi-class classification problems.
PSCA turns multi-class classification problem into two-class
classification problem: self and nonself. Only the self-class
classifiers are generated for classification. The initial algo-
rithm for classifier generation based on the maximum dis-

tance, which is able to produce approximate optimal initial
classifiers, is proposed. The clonal selection algorithm is used
in PSCA to search optimal classifiers. K -nearest neighbor
algorithm is used to solve the hole problem to avoid more than
one enlarged detectors covers the self-space. For the problem
that the API call sequences can be manipulated to circum-
vent detection, we use more effective and robust technology,
kernel mode callbacks, to monitor program behavior. In our
malware detection experiments, PSCA outperforms ANSC,
Naïve Bayes, Bayesian Networks, Support Vector Machine,
and Decision Tree, which are excellent general classification
algorithms.
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